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ON CERTAIN METHODS OF STURM AND THEIR 
APPLICATION TO THE ROOTS OF 

BESSEL'S FUNCTIONS. 

BY PROFESSOR MAXIME BÔCHER. 

Bead at the February Meeting of the Society, 1897. 

LAST November Mr. M. B. Porter, a graduate student at 
Harvard, submitted to me a proof that when n > — \ the 
well known theorem that between two successive positive 
roots of Jn(x) lies at least one root of Jn+1(x) can be ex­
tended to give the theorem that between two successive 
positive roots of Jn(x) lies just one root of J"„+i(a?).* This 
proof consisted in applying to BessePs equation the follow­
ing proposition due to Sturm:f 

If in a certain interval of the x-axis <p1 ( # ) < <P2(
X) then be­

tween two successive roots, lying in this interval, of a solution of 
the equation : 

there cannot lie more than one root of a solution of the equation : 

The application to BessePs functions is immediate when 
we let y = s/x Jn(x) for then y satisfies the differential equa­
tion: 

d2y__/4:n2—l \ 
dx2~~\ ±x2 r 

Not being aware at the time that the theorem above 
quoted is explicitly given by Sturm, Mr. Porter gave a 
proof of it which depends upon some better known theor­
ems of the same mathematician. This proof, which is dif­
ferent from the one given by Sturm, is reproduced below 
(p. 210). 

There has just appeared in the American Journal, (vol. 
xix, p. 75) another proof of the theorem concerning the 

* For the sake of simplicity of statement we confine our attention to 
positive roots, the negative roots being numerically equal to them. 

t Liouville's Journal, vol. i., p. 136. We will in future quote this ar­
ticle by merely mentioning Sturm's name. 
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roots of Bessel's functions by E. B. Van Vleck which also 
rests on a theorem of Sturm. This paper contains an ex­
tension of the theorems and methods in question to the sub­
ject of contiguous hypergeometric functions. 

I propose to present now a third method for proving and 
extending the theorem, following out still other lines of 
thought marked out by Sturm (p. 160 seq.), and I will 
then compare the three methods showing wherein lie the 
peculiar advantages and possibilities of extension of each. 
My purpose has been to call attention to Sturm's methods 
rather than to elaborate the details of the theory of the 
roots of Bessel's functions. The very fact that the proper­
ties of the roots of Bessel's functions here considered are 
not generally known brings out in a striking way how 
little this fundamental paper of Sturm has really been 
read. 

The relative position of the positive roots of Jn(x) and 
^ H I ( ^ ) *s evidently the same as that of the positive roots 
of Rn^) and i2n+1(l) where £ = </4 and Bn^) = (2/x)nJn(x). 
The object of introducing Rn(£) is that (cf, Gray and Math­
ews: Treatise on Bessel Functions, p. 46) 

(the accent denoting differentiation) so that Bolle's the­
orem shows us that between two successive roots of Rn{%) 
lies at least one root of i2n+i(£). To show that there lies in 
this interval only one root of Rn+i(%) we have merely to 
pass from Bessel's equation to the equation satisfied by 

fg+(„ + 1)|+,_o. 
A point at which Rn'(%) = 0 must be a maximum or a min­
imum of Rn(£) as otherwise Rn"(%) would also vanish at 
this point and this is seen from the differential equation to 
be impossible. If then between two successive vanishing 
points of Rn(£) Rn'(%) vanished more than once it would 
have to vanish at least three times and at one of these 
points Rn(%) would have a minimum if positive, a maximum 
if negative. I n either case Rn(£) and RJ\%) would have 
the same sign at a point where Rn'(%) = 0, and this, as we 
see from the differential equation, is impossible. This 
completes the proof of the theorem that between two successive 
positive roots of Jn(x) lies one and only one root of Jn+i(x).* 

