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employed. Attention, however, was called to a fundamen­
tal paper of Holder's in the 34th volume of the Annalen. 
it is important from the Galoisian standpoint : 1, as show­
ing the character of the essential elements of any system of 
resolvents in which the roots of the given equation can be 
rationally expressed ; 2, as making it imperative to enlarge 
the notion of a group from a substitution-group whose ele­
ments are concrete substitutions on the roots of an equation 
to a group whose elements are not explicitly given, but 
merely the laws of their combination. 

Professor Pierpont regretted that time did not permit him 
to develop the theory of finite groups from this abstract 
standpoint and to touch upon some of the beautiful results 
obtained by F,robenius, Holder, Cole and others. The im­
portance of these methods and theories not only for the 
Galoisian theory, but for many other branches of mathe­
matics, makes it desirable that they be made the subject of a 
future colloquium. 

A GEOMETRICAL METHOD FOR THE TREAT­
MENT OF UNIFORM CONVERGENCE AND 

CERTAIN DOUBLE LIMITS. 

Presented at the Third Summer Meeting of the American Mathematical 
Society. 

BY PROFESSOR W. F. OSGOOD. 

The geometrical representation of functions by curves and 
surfaces is of two-fold importance ; for not only does it repre­
sent to the eye by means of a concrete picture relations 
which would otherwise appear only in abstract arithmetic 
form, but this picture in its turn makes evident new facts 
and points out at the same time the course that the arith­
metic proof of the theorems thus suggested would naturally 
take. The value of this method for the purposes of instruc­
tion alike in elementary and advanced infinitesimal calcu­
lus, as well as in analysis generally, can hardly be over­
estimated. How can the conception of the function be bet­
ter explained than by such an example as a temperature 
curve? What better means is there for making clear the 
idea of the implicit function — y defined implicitly as a func­
tion of x by the equation /(re, y) = 0 — than by cutting the 
surface z = ƒ(#, y) by the plane z = 0 ? And how valuable 
is the surface u = ?>(#, y) when the differential of a function 
of two independent variables is introduced I 
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Nevertheless these geometrical methods have hitherto 
found but meagre application in the study of those parts of 
the calculus and of analysis that recent decades have done 
so much toward putting on a rigorous foundation. These 
advances have been published almost universally in arith­
metic form and many a casual reader of Dini and Jordan 
and Stolz has, if the writer mistakes not, carried away the 
idea that this part of analysis consists in proving by means 
of e's and inequalities theorems that are self-evident,* or 
that can be proved satisfactorily by the old-fashioned 
methods.f This is due partly to the fact that theorems 
(like the first of those just mentioned) belonging didactically 
to an advanced stage of analysis, are brought in, for the 
sake of a logically systematic development, at the begin­
ning ; partly to the author's neglect to make clear the 
necessity of proof, or the fallacy in the proofs usually given. 
So far as simple (as distinguished from multiple) limits 
are concerned, e-proofs are seldom necessary ; for the ordi­
nary rules for working with limits — such as, for example, 
that if a, /S each converges toward a limit, then lim aj3 = 
(lim a) • (lim/5)—almost always suffice. Moreover if 
the calculus is taught with a view to giving the student a 
thorough command of its conceptions in their bearing on the 
problems of physics and geometry to which it owes its 
existence, the range of the principles treated in an introduc­
tory course can hardly extend beyond simple limits. 

In problems involving multiple limits, however, the e-
method becomes valuable, because it allows a complex prob­
lem to be reduced to a series of simple ones. But even in 
the case of some important problems in double limits, 
graphical methods enable us to grasp the problem as a 
whole and indicate at the same time a chain of geometrical 
reasoning, each link of which is capable of immediate trans­
lation into arithmetic form. I t is the object of this paper 
to explain the use of these methods in the study of certain 
well-known problems of analysis that have long since been 
solved. J In the second paper announced for this meeting 

* e. g. the theorem that a continuous function reaches its maximum 
and its minimum, and takes on every intermediate value. 

t e. a. - 7 — — = -.—r— 
ox oy oy ox 

% The methods described and the diagrams contained in this paper 
have for several years been used for the purposes of instruction in the 
courses given at this University which treat the subjects to which they 
apply. 
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the value of these methods as a means of research is shown 
by the new results to which they have there led. 

Two early papers may be cited which were important 
contributions to the arithmetic treatment of some of the 
subjects with w^hich this paper deals and to the study of 
which the geometric methods here set forth can in turn be 
advantageously applied. They are: Hankel's Untersuchungen 
uber die unendlich oft unstetigen und oscillirenden Functionen, 
Tubingen, 1870; andrDarboux's Mémoire sur les fonctions dis­
continues, Ann. d. V École Norm. sup. 2e Ser., vol. IV, pp. 
57-112; the paper is dated January 1874. The second of 
these papers stands in closer relation to the subjects treated 
in the present paper. 

Four Problems of the Calculus. 

1. When we pass beyond the rudiments of the infinitesimal 
calculus, four important problems meet us, namely to ascer­
tain when it is allowable 

(1) to integrate a series term by term ; 
(2) to differentiate a series term by term ; 
(3) to reverse the order of integration in a double inte­

gral; 
(4) to differentiate under the sign of integration. 
These are all examples of Double Limits and it is impor­

tant to recognize them as such. Iff(x,y) is a function of 
the two independent variables x, y, then 

lim [ lim f(x, y)~] and lim [liin/(#, ?/)] 
y=0 a5=0 x = 0 y = 0 

may or may not be the same thing. 

