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THE THEORY OF SUBSTITUTIONS, 

The Theory of Substitutions and its Applications to Algeira. 
By Dr. EUGEN NETTO, Professor of Mathematics in the University of 
Giessen. Revised by the Author and translated with his permission 
by P. N. COLE, Ph.D., Assistant Professor of Mathematics in the 
University of Michigan. Ann Arbor, Mich., The Register Publishing 
Company, 1892. 8vo, pp. xii. + 301. 

NETTO'S "Substitutionentheorie und ihre Anwendungen auf 
die Algebra " appeared for the first time in 1882 ; it was fol­
lowed, in 1885, by an Italian edition, and now we have the 
pleasure of welcoming an English edition, revised by the 
author and translated into English by Dr. Cole. 

The mathematical public at large, and the English-speaking 

Eart of it in particular, are greatly indebted to Dr. Cole for 
is careful and expert translation. Mastering the subject as 

well as both languages in full extent, Dr. Cole has transformed 
the sometimes rather tough material into clear and fluent 
English. We are especially obliged to him for the fortunate 
choice of many technical terms, alien so far to the English 
mathematical language. 

We are equally indebted to the author for the numerous 
valuable additions by which this new edition has been enlarged 
and improved. 

The great merit of Netto's book consists in the skilful and 
highly pedagogical presentation of the theory of substitu­
tions, given in the first part of the book. The reader is grad­
ually led from the most elementary considerations on sym­
metric and alternating functions to the general theory of 
unsymmetric functions of n independent elements, out of 
which the theory of substitutions is step by step evolved, the 
unsymmetric functions serving all the while as a concrete 
substratum for the abstract conclusions of the theory of sub­
stitutions. By this means an easy and attractive "entrance 
into the theory of substitutions is gained, accessible even to 
the beginner, and it may fairly be said that Netto's book has 
largely contributed to spread the knowledge of this important 
brancn of mathematics. 

While thus fully acknowledging the high and lasting merits 
of the first part of Netto's book, we cannot withhold our 
opinion that the author has not been equally successful in his 
attempt to simplify Galois' theory of the algebraic solution of 
equations, which forms the principal subject of the second part. 
The great difficulties which are contained in Galois' theory, 
are, it seems to us, not sufficiently considered, and the com­
parative simplicity of the deductions is only obtained at the 
cost of rigor. 
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The following review* will be divided into four sections : 
I. The first part of Netto's book. 
II. Excursus on the principal difficulties of Galois' theory. 
III . Analysis of Netto's exposition of the theory of the 

group of an equation. 
IV. The remaining chapters of the second par t 

I. 

The first part is devoted to the theory of substitutions and 
of integral functions. It opens in chapter I., with an exposi­
tion of the principal properties of symmetric functions of n 
independent quantities xv #2, . . . xn. A symmetric function 
remains unchanged in form, and consequently also in value, 
when the afu are permuted in any way, and is therefore, at 
the same time, a single-valued function ; conversely every 
single-valued function of n independent elements is symmet­
ric in these elements. The simplest symmetric functions are 
the elementary symmetric functions : 

cx •= xx + x% + . . . + %n 
£2 = xx x^ •+• xx xt 4- . . . 4- #»-i xn 

cn = xx xa , , , xn. 

Every integral symmetric function of xx, x^ . . . xn can be 
expressed as an integral function of the elementary symmetric 
functions cjV ca, . . . cn. 

If a function is not symmetric, it will be changed in form, 
and consequently, if the x's are independent, also in value, 
by some of the possible interchanges of the #'s. We shall 
have two-valued, three-valued, m-valued functions, according 
to the number of different values they take when the z'& are 
permuted in all possible ways. The simplest unsymmetric 
functions are the two-valued functions. The square root of 
the discriminant 

*/2 = Il (x\ — av ) 

offers a first example of a two-valued function ; it is, moreover, 
an alternating function, because its two values differ only in 
sign. Every integral alternating function is the product of 
A^~2 into an integral symmetric function. Every integral 

* Reviews of the first edition will be found in : Fortschritte der Mathe­
matik, 1882, p. 90. Zeitschrift für Mathematik, 1883, part IL , p. 181. 
Bulletin des Sciences Mathématiques, 1883, p. 57. 
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two-valued function is of the form St -f Ä> */2, (where Sx 
and Ä, are integral symmetric functions) and satisfies an 
equation of the second degree whose coefficients are integral 
functions of cx, c%, . . . £„. 

If we pass to functions of a greater number of values, we 
soon perceive that the knowledge of the number of its values 
is not sufficient to characterize an unsymmetrie function ; we 
must go a step further and turn our attention from the func­
tions to the interchanges of the a's, and in doing so, we enter 
the peculiar domain of the theory of substitutions. 

After a few necessary explanations concerning notation, 
terminology, and some elementary properties of substitutions, 
the most important conception of the whole theory is intro­
duced, that of a group of substitutions, a group being defined 
as a system of substitutions which reproduces itself by multi­
plication of its individual members. Those substitutions 
whioh leave a function cp (xv x„ . . . xn) unchanged, consti­
tute a group called the group of q>. And vice versa : for 
every group of substitutions there are functions which are 
unchanged by all the substitutions of the group and by no 
others. This theorem contains the basis of a classification of 
functions of n elements : each class ("family"*) contains all 
the functions which belong to the same group. 

Here arises the problem : To determine all the possible 
groups of substitutions of n elements. 

The general solution f of this problem, however, presents 
difficulties as yet insuperable. Still, a great number of the­
orems concerning the construction of groups are known, and 
a first series of them are given in the remaining sections of 
chap. i i . They refer to the symmetric group, the alternating 
group, the cyclic groups, and others of a more special nature. 

Chapter i n . is devoted to the different values of a multiple-
valued function. Here we have first the theorem : The order 
r of a substitution-group O is always a divisor of n ! ; and 
every function cp which belongs to G, takes 

» ! 
r 

different values (" conjugate valuesv) when operated upon 
by all the n ! substitutions. These results concerning the 
relation of the symmetric group and one of its subgroups can 

* The term is only introduced in chap. v. 
f That is for an indeterminate n. For a numerically given value of nt 

the problem can always be solved by a finite number o£ trials : the solu­
tion has been pushed as far as n = 9 : compare several papers by ASKWITH 
and CAYLEY, Quarterly Jownal of Mathematics, 1890, 1891, 1892. 
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be extended to the relation between any group and one of its 
subgroups. 

