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Local Influence on Posterior Distributions under

Multiplicative Modes of Perturbation

Angelika van der Linde∗

Abstract. Any unperturbed and perturbed posterior density can formally be
linked by a mixture. Many divergences between the unperturbed and perturbed
posterior density - global measures of influence of the perturbation - are then essen-
tially determined by the Fisher information with respect to the mixing parameter
evaluated at the unperturbed density. It is investigated which aspect of change
this Fisher information - commonly interpreted as local measure of influence -
captures in assessing influence of the perturbation. Under multiplicative modes
of perturbation it is nicely interpretable as unperturbed posterior variance of the
(log-)perturbation function.
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1 Introduction

Bayesian sensitivity analysis is concerned with the impact of a modification of the prior

or the likelihood on the posterior. The analysis of the effect of changes in the prior is

often addressed as Bayesian robustness analysis. A collection of papers discussing the

main issues and tools of Bayesian sensitivity studies was edited by Insua and Ruggeri

(2000). One common approach is to define a null model and a mode of perturbation.

Then either globally the difference between the posterior in the null model and a per-

turbed posterior is assessed or locally - with a parameter defining the degree of pertur-

bation - the rate of change is determined by a derivative evaluated in the null model. A

review of approaches to global and local robustness analysis is provided by Sivaganesan

(2000) (ch.5 in the aforementioned book), more details and a critical discussion of local

sensitivity analysis are given by Gustafson (2000).

A frequently used global measure of influence of a model component is the (Kullback-

Leibler) divergence of perturbed and unperturbed posterior densities, a related lo-

cal measure is its second derivative with respect to the perturbation parameter (e.g.

McCulloch (1989); Lavine (1992); Geisser (2000)). This is also the general set-up re-

ferred to in this paper.

If the perturbation can be represented by a change of a parameter, the divergence

can be approximated using a second order Taylor expansion of the perturbed posterior

density. For many divergences it is then essentially governed by the Fisher information

which therefore is used as local measure of influence under the specified parameteriza-

tion. For example McCulloch (1989) analyzed the effect of weights on error variances in

regression. Here the null model corresponds to a weight equal to one and the degree of
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perturbation is quantified by the weight itself which therefore has been considered as an

intrinsic parameter of the perturbation. This paper focuses on modes of perturbation of

the likelihood or the prior (or both) such that the posterior is modified multiplicatively.

Such multiplicative modes of perturbation introduced by Weiss (1996) comprise case

deletion, modelling outlying observations and change of the prior distribution. Multi-

plicative modes of perturbation often describe a qualitative change like an alternative

prior or the omission of a case. A formal perturbation parameter describing the amount

of perturbation can then be defined as a mixing parameter. Dey and Birmiwal (1994)

studied a null model with a prior p0, a mode of perturbation (alternative prior) p1 and

perturbed priors pλ = (1 − λ)p0 + λp1 (an additive contamination class of priors) or

p̃λ = c(λ)p1−λ
0 pλ1 (a geometric contamination class of priors). In such cases again the

Fisher information with respect to the mixture can be used as local measure of influ-

ence. In this paper the results of Dey and Birmiwal (1994) for priors are generalized

to additive and geometric contamination classes of models (that is joint densities of

observations and parameters) induced by multiplicative modes of perturbation of a null

model, particularly the sampling model.

Gustafson (2000) points to two potential problems in analyses to assess the local

influence of the sampling model: (i) Model fit may be more important than influence.

This is an important point if for example alternative distributional assumptions for

(conditionally) i.i.d. observations are discussed. But there are set-ups of interest like

case deletion where the argument does not apply. (ii) The (interpretation of) parameters

may not be invariant under a change of the sampling distribution. Again this is true

but not always a point of concern. For instance the mean in regression is a parameter

of interest for many error distributions, or a future observation (from the null sampling

distribution) is a parameter of interest in a predictive approach under case deletion.

Hence, although the technical results obtained in this paper are applicable to all formally

multiplicative modes of perturbation, one has to be cautious about interpretations. In

this paper special emphasis is given to the more involved details of perturbations of the

sampling distribution corresponding to case weights and case deletion.

