
Bayesian Analysis (2007) 2, Number 2, pp. 349–364

Bayesian inference for an extended simple

regression measurement error model using

skewed priors

Josemar Rodrigues∗ and Heleno Bolfarine†

Abstract. In this paper, we introduce a Bayesian extended regression model
with two-stage priors when the covariate is positive and measured with error.
Connections are made with some results in Arellano-Valle and Azzalini (2006), re-
lated to the multivariate skew-normal distributions. The usefulness of the pro-
posed model with errors in variables, via the two-stage priors formulated by
O’Hagan and Leonard (1976), is illustrated with an example abstracted from Fuller
(1987, pg. 18). The main advantage of this extended Bayesian approach is the
use of skewed priors, typically rare in most Bayesian applications, and to treat
the true value of the explanatory variable as positive, consideration that is some-
times ignored in measurement error models. Such consideration makes naturally
the model identifiable, a problem that significantly has troubled users of other ap-
proaches listed in the literature. This constraint implies also a strong asymmetry
in the distribution of the response variable. Strong connections are shown with
results in Copas and Li (1997) on non-random samples and with Berkson models,
which are important in practical applications. Extensions of Copas and Li’s results
for models with vector explanatory variables are presented.

Keywords: Berkson model, non-informative prior, non-random sample, posterior
distribution, pseudo-Bayes factor, regression calibration, structural error model,
skew-normal distributions, Winbugs.

1 Introduction

The simple linear regression model has been subject to extensive research in the liter-

ature for over a century. In many of its real applications, mainly where the observa-

tions contain measurement errors, the explanatory variable is positive implying a strong

asymmetry on the response variable which is usually ignored in the formulation of the

regression models. However, we have no reports of its use in the measurement error lit-

erature. Using the unified approach of families of skew-normal distributions, introduced

by Arellano-Valle and Azzalini (2006), we here formulate an extension of the simple re-

gression model called the conditional extended simple regression model and study the

impact caused by this restriction on the inference of the regression coefficients. Also,

a stochastic representation of this extended distribution is obtained, which is useful

for Bayesian computation purposes via Winbugs. The Bayesian results obtained in
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this paper when contrasted with results in Fuller (1987), show good performance for

the estimation of the regression coefficient and a large degree of non-randomness in

Copas and Li (1997) sense. The main advantage of the Bayesian approach is the pos-

sibility to include prior constraints on the parameters and permitting the data confirm

it is true or not, or, asymptotic results, as considered in Fuller (1987) example. This

kind of more complex prior consideration includes some degree of skewness and it seems

to be not usually used by Bayesian statisticians, as mentioned and justified by Liseo

(2004). Moreover, the likelihood function for the measurement error models with skew

distributions usually is very complicated making the model introduced in this paper an

interesting and attractive alternative. In our opinion, combining the degree of skewness

(O’Hagan and Leonard 1976) in the prior with the degree of non-randomness in the

sample (Copas and Li 1997) is a simple and natural way to solve practical problems.

The paper is organized as follows. In Section 2, we formulate the regression normal

measurement error model (Fuller 1987; Carrol et al. 2006; Cheng and Ness 1999) and

making use of some properties of the bivariate normal distribution, the conditional sim-

ple regression normal measurement error model is justified. In Section 3, the conditional

extended regression model with errors on the real covariate value is formulated and some

results are presented. The multivariate case is introduced in Section 4. Furthermore, in

Section 5, an illustrative example analyzed via Winbugs is considered which shows that

the approach proposed in the paper very much improves on the classical approach.

2 A simple regression model with normal measurement

error

Regression with error-in-variables, also known as measurement error models, is fun-

damentally different from the usual simple linear regression model and the inferential

problems that arise with this model are quite different and complex. The measurement

error model can be thought of as a generalization of the traditional simple regression

model. In this section, we consider the measurement error model relating the response

variable Yi and the explanatory variable xi (see a comprehensive overview of this model

in Fuller (1987) and, more recently, in Cheng and Ness (1999), and in Carrol et al.