Every one of the p conjugate values of a p-valued function 
belongs itself to a certain group ; thus we obtain, correspond­
ing to the p values, p conjugate groups. They are found to be 
" similar," and can be derived from the group G by the proc­
ess of " transformation/' 

If it happens that these p groups coincide, or in other 
words, that the p conjugate values all belong to the same 
group, then G is called—to anticipate a term introduced only 
m the following chapter—a self-conjugate subgroup of the 
symmetric group. The alternating group is always a self-
conjugate subgroup of the symmetric group, and (excepting 
the case n = 4) it is, beside the trivial group 1, the only 
self-conjugate subgroup of the symmetric group. On the 
other hand, the p conjugate values of our integral function 
cp are the roots of an equation of degree p whose coefficients 
are integral functions of the elementary symmetric functions 
c., c9, . . . cn. And if now we ask under what circumstances 
tnis equation becomes binomial, it is easily shown that the 
group of the function cp must be a self-conjugate subgroup of 
the symmetric group. Combining this witn the above result, 
we are led to the theorem : 

The only unsymmetric functions of which a power can be 
symmetric, are the alternating functions. 

Three different proofs of this important theorem are given; 
one of them is based on the properties of the discriminant of 
<p: 

A^-n (cpa - tpßy 
«iß 

Along with these developments, we find, in chap. in. other 
investigations of a different nature. The problem of the con-
struction of aroups is again taken up, and a new and simpli­
fied proof oi Cauchy-Sylow's theorem is given. As a new 
addition, a very interesting theorem due to Netto deserves 
special notice : 

Suppose a group H of order h contains in one of its substi­
tutions a cycle of order &, say oo = (xi9 #2, . . . %k). If h' is 
the order of that subgroup of H wnose substitutions do not 
affect the k letters x, #2, . . . xk, then h is divisible by the 
product h'k. And ii now we transform the cycle col with 
respect to all the substitutions of IT, we obtain h /h'k dis­
tinct "conjugate cycles." Every one of these h /h'k cycles 
occurs h' times in the group H; hence, the cycle œt and its 
conjugates with respect to H occur h/k times in the group 
H. The number of letters in all these cycles is therefore 
equal to the order A of the group H. The special case k = 1 
leads to a theorem previously given by Frobenius. 
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The fourth chapter treats of four properties of groups which 
are, each in its peculiar way, of fundamental importance for 
the algebraic solution of equations : transitivity, primitivity, 
composition and isomorphism. 

a) A group is called transitive if its substitutions permit any 
selected element to be replaced by «very other element ; other­
wise intransitive. Extending this definition to a set of h ele­
ments, we obtain the idea of a jfc-fold transitive group. The 
alternating group is (n — 2)-fold transitive. The principal 
problem concerning transitive groups is the determination of 
an upper limit for the degree of transitivity for a group of 
degree n, which is neither the symmetric nor the alternating 
group. A series of special theorems due to Mathieu, Jordan 
and Netto, are given.* A new term is introduced, the class 
of a substitution : a substitution is of the kth class if it affects 
exactly h letters. 

b) Closely connected with the idea of transitivity is that of 
primitivity and non-primitivity. A simply transitive group 
is called non-primitive when its elements can be divided into 
systems, each including the same number, such that every 
substitution of the group replaces all the elements of any 
system either by the elements of the same system or by those 
of another system. This section is entirely rearranged in the 
new edition and numerous new researches are added. We call 
particular attention to %$§§, 67, where the relation between a 
non-primitive group and the corresponding group of substitu­
tions of the systems is explained. 

c) The fundamental idea of the decomposition of a group, 
due to Galois, has been touched a first time in the preceding 
chapter. Here the entire theory is developed. 

A subgroup H of a group O is called self-conjugate, if it is 
commutative with all the substitutions of (?, in symbols, if 

t~lHt=: H, 

for every substitution t of 0. A group which contains a self-
conjugate subgroup, different from 1, is called a compound 
group, otherwise a simple group. If O contains no other self-
conjugate subgroup üTwhich includes H, then H is a max­
imal self-conjugate subgroup. The series of composition of a 
group G is a series of groups, beginning with 0, ending with 
1, such that each group is a maximal self-conjugate subgroup 
of the group immediately preceding it. The quotients of 
the orders of two consecutive groups are called the factors 
of composition of 0. A compound group may admit of dif-

*For a further development of this theory we refer to two papers by 
BOCHESRT, Mathematische Annalen, vols. 29 and 33. 
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ferent series of composition ; in this case the factors of com­
position in the different series are identical, apart from their 
order. The series of composition of the symmetric group 
of n elements consists, if n ^ 4, of the alternating group 
and the group 1 ; for n ^ 4 the alternating group is simple. 

d) Isomorphism is, in the simplest case, a one-to-one rela­
tion between the substitutions of two groups of the same order 
of such a nature that to the product of any two substitutions 
of the one corresponds the product of the two corresponding 
substitutions of the other group. The definition can be ex» 
tended so as to apply also to a one-to-#-correspondence, and 
even to a ^-to-y-correspondenee : p-q-îolA isomorphism. 
Isomorphic groups have a certain class of properties in 
common : for instance, in two simply isomorphic groups cor­
responding substitutions are of the same order ; to a (self-
conjugate} subgroup in the one corresponds a (self-conjugate) 
subgroup in the other, and so on.* 

A very welcome addition is the introduction of the quotient-
group, which plays such an important part in numerous recent 
researches. The easiest, though not best, way of defining it 
is perhaps the following : Let G be a group of order mk, B"a 
self-conjugate subgroup of G of order m, q> (xl9 #2, . . . xn) a 
function belonging to H. The function <p, on being operated 
upon by all the substitutions of G, takes k values, cpx = <p> 
<P*> • • • <Pk* If now we apply to these k functions simultane­
ously all the substitutions of Ö, the <p'a undergo a transitive 
substitution-group T of order k, which is 1-m-fold isomorphic 
with 0. This group T is called, according to Holder, the 
quotient of G and 27, and is denoted by 

T = G : H. 

Netto adopts Holder's definition, which is more abstract and 
independent of the function <p.\ Likewise Holder's factor-
groups (the quotients of two consecutive groups in a series of 
composition) are mentioned. 

In chapter v. Netto returns to the discussion of rational 
functions of n independent quantities, continuing and gener­
alizing the investigations of chapter in . 