Example. f(Xjy) = °^l 

Here the first double limit has the value — I , the second, 
the value + 1. 

I t is to the study of these problems and that of uniform 
convergence, which plays an important rôle in their treat­
ment, that the geometrical methods above referred to are to 
be applied. 

The Integration of Series Term by Term. 

2. Let the series 
u1(x)+ u2(x) + 
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converge toward a l imit , /(a?), when the real var iable x lies 
in t he in te rva l (a, b): 

ƒ ( # ) = u1(x)+u2(x) + , a = « = J, 

a n d let ƒ (#) , ^i(#) be continuous functions of # th roughout 
th i s in terval . Le t 

«w(r») is also cont inuous. Then 

f(x)dx means J [ l i m sn(x)~]dx, 

while I t^ (#) cfo + I ^2 0*0 ^ + '" 

means l im | sn(x)dx 

A n d since the in tegra l is t he l imit of a sum, we h a v e here 
to do wi th a double l imit. The question of whether a series can be 
integrated term by term is the question of whether it is allowable to 
reverse the order in a certain double limit — the question of whether 
the equation 

| l im sn(x) dx = l i m I sn(x)dx 

is true. 

Example. Le t * sn (x )=nxe~ n x 2 , 

*I t may seem at first sight as if this series were artificial, since 
Ul{x)-\-U2(x)-\ \-Un{x) =S1{x)-i-[s2(x)—S1{x)']-{ f- [« ,» (»— *n-l(&)] 

= Sn{x) 

the terms cancelling so that the series shuts up like a telescope. But in 
fact this is only a question of the form in which the terms are written, 
and any series whatsoever can be written in the form of a telescope series 
by this very formula. Thus the series 

1-2 * 2 -3^3-4^ 
when written in the form 

(*-}) + (W) + (W) + ~ 
becomes a telescope series in which sn = 1 — n , 1 

In the case before us the term sn(x) —sn-i(x) might be written as a 
definite integral or a Fourier's series and then this same series would not 
appear as a telescope series. 
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Then ƒ (a?)=lim sn(x)=0 
n=co 

for all values of x and hence 

X [lim sn (x)~] dx = 0 
v n = ao 

On the other hand 

f1 Sn(x)dx=i(l-6-") 

and lim j sn(x) dx | = J 

Thus this series, although a series of continuous functions 
converging absolutely toward a continuous limit, cannot be 
integrated term by term. 

The Curve y = f(x) and the Approximation Curves y = sn(x). 

3. Since for every value ofx sn(x) converges, as n increases, 
toward f(x) and since both sn(x) and f(x) are continuous 
functions, it is natural to think of the curve y = sn(x) as 

FIG. 1. 

approaching in shape ever more and more nearly the limit­
ing curve y = ƒ(#), the properties of *»(#) going, so to speak, 
continuously over into those of ƒ(#)• "Whatever is true 
of the variable is true of the limit'9 is a principle that is ap­
plied pretty freely in mathematical physics. But nothing 
could be further from the truth, as I propose to show by 
the aid of some very simple figures. 

I t is possible to throw the question of § 2 into simple 
geometrical form. Since 
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X [lim sw(#)] dx is the area under the limiting curve 

y =f(x) in the interval (a, b), 

Ji [sw(#)] dx9 on the other hand, the area under the ap-
a 

proximation curve y = sn(x), the question reduces to the 
following : When will the area under the approximation curve 
y=sn(x) approach as its limit the area under the limiting curve 
y=Kx)f 

If the approximation curves were represented in character 
by Fig. 1, this would always be the case. But the Example 
of § 2 shows that this cannot be so. Let us see what the 
reason is. 

The Curve y = nxe~nx2. Begin by putting n = 1: y =xe~x2. 
This curve is indicated as the curve (1) of Fig. 2. To pass 
to the general curve (2) : y = nxe~~nx* it is sufficient to divide 
the abscissas and multiply the ordinates of (1) by y/n. 

FIG. 2. 

I t is now easy to explain the contradiction that this ex­
ample presents to the principle above referred to. The 
peaks rise higher and higher as n increases, but if x0 > 0 be 
chosen ever so small and n is then only taken large enough, 
the peaks will lie to the left of x0 and sn(x0) will approach 0 
as its limit. But the area under sn(x) does not approach 0t 

Example. Plot the approximation curves for the series 
7l2 X 

whose sn(x) = —-—g—;2 and show that this series can be in-
J. ~T~ n x 

tegrated term by term. 
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Discontinuous Functions defined by Convergent Series of 

Continuous Functions. 

4. Let the series of continuous functions u.(x) : 

u±(x) + u2(x) + 

converge for all values of x in the interval (a, b) and let the 
limit be represented by ƒ(#). Then, according to the prin­
ciple that "whatever is true of the variable is true of the 
limit," ƒ(#), being the limit toward which a continuous 
function sn{x) converges, must itself be a continuous func­
tion. Let us see whether this is so. 

Example. 