(2006)) as follows:

Yi = α+ βxi + ei, i = 1, . . . , n. (1)

Assuming that xi is the real unobserved value of the observed variable Xi, we con-

sider the following measurement error model:

Xi = xi + ui, (2)

where 


ei
ui
xi


 ∼ N3






0

0

µx


 ; diag(σ2

e , σ
2
u, σ

2
x)



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are independent random vectors, i = 1, . . . , n and diag(a1, . . . , an) denotes a diagonal

matrix with diagonal elements a1, . . . , an. The equations (1)-(2) define the structural

measurement error model. When the unobserved value xi is fixed, this model is known

in the literature as the functional model. It is well known that the above structural

model is non-identifiable, so, it is usual to make additional assumptions (such as σ2
u is

known) to solve inferential problems.

Using well known properties of the multivariate normal distribution we can show

that

(xi, Yi, Xi)
t ∼ N3 (µ; Ω) , (3)

where,

µ =




µx
α+ βµx
µx


 and Ω =




σ2
x σ2

xβ σ2
x

σ2
xβ σ2

xβ
2 + σ2

e σ2
xβ

σ2
x σ2

xβ σ2
x + σ2

u


 ,

implying that

(xi, Yi)
t |Xi ∼ N2 (µXi,ΩXi

) ,

where

µXi
=

(
(1 − k)µx + kXi

α+ (1 − k)βµx + kβXi

)
, ΩXi

=

(
kσ2

u kσ2
uβ

kσ2
uβ kσ2

uβ
2 + σ2

e

)

and k =
σ2

x

σ2
x+σ2

u
.

It follows that Yi | Xi is normally distributed with conditional expectation and

conditional variance given by

E (Yi | Xi) = α+ (1 − k)βµx + kβXi, (4)

V (Yi | Xi) = σ2 = σ2
e + kσ2

uβ
2,

i = 1, . . . , n, respectively.

Hence, the conditional expectation in (4) and (1) suggest the following simple con-

ditional regression model

Yi = α′ + γXi + vi

where
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γ = kβ,

α′ = α+ (β − γ)µx, (5)

vi =

global measurement error︷ ︸︸ ︷
(β − γ) (Xi − µx) −

local measurement error︷︸︸︷
βui +

fitting︷︸︸︷
ei ,

vi | Xi ∼ N
(
0, σ2

)
,

i = 1, . . . n.

Notice that the variance of vi can be much larger than the variance of ei, the re-

gression coefficient β has been attenuated by the factor k and vi is an error variable

in the usual sense. The regression coefficient γ, may be estimated by the usual least

squares estimator, γ̂ , which is biased for β, that is, E (γ̂) = kβ. The ratio k is called

the reliability of Xi in the social sciences and heritability in genetics. Typically, the

ratio k is supposed to be known in order to avoid identifiability problems. For more

details of the above model and real non-Bayesian applications we refer the reader to

Fuller (1987), Carrol et al. (2006) and Cheng and Ness (1999). It is worth mentioning

here that the variable νi was considered by DeGracie and Fuller (1972) in their studies

in analysis of covariance but without the term −βui, which, in our opinion, seems to

be incorrectly missing.

The random variable v′i = −βui + ei in (5) is central in the study of measurement

error models and differs from the error in the ordinary fixed-X regression model where

Xi and v′i are correlated. In the fixed-X regression model introduced in (5), variable

v′i is independent of Xi and vi = (β − γ) (Xi − µx) + v′i is the normal error variable

for this conditional regression model. The main purpose of this paper is to introduce

asymmetry in this normal error variable model by assuming the following constraint on

the real value xi:

xi ≥ 0 ⇔ −ui ≥ −Xi, i = 1, . . . n, (6)

which, as shown, makes the model (1)-(2) identifiable without additional assumptions.

Formally, we do have to answer the following question: what is the distribution of vi
given that −ui ≥ −Xi? Using results in Arellano-Valle and Azzalini (2006) the answer

will be given in the next section.

3 Extended simple regression measurement error model

In this section, we present a new measurement error model which takes into account the

asymmetry of the variable error vi by considering the restriction xi ≥ 0. This model

will be called here the extended simple regression model with measurement errors and

makes use of some connections with results in Arellano-Valle and Azzalini (2006).