The fundamental problem is : Given (a) a group G and one 
of its subgroups, H ; (b) a rational function <p belonging to 
G and a rational function if) belonging to H. What algebraic 
relation exists between <p and if? ? The answer is given in two 
theorems due to Lagrange : 

* See below the remarks on groups of operations, 
j- Another very elegant definition is given by DYCK, Math. Annalen, 

YQL 90, pp. 11-15. 
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I.) cp is expressible as a rational function of tp and of the 
elementary symmetric functions cl9 c„ . . . cnoîxl9 x%9.. . xn. 

This rational function is of the form : 

9 if I <?„*.• - * 3») 
^ A} 

where g is an integral function of tp, cl9 c# • . . cn9 whereas 
Aty denotes the discriminant of ip. 

Two special cases of this theorem are particularly important : 
1) Two functions belonging to the same group can be 

rationally expressed one in terms of the other. Hence the 
totality of all rational functions belonging to the same group 
form indeed a "family" (Gattung) in the sense in which 
Kronecker uses the word. 

2) Every rational function of n independent elements can 
be rationally expressed in terms of every w!-valued function ; 
for instance in terms of 

S = ax xx + #a a?a -f . . . an xn, 

where the ar's are arbitrary parameters. 
IL) If the order of G is m times that of H9 tj) satisfies an 

algebraic equation of degree m whose coefficients are rational 
functions of q> and cl9 c2, . . . cn. 

Here again the importaut question arises : Under what 
circumstances can this equation become binomial ? The 
answer is : H must be a self-conjugate subgroup of G ; con­
versely, if H is a self-conjugate subgroup of G9 and if more­
over m is a prime number, then there exist always, in the fam­
ily of if>9 functions for which the equation becomes binomial. 
These results furnish a complete insight into the mechanism 
of the solution of the general equations of the second, third, 
and fourth degrees. Anticipating developments of chap, x., 
the general principle of their solution may be exhibited as 
follows : Let 

G~H-I- - 1 

be the series of composition of a group G ; and suppose that 
all the factors of composition of G are prime numbers. On 
the strength of the last proposition, it is then possible to 
determine a series of functions <p9 tp9 x • • • £> belonging to 
the groups G9 H, I, . . . 1 respectively, and such that each 
function can be obtained from the function immediately pre­
ceding it by solving a binomial equation. 

Now for n = 2, 3, 4, all the factors of composition of the 
symmetric group are prime numbers ; we may therefore apply 
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this principle to the symmetric groups of 2, 3, 4 elements 
and thus obtain the solution of the general equations of the 
degrees 2, 3, 4 by means of a chain of binomial equations. 
For the details, see §§148 to 150. 

The remaining three chapters of the first part are devoted 
to special investigations concerning the existence or construc­
tion of substitution-groups between a given number of ele­
ments. We must confine ourselves to a short enumeration of 
theprincipal problems. 

We have seen that the number p of values of a multiple-
valued function of n elements is always a divisor of n ! This 
is a first strong restriction upon the possible values of p. 
Further restrictions are given in a series of theorems due to 
Bertrand, Cauchy, Serret, and Jordan.* 

Every substitution-group is simply isomorphic with a reg-
ular group, that is, a transitive group whose order equals the 
number of elements ; hence the importance of regular groups. 
Netto determines all regular groups whose order is either a 
prime number or the product of two prime numbers. 

The circular substitution (zQ, xl9 . . . %p-\) may be written 
in an abbreviated form 

Ç;+i)> (* = o , i , 2 , . . . j»-i), 
or still shorter 

\ z z + 1 | (mod p), 

if we agree to consider two indices as identical when they are 
congruent (mod p). In a similar way, the more general sym­
bol 

\ z ßz + a \ (mod p) 

in which ar, ß are two integers and ß not = 0 (mod p), repre­
sents a substitution if p is a prime number. The aggregate 
of all substitutions which are obtained by giving a9 ß all ad­
missible values, form a group of order p(p — 1), called the 
metacyclic group. These results may be generalized in sev­
eral directions : Either we may pass to fractional linear sub­
stitutions 

they form a group of order (p 4- 1) p (p — 1) which is of 
great importance in the theory of modular equations. 

* For a further development of this difficult part of the theory we refer 
to two papers by BOCHERT, Math. Annalen, vols. 33 and 40. 
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Or we may introduce, instead of a single index z, a system 
of indices zi9 zi9 . . . zk ; this leads to the theory of " arith­
metic" and "geometric" substitutions, which plays an im­
portant part in the theory of solvable equations. 

Or we may pass to the general theory of the analytical rep­
resentation of substitutions (Hermite). 

All these problems are studied in detail. 
A particular interest attaches to the last subject which we 

have to mention, Kronecker's investigations on groups of 
commutative substitutions, not only on account of their im­
portance for the theory of Abelian equations, but because, 
transgressing the limits of the theory of substitutions, they 
point to a more general field of research, the theory of groups 
of operations in general. With this one exception, Netto, 
true to his programme clearly expressed in the preface, strictly 
confines himself to groups of su bstitutions proper. Yet the 
general theory of groups throws such a new light backwards on 
the theory of substitution-groups out of which it has devel­
oped, that a few additional remarks on this important exten­
sion of the theorv of substitutions may not be out of place. 

It seems that Cayley * was the first to conceive the idea of 
extending the conception of a group, originally restricted to 
substitutions, to any operations which admit of repetition and 
combination. From this standpoint, two groups are consid­
ered as identical if the laws of combination of their operations 
are the same for both, no matter what the particular nature 
of the operations may be, whether they are substitutions, 
or rotations, or quaternions, or linear transformations, etc. 
Using the modern terminology, we may express the same idea 
in another form : Simply isomorphic groups are considered as 
identical. A systematic exposition of such a general theory 
of groups has first been given by Dyck.f 

Now all possible properties of substitution-groups may be 
divided into two classes : 

I.) Properties which are independent of the peculiar nature 
of the operations and are therefore properties of groups of 
operations in general. Such are the theorems on the relations 
between a group and its subgroups, on cyclic groups, Cauchy-
Sylow's theorem,J and those on self-conjugate subgroups, on 
the construction of groups of a given order, on isomorphism, 
etc. Their common characteristic is that they are not de­
stroyed by a transition to any simply isomorphic group. 