A main contribution of this work is to provide a simple unifying framework for a

branch of Bayesian sensitivity analysis referring to multiplicative modes of perturbation

which comprise changes in both the likelihood and the prior. In this way previous re-

sults (Dey and Birmiwal (1994); Peng and Dey (1995); Millar and Stewart (2005)) are

generalized and integrated in one approach. It is demonstrated that the Fisher infor-

mation is interpretable as (unperturbed) posterior variance of the (log-)perturbation

function. Thus it assesses (a posteriori) the change in the ‘prior input’ rather than

the ‘posterior output’ due to the mode of perturbation. Furthermore it is shown that

the χ2−divergence is proportional to the Fisher information when an additive mixture

is used giving further support to recommendations to prefer the χ2−divergence to the

Kullback-Leibler divergence if a choice is to be made. Thus also a new link between

global and local Bayesian sensitivity analyses is established under multiplicative modes

of perturbation and another interpretation of the χ2−divergence is provided.

The paper is organized as follows: In section 2 the formal set-up is defined and the

main results are proven. Application of the local measure of influence to case weights
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and case deletion are discussed in detail. In section 3 the ideas are exemplified for

likelihood and prior perturbations, and section 4 concludes with a brief discussion.

2 Measures of sensitivity for multiplicative modes

of perturbation

2.1 General results

Assume that in a null model the sampling density for observations yi, i = 1...n, attains

values p0(yi|θ) and that the prior density for parameters θ is given by p0(θ) such that

for the posterior density p0(θ|yd) = p0(yd|θ)p0(θ)/p0(yd) holds, where yd = (y1, ..., yn)

denotes the data, p0(yd|θ) =
n∏
i=1

p0(yi|θ) and p0(yd) =
∫
p0(yd, θ)dθ. A multiplicative

mode of perturbation of the null model p0(yd, θ) is given by p1(yd, θ) = p0(yd, θ)h
∗(θ)

with h∗ denoting the perturbation function. It yields the posterior

p1(θ|yd) =
p0(θ|yd)h∗(θ)
E0
θ|yd

[h∗(θ)]
, (1)

where the superscript indicates with respect to which posterior density the expectation

(and similarly in the sequel a variance) is taken. Equation (1) results from pertur-

bations of the likelihood or the prior. For example, h∗(θ) = p0(yi|yd\i)/p0(yi|θ) with

p0(yi|yd\i) = E0
θ|yd\i

[p(yi|θ)] and yd\i denoting the data without yi corresponds to the

deletion of the i-th case. (This particular choice of h∗ to represent case deletion is jus-

tified in section 2.2.1.) Similarly h∗(θ) = p1(θ)/p0(θ) corresponds to a change of the

prior. An additive mixture

pλ(yd, θ) = (1 − λ)p0(yd, θ) + λp1(yd, θ) (2)

represents a parametric weighting scheme for the perturbation of the model even if

initially it is qualitative.

Let ζ be a parameter of interest, either the full parameter, ζ = θ, a partial pa-

rameter, ζ = τ if θ = (τ, ρ), or a future observation from the unperturbed model,

ζ = ỹ. The influence of the perturbation can be assessed by the difference of the

posterior densities p0(ζ|yd) and p1(ζ|yd) either graphically (Weiss and Cook (1992))

or formally using a summary measure of the unperturbed posterior distribution of

p1(ζ|yd)/p0(ζ|yd). Such a summary measure is provided by a divergence, and a fre-

quently used family of divergences between densities p and q is given by {Dφ(p, q) =∫
φ[q(u)/p(u)]p(u)du | φ convex, φ(1) = 0}. φKL(x) = − ln(x) yields the (directed)

Kullback-Leibler divergence, φχ2 (x) = (x− 1)2 yields the χ2−divergence. According to

(1)

Dφ(p0(θ|yd), p1(θ|yd)) = E0
θ|yd

[φ(
p1(θ|yd)
p0(θ|yd)

)] = E0
θ|yd

[φ(
h∗(θ)

E0
θ|yd

[h∗(θ)]
)]. (3)
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For λ denoting a mixing parameter λ0 = 0 corresponds to p0, λ = 1 to p1. It is well

known (e.g. Blyth (1994)) that

Dφ(pλ0(ζ|yd), pλ(ζ|yd)) ≈
φ′′(1)