*Cf. Sturm, p. 162. 
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Precisely the methods just used enable us to obtain an 
analogous theorem, which the writer has never seen stated, 
concerning the roots of Jn+2(x). We again consider two 
successive roots a and b (0 < a < 6) of .Rn (?)• Between a 
and b lies, as we have seen, one and only one point c for 
which Bn

f (c) = 0. From a to c, Bn and Bn' have the same 
sign so that we see from the differential equation that 
Rr!' (£) cannot vanish between a and c. JRn" (£) must, 
however, vanish at least once in a b (and, therefore, as we 
have just seen in c b) for Bn (a) = Bn (6) = 0, while i2n'a 
and i?n' (6) have opposite signs, so that it is clear from the 
differential equation that Bn" (a) and Bn" (6) have opposite 
signs. I t remains to see whether jRw'/ can vanish more than 
once in c b. I t is easily seen that; at every point where 
Bn"=0, Bn' has a maximum or a minimum so that if 
Bn" vanishes more than once in a b it vanishes at least 
three times, and, therefore, if Bn' is positive it has at least 
one minimum, if negative, one maximum. In either case 
Bn

f and Bn'" have the same sign while Bn" = 0, and this is 
seen to be impossible when we consider the following rela­
tion obtained by differentiating the differential equation 
for Bn: 

W ' ( 0 + (n + 2) R» (f) + Bn' (f) = 0. 

We thus get the theorem: 
Between two successive positive roots of Jn(x) lies one and only 

one root of Jn+2 (#) • 
This root is greater than the root of Jn+1(x) which lies in the 

interval in question. 
I t is clear that the method here used may be applied to a 

large class of similar cases. * For example the following 
theorem may be deduced directly from Bessel's equation: 

Between two successive roots of Jn(x), between which x > \ n \ , 
lies one and only one root of Jn' (x) and one and only one root 
of Jn" (x). The root of Jn" (x) is greater than the root of J J (x). 

* The principal theorem used applies even to the case of certain partial 
differential equations. I t may be stated as follows (cf. for n = 1 Sturm 
p. 160). 

In the partial differential equation : 

%n f Ó2u i * ÓU \ I n 

ai, h, c are real functions of the real variables #1?... xn, and throughout a cer­
tain region, %,... an are positive. If throughout this region c is positive u 
cannot have a positive minimum or a negative maximum ; if c is negative u 
cannot have a positive maximum or a negative minimum. 

For an example of the use of this theorem when n— 2 cf. Picard Traité 
d' Analyse, Vol. ii., p. 34. 
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We will now proceed to a comparison of the method just 
explained with the one used by Van Vleck. I t seems to 
me that the former is of a distinctly more elementary char­
acter, inasmuch as it involves the sort of discussion which 
we must always go through with when we wish to get an 
idea of the nature of a real function of a real variable, viz., 
the location of maxima and minima, points of inflection, 
etc. Van Vleck7 s method, on the other hand, is not only 
extremely elegant but is in touch with the important idea 
of related * differential equations so that it can be applied at 
once to hypergeometric functions and in fact to the solu­
tions of any regular linear differential equation of the sec­
ond order and possibly, therefore, ultimately to irregular 
equations of the second order in general, since these may 
be regarded as the limiting forms of regular equations. 
The method contained in the foregoing pages, while apply­
ing as readily to irregular as to regular equations, depends 
essentially on the properties of derivatives which are 
merely special cases of related functions (having in general 
accessory points f ), and appears, therefore, at first sight to 
have a more limited range of application than Van Vleck's. 
The two methods appear, however, on closer examination, 
to be coextensive, at least in their application to Bessel's 
functions and hypergeometric functions. Two very simple 
examples may suffice here. 