We present next the main result of this section, which basically follows from re-

sult (10) in Arellano-Valle and Azzalini (2006) (and also appears in Arnold and Beaver

(2000)), according to the notation used in (3).
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Theorem 1: The conditional probability density function of vi given Xi for

i = 1, . . . n, under (5) and the constraint xi ≥ 0, is given by

f (vi) =
1

σ
ϕ
(vi
σ

) Φ

(
σ
σe

(
kXi+(1−k)µx

k
1
2 σu

)
+ λ vi

σ

)

Φ

(
kXi+(1−k)µx

σuk
1
2

) , (7)

where λ = γ σuk
− 1

2

σe
, or, equivalently,

f (yi) =
1

σ
ϕ

(
yi − α′ − γXi

σ

) Φ

(
σ
σe

(
kXi+(1−k)µx

k
1
2 σu

)
+ λyi−α

′−γXi

σ

)

Φ

(
kXi+(1−k)µx

σuk
1
2

) ,

where ϕ (·) and Φ [·] are the density function and the cumulative distribution function

of the one-dimensional N (0, 1) distribution, respectively.

The class of distributions defined by (7) extends the normal class by introducing

the parameter λ = γ σuk
− 1

2

σe
which regulates distributional shape (or the degree of non-

randomness in the sample, according to the terminology in Copas and Li (1997)); when

σ2
u tends to zero the normal distribution with mean α + βX and variance σ2

e is the

limiting case of (7), the classical simple regression model. It is important to note

that the parameters k, σu, and σe and the sign of γ, simultaneously, regulate the

asymmetry of the error variable νi. Moreover, this relationship avoids non-identifiability

problems typically associated with measurement error models as described in Fuller

(1987). Clearly, the residual (error variable) vi has non zero (conditional) expectation

since it is distributed according to the skew-normal distribution. In fact, using results

in Capitanio et al. (2003) it can be shown that

E (vi | Xi) =

ϕ

(
kXi+(1−k)µx

σuk
1
2

)

Φ

(
kXi+(1−k)µx

σuk
1
2

)γk− 1
2 σu 6= 0, (8)

V (νi | Xi) =

fitting︷︸︸︷
σ2
e +

measurement error︷ ︸︸ ︷
γ2σ2

u

k
[1 +

skewness︷ ︸︸ ︷
ξ2

(
kXi + (1 − k)µx

σuk
1
2

)
],

i = 1, . . . n, where ξ2 (·) is the second derivative of ξo (t) = log [2Φ (t)] .

Its important to note that the sign of this residual depends on the sign of γ which

in some applications like the one studied in this paper is known. A regression model
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with a zero mean error variable is then easily formulated as

Yi = α′ + γX∗
i + e∗i ,

X∗
i = Xi + ξ1

(
kXi + (1 − k)µx

σuk
1
2

)
k−

1
2 σu,

e∗i = vi −
ϕ

(
kXi+(1−k)µx

σuk
1
2

)

Φ

(
kXi+(1−k)µx

σuk
1
2

)γk− 1
2 σu = vi − ξ1

(
kXi + (1 − k)µx

σuk
1
2

)
γk−

1
2 σu,

where ξ1 [·] is the first derivative of ξo [·] .
For Bayesian inference purposes, the extended skew-normal distribution (7) is very

hard to deal with directly and, hence, the next stochastic representation of a variable

with density (7) will be very useful in implementing the Bayesian way in real applica-

tions, like the one to be considered in the Section 5. The proof follows directly from

results in Arellano-Valle and Azzalini (2006).

Theorem 2: If the variable Yi has probability density function given by (7), then

Yi = α′ + γ
(
Xi − k−

1
2σuui

)
+ σeu

∗
1, (9)

where

ui
∣∣Xi, k, µx, σ

2
u ∼ N (0, 1) 1[

ui≤
kXi+(1−k)µx

σuk
1
2

],

with u∗1 ∼ N (0, 1) and ui and u∗1 independent random variables, i = 1, . . . , n.

Hence, we have from (9) the following hierarchical representation for the extended

regression model which will be used in the next section from a Bayesian perspective and

will be called Berkson model:

Yi | Xi, ui, θ
∗ ∼ N

{
α′ + γ

(
Xi − σuk

− 1
2ui

)
, σ2
e

}
, (10)

ui
∣∣Xi, k, µx, σ

2
u ∼ N (0, 1) 1[

ui≤
kXi+(1−k)µx

σuk
1
2

],

and θ∗ =
(
α′, γ, k, µx,σ

2
u, σ

2
e

)
, i = 1, . . . n .