2
Iζ|yd

(λ0)(λ− λ0)
2 (4)

with the Fisher information

Iζ|yd
(λ0) = var0ζ|yd

[
d

dλ
ln(pλ(ζ|yd))|λ=λ0 ]

for ζ ∈ {θ, τ, ỹ}. Hence

Dφ(p0(ζ|yd), p1(ζ|yd)) ≈
φ′′(1)

2
Iζ|yd

(0). (6)

Note that for the χ2−divergence φ′′χ2 (1) = 2 and for the directed Kullback-Leibler

divergence φ′′KL(1) = 1. For all functions φ the divergence Dφ(p0(ζ|yd), p1(ζ|yd)) is es-

sentially determined by the Fisher information Iζ|yd
(0). It is therefore common practice

to use Iζ|yd
(0) as an omnibus local measure of influence. Under multiplicative modes of

perturbation where p1(yd, θ)/p0(yd, θ) = h∗(θ) define

h∗(θ) if ζ = θ

h∗(ζ) :=
p1(yd,ζ)
p0(yd,ζ)

= 〈 E0
ρ|τ,yd

[h∗(θ)] if ζ = τ, θ = (τ, ρ)

E0
θ|ỹ,yd

[h∗(θ)] if ζ = ỹ

.

The following representation is then immediate.

Theorem 1

The Fisher information Iaζ|yd
(0) with respect to the mixing parameter in

an additive mixture is equal to the unperturbed posterior variance of the

perturbation function h∗(ζ),

Iaζ|yd
(0) = var0ζ|yd

[h∗(ζ)]. (8)

Proof:

Iaζ|yd
(0) = var0ζ|yd

[
d

dλ
ln(pλ(ζ|yd))|λ=0]

= var0ζ|yd
[
d

dλ
ln(pλ(yd, ζ))|λ=0] (9)

= var0ζ|yd
[−1 +

p1(yd, ζ)

p0(yd, ζ)
]

= var0ζ|yd
[h∗(ζ)].

Thus the Fisher information measures (a posteriori) the amount of initially introduced

perturbation. Theorem 1 generalizes theorem 3.1 of Dey and Birmiwal (1994) who
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obtained this result (with a different proof) for a perturbation of the prior distribution.

The representation of Iaζ|yd
(0) can be extended to a representation of the χ2− divergence.

Corollary 1

Dφ
χ2 (p0(ζ|yd), p1(ζ|yd)) = Iaζ|yd

(0)(
p0(yd)

p1(yd)
)2. (10)

Proof:

The ratio of the posterior density values can be re-written as

h(ζ) :=
p1(ζ|yd)
p0(ζ|yd)

=
p1(yd, ζ)

p0(yd, ζ)

p0(yd)

p1(yd)
= h∗(ζ)

p0(yd)

p1(yd)
(11)

and hence

Dφχ2 (p0(ζ|yd), p1(ζ|yd)) = var0ζ|yd
[h(ζ)] = var0ζ|yd

[h∗(ζ)](
p0(yd)

p1(yd)
)2.

Thus the χ2- divergence is proportional to the Fisher information. In comparison to

the Taylor approximation (6) the corollary describes the approximation error. In par-

ticular for case deletion represented by h∗(θ) = p0(yi|yd\i)/p0(yi|θ) one has p1(yd) =∫
p1(yd|θ)p0(θ)dθ =

∫
p0(yd\i|θ)p0(yi|yd\i)p0(θ)dθ = p0(yi|yd\i)p0(yd\i) = p0(yd) and

hence

Dφχ2 (p0(ζ|yd), p1(ζ|yd)) = Iaζ|yd
(0) (13)

exactly.

The proportionality factor p0(yd)/p1(yd) in equation (11) is the inverse normalizing

constant of the perturbed posterior, p1(yd)/p0(yd) = E0
ζ|yd

[h∗(ζ)], yielding as in (3)

Dφχ2 (p0(ζ|yd), p1(ζ|yd)) = var0ζ|yd
[h∗(ζ)]/(E0

ζ|yd
[h∗(ζ)])2. (14)

Thus the χ2- divergence is a squared coefficient of variation of the perturbation func-

tion h∗(ζ). These properties of the χ2- divergence support preference of it to other

divergences like the Kullback-Leibler divergence (see the discussion by Weiss (1996)).