* On the theory of groups, Phü. Mag., 4th series, vols. 7 and 18, and 
American Journal of Mathematics, vols. 1 and 11. 

f Math. Annalen, vols. 20 and 22 ; besides, we refer to KLEIN, " Vorle­
sungen über das Ikosaeder," pp. 5-8, and HOLDER, Math. Annalen, vol. 
34, pp. 28-39. 

% See FiiOBBNius's proof, Journalför Mathematik, vol. 100, p. 179. 
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II.) Properties which depend on the peculiar nature of 
the operations, as the theorems on the symmetric and alter­
nating groups, on transitivity and primitivity, on the con­
struction of groups of a given degree, on the analytical repre­
sentation of substitutions, etc. 

An analogon, familiar to all, may serve to illustrate this 
classification : In the theory of algebraic curves, we distin­
guish between those properties of a curve which are not 
destroyed by projection and those which are destroyed. To 
the transition from one curve to another curve, projective 
with the first, corresponds in our case the transition from one 
group to another group, simply isomorphic with the first. 

II. 

Throughout the first part of Netto's book, the elements 
Xu x%y . . . xn are regarded as entirely independent quantities.* 
We may therefore consider them as the roots of the general 
equation of the nth. degree 

(x — xt) (x — x2) . . . (x — xn) ~xn — cxx
n-x -f c2 x

n~%. . . 
± cn = 0, 

whose coefficients are themselves independent quantities. And 
all our theorems on rational functions of n independent quan­
tities may be interpreted as theorems on rational functions of 
the roots of the general equation of the nth degree. 

At first sight nothing seems simpler than the transition 
from the general equation to any special equation, that is, an 
equation whose coefficients are no longer independent quan­
tities, but have either numerically given values or else are 
functions of one or more independent parameters. And yet, 
in this transition there are difficulties hidden which, it seems 
to us, can scarcely be too much emphasized. Before enter­
ing into a discussion of the second part of Netto's book, it will 
therefore be well to premise some remarks concerning the 
transition from general to special equations. 

1) First difficulty : domain of rationality. 
The peculiar difficulty of the theory of special equations 

faces us right at the outset when we try to define what we 
mean by saying an equation is algebraically solvable. The 
problem may be considered from two entirely different stand­
points ; it may either be regarded as a problem of the theory 
of functions or of pure algebra. Accordingly, we obtain two 
different definitions. We may say 

* With the exception of a few special investigations, such as §§ 32, 111. 
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either (theory of functions) : | or {algebra) : 

An equation is algebraically solvable, if its roots can be 
derived from the coefficients 

and a number of constant I and the numerical unity 1* 
quantities \ 

by means of the five elementary algebraic operations, viz. : 
addition, subtraction, multiplication, division, extraction of 
roots of prime index, applied a finite number of times. 

The difference between the two definitions is precisely the 
characteristic difference between theory of functions and 
algebra : in the theory of functions the fundamental distinc­
tion refers to variable quantities and constant quantities ; our 
whole attention is directed toward the variables, and the arith­
metical nature of the constants is left out of consideration* In 
algebra, on the contrary, the principal distinction refers to ra­
tional quantities and irrational quantities, and the chief inter­
est concentrates upon the arithmetical nature of the constants. 

The theory-of-functions-definition is applicable only to 
equations whose coefficients contain at least one variable para­
meter ; if applied to numerical equations it would, combined 
with Gauss's theorem on the existence of the roots of an alge­
braic equation, lead to the result that every numerical equa­
tion is algebraically solvable. 

The algebraic definition, with which we are here exclusively 
concerned, is applicable to all algebraic equations, whether the 
coefficients contain variable parameters or not. It admits, 
however, of a generalization which is essential for our fur­
ther developments : The coefficients may themselves be de­
rived from other quantities, regarded as known, by means of 
rational operations. Denoting the latter quantities by 

Ui , Ui , Ui • • . , 

an equation whose coefficients are expressible as rational f unc­
tions with integral coefficients of W9 91", 9Î'". . . , will be 
said to be algebraically solvable, if its roots can be derived 
from the quantities SF/SR", SR'" . . . , by means of the above-
named five elementary algebraic operations, applied a finite 
number of times. We expressly include in this definition 
the case in which some of the §t's do not explicitly appear 
in the coefficients ; thus the coefficients of the equation 

x* + a;8 4- x* + x 4- 1 = 0 

* The words " and the numerical unity 1 " may be omitted since 1 = --• 



94 THE THEOBY OF SUBSTITUTIONS. 

may be said to be rationally expressible in terms of the quan­
tity 9?' = y ^ It is therefore partly a matter of free cnoice 
from what quantities we regard the coefficients as being 
rationally derived. And the question whether a given equa­
tion is algebraically solvable admits of an answer only with 
respect to a definite choice of the $t's, or, to use Kronecker's 
terminology, it depends on the domain of rationality in 
which we are operating. 

The domain of rationality (9î', 9Î", 9T" . . .) consists of 
all quantities which are expressible as rational functions with 
integral coefficients of 9Î', 9?", W' • . . . The simplest do­
main of rationality consists of all rational numbers, and is 
characterized by a single quantity 9t, viz.: 9t' = 1 . * 

The conception of domain of rationality is of the most 
fundamental importance for Galois' theory; there is not a 
proposition in the whole theory in which it is not implicitly 
contained. And it should always be borne in mind that 
terms like "algebraically solvable/' "irreducible/' "group of 
an equation/' " Abelian equation," and the like, have a mean­
ing only if referred to some definite domain of rationality. 

Again, if we say, a quantity, g, is a rational function f of 
the roots xjy x%, . . xn of our equation, say 

£ = 9 (xi> x* • • • ®n)> 

we always mean a rational function whose coefficients belong 
to our domain of rationality. Without some restriction con­
cerning the nature of the coefficients of ep (xl9 x%. . . xn), the 
above statement would be meaningless, at least m the case of 
a numerical equation ; and the idea of a rational function with 
any constant coefficients, as used in the theory of functions, 
should carefully be kept out of all purely algebraic investiga­
tions. 