1. The theorem above proved that between two succes­
sive positive roots of Jn(%) lies just one root of Jw+2(«) fol­
lows at once by Van Vleck's method from the relation: 

j T T T __ 4 (n + 1) sin (n + 1) n 
dn+2 J _ n «V_(n_|_2) Jn — — ^ J 

or when n is an integer: 

2 ( n + l ) 

2. If we remember that 

±F(a,(l,r,x)--^-F(.a + l,l)+l,r + l,x) 

and that F(a, /?, p, x) satisfies the differential equation: 

* In my lectures I have been in the habit of translating the German 
term verwandt by kindred rather than related as this last term is constantly 
used in an entirely untechnical sense to denote any kind of connection or 
similarity in form. 

fThus Jn'{x) has accessory points at x = db n. 
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dfy , r — ( g + ^ + l)a? dy __ aft 
dx^ x(l—x) dx x(l — x)y ' 

we obtain by the method above explained the theorem: 
Between two successive roots of F(a, ft, y, x) which lie in the 

interval from 0 to 1 lies one and only one root of F(a + 1, ft+1, 
y+1, x); and,provided that the point x = y/(a+ft+l) does not 
lie between the roots of F (a, ft,y,x) in question, one and only one 
root of F(a + 2,ft + 2,y + 2, x). 

The second part of this theorem might easily be obtained 
by Van Vleck's method, while the first part is merely a 
special case of his theorem concerning contiguous hyperge-
ometric functions. The general theorem can easily be ob­
tained in the same way. 

I t is clear that what is essential to the application of our 
method is that the two related functions should be so pre­
pared by multiplication by suitable factors and, if necessary, 
by a change of the independent variable that one is a de­
rivative of the other. 

Very different from the two methods so far discussed and 
in some respects much more far-reaching is the method sug­
gested by Mr. Porter. In order to simplify matters we will 
restrict ourselves in this article to positive values of n. 
Before beginning with a discussion of the method it will be 
well to note that the proof given at the beginning of this 
paper established the fact that, h being any positive quantity, 
between two successive positive roots of Jn(x) (n positive) cannot 
lie more than one root of Jn+k(x). 

The theorem of Sturm quoted at the beginning of this pa­
per was proved by Mr. Porter by means of the following 
two more fundamental theorems also due to Sturm: 

I. p and q being continuous real functions of the real variable 
x, between two successive roots of a solution of the differential 
equation : 

d2y . dy . 

will lie one and only one root of any linearly independent solution. 
I I . If, <px and <p2 being continuous real functions of the real 

variable x, <px < <p2, and if yx and y2 both vanish at a point x0 and 
satisfy respectively the equations : 

/ o \ d2y 

(2) a?-™ 
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then, if y2 has n roots to the right (left) of x0, yv will also have at 
least n roots there and the Jcth root of y2 from x0 will be greater (less) 
than the kth root of yx from x0*. 

Mr. Porteras proof now is as follows: 
Ketaining the notation of the last theorem, let us suppose 

that between two successive roots of a solution yx of (1) lie 
more than one root of a solution y of (2). Let y2 be a solu­
tion of (2) which vanishes at one of the two roots of yx in 
question. Then by Theorem I y2 must vanish between any 
two successive roots of y and therefore at least once between 
the roots of y1 in question; but this is impossible by The­
orem I I . 

I have reproduced this proof not merely because I con­
sider the method used instructive, but because it is capable 
of extension to cases which could not readily be attacked 
by the method given by Sturm. 

Before going farther, I should like to present a proof of 
Theorem I just stated which I have been in the habit of 
giving in my lectures and to which, though it will be fa­
miliar to many, I am unable to give a reference*)*. 

Let a and b be two successive roots of a solution y1 of the 
differential equation. Let y2 be any solution linearly inde­
pendent of yx and consider the ratio yjyr If y% did not 
vanish between a and b this ratio would be continuous 
throughout the interval and, since it vanishes at the ex­
tremities, its derivative (yx

f y2 — yx y2)/y2 would vanish in 
the interval. This is impossible as the vanishing of yx

f y2 
— yx y2 is obviously the condition that yx and y2 should be 
linearly dependent. y2 must then vanish at least once be­
tween two successive points where y1 vanishes, and we see 
that it cannot vanish more than once, for if it did, by a 
similar proof y1 would vanish between two successive points 
where y2 vanishes and therefore a and b would not be suc­
cessive roots of yv% 

* Sturm, p. 125. 
f Two methods of proof are given by Sturm, of which the second, de­

pending, as it does, on the formula y1y2' — y2 V\ = ce J & x has a certain 
analogy to Van Vleck's method above referred to. 