For a geometric mixture

p̃λ(yd, θ) = c(λ)p1−λ
0 (yd, θ)p

λ
1 (yd, θ)

a result similar to theorem 1 is obtained generalizing theorem 3.2 of Dey and Birmiwal

(1994) to perturbations of the likelihood only or of likelihood and prior simultaneously.

Theorem 2



324 Local influence

The Fisher information Igθ|yd
(0) with respect to the mixing parameter in

a geometric mixture is equal to the unperturbed posterior variance of the

log-perturbation function ln(h∗(θ)),

Igθ|yd
(0) = var0θ|yd

[ln(h∗(θ))]. (16)

Proof:

Igθ|yd
(0) = var0θ|yd

[
d

dλ
ln(p̃λ(θ|yd))|λ=0]

= var0θ|yd
[− ln(p0(yd, θ)) + ln(p1(yd, θ))] (17)

= var0θ|yd
[ln(h∗(θ))].

The representation can be extended to ζ ∈ {τ, ỹ}.

Corollary 2

a)

Igτ |yd
(0) = var0τ |yd

[E0
ρ|τ,yd

{ln(h∗(θ))}]. (18)

b)

Igỹ|yd
(0) = var0ỹ|yd

[E0
θ|ỹ,yd

{ln(h∗(θ))}]. (19)

Proof:

a) By definition

Igτ |yd
(0) = var0τ |yd

[
d

dλ
ln(p̃λ(τ |yd))|λ=0].

With θ = (τ, ρ)

d

dλ
ln(p̃λ(τ |yd)) =

1

p̃λ(τ |yd)
d

dλ
p̃λ(τ |yd) =

1

p̃λ(τ |yd)
d

dλ

∫
p̃λ(τ, ρ|yd)dρ.

Assuming that differentiation and integration can be interchanged

d

dλ
ln(p̃λ(τ |yd)) =

1

p̃λ(τ |yd)

∫
d

dλ
p̃λ(τ, ρ|yd)dρ (22)

=
1

p̃λ(τ |yd)

∫
p̃λ(τ, ρ|yd)

d

dλ
ln(p̃λ(τ, ρ|yd))dρ

=

∫
p̃λ(ρ|τ, yd)

d

dλ
ln(p̃λ(τ, ρ|yd))dρ.
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Hence

var0τ |yd
[
d

dλ
ln(p̃λ(τ |yd))|λ=0]

= var0τ |yd
[E0
ρ|τ,yd

{ d
dλ

ln(p̃λ(τ, ρ|yd))|λ=0}]

= var0τ |yd
[E0
ρ|τ,yd

{ d
dλ

ln(p̃λ(θ, yd))|λ=0}] (23)

= var0τ |yd
[E0
ρ|τ,yd

{ d
dλ

ln(h∗(θ))}]

where the last equation is obtained as in the proof of theorem 2.

b) Extending θ to θ̃ = (ỹ, θ) and considering partial parameters ỹ and θ

one obtains similarly

var0ỹ|yd
[
d

dλ
ln(p̃λ(ỹ|yd))|λ=0]

= var0ỹ|yd
[E0
θ|ỹ,yd

{ d
dλ

ln(p̃λ(yd, ỹ, θ))|λ=0}] (24)

= var0ỹ|yd
[E0
θ|ỹ,yd

{ln(
p1(yd, ỹ, θ)

p0(yd, ỹ, θ)
)}].

As ỹ is a future observation from the unperturbed model p1(yd, ỹ, θ) = p1(yd, θ)p0(ỹ|θ)
and p0(yd, ỹ, θ) = p0(yd, θ)p0(ỹ|θ) such that p1(yd, ỹ, θ)/p0(yd, ỹ, θ) = h∗(θ).

The assessments of local influence due to an additive or geometric mixture thus only

differ in the (log-)scale of h∗(θ).