"When x > 0, 

and 

When x = 0, 

W h e n # < 0 , 

and 

Thus 

sn(x) = a* 

x = e 

lim sn(x) = 1. 
W = 00 

1 

limsn(o?)= — 1 . 

j ^ i l 0 s ( - * > 

f(x) = 1, when x > 0 ; 
= 0, " a = 0 ; 
= - 1 , " * < 0 ; 

FIG. 3. 

and the above principle is again found to be false. The ap­
proximation curves y = sn(x) and the limiting curve y = 
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f(x) are indicated in Fig. 3, a glance at which explains the 
whole matter. 

i 
Example 1. sn(#) = (sin nx)^-it 

Plot the approximation curves and the limiting curve. 

Example 2. ux(x) + u2 (#) + — == 

(1 - x) + (x2 - x*) + (a4 - a5) + - , 0 ^ a ^ 1. 

Uniform Convergence. 

5. In each of the above examples the series 

ut(x) + u%(x) + -

has been a convergent series of continuous functions. If a 
degree of accuracy for the convergence, chosen at pleasure, 
is to be attained; I mean, if the positive quantity e is chosen 
arbitrarily and the remainder of the series after the first m 
terms is to be numerically less than e, then for any assigned 
value of x, x = #0, m can of course be so determined as to 
satisfy this requirement. This is but a restatement of the 
condition that the series converges for every value of x from 
x = a to x = b. But for different values of x0, m will in gen­
eral have different values. That which is characteristic of the 
convergence in each of the examples above studied is that, e being 
chosen at pleasure, no value of m can be found that will fit all values 
of x0 at once. 

Eeference to the diagrams makes this fact immediately 
evident. For draw the curves y=f(x) + e, y=f(x) — e. 
Then it is clear that m cannot be taken so large that the 
approximation curve y = sw(a?) will lie wholly within the 
belt thus marked off. If the approximation curve is to lie 
within such a belt, no matter how small e was taken, a 
further condition than merely that of convergence is neces­
sary, and this condition is afforded by the requirement of 
uniform convergence. 

Definition of Uniform Convergence. The series 

ux(x) + u2(x) + -

(or the function sn(x) ) is said to be uniformly convergent 
in the interval (a, 6) if, the positive quantity e having been 
chosen at pleasure, it is then possible to choose m so that 

I sm+p(x) - 8m(x) | < e, p = 1,2, - , 

no matter what value x may have in the interval (a, b). 
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That which is essential in this definition is the order of 
the choice of e, m, x, namely: first e, secondly m, the inequality 
then holding for (thirdly) any x. 

If p be allowed to increase indefinitely, then, since 
lim $m+i,(a0 =ƒ (# ) , from the above inequality it follows that 

1/00-«*(*) I = *• 
From the combination of these two relations it appears that 

I ƒ(*) -«***(«) l < 2 e, i > = l , 2 , . • • 

or the remainder after n terms, rn(x) = f(x) — sn(x), is numeri­
cally less than 2 e ifn = m: 

K O O K 2*, n = m. 
On some accounts it is preferable to make this property the 
basis of the definition of uniform convergence. 

Let us now consider the effect of requiring of the ^-series, 
in addition to the continuity of its terms, that it shall be 
uniformly convergent. Choose e at pleasure, determine m 
so that 

| sm+p(x) - sm(x) | < e, p = 1, 2, • • . 
for all values of x in the interval (a, b), and plot the 
curve y = sm(x). If now a belt is marked off above and 
below this curve, bounded by the curves y = sm(x) + £, 
y = sm(x) — e, then all subsequent approximation curves 
y = sm+p(x) will lie within this belt and the limiting locus 
y=f(x) itself will lie within or at most on the boundary of 
the belt. (Fig. 4.) 

Flö. 4. 

Next choose a smaller value e' < e and a corresponding 
m' (which will in general be greater than m) and repeat the 
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above construction. The higher approximation curves 
y = 8mf+p(x) and the locus y = ƒ(#) thus lie in the narrower 
strip. 

Let this step be repeated again and again. Thus a set of 
strips is obtained, each narrower, than its predecessor and 
containing all the higher approximation curves as well as the 
limiting locus y = f(x). The geometric picture thus brought 
before the eye shows clearly that the limiting locus itself is 
a continuous curve. But more than this : this picture sug­
gests the form of the arithmetic proof. Arithmetically it is 
necessary to show that, the positive quantity y having been 
chosen at pleasure, S can then be so determined that 

M + *W0OI<«, M<' 
This means geometrically that if a strip is marked off 

f(v0)+v 

•f(xo)~y 

x0-ô x0 x0+ô 

FIG. 5. 

bounded by the parallels y = /O 0 ) + 77, y = /(^0)—7?, it will 
then be possible to determine an interval (#0 — d, x0 + Ô), 
such that the points of the locus y = ƒ(#) will, for all values 
of x within this interval, lie within this strip. Evidently 
then it is only necessary to take e < \ t] ; for then the boun­
daries of the belt about y = sm(x) will each cut the line 
x = x0 within the strip in question, the distance of such a 
point of intersection from the nearer boundary of the strip 
being at least r\ — 2 e ; and hence they must remain within 
this strip for all values of x in the interval (x0 — £, x0 + d), 
if d is so taken that 

But I f(x)-sm(x)\^e 

for all values of #; in particular 

\f(x0+h)-8m(x0+h)\^e 

I/OO-«.OOIS. 

h\<s ( l ) 

(2) 

(3) 
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The combination of (1), (2), (3) gives 

| f(x0 + h)—f(x0) Krj, \h\<â, q.e.d. 