It is important to observe in (10) the intuitive selection mechanism, ui ≤ kXi+(1−k)µx

σuk
1
2

,

arising when assuming that the true value xi is greater than zero. Clearly, ignoring it

could cause wrong predictions if we have a large attenuation factor.
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In this paper, we adopt a Bayesian strategy considering a two-stage prior on τ (a

generic symbol for the parameters α, β and µx involved in (10)) suggested by

O’Hagan and Leonard (1976), for which





τ ∼ N
(
τ1, σ

2
τ

)
,

τ1 ∼ N
(
τo, σ

2
τo

)
,

τ1 ≥ τo.
(11)

Standard algebra shows that the marginal prior distribution for τ is then given by

ϕ (τ ;λ∗) =
2

(
σ2
τ + σ2

τ0

) 1
2

ϕ
((
σ2
τ + σ2

τ0

)− 1
2 (τ − τ0)

)
Φ


λ∗ τ − τo

(
σ2
τ + σ2

τ0

) 1
2


 , (12)

where λ∗ =
στo

στ
.

Notice that λ∗ is a shape parameter which controls prior skewness on τ : the larger

σ2
τ0 , the variance of τ1, is compared to σ2

τ , the variance of τ , the larger is the proba-

bility that τ1 (mean of τ) assumes larger values and larger is the amount of skewness

induced in the distribution of τ. Many generalizations of this result are possible (see

Liseo and Loperfido 2006).

4 Linear measurement errror model with vector-valued

explanatory variables

This section presents an extension of the model considered in the previous section with

vector-valued explanatory variables, that is, with more than one explanatory variable.

This is an extension of the results in the previous sections with the purpose to obtain

Bayesian estimation of the parameters involved. The more general model we consider

is written as

Yi = α+ xtiβ + ei, (13)

Xt
i = xti + uti, i = 1, . . . , n,

where xi = (xi1, xi2, . . . , xip)
t, β,Xi and ui are p−dimensional vectors, while α, Yi and

ei are scalars. Hence, the observed vector is (X t
i , Yi), the unobserved vector is xi, and

the measurement error vector is (uti, ei), for i = 1, . . . , n.

Assume as in the univariate case that (xti , u
t
i, ei) is jointly normally distributed and

Σue = 0. Let µx = E (xi) = E (Xi) , Ip be the p× p identity matrix, and the reliability

matrix K be defined as

K = Σxx (Σxx + Σuu)
−1
.
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The extension of the reliability ratio to vector explanatory variables models is con-

sidered in Gleser (1992), but this extension can, in fact, be for models with both X and

Y vector-valued allowing a connection between ordinary multivariate regression models

and multivariate measurement error models (Cheng and Tsai 1996). Since a structural

measurement error model is being considered, then




xi
Yi
Xi


 ∼ N2p+1 (µ,Ω)

where

µ =




µx
α+ µtxβ
µx


 and Ω =




Σxx Σxxβ Σxx
βtΣxx βtΣxxβ + σ2

e βtΣxx
Σxx Σxxβ Σxx + Σuu


 , (14)

implying that

(
xi
Yi

)
|Xi ∼ Np+1

[(
(I −K)µx +KXi

α+ (βt − γt)µx + γtXi

)
,

(
ΣuuK

t ΣuuK
tβ

βtKΣuu βtKΣuuβ + σ2
e

)]
.

So, given Xi, we can rewrite (13) as

Yi = α′ + γtXi + ν1i, (15)

where

α′ = α+ (βt − γt)µx,

γt = βtK,

ν1i = ei − utiβ +
(
Xt
i − µtx

)
(β − γ) ,

i = 1, . . . , n. Notice that, for fixed Xi, the error variable ν1i ∼ N
(
0, σ2

)
with

σ2 = σ2
e + βtKΣuuβ. (16)

If K is known, then Gleser (1992) showed that the ML estimators of α, γ, and σ2 are

just the ordinary least-squares estimators. The above results are also applicable when