X Various modifications of this proof can be given, one of which will be 
suggested by a method used by Van Vleck on p. 76 of the paper above 
quoted. If p and q are analytic functions yx /y2 is the "Schwarzian 
«-function " and the following form of the proof is instructive : 

If x moves along its axis of reals s will do the same ( p, q, yu y2 being 
supposed real for the real values of x in question). It is a fundamental 
property of the s-function that the representation of the œ-plane on the 
s-plane is conformai except at the singular points of the differential equa­
tion. As x moves always in one direction from one real root of yx to the 
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I t is clear that the proof just given really establishes the 
following generalized form of the theorem: 

If within the interval ah (excluding the ends) the coefficients of 
the differential equation : 

d2y dy , ^ 

are continuous, and if there exists a solution yx which does not 
vanish between a and b and such that its ratio to a linearly inde­
pendent solution y2 approaches zero as we approach each end of 
the interval, then y2 vanishes once and only once between a and b. 

In particular if p and q are analytic functions a and b 
might be regular points with real exponents, and yx a solu­
tion corresponding to the largest of these exponents at each 
point. Here either a or b, or both, may, of course, be not 
merely regular but non-singular points. 

Although the theorem just stated is capable of important 
general application, it will be sufficient for our purposes to 
deduce from it the following theorem concerning Bessel's 
functions : 

If n and k are positive and a is the smallest positive root of Jn(x) 
then Jn+it(x) cannot vanish in the interval from o to a. 

For if Jn+k(x) vanishes at the point b between o and a the 
solution of BesseFs equation with parameter n + h which 
vanishes when x = a would vanish again by the theorem 
just proved between o and b (say at c) and therefore by the 
theorem numbered I I above, Jn(x) would vanish between c 
and a, i. e., a would not be the smallest positive root of 
Jn(x). I t will be noticed that we have merely repeated 
Mr. Porter's proof under slightly different circumstances. 

Since, then, as n increases the smallest positive root Jn(x) 
increases* and, since between two successive positive roots 
of Jn(x), lies at most one root of Jn+k(%) (& positive) it fol-

next without passing a singular point s must move always in the same 
direction (else the representation would not be corformal) from s = 0 
back to s = 0 and must, therefore, pass through the point s = oo once and 
only once. This establishes the theorem. This proof is implicitly con­
tained in Klein's paper: "Ueber die Nullstellen der hypergeometrishen 
Reihe." Math. Ann., vol. 37. 

* We have, strictly speaking, only proved that this root does not de­
crease as n increases. It is, however, easy to see that it cannot remain 
constant, for Jn(x) is an analytic function of n and x and, therefore, if 
Jn(x)~0 x is an analytic function of n and if it were constant for any con­
tinuous set of values of n it would be constant for all values of n. This, 
however, is not the case, as the smallest root of Jn(x) is evidently greater 
than n, since Jn(x) cannot have a positive maximum or a negative mini­
mum when # 0 . 
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lows at once that as n {which is supposed positive) increases, all 
the positive roots of Jn(x) increase.* 