Let the result just obtained be stated in the following: 
THEOREM: A uniformly convergent series of continuous func­

tions is itself a continuous function. 
From this follows at once that if a convergent series of con­

tinuous functions is discontinuous, it must converge non-uniformly. 
The above theorem is virtually a theorem stating the 

equality of two double limits. I t says that if sm(x) con­
verges uniformly toward f(x), then limf(x) = f(x0), and this 

x = xQ 

equation can be written in the form : 

lim [lim sn(#)] = lim [ lim sn(x)~\ 
X = XQ n=oo n = oo x = XQ 

Example of a Series defining a Continuous Function and 
Non- Uniformly Convergent in Every Interval. 

6. The examples hitherto considered in the text have 
been such that only in intervals containing in their interior 
or at an extremity a certain point x0 (x0 = 0 in each exam­
ple) is the convergence non-uniform. I will now give an 
example of a function sn(x) non-uniformly convergent in 
every interval. 

V 

0 L X" 

X 

=1 

F I G . 6. 

Consider the function 

s/2ënxe~n*x2 

I t converges toward 0 for every value of x. The approxi­
mation curves are shown in Fig. 6. In this function re­
place x by sin2 n x and let 
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^ 0 ) = V 2 e n snr7T#. e 
,— «,2 sin* irx 

Then the approximation curves for the interval (0, 1), to 
which we may confine ourselves, since the function has 1 as 
its period, are indicated in Fig. 7. Next consider the curves 

v=KW 

4«3!*) 

F I G . 7. 

V = h ?n(2! a)> y = h ^ ( 3 I «), etc. (Fig. 7.) They are simi­
lar to the first curve, only reduced in scale. Out of these 
functions the function sn(x) to be constructed is built 
up as follows : 

«»(*) = ^(*)+&*.(2!*) + +inPn(w I a0 

This function sn(x) converges toward the limit 0 for every 
value of x, when n becomes infinite, but the convergence is 
non-uniform in every interval. I t is easy to see how the 
approximation curves look. The location and height of 
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the higher peaks is determined essentially by the earlier 
terms of the sum that defines sn(x); for, all the terms that 
come after the kth put together cannot equal the quantity 

+ M + (* + l ) ! T ( * + 2)! 
no matter what n may be, and this quantity is less than 
1 / k>k\ From this it follows that, if the positive quantity 
s be chosen at pleasure, only a finite number of peaks wiil 
rise above the line y=e. For let k be so taken that 1 / k. kl < 
\ e and then held fast. If n is large, the curve 

y=9n{x) + J, 9n{2\ x) + «. + \9n(k \x) 

will rise above the line y = J e at most in the neighborhood 
of each of the points 

* - i 0 1 2~ U ' k ' * ' 

and it is then at most in these neighborhoods that sn(x) can 
rise above y = 'e. (E. g., let £ = | , & = 3. Fig. 8 indicates 

Û _ Û o a 
Jo œ 

FIG. 8. 

that part of sn(#), ^ = 3 , that lies above t/ = £.) Moreover 
the extent of the base of each of these peaks that stands on 
the line y = e contracts and at the same time moves toward 
its corresponding point x0 = j/k, when n increases. Thus it 
appears that if xf is any value of x, m can be so chosen that 
8 J> ' ) < £ > if ^ > m; i. e., lim sn(x

f) = 0 ; or, dropping the 

accent, lim sn(x) =f(x) = 0. sn(x) converges, therefore, 
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toward a continuous limit. But the convergence is non-uni­
form in every interval (a, b), as inspection of the approxi­
mation curves shows. For if x0 = p/q is any rational value of 
x within this interval,^, q. being integers prime to each 
other, and h is the smallest integer for which h ! is divisible 
by q, then the term -fi vSJi • x) will give rise to peaks of al­
titude % the other terms adding to the heights of these 
peaks, and sn(x) will have peaks in the neighborhood of x0. 
The convergence is then non-uniform in this interval.* 

I t is to be noticed that the upper limit for the maximum 
heights of the peaks is different in different intervals. The 
problem of the most general manner of the convergence of 
a continuous function sn(x) toward a continuous limit ƒ(#) 
is studied in the writer's second paper above referred to. 

The proof just given is essentially geometric, in that every 
step was suggested by direct inspection of the figures that 
appear on the paper. But the step once given by intuition 
was capable each time of immediate translation into arith­
metic form, no geometric process being used that had not 
its precise counterpart in arithmetic, and for this reason the 
proof is as rigorous as if it had actually been thrown into 
arithmetic form. 

Example 1. Let 

<pn (x) = </2e • n s i n 2 ^ . e-
n2*ill22irX, 

sn(x) being defined as above. Study the approximation 
curves y = sn(x) and show that sn(x) converges in every 
interval non-uniformly toward 0. 

Example 2. Let 

sn(x) = cosn7T# + ^! cosw2 Inx + ••• + j^lcosnn I nx 

Plot the approximation curves and hence show that sn(x) 
converges toward a limit for every value of x and that the 
limit is discontinuous for every rational value of x, but con­
tinuous for every irrational value. Indicate by a figure the 
limiting locus. 

Test for Uniform Convergence. 