2) Second difficulty : formal and numerical invariance. 
As long as the #'s are undetermined quantities, two rational 

functions of xî9 a?a, . . . xn are considered as equal only if they 
are identical, that is, equal for all sets of values of xx, x^.. . xw 
But if the x'& are the roots of a special equation, it may hap-

* Compare ABEL, Œuvres, il., pp. 219, 220 ; GALOIS, Œuvres, p. 84 
(Journal de Mathématiques, vol. 11, 1846) ; KRONECKER, Journal für 
Mathematik, vol. 92, pp. 3-10. 

f There seems, however, to be something unsatisfactory in the use of 
the word rational function in this connection, particularly in the case of 
a numerical equation. " Function " always implies the idea of a variable 
quantity dependent on some other variable quantities, whereas in the 
present case all quantities involved are constant. We should prefer to 
say : $ is rationally expressible in terms of .?,, x.2, . . . a?», or shorter £ is 
rational in xx, x% . . ,xn. See HOLDER, Math, Ann., vol. 84, p. 41. 
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pen that two rational functions of xl9 x„ . . . xnt though dif­
ferent in form are equal in numerical value. 

Example : The roots of the equation 

x* + 1 = 0 

are, if we put e"r = e, 

Xx = €, # 9 = fc£, # , = — £, XK = -—fc£. 

The two functions 

9> = â 2 and t[> = a?2 a?4, 

though different in form, are numerically equal, viz. = £ 
In particular, it may happen, that two conjugate values of 

a rational function become equal, in which case we have to 
distinguish between formal and numerical invariance. In the 
above example the function cp = x? remains formally un­
changed by the substitutions : 1 ; (234) ; (243) ; (34) ; (42) ; 
(23), whereas it remains numerically unchanged not only oy 
these substitutions, but besides by the substitutions: (13); 
(42) (13) ; (413) ; (4213) ; (4132) ; (213), which replace xt 
by xs (notice x* = x* = i). 

a) Formal invariance : Those substitutions which leave a 
rational function cp (zt, # ? . . . xn) formally unchanged form, 
of course, a group, as before. I t must, however, be remem­
bered that one and the same quantity, rational in the roots, 
may admit of different expressions in terms of the roots, in 
which case it may at the same time belong to several groups, 
according to its different expressions in terms of the roots. 
It seems therefore advisable to avoid in this connection the 
term " group of a rational function," or " group of a quantity 
rational in the roots," and only to speak of the group of a 
given " expression of a rational function." * Thus we would 
say, in the above example, the "expression" x* belongs to 
the group [1 ; (234) ; (243) ; (34) ; (42) ; 23], the "expres­
sion* xjx4 to the group [1 ; (24) ; fl3) ; (13) (24)], whereas 
the " quantity " i = x* = x^x4 may oe said to belong to both 
groups at the same time. 

b) Numerical invariance: Those substitutions which 
leave a rational function cp (xl9 x2 . . . xn) numerically un­
changed do not in general form a group.\ In the above 
example the 12 substitutions which leave z* numerically 
unchanged do not form a group. 

* This is, however, only intended as a temporary terminology ; the 
proper way of modifying the definition of the group of a rational func­
tion of the roots will be pointed out later : see p. 100, footnote. 

f See HOLDER, Math. Annalen, vol. 34, p. 41. 
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3) Third difficulty : Lagrange's theorem. 
If some of the conjugate values of a rational function 

tj) (xl9 #2 . • . Xn) are equal in numerical value, the discriminant 
of tp, ay, vanishes, and Lagrange's theorem oan no longer be 
applied to the function */>.* Along with Lagrange's theorem 
all its consequences cease to hold. 

I t is to Galois9 genius that we owe a way out of these diffi­
culties which seem to endanger most of our theorems on un-
symmetric functions the moment we pass from the general 
equation to a special equation, f 

III. 

Netto's exposition of Galois' theory of the group of an equa­
tion, which is given in chaps, ix. and xiv., seems to us to be 
open to a number of objections all derived from the fact that 
the difficulties explained in the preceding section are not suf­
ficiently considered. The term "rational function" is used 
without an explanation concerning the nature of the coeffi­
cients ; no distinction is made between formal and numerical 
invariance ; and Lagrange's theorem is used without a pre­
vious examination of the discriminant. All this gives to the 
deductions a certain vagueness and ambiguity. Moreover 
some of the most important theorems are omitted, others left 
without a proof. We think it therefore necessary to enter 
into a detailed analysis and to add such explanations as we 
believe indispensable to complete Netto's developments. 

1) Definition of the group of an equation. 
Netto gives, in the present edition, a new definition of the 

group of an equation, which takes a position intermediate 
between Jordan^ ançl Kronecker's definitions. It is based on 
the following considerations : Let 

(1) f(x) = xn — cxx
n-1 + cjcT* ~ . . . ± cn = 0 

be an equation of the nth degree whose roots xl9 #a, . . . xn 
are all distinct. The wl-vahied function 

(2) ë = axxx + ctjt% + . . . + anxn 

where the »'s are arbitrary constants, J satisfies a resolvent 
equation of degree n ! : 

* See NETTO-COLE, § 111. 

Î See the remarks at the end of the following section. 
This is too vague. The a's must be either rational functions with in* 

tegral coefficients of cl9 c2, . . . cn, so chosen that the ;/! values of £ are 
numerically distinct (GALOIS), or else undetermined Quantities (KRO-
NKCKEK). The developments would, however, have gained in clearness 
as well as in generality if the general idea of domain of rationality had 
been introduced from the outset, instead of only in chap. xui. 
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(3) F(g) s £»! - Afi^^ + . . . ±Anl 

where the product extends over all the n ! permutations 
A„ Ä2, . . . Äw of the indices 1, 2, . . . ft, and the coefficients 
A are rational integral functions* of those of (1) and of 
<*x, oc» . . . an. 

If the coefficients cx, c„ . . . #n of (1) are entirely indepen­
dent, F(g) cannot break up into rational factors. But for 
particular values of the coefficients c, F(S) may break up 
into irreducible factors with rational coefficients 

(4) F(S) = FHtf)F%{S) . . . Fn{5). 

Consider any one of these irreducible factors, say F^H). 
It may be written in two different forms : either decomposed 
into its linear factors 

(5) Fi(g) = 77 [5 - (alxil + a2xtt + . . . + otnxin)\ 

where the product extends over certain permutations il9 t t, 
. . . in of the indices 1, 2, . . . n ; or arranged according to 
powers of $> 

(6) Ft(S) = Sr-~ B&-1 + . . . ± Br. 

Since F^S) is supposed to be a rational divisor of F(£), the 
coefficients Éx, B» . . . Br are expressible as rational func­
tions of el9 c2, . . . cn and ax, a» . . . an. 