Σuu is known and K is unknown (see Cheng and Ness 1999, p. 139). Furthermore, for

fixed Xi we can rewrite (15) in order to obtain a multivariate version of the the model

in Copas and Li (1997) as

Yi = α′ + γtXi + ν1i (17)

xi = (I −K)µx +KXi + u1i,
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u1i ∼ N(0,ΣuuK
t), i = 1, . . . , n, where the second equation in (17) is called “selection

equation” , where K measures the size of the attenuation in linear regression with

additive measurement errors (Fuller 1987). There is another way of looking at the model

in (17) which is connected with the Berkson model or the regression calibration described

in detail in Chapter 4 of Carrol et al. (2006). Define Xblp,i = (I −K)µx + KXi, the

best linear predictor of xi given Xi. Then, from (17) we have

Yi = α+ βXblp,i + ν1i

xi = Xblp,i + u1i.

If K and µx are known, we have a regression model with intercept α, slope β, error ν1i

uncorrelated with the regressor and u1i, the classical measurement error, can be inter-

preted as the Berkson error. Observe that for K = I , we have the usual Berkson error,

so K measures how much we just pretend that the measurement error u1i is Berkson

and not classical. Note that the slope of Xi in Xblp,i is K , not I . In practice, Xblp,i is

not known, the parameters K and µx need to be estimated and this is the heart of the

regression calibration method. Based on these comments the model in (17) will be called

Berkson model. We have now an important question: Given the observed data (X t
i , Yi),

how the inference procedure is modified by the componentwise restriction xi ≥ 0, or,

u1i ≤ Xi (Xi : fixed) ? What is the degree of non-randomness in the sample in the sense

of Copas and Li (1997)? From (14), the answers to these questions are diretly obtained

from Arellano-Valle and Azzalini (2006) (or G. Gonzalez-Farias and Gupta (2004)) as

fYi|Xi,xi>0 (yi) =
1

σ
ϕ

(
yi − α′ − γtXi

σ

)
G(yi),

where

G(yi) =
Φp

{
(ΣuuK

t)−
1
2 [KXi + (I −K)µx] + ρ

σ (yi − α′ − γtXi) ; 0, I − ρρt
}

Φp

{
(ΣuuKt)−

1
2 [KXi + (I −K)µx]; 0, I

} , (18)

where

ρ =
(ΣuuK

t)
1
2 β

σ
,

and Φp (a, µ,Σ) represents the p-dimensional normal distribution function with mean µ
and covariance matrix Σ at the point a. Moreover, the mean, variance and the stochas-

tic representation of (18) can be obtained from Arellano-Valle and Azzalini (2006), or,

G. Gonzalez-Farias and Gupta (2004). The vector which regulates skewness, or, reflects

the degree of non-randomness in the sample is given by

θ =
ρ

(1 − ρtρ)
1
2

=
Σ

1
2
uu(Kt)−

1
2 γ

σe
. (19)
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For p = 1, the parameter θ is equal to the parameter λ in (7). Copas and Li (1997)

examined the profile log-likelihood for θ and studied sensitivity of inference to small

non-zero values of θ. They used Heckman’s two-stage method (Heckman 1976, 1979),

which is very popular in econometrics but seems to suffer from several deficiencies as

pointed out by Little (1985) and others. So, as suggested by Copas and Li (1997), we

carry on in the next section a Bayesian analysis of the model in (18) or (7) with the

two-stage priors in (11) and (12). The special case θ = 0 is the normal case or the

randomness hypothesis which can be tested using (robust) Bayes factors, as illustrated

in the application. To the of best of our knowledge, nobody has ever carried out a

Bayesian analysis for this model (Copas and Li 1997, pg. 75).

5 An illustrative example

In this section we briefly illustrate the behavior of the Bayesian procedure for a small

data set presented in Example 1.2.1, in the book by Fuller (1987, pg. 18), assuming

noninformative and informative priors for the parameters involved in the conditional

regression model. The data given in Table 1 are yields of corn and determinations of

available soil nitrogen collected at 11 sites on Marshall soil in Iowa. The estimates

of soil nitrogen contain measurement error arising from two sources. Firstly, only a

small sample of soil is selected from each plot and, as a result, there is the sampling

error associated with the use of a sample to represent the whole. Secondly, there is

measurement error associated with the chemical analysis used to determine the level of

nitrogen in the soil sample. In Fuller (1987), the measurement error variance is supposed

to be known, that is, σ2
u = 57.

site yield (Y) soil nitrogen (X) site yield (Y) soil nitrogen (X)

1 86 70 7 99 50

2 115 97 8 96 70

3 90 53 9 99 94

4 86 64 10 104 69

5 110 95 11 96 51

6 91 64

Table 1: Yields of corn on Marshall soil in Iowa.