7. A sufficient condition for the uniform convergence of 
the series 

u^x) + u2(x) + -

* The method by which this example was constructed is virtually that 
known as HankePs Principle of the Condensation of Singularities. Cf. 
HankeFs memoir above referred to, or Dini, Funzioni di variabilirealiy Ch. 9. 
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is the following. If a set of constant positive quantities 
Mv M2J ••• can be found such that (1) 

\ui(x)\^Mi, a^x^b, 
00 

and (2) the series 2 Mi converges, then the ^-series will con-
verge uniformly. For, e being given, m can always be so 
determined that 

Mm+1+Mm+2+- + Mm+p<e, ^ = 1 , 2 , . . . 

and hence 

I *VH (*) + "«+. 0*0 + - + «W, 0«0 l < *> 2> = h 2, - ; 
a = a? = 6. 

This test shows at once that a power series 

a0 + a1x + a2#
2 + ••• 

is uniformly convergent within any interval (a, b) included 
within* its interval of convergence (—r,r): —r < a < b < r . 
For if A is a positive quantity less than r, but greater than 
the greater of the two quantities | a \, | b | , then the series 

a0 + axft + «<2ft
2H— 

converges absolutely and 

| a,a* I < | a, | • ft*, a ^ # ^ i & 

Hence a power series represents a continuous function 
within (not necessarily inclusive of the boundary of) its in­
terval of convergence. 

I t should be noticed that uniform convergence has noth­
ing to do with absolute convergence. Thus the non-uni-
formly convergent series discussed in the text of §§ 2, 4 
are absolutely convergent for all values of x. On the other 
hand, from any absolutely convergent series a conditionally 
convergent series having the same value can be constructed 
by adding to the terms of the absolutely convergent series 
respectively the terms of the conditionally convergent ser­
ies 

o - i - i + ^ - ^ + ^ - | + -
*An error sometimes made is that of saying that the series converges uni­

formly within its interval of convergence (— r, r). See a review of Forsyth's 
Theory of Functions in this BULLETIN, 2dSer., vol. I., p. 145. 
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The condition for uniform convergence will not thereby be 
affected. 

Example. Show that the series 

sin 2x , sin3# 
sin x ^ - + —s 

is uniformly convergent. 

Uniformly Convergent Series Integrable Term by Term. 

8. Inspection of the approximation curves discloses at 
once that if sn(x) converges uniformly toward its limit, the 
area under sn(x) converges toward the area under f(x). 
The arithmetic statement of this fact is the 

THEOREM : A uniformly convergent series can be integrated 
term by term in any finite interval. 

Here again the arithmetic proof is immediately suggested 
by the geometric picture. For from Fig. 1, it is clear that 

sn(x) dx, n = m, will differ from I f(x) dx by less than 

the area of the belt of breadth 2e about the curve y = sm(x); 
i. e., by less than 2 e (b — a) ; hence 

sn(x) dx = I f(x) dx. 
a •/ a 

The arithmetic form of the proof is then as follows. 

X 5 r*h /»& 

ƒ ( » dx = I sn(x) dx + I rn(x) dx, 
| ƒ**•„(*) dx | =s H r„(aO | dx < 2 e (6 - a), 

since | rn(x) | < 2 e, n=m. 
Hence 

lim I rn(x) dx=0 
n=oo « / a 

sn(x) dx = I f(x) dx 

But this theorem does not hold for an integral one of 
whose limits is infinite, as is shown by the example : 

1 + 7 Ï T 4 - ^ + 7 Ö 4 ^ + - » °=*-(i + a02 ' (2 + xy • (B + xy 
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This series converges uniformly for all positive values of x. 
But the term-by-term integral from a positive lower limit 
a to infinity is a divergent series. 

The Differentiation of Series Term by Term. 

9. Let the series 

ux(x) + u2(x) + a = x~b 

converge and let its value be denoted by f(x). Moreover 
u{(x) shall have a derivative for all values of x in the inter­
val. Two cases arise and they must be sharply distin­
guished from each other. 

Case A). The function f{x) has a derivative for every 
value of x in the interval (a, b). 

Case B). The function f(x) has, for certain or all values 
of # in the interval (a, 6), no derivative.* 

Case A) is of more importance in applied mathematics, for 
this is the case in which a function whose properties are 
more or less known and which in particular is known to be 
continuous and to have a continuous derivative, is devel­
oped into a series of simple functions (rational, trigonomet­
ric, BessePs, etc.) We shall confine ourselves to this case 
and ask: When will the derivative of the series be given by the 
series of the derivatives, i. e., when will 

ƒ'(*) = <(*)+<(*)+"• 
be a true equation f 

ƒ'0*0 means ^ ^Hm^C*) J 

j | ut'(x) means Hm ^ - sn(x) J 

and the question is whether 

d_ 
dx 

[lim sn(x) 1 = lim U-sn(x) 1 

* A simple example of the latter case is the following: 

8n(x) = (1 — cosn x) «asm— , a?+0; sw(0) = 0. 
X 

f(x) = lims»(a?) = a? sin — , x =}= 0; /(0) = 0 
« = 0 0 X 

Thus f(x) has no derivative when x = 0, although it is continuous here 
as elsewhere. sn(x) always has a continuous derivative. 
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Since differentiation is a limiting process, we have again be­
fore us the question of the equality of two double limits. 
According to the principle that " whatever is true of the 
variable is true of the limit," these two limits must be equal. 
Let us see whether this is so. 