The " expression " (5)„of Ft{g) is an unsyrnmetric function 
of xv x„ . . . xn, and belongs to a certain group 04 ; the " ex-

Eression" (6) of 7̂ (<Ç) is a symmetric function of x , xi9 . . . xn, 
elongs to the symmetric group and is rationally known, f 
From this double expression of F{(ë), it follows that every 

function belonging to Ot is rationally known, being a rational 
function of F{(g):l 

Netto next shows that the groups Gi all coincide : 

(7) ff, = fft = . . . = Gvy 

* With integral coefficients. Rational function is here always under­
stood in this sense. 

f This is an illustration of the remark 2, a) of the last Section, and 
shows again that the term " group of the function Ft " is not unam­
biguous. 

J This conclusion supposes A^ =£0; it is, however, not difficult to 
prove that this condition is always satisfied, owing to the undetermined 
quantity |, which is contained in JF(. 
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say = G. And it is this group G which Netto defines as the 
group of the equation (1). I t is interesting to compare this 
definition with Jordan's definition on the one hand, and with 
Kronecker's definition on the other hand. 

a) Jordan's definition. 
Let Fx{%) denote that irreducible factor of F(£) which 

admits the root 

gx = axxx -f atx% + • . . • anxn ; 

all the roots of Ft(£) are derived from %x by the application 
of certain substitutions 

(8) 1, a, », . . . J 

between the letters xx9 x9, . . . xn9 and FX(S) may be written 

FX{5) = ( * - s x ) {5-5a) (g-eb)...(s-et). 

Jordan proves * the theorem : 
The substitutions (8) form a group, say G\ 
This croup G' is the group of the given equation. Starting 

from this definition, it is easy to show f that Netto's group G 
is identical with G'. Netto himself uses later on (§229) the 
identity of both groups,J but he omits to prove that the sub­
stitutions (8) form a group. 

b) Kronecker's definition. 
Kronecker § considers the irreducible factor FJß) not as a 

function of the roots but as <t function of the parameters ax, 
a 2 , • , . am, which he regards as undetermined quantities. By 
this ingenious device, he avoids the ambiguity which attaches 
to the term "group of a function " in the case of non-inde­
pendent quantities. No matter in which form we may express 
the function FX(S) it always belongs to one and the same 
group, say JH, between al9 a3, . . . an. 

If now we replace, in the group F , the letter a by the letter 
x, we obtain precisely the group G of the equation (1).|| 
Netto touches Kronecker's definition in §226, page 267, but 
without showing its identity with his own definition. 

* JORDAN, 1. c. No. 854, and SEBBET, I. c. No. 584, Corollaire. 
f JOBDAN, 1. c. No. 351. 
i There is a similar silent assumption in the proof of (7). 
§ " Grundzüge einer arithmetischen Theorie der algebraischen Grössen," 

§11 ; Journal für Mathematik* vol. 92. 
| For a direct proof of this statement, I refer to my note " Ueber Kro­

necker's Definition der Gruppe einer Gleichung," in one of the forth­
coming numbers of the Mathematische Annalen. 
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2) Properties of the group of an equation. 
Netto formulates Galois' fundamental theorem as follows : 
" Every f unction belonging to G is rationally known; and, 

conversely, every rationally known f unction belongs to G." 
We object to the use of the word " belonging to G " with­

out an additional explanation whether it refers to formal or 
to numerical invariance ; the more so, as from all that precedes 
it seems more likely that it is used in the former sense. And 
yet, in this case, the above formulation would not give the 
lull meaning of Galois' theorem ; the first part would state 
too little, the second too much. 

Illustration : The group of the equation 

x4 4- 1 =s 0 

with respect to the domain 9Î = 1 is 

ff = [ l ; (12) (34); (13) (24) ; (14) (23)]. 

Using the same notation as on page 95 we have 

xxx£ + xsz£ = 0. 

Hence the expression xxx£ 4- x3x? is rationally known ; never­
theless it is not formally unchanged by G. 

Galois himself expressly states in a footnote to his proposi­
tion I., that he means numerical invariance ; and, in fact, the 
whole emphasis of the theorem lies on the numerical invari­
ance. 

To complete Netto's proof of the first part of the theorem, 
the following lemma must be added : " Every function which 
is numerically unchanged by the substitutions of a group, can 
always be thrown into such a form that it is also formally 
unchanged." For if 1, a, b, . . . I are the substitutions of the 
group, and r their number, then it follows from cpx = <pa 
ss <pb = , , . == cpx that 

<Pi = ~ [<Pi + 9a + <pb + . . . + <Pl]. 

As to the second part of Galois' theorem, Netto gives no 
proof of it either in §153 or in §226. And yet the second 
part is just as important as the first and by no means self-
evident. 

In this connection we must mention a statement in §154 : 
" It is clear that every unsymmetric equation <p(x}, x„ . . . 
xn) = 0 between the roots produces an affect." This is only 
true if A9 =(= 0. 



100 THE THEORY OF SUBSTITUTIOKS. 

Illustration : x* — 2 = 0. Its roots 

S ~ S/— 8 - / — \ 

xx = \/2, x9 = Û?V% #, = CO9y%, \<a = e 8 / 

satisfy the unsymmetric relations 

#i* ~ # A = 0, x£ — a ^ = 0, x£ — iCj% = 0. 

Nevertheless it is easily shown that the group of the equa­
tion with respect to the domain 9t = 1, is the symmetric 
group ; that is, the equation has no affect. 

We regret that Netto omits to point out one feature of 
Galois* theory which seems to us one of the most important, 
the reconstruction * of the theorems on rational functions of 
the roots, alluded to at the end of the preceding section. This 
reconstruction may be condensed in a simple practical rule : 
To pass from a theorem on rational functions of n indepen­
dent quantities to the corresponding theorem in the case of a 
special equation, replace "symmetric group " b y "group G 
of the equation " and " formally unchanged" by "numerically 
unchanged." 

Thus the theorem (§29) : "Those substitutions (viz., of 
the symmetric group) which leave a rational function of n 
independent quantities (formally) unchanged form a group," 
now takes the form : 

Those substitutions of the group G which leave a rational 
function (q>) of the roots numerically unchanged form a 
group (H).\ 

Example : The group of the equation 

with respect to the domain of rationality SR = 1, is the group 

G = [1 : (12) (34) ; (13) (24) ; (14) (23)]. 

Those substitutions of G which leave the function cp = xf 
= xz

2 = #2#4 numerically unchanged, are : 1 ; (13) (24) ; they 
form indeed a group. 