From this it appears that, when k is sufficiently small, be­
tween two successive positive roots of Jn(

x) l i e s o n e a n ( i only 
one root of Jn+k(%) ? and the question arises how large k can be 
allowed to become without this condition of affairs changing. 
I t is clear that the theorem can cease to be true only when 
one of the roots of Jn+*(x) passes a root of Jn(%), and this 
can occur only when each of the subsequent roots of Jn+k(%) 
has passed one of the roots of Jn(x) as otherwise we should 
have two roots of Jn+k(x) between two successive roots of 
Jn(x). I t is, therefore, the large roots of Jn+k(x) which will 
first reach the next roots of Jn(x) and from the fact that 
the large roots are given approximately by the formula: 

where p takes on in succession all large integral values, it is 
clear that as long as ^ < 2 n o root of Jn+k (x) will have 
reached the next root of Jn (x), while when k > 2 the large 
roots of Jn+jcÇx) will have passed those of Jn(x). What 
happens when k = 2 can be determined by the use of more 
exact asymptotic values for the large roots. We will not, 
however, stop to consider this point, as we have already 
obtained the result we need by another method (p. 207). 
We have thus obtained the theorem : 

If n is positive and o < k = 2 between two successive positive 
roots of Jn(x) lies one and only one root of Jn+k(x) and vice versa. 

This theorem contains (when k = 1) the theorem estab­
lished by Van Vleck as a special case. I t brings out, 
however, clearly, at least when n is positive, (and it is herein 
that I see the chief importance of the method suggested 
by Mr. Porter) that the theorem in question has no necessary 
connection whatever with the subject of related functions. 

The method just explained gives us, when carried a step 
farther, the following theorem: 

If n is positive and 2p <k = 2p + 2, where p is any positive 
integer, in each of the intervals bounded by successive positive roots 
of Jn (x) lies one and only one root of Jn+k (x) except in p of the 
intervals in which no root of Jn+k (x) lies. Exceptions occur when 
and only when roots of Jn (x) and Jn+k(x) coincide, in which case 
one of the p intervals above mentioned is replaced by the two inter-
vals which are separated by the common root in question. 

* This theorem may also be deduced by following more closely the 
methods of Sturm. Cf. the remark of Schlâfli in the foot-note on p. 137 
of vol. 10, of the Math. Ann. 
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The precise position of these p intervals can be deter­
mined when k is an integer either by Van Vleck's method 
or by the method explained at the beginning of this paper. 
If, for instance, fc = 3 we may proceed as follows. We 
easily find that Rn satisfies the relation: 

?K'"+ [ * - ( * + 1 ) ( " + 2 ) ] 2 ? ; - ( n + 2) Rn= 0. 

At two successive points where Rn = 0 Rn"' will therefore 
have opposite signs unless between the points is question 
£ = (n + 1)(n + 2); and we have the theorem: 

Jn+$(%) vanishes once and only once between two successive posi­
tive roots of Jn(x) except between the two roots which include be­
tween them the point x = 2 v''(n +l)\n + 2) in which interval 
Jn+$(x) does not vanish at all. 

Bessel's equation is clearly only a first example to which 
the methods of Sturm, which we have discussed, can be prof­
itably applied. Further considerations of this sort, how­
ever, with reference especially to Bessel's functions with 
negative subscripts and to the theory of hypergeometric 
functions I will reserve for a future occasion. I shall be 
satisfied if the foregoing discussion helps to emphasize the 
importance of Sturm's paper. 

H A R V A R D UNIVERSITY, 
January 4, 1897. 

ON THE TRANSITIVE SUBSTITUTION GROUPS 
WHOSE ORDERS ARE THE PRODUCTS 

OF THREE PRIME NUMBERS. 

BY DR. O. A. MILLER. 

[Read at the January meeting of the Society, 1897.] 

ALL the regular groups of these orders have been deter­
mined by Cole and Glover and by Holder.* I t is the object 
of this paper to determine all the transitive groups that are 
simply isomorphic to these regular ones. As every substi-
tion group of a given order is simply isomorphic to one and 
only one regular group, we shall thus find all the possible 
non-regular transitive groups whose orders are the products 
of any three prime numbers. At the same time we shall be 

* A regular substitution group may be said to be determined by the 
simply isomorphic abstract or operation group and vice versa. 