Geometrically the left hand double limit means the slope 
of the limiting curve y = ƒ(#), while the right hand double 
limit means the limit approached by the slope of the ap-

FIG. 9. 

proximation curve y = sn(x). (Fig. 9.)* I t is easy to see 
that these two things are not necessarily the same. 

For example, let 
sn(x) = nxe~nx2 

(Fig 2.) Then 

dx 8n(
x)\*=o==n(1-2nx)e~ = 71 

and the slope of the approximation curves at the origin in­
creases without limit. Thus the corresponding series of 
the derivatives is divergent in this case. But f(x) = 0 
and hence ƒ ' (x) = 0. 

I t would be a mistake however to suppose that the non-
uniformity of the convergence is to blame for this result. 
A glance at the approximation curves in the case that 

sn (x) = n sin 2nx e -wsin4^ 

(Fig. 7) shows that, although the convergence here is non­
uniform, their slope approaches 0 for every value of x, 
and the corresponding series of the derivatives converges 
toward the right value, 0. 

On the other hand, the ^-series may converge uniformly 

* Professor Byerly has for many years made use of such figures as this 
in his lectures to explain why some series cannot be differentiated term 
by term. Cf. his treatise on Fourier's Series and Spherical Harmonics, 
where these figures appear. 
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and still not be capable of being differentiated term by term. 
For example, begin with the curve 

y = nx* 

When n increases, this curve approaches the y-axis. Turn 
the curve through an angle of, say, — J n about the origin: 

x + y = in(x — y)s 

•sn(x) 

X 

FIG. 10. 

(Fig. 10) and let the y of this equation be taken as sn(x). 
Then 

limsn(x)=f(x) = x 

and/ ' (V) = l . But 

and hence at the origin the corresponding series of the de­
rivatives converges, but does not converge toward the right 
value. Nevertheless, the series converges uniformly. 

A simpler example, so far as the analytic formulas are 
concerned, is the following : 

sn(x)=xe-**% ƒ(*) = (>; ^*n(x) | ^ o = l . 

Hence / ' ( 0 ) = 0, but lim -=- sn(x) \ x=0 = 1 
n=ao dX 

The approximation curves y = xe~n2x* are all similar to the 
curve y = xe~x2, only reduced in scale. The convergence is 
uniform. 

The conclusion to be drawn from these examples is that 
the uniform convergence of a series is neither a necessary 



78 UNIFORM CONVERGENCE AND [NOV., 

nor a sufficient condition t h a t i t m a y be differentiated t e r m 
by t e r m . * 

Example. Show t h a t t he series whose 

sn(x) = GOSTCX sin37r# • n e—nsinllirX 

can be differentiated, bu t no t in tegrated te rm by t e rm. 

A Sufficient Condition for the Differentiation of a Series 
Term by Term. 

10. Such a condition is given by the following theorem. 
This theorem also finds application in Case B). 

T H E O R E M . Let the series 

u^x) + u2(x) + -

converge for at least one value of x» x~, %n the interval (a, b) and 
let u.(x) be continuous and have a continuous derivative u/(x) in 
this interval; finally let the series of the derivatives 

<0) + <0) + 
converge uniformly. Then the u-series converges for all values of 
x in the interval (a, b) ; and if its value be denoted by fix), 
f(x) has a continuous derivative, given by differentiating the u-series 
term by term : 

For let the value of t he ^'-series be denoted by <p (x) : 

?0) = <0) +<0) + -
T h e n ? > ( # ) b y § 5 i s a continuous function of x and by § 8 

J
r*x S*x f*x 

<p(x) dx = I u{(x) dx + I u2(x) dx + ••• 
«o ±/xo */%o 

= KO) - ^iOo)] + K0*0 - ^Oo)] + -
T h e series ux{xQ) + u2(x0) + ••• is convergent, hence ut(x) + 
u2{x) + ••• is convergent, and if i ts va lue is denoted by f(x) 
t hen 

\ <p(x)dx = f(x) —f(x0) 

* In this paper we are dealing only with real functions of a real vari­
able and such functions need not be analytic. If a series of functions, 
each analytic throughout the same two-dimensional region of the complex 
plane, converges uniformly throughout this region, then it is a well-
known theorem that the series can be differentiated term by term at all 
points within this region. 



1896 . ] CERTAIN DOUBLE LIMITS. 79 

The left hand side of this equation is a continuous func­
tion having as its derivative the continuous function <p(x). 
Hence f(x) is continuous and 

f(x) = <p(x) q. e. d. 

This theorem affords a simple proof that a power series 
can be differentiated term by term. 

I t will be seen that this theorem is not particularly well 
adapted to Case A ) ; it assumes more than is given in requir­
ing the series of the derivatives to converge uniformly and 
does not make use of all that is given, namely that the it-
series converges and that its value is a continuous function 
having a continuous derivative. In the writer's second pa­
per above referred to a theorem is established that conforms 
more closely to the data in Case A). I t may be stated in 
brief as follows: If f (x) is a continuous function of x having a 
continuous derivative and iff(x) is developed into a series of con-
tinuous functions having continuous derivatives : 

f(x) = ux(x) + u2{x) + ; 

if furthermore the result of differentiating this series term by term 
is a convergent series whose value <p(x) is a continuous function oj 
x, then the given series can be differentiated term by term : 

ƒ'(*) = <p(x) = < (* ) + < (* ) + -

Thus all that is demanded here beyond what is already 
given is the continuity of <p(x) ; and I can show by an ex­
ample that without this requirement (or its equivalent) the 
theorem would not be true in any interval whatever. 