Similarly, the propositions of §41 and §53 have to be re­
placed by the following : If the order of G is v times the 

* See KLEIN, " Vorlesungen über das Ikosaeder," pp. 85, 86 ; HOLDER, 
1. c. §15-20 ; and my paper, "On the theory of substitution groups" 
etc. §13, American Journal of Mathematics, vol. 13. 

f JORDAN, 1, c. No. 362. It seems natural to call thi» group H " the 
group of <p." 
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order of HT, then the function cp, on being operated upon by 
all the substitutions of (?, takes exactly v numerically dis­
tinct values 

<Pi> 9*> • • • <P* • 

They are the roots of an equation of degree v, whose coeffi­
cients are rationally known, and which, moreover, is irreduci­
ble in the domain of rationality under consideration.* 

Again, Lagrange's theorem takes the form : 
If a rational function cp of the roots remains numerically 

unchanged by all those substitutions of the group G which 
leave another function tf> numerically unchanged, then cp is 
rationally expressible in terms of tp ; and the theorem is true 
without any exception.f 

These propositions contain the complete solution of the 
difficulties of the preceding section. 

3) Reduction of the group by adjunction. 
Suppose we had found, by solving an auxiliary equation 

g(z) = 0, an irrational function z of the known quantities 
SR', SR", . . . ; we may then, henceforth, consider also z as a 
known quantity, or, in the language of Galois and Kronecker, 
adjoin it to our domain of rationality. 

It may happen that the factors ^7,(5), J?.2(£)> . . . of F{S\ 
irreducible in the original domain (9t', 91", . . . ) , are reducible 
in the new domain (z ; 9t\ *ft", . . .). In this case the group 
G of f(x) = 0 is reduced to a subgroup of G by the adjunction 
of z. And the solution of an equation by a chain of auxiliary 
equations consists, from Galois' point of view, in the succes­
sive reduction of its group until the group finally only con­
tains the one substitution 1. 

Two cases have to be distinguished according as z is ration­
ally expressible in terms of the roots of the given equation 
("natural irrationality") or not ("accessory irrationality/' 
Klein). 

The principal theorem concerning the adjunction of natural 
irrationalities is Galois' proposition rv.J: "Bytheadiunction 
of the numerical value of a rational function cp of the roots, 
the group G of the equation is reduced precisely to that sub­
group H of G which leaves cp numerically unchanged." This 
proposition, which is omitted in Netto's exposition, would 
have simplified the developments of §§230-234 concerning the 
group JHof the auxiliary equation g{cp) = 0, satisfied by the 
rational function cp. ti, in particular, H is a self-con jugate 
subgroup of G, the group F is the quotient-group G : H. 

* See JORDAN, 1. c. No. 366. 
See JORDAN, 1. c. No. 362, Cor. n., and KLEIN, 1. c. 
GALOIS ] ** p, 41, SBRRET, 1. c. No. 583, and JOKDAN, 1. c. No. 36». 
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Further, if H is a maximal self-conjugate subgroup, the group 
r is simple. Hence the solution of a composite * equation can 
be reduced, by the successive adjunction of a series of rational 
functions of the roots, to the solution of a chain of simple reg­
ular * equations, f 

The adjunction of accessory irrationalities is treated in 
§§236-238. Galois' proposition in., concerning the adjunc­
tion of ail the roots of an auxiliary equation, is given, and 
Jordan's theorem concerning the mutual adjunction of all the 
roots of g(z) = 0 to the equation f(x) = 0 and of all the roots 
of f(x) = 0 to the equation g(z) = 0, with the corollary : " If 
the group of f(x) = 0 is reduced by the solution of a simple 
equation g(z) = 0, then the roots of the latter equation are 
rational functions of the roots olf(x) = 0." 

This corollary contains, as Netto points out, a proof and an 
extension of Abel's celebrated theorem concerning the irra­
tionalities which enter into the solution of an algebraically 
solvable equation. 

IV. 

The three following chapters are devoted to three important 
classes of special equations : cyclotomic equations, Abelian 
equations, and equations with rational relations between three 
roots. 

The cyclotomic equation 

x*~~} « &-* + op-« + . . . + x + 1 = 0 
x — 1 

for a prime number p is irreducible in the domain 9Î = 1 ; if 
co denotes one of its roots, all the roots may be written 

coff, ooP, • • • cd^~ 

g denoting a primitive root (mod p). Hence it follows by 
applying the second part of Galois' fundamental theorem, that 
the group G of the equation is the cyclic group consisting of 
the p powers of the substitution 

* An equation is called simple, composite, regular, etc., if its group is 
sample, composite, regular, etc. 

f Compare JOBDAN, 1. c. No. 862, 86Ô-372, and HOLDER, L C. §§18-20. 
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The (p — l)th power of Lagrange's expression 

(or, GO) = GO -f oiGcP -f afocP* + • • • a*-*cûPp~\ 

where ar denotes a primitive root of the equation ^~l — 1 = 0, 
is unchanged by the substitutions of O and therefore ration­
ally expressible in terms of a. Hence the solution of the 
cyclotomic equation for the prime number p requires only the 
determination of a primitive root of the equation zp~ l ~ l"= 0, 
and the extraction of the (p — l)th root of an expression which 
is then rationally known. 

Iipi9p^ . . . are the prime f actors of p — 1, the solution can 
be decomposed into a chain of binomial equations of degrees 
jp,, p„ . . . Hence Gauss's celebrated theorem : If %m + 1 is a 
prime number, the regular polygon of 2W H- 1 sides can be 
constructed by means of ruler and compass. The construc­
tions for p = 5 and p = 17 are given in full detail. 

The chapter on Abelian equations begins with a reproduc­
tion of Abel's researches on irreducible equations of which one 
root x\ is a rational function of another root xx : x\ = 0(x\ 
The group of such an equation is determined and found to oe 
non-primitive. If in particular all the roots can be arranged 
in one cycle 

*» *K), frfo)* • • • ̂ - '(O ; *•(*,) = *„ 
the group is cyclic, and we have the immediate generalization 
of the cyclotomic equations ("simplest Abelian equations"), 
and the equation is solvable by radicals. Two examples of 
this type of equations are discussed ; in the one case 

m - yx + 6 ' 

in the other, which is a new addition of the English edition, 
0(x) is an integral function. 