For the Bayesian analysis of our example implemented via Winbugs and to be com-

pared with the results in Fuller (1987, pg. 19), we consider the following specific priors:

1. 1
σ2

u
∼ Gamma

[
572

0.01 + 2, 573

0.01 + 57
]

(informative prior based on the prior informa-

tion given in Fuller (1987), that is, an inverted gamma prior with mean equal to

57 and variance equal to 0.01.)
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Figure 1: Adjusted check yields of corn at Iowa sites.

2. 1
σ2

e
∼ Gamma [0.001, 0.001]

3. α ∼ N(α′, 1) and α′ ∼ N(X, 100)I(α′≥0) where X =
∑n

i=1 Xi

n
(Two-stage prior).

4. β ∼ N (βo, 0.01) and βo ∼ N (0, 100) I(βo>0) (Two-stage prior).

5. k ∼ U(0, 1)

6. µx ∼ N (µxo, 1) and µxo ∼ N(X, 100)I(µxo>0) (Extended two-stage prior).

Notice that for the parameters α, β and µx, we use the hierarchical prior proposed

by O’Hagan and Leonard (1976) in order to introduce some degree of skewness in the

priors based on the constraints α′ ≥ 0 , βo > 0 and µxo > 0, respectively, which are

natural assumptions to make. The first constraint was motivated from (5) by assuming

that α is positive, which is also suggested by the nature of the problem. The second

constraint also follows from assuming β to be positive, which is expressed in prior 4.

The variances of these priors were chosen in order to express our degree of belief in

the constraints and let the data confirm it is true or not. The constraint µxo > 0 is

a consequence of assuming that the real value xi is positive. Since our approach is

conditional on Xi we use this information in the formulation of our priors based on

the constraints which is also suggested by the problem. The summary of the results

based on (10) are reported in Table 2, in conjunction with some results reported in

Fuller (1987). Note, in particular, the smaller credibility interval for the parameter β
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when compared with the corresponding interval given by Fuller (1987), obtained using

asymptotic arguments. Further, the posterior mean of σ2
x is totally inconsistent with

the maximum likelihood estimator, which is expected due to large (estimated) value

of k and informative prior for σ2
u. Large estimated values should be expected in both

approaches. What we indicate here is that for a given measurement error variance, we

are convinced of the power of the true value (more variability) under the controlled

variable rather than the classical measurement error (See also Carrol et al. 2006). It is

important to remember that Fuller’s results were obtained by using asymptotic results

with σ2
u supposed to be known from other sources, that is, σ2

u = 57 and ignoring that

the real value of nitrogen is positive. The credible interval for the skewness parameter

λ, or θ, suggests a large degree of non-randomness in the observed data caused by

the selection mechanism. Concluding, the model introduced in this paper can be very

useful for modeling experiments with fixed target values of the explanatory variables,

such as drug dosage, temperature, pressure, etc., when the unobserved true values of

the explanatory variables can differ from the target values. This kind of problem is

known in the literature as Berkson measurement error model, see for example, Berkson

(1950), Fuller (1987, Section 1.6.4), Carrol et al. (2006) and Cheng and Ness (1999).

Parameter Bayesian estimation MLE estimation

mean sd 2.5% median 97.5% Point C.I.

α 51.58 21.6 7.20 53.84 87.79 67.5613

β 0.66 0.32 0.14 0.62 1.36 0.4232 (0.0288, 0.8176)

k 0.54 0.23 0.12 0.52 0.96

λ 19.66 11.34 0.70 18.14 46.01

σ2
e 51.41 44.24 0.02 42.68 159.8 43.29

σ2
u 57 0.09 56.81 57.0 57.2 57

σ2
x 544 26970 8.17 61.96 1613 247.85

µx 69.38 10.37 48.63 69.33 89.7 70.63

Table 2: Posterior summaries: mean, standard deviation and percentiles of posterior

densities and point and interval ML estimation based on Fuller’s book, (1985, p. 19)

with σ2
u = 57.