I t is worthy of note that in the proofs of both of these 
theorems, the integral, defined as the limit of a sum, was 
fundamental, the derivative appearing as the inverse of the 
integral. 

In most of the examples used in this paper lim sn(x) = 
n=oo 

f(x) = 0 and it may seem as if this were a very special case. 
In fact, however, this is not so ; for if f(x) is not 0, then we 
may introduce the new function Sn(x) = sn(x) — f(x) ; 
lim Sn(x) = 0, and that which was essential in the manner 
n=oo 

of the convergence of sn(x) toward its limit will be preserved, 
so far as the questions here considered are concerned, in the 
manner of the convergence of 8n(x) toward its limit, 0. And 
conversely, each of the examples here considered, where 
f(x) == 0, can be converted into an example where ƒ(#) is 
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not 0 by simply adding to sn(x) an arbitrarily chosen func­
tion <p(x) : 

i W = « » W + POO, lim«w(a?) = y (a j )+0 . 
« = 0 0 

Reversal of the Order of Integration in a Double Integral» 

11. An important class of double integrals is the follow­
ing: 

dx I JO , y) dy, 

where ƒ(#, y) is a continuous function of the two independent 
variables x, y throughout the region a = x=b, y=Q. The 
question that arises is whether 

do? I f(x,y)dy= J dy I f(x,y)dx 

is a true equation, the question of the equality of two double 
limits. This question can be reduced to that of integrating 
a series term by term, namely the series 

f0 /O, y) dy = jT f(x, y) dy +£ f(x, y) dy + -

The integral of this series between the limits x0 and x is the 
first of the above double limits. On the other hand the 
term by term integral 

f dx) f(x, y)dy+ )dx f f(x, y) dy + - = 

lim[ ) dx f f(x,y)dy~\ 

has for its value 

dV ! Kx, y) dx = I dy) f(x, y) dx 

the interchange of the order of integration in the case of the 
integral in brackets being here allowable because the in­
tegrand is continuous and the limits of integration finite. 
But this last expression is the second of the above double 
limits, and thus the main question has been reduced to that 
of integrating the series 
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f(x, y) dy = J o /(a?, y) efy + J f(x, y)dy + -

term by term. 
Stolz has communicated an example*, due to du Bois 

Reymond, in which the reversal of the order of integration 
is not allowable. In the notation of this paragraph it 
would be as follows : 

KX'y)~dy f + W 

Then r ^ f / ( ^ 2 / ) ^ = 0 ; 
* / xo */0 

0 *Jx0 

Ifa?0 = 0, £ dy£ K^y)dx=^, 0, - | , 

respectively, according as x > 0, = 0, or < 0. 
Conversely, the problem of integrating a series of continu­

ous functions : 
f(x) = u^x) + u2(x) + 

term by term can be reduced to the problem of reversing 
the order of integration in the double integral : 

dx I f(x,y)dy, 
x0 c /0 

where f(x, y) is a continuous function of the two independ­
ent variables x, y throughout the region a = x = b, y=0. 
For let f{x,y) = ^i(x), a = x^b, i—> l^y<i 
and cut the surface 

by the plane x = x0. The intersection is indicated in Fig. 
11. Then 

F I G . 11. 

*Fortschritte d. Math., Vol. 7, p. 157. 
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0 Kx*,y)dy 

and f(x0)=;£ K^y)dy 

The surface z = ƒ(#, y) is discontinuous. But it is easy to 
replace it by a continuous surface z = f(x, y) such that the 
relation 

•»00 

/OO = Jo ƒ(*, y) ty 

will still hold. For consider the part of the intersection of 

z = f(x, y) with x = allying in the interval from y=i — 1 to 
y = i. Let it be replaced by a curve (Fig. 12) which (1) goes 

through the points A, B (whose coordinates are respectively 
y = i — l,z = % [ui_1 (x0) + ui(x0)~\ and y = i, z = \ K(# 0) 
+ ui + 1 (#0)]); (2) has its tangents at these points parallel 
to the ?/-axis; and (3) includes the same area as the line 
z=ui(x0), i. e., if z=4>(y) is the equation of this curve, 

I <P(y) dy = I u.(x0) dy = u,{xQ) 
i—\ %/i—1 

In particular, let the curve used for this purpose be 

z^zay^ ptf + rtf + ôy + e. 

The conditions are just sufficient to determine the coeffi­
cients a, — e completely. 

This replacement being made in each interval : i = 1,2, • • •, 
let the curve thus obtained define the function f(x0, y). Then, 
dropping the subscript from x0, we have 

u.(x)= \ f(x,y)dy, 
• /*-1 

f(x) = 2 ujjc) = I f(x, y)dy, 

as is readily proved, and it remains only to show that the 
function f(x, y) thus defined is a continuous function of the 
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two independent variables x, y. Geometrically this fact is 
obvious and the arithmetic proof is not difficult. 