Then follows the general definition of Abelian equations in 
accordance with Jordan : an equation is called Abelian if all 
its roots are rational functions of one of them 

* i » * i ( * i ) > * t ( * i ) > • • • * — i ( * i ) 

and besides the operations 0 are commutative : 

0M*>) = W O -
The substitutions of the group of an Abelian equation are 

all commutative ; conversely, if the substitutions of the group 
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of an equation are all commutative, the equation is an Abelian 
equation. 

Kronecker's as well as Jordan's treatment of Abelian equa­
tions are developed ; both methods lead to the theorem due 
to Abel : Every Abelian equation is solvable by radicals. As 

an illustration the equation for cos — is discussed. 

In chap. xii . irreducible equations are considered all the 
roots of which are rational functions of two among them. If, 
in particular, the degree is a prime number p, the equation is 
a Galois equation ; its group is the metacyclical groun or one 
of its transitive subgroups. The solution of a Galois equa­
tion reduces to that of two Abelian equations. The binomial 
equation of prime degree xp — A = 0 is the simplest example 
of a Galois equation. 

An allied class of equations are Mother's triad equations, 
the theory of which is developed in the second part of the 
chapter ; a well-known example of a triad equation is the 
equation of the 9th degree for the determination of the nine 
points of inflection of a plane curve of the third order. An 
interesting investigation on triad equations of degree 7 has 
been added in the new edition. The group of the most 
general irreducible triad equation of degree 7 is the " K r o -
necker group " of order 168 defined by 

| z az + b | , | z a6{z + b) -f c | 

[a = 1, 2, 4 ; b, c = 0, 1, . . . 6 ; 6(z) = - z'(z* + 1)]. 

The two remaining chapters are devoted to the general 
theory of algebraically solvable equations, treating, however, 
the problem by two entirely different methods, which may be 
characterized as AbeVs and Galois'. 

1) AbeVs Method (chap. xn i . ) . 
The first part of the chapter reproduces Abel's proof, sim­

plified by Kronecker, of the fundamental theorem that the 
solution of an algebraically solvable equation can always be 
performed by a chain of binomial equations of prime degrees 
whose roots are rationally expressible in terms of the roots of 
the given equation and of certain roots of unity.* 

Combining this proposition with the results of chap. III. 
concerning the existence of rational functions of n undeter-

* The shorter form in which the above theorem is given in Art. 85 of 
my paper " On the theory of substitution groups, etc.," American Jour­
nal, vol. 13, viz.: "The radicals which enter into the solution of a 
solvable equation are always rationally expressible in terms of the roots 
and of certain roots of unity," is not exact. 
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mined quantities, a power of which is symmetric or two-valued, 
it follows at once that the general equations of a degree higher 
than the fourth are not algebraically solvable. 

The latter part of the chapter is devoted to the difficult 
problem of the explicit expression of the roots of a solvable 
equation. Abel had obtained in his memoir " Our la réso­
lution algébrique des équations," of which, unfortunately, we 
possess but fragments, two expressions for a root of an alge­
braically solvable equation of prime degree p : The first is 

g. + W + W +. . . VR;^ , (l) 

where g* is a rational quantity * and Rx> R2,. . . IL^t are the 
roots of an equation of degree p» — 1 whose coefficients are 
rational quantities. The second is 

g0 + * + <P*(s) # + . . . + 9>,-i(*) s » , (2) 

where <p8, . . . <pp-\ are rational functions whose coefficients 
are rational quantities. These two forms are necessary but 
not sufficient for a root of a solvable irreducible equation of 
prime degree. 

Kronecker, completing Abel's researches and generalizing 
a result obtained by Abel, for p = 5, gave, f—yet without a 
proof,—the further conditions which must be satisfied by the 
quantities Rl9 Ä9, . . . Rp-i, in order that the expression (1) 
may actually satisfy an irreducible solvable equation of de­
gree p. 

Netto not only proves Abel's results, but—and this is one 
of the most important additions of the new edition—he also 
gives a proof and further development of Kronecker's propo­
sitions. 

2) Galois9 Method (chap. xv.). 
Galois' method consists in the successive reduction of the 

group of the given equation by the successive adjunction of 
the various radicals which enter into the expression of the 
roots. By means of his propositions m. and iv., mentioned 
in section I IL , Galois establishes the fundamental theorem : 

In order that an equation may be algebraically solvable, it 
is necessary and sufficient that all the factors of composition 
of its group be prime numbers. 

Hence arises the problem : To determine all groups of sub-

* That is, rationally expressible in terms of 9t', 9ft", . . . 

LMonatsberichte der Berliner Akad. 1853, translated in S ERBET, Cours 
gèbre supérieure, 4me édition, No. 599. 
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stitutions between n letters whose factors of composition are 
all of them prime numbers. 

The problem can be reduced to the case of transitive 
groups. A further reduction results from the following propo­
sitions : 

Every equation the group of which is non-primitive, is the 
result of the elimination of an auxiliary quantity y from two 
irreducible equations, 

y-Ay-l+ . . . ±A9 = 0, 

*m - tfi(y)^--1 + . . . ± sm{y) = o, 

(the ^ s being rational quantities and the S(y)'s rational 
functions of y) ; and 

If the degree of a solvable irreducible equation is divisible 
by two different prime numbers, its group is non-primitive. 

We may therefore confine ourselves to the consideration of 
primitive equations whose degree is a power of a prime, n = pk; 
for these the following theorem holds : 

The group of every solvable primitive equation of degree pk 

consists of the group of the arithmetic substitutions of the 
degree pk

9 

| zx9 zt, . . . zk zx + al9 z2 + a„ . . . zk + ak | (modjt?), 

combined with geometric substitutions of the same degree, 

| zx9 zv . . . Zu axzx 4- bxz% + . . . + cxzk9 

a%zx + b& 4- . . . + Cf* . . . | (modjp). 

If Tc = 1, the converse of this theorem is also true ; hefise 
Galois' theorem : 

The group of a solvable irreducible equation of prime degree 
is the metacyclic group (or one of its transitive subgroups) ; 
and conversely, every metacyclic equation is algebraically 
solvable. 

If, on the contrary, k > 1, not every group of the above 
form belongs to a solvable equation; and the determination of 
all solvable groups is, in this case, as yet an unsolved problem. 

These are the principal subjects treated in the last chapter 
of Netto's book. 

0. BOLZA. 
UNIVERSITY OF CHICAGO, January, 1893. 