Another aspect of interest is to decide which of the models M1: simple normal

regression model with σ2
u = 0 and M2: Berkson error model is more appropriate for

Fuller’s data in Table 1. Because the Bayes factor can be extremely sensitive to the

specified prior (O’Hagan 1995) and not defined for improper priors, several authors

have proposed the use of robust Bayes factors. The pseudo-Bayes factor, introduced by

Geisser and Eddy (1979) (see also Gelfand and Dey 1994), is one of them and is easy to

implement in Winbugs. The pseudo-Bayes factor is based on the conditional predictive

densities p(yr|y(r)), where y(r) = (y1, y2, . . . , yr−1, yr+1, . . . , yn) .
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The pseudo-Bayes factor for model M1 against model M2 is defined as

PBF12 =

n∏
r=1

p1

(
yr|y(r)

)

n∏
r=1

p2

(
yr|y(r)

) , (20)

where pi
(
yr|y(r)

)
=
∫
pi
(
yr|θ, y(r)

)
p
(
θ|y(r)

)
dθ, i = 1, 2. The estimates p̂i

(
yr|y(r)

)

were computed via Winbugs and plotted against r, for r= 1, 2, . . . , 11.

As we can see in the Figure 2, the Berkson model (M1) performs better than the

simple normal regression model with no measurement error (M2). For the model M1

we used proper noniformative priors via Winbugs.

2 4 6 8 10

0.
02

0.
03

0.
04

0.
05

r

de
ns

itie
s

: Normal model
: Berkson model 

Figure 2: Conditional Predictive Densities.

Summarizing, the pseudo-Bayes factor is given by

PBF12 = 0.2080.

In order to check the sensitivity of the Fuller’s assumption, that is, σ2
u = 57, we assume

for model M2 a non concentrated prior on σ2
u. The Figure 3 depicts the conditional

predictive density for this model and for model M1, showing a small change with respect

to the sharp prior used before. This statement confirms the pseudo-Bayes factor as a

robust alternative procedure to the ordinary Bayes factor, as was mentioned before.
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Figure 3: Conditional Predictive Densities: noniformative prior on σ2
u.

The pseudo-Bayes factor for model M1 ( the simple normal regression model ) against

model M2 ( Berkson model with noniformative prior on σ2
u) is

PBF12 = 0.2459.

6 Concluding remarks

We end this paper by calling attention to the flexibility of the proposed extended con-

ditional regression measurement error model in avoiding the usual constraints on the

regression measurement errors and the usefulness and simplicity of the Bayesian pro-

cedure with hierarchical priors via Winbugs. The extension to covariate vectors allows

dealing with the situation where some of covariates are measured without error. Im-

portant contributions of this paper are the extensions of results in Copas and Li (1997)

and the implementation of a Bayesian analysis with two-stage priors to the restricted

regression model, which to the best our knowledge, nobody has ever carried out for

this extended error model (Copas and Li 1997, pg. 75). If the reader wants to be fa-

miliarized with the extended skew-normal model, important references to be looked at

are Arellano-Valle and Azzalini (2006), Arellano-Valle et al. (2006), Arnold and Beaver

(2000) and Genton (2004) where detailed treatments of such models are considered.

Moreover, it is important to mention that distribution (18) is a special case of the closed

skew-normal distribution (CSN) introduced by G. Gonzalez-Farias and Gupta (2003)

and described in detail by G. Gonzalez-Farias and Gupta (2004). From the Bayesian



Rodrigues, J. , Bolfarine, H. 363

view point, some details on the class of distributions considered can be found in Liseo

(2004) and S.K. Sahu and Branco (2003).

Also, within the Bayesian approach it is very helpful to compare models via pseudo-

Bayes factor, which is a robust alternative to the ordinary Bayes factor, which is ex-

tremely sensitive to prior specification. In a future paper we intend to introduce treat-

ment effect to analyze the data reported by Voss (1969) for two soil types studied by

DeGracie and Fuller (1972) where the variance of the measurement error is considered

as known. It is also worth undertaking a study of Berkson measurement error mod-

els reported in Carrol et al. (2006) and Cheng and Ness (1999) using the approach

considered in this paper.
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