The result here obtained may be stated as follows: If 

ux(x) + u2(x) + — 

is any series of functions continuous throughout the interval (a, 6): 
a = x = b ; then there exists a function f(x, y) of the two independ­
ent variables x9 y, continuous throughout the region az=x = b,y==0, 
and such that 

^0*0= f Kx,y) dv-

Moreover', if the u-series converges toward a limit ƒ(#), 

X oo 

f(x,y)dy. 

Eeturning now to the main question, namely whether 

i f(x) dx = I ^(œ) dx + I wa(a?) dx + ••• 

we see that the expression on the right hand side can be 
written in the form 

1 dx\{f(x,y)dy = lim I I dy ) f(x,y)dx\ 

I dy) K^y)dx 
0 %/XQ 

and hence the question is reduced to that of determining 
whether 

J
r*x /*<*> /+<*> s*x 

dx ) f(x,y) = ) dy ) f(x,y) dx 
is a true equation. 

Differentiation under the Sign of Integration. 

12. An important class of improper * integrals for which 
the question of differentiation under the sign of integration 
arises is the following : 

i f(x,y)dy, 
0 

* Kiemann's distinction between eigentliche and uneigentliche integrals 
marked a step in advance in the integral calculus. In connection with 
this paragraph see Stolz, Biff,- u. Int.-Rechnung, vol. I, ch. X. 
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where ƒ(#, y), JWU' are continuous functions of the two 
ox 

independent variables x, y throughout the region a = # = 6 , 
y = 0. The question is whether 

is a true equation,—again the question of the equality of 
two double limits,—and it can be reduced to the question 
of differentiating a series term by term, namely the series 

f(x,y)dy=Jo f(x,y)dy+Ji ƒ0,2/) ' + 
Here, as in § 9, two cases corresponding to Cases A), B) 
arise, and we will restrict ourselves to the case that 

X OO 

f(x, y) dy has a derivative. Then this derivative, 

is the first of the above double limits. On the other hand, 
the term by term derivative of the series : 

fo ƒ(*, y) dy + g-JT ƒ(», y) dy + - = 
dx 

has for its value 

ÏÏ.™ [if."f^s) * ] 

£[JW*]-JW* 
differentiation under the sign of integration being here al-

d f(x v) 
lowable because \ is a continuous function of the two 

dx 
independent variables x, y, and the limits of integration are 
both ƒ tóe. But this last expression is the second of the 
above double limits, and thus the main question has been 
reduced to that of differentiating the series 
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fo M y) dy -JT ƒ(*, y)dy+£ f(x, y) dy + -

term by term. 
A simple example of a case in which differentiation under 

the sign of integration is not allowable is the following. It 
is readily shown, either by evaluating the indefinite inte­
gral or by a simply device, that 

X' <x?<r*'dy = x 

for all values of x. Hence 

4- Cx*er**ydy=l 

Eut Ç ~ (a?e-**') dy = f°° (Sx2-2xiy)e"x^dy 

and when x = 0, the value of this expression is 0. 
The writer has given a sufficient condition for differen­

tiating an improper integral under the sign of integration.* 
Conversely, the problem of differentiating a series term 

by term can, at least in the case that the derivatives of the 
terms are continuous functions, be reduced to that of differ­
entiating 

• •00 

I Kx,y)dy 
df(x y) under the sign of integration, ƒ(#,y), \ being contin-

ox 
uous functions of the two independent variables x, y. For 
by §11 

^0) = { Kx,y)dy, 
•si—l 

where ƒ(#, y) is continuous, and if u({x)yi = 1,2, ••• is a con-
d f(x y} tinuous function of a?, then J\ ^J is a continuous function 

7 dx 
of x, y regarded as independent variables, and hence 

*Cf. Stolz, vol. II., p. 333; or Monatshefte ƒ. Math. u. Phys. 7, p. 90; 
1896. 
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The main question is whether, if f(x) has a derivative, 

ƒ'(aO = < ( * ) + < ( * ) + " • 
is a true equation. The right-hand side can be written in 
the form 

lim f* Cf(x,y) dyl =lim T f "4Ö£iIL> df\ 

Ç" df(x,y) , 

and thus the question is reduced to that of whether 

is a true equation. 
HARVARD UNIVERSITY 

CAMBRIDGE, MASS. 

LINEAR DIFFERENTIAL EQUATIONS. 

Einleitung in die Theorie der linearen Differentialgleichungen 
mit einer unabhdngigen Variablen. Von DR. LOTHAR H E F F -
TER. Leipzig, Teubner, 1894. 8vo, xiv+258 pp. 

I N teaching higher mathematics, the question presents it­
self, to what functions beyond the algebraic and elementary-
transcendental functions should the student be introduced 
first ? The answer which is given to this question almost 
as a matter of course is: the elliptic and then the Abelian 
functions. Without in any way casting doubt upon the 
wisdom of the choice here expressed for many cases (per­
haps even for most cases as far as the elliptic functions go), it 
may be pointed out that the above is by no means the only 
satisfactory answer, and that the explanation of its al­
most universal acceptance is to be found in great part in 
mere tradition. Another class of functions which forms 
from many points of view an equally satisfactory introduc­
tion to the study of the higher transcendental functions, is 
the class with which the book under review deals, i> e., 
functions defined by homogeneous linear differential equa­
tions. Not only is this true of the study of these functions 