2.2 Sensitivity to case weights and case deletion

Perturbations of the likelihood by case weights or case deletion are of special interest.

They are discussed in detail in this section because they involve some subtle issues.

2.2.1 Invariance to non-informative observations

Conventionally case deletion is represented by the perturbation function h∗∗(θ) =

1/p0(yi|θ). However, p1(yd|θ) = p0(yd\i|θ) is not a proper density for yd and hence

an additive mixture pλ(yd, θ) = [(1 − λ)p0(yd|θ) + λp1(yd|θ)]p0(θ) is not well defined.

The problem can be fixed easily using an arbitrary density q, say, such that q(yi) is not

informative about θ. The posterior p1(θ|yd) resulting from p1(yd|θ) = p0(yd\i|θ)q(yi)
equals p0(θ|yd\i) for all such densities q and according to (3) the global measure of

influence Dφ(p0(ζ|yd), p1(ζ|yd)) is the same for all q. The posterior pλ(θ|yd) induced
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by the additive mixture though is not invariant to the choice of q and neither is the

Fisher information, the local measure of influence: For h∗q(θ) := q(yi)/p0(yi|θ) obviously

var0θ|yd
[h∗q(θ)] = q2(yi)var

0
θ|yd

[h∗∗(θ)]. At first sight this lack of invariance seems to be

counterintuitive but only if one intuitively expects pλ(θ|yd) = (1−λ)p0(θ|yd)+λp1(θ|yd).
This equation does not hold in general, as the right hand side does not depend on q(yi)
whereas the left hand side does. The equation is satisfied only for the choice q(yi) =

p0(yi|yd\i). It corresponds to the perturbation function h∗(θ) = p0(yi|yd\i)/p0(yi|θ)
which is therefore recommended to define the mode of perturbation for case deletion in

an additive mixture of likelihoods.

A problem of invariance does not occur with a geometric mixture

p̃λ(yd, θ) = c(λ)p1−λ
0 (yd, θ)p

λ
1 (yd, θ)

= c(λ)p1−λ
0 (yd|θ)pλ0 (yd\i|θ)qλ(yi)p0(θ)

= c(λ)p0(yd\i|θ)p1−λ
0 (yi|θ)qλ(yi)p0(θ), (25)

where p̃λ(θ|yd) does not depend on the choice of q. Therefore the local measure of

influence

var0θ|yd
[ln(h∗q(θ))] = var0θ|yd

[ln(p0(yi|θ))] (26)

is independent of q, too.

2.2.2 Geometric mixtures and case weights

With h∗∗(θ) = 1/p0(yi|θ) the geometric mixture represents the familiar idea of case

weights ω = 1 − λ,

πω(yd|θ) := p0(yd\i|θ)pω0 (yi|θ) ω→0−→ p0(yd\i|θ). (27)

A decreasing weight for a single case eventually corresponds to a constant density (≡ 1)

in yi respectively case deletion.

2.2.3 Case deletion in geometric mixtures

Case weights for the Normal distribution and more generally in scaled exponential fam-

ilies yield a perturbation scheme for overdispersion and - in the limit - case deletion and

have therefore been used as convenient parameters. A Bayesian application of these

ideas was investigated by Millar and Stewart (2005).

Case weights induce the mixture of sampling densities πω(yd|θ) with ω = 1 correspond-

ing to the null model. In general, the normalizing constant cπ(ω, θ) of πω(yd|θ) - if it

exists - depends also on ω. Millar and Stewart (2005) suggest to neglect the normalizing

constant and to base a local sensitivity analysis on the ‘weighted likelihood posterior’

πω(θ|yd) = πω(yd|θ)p0(θ)/

∫
πω(yd|θ)p0(θ)dθ (28)
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(provided the integral in the denominator is finite). The local influence of case deletion is

then assessed as second derivative of the Kullback-Leibler divergence between πω(θ|yd)
and p0(θ|yd) evaluated at ω = 1. It turns out to be var0θ|yd

[ln(p0(yi|θ))] as in (26). The

coincidence results from the fact that (despite the technical problems with normalizing

constants) Millar and Stewart (2005) implicitly work out a short cut of a Bayesian

analysis based on the geometric mixture (25) : In order to avoid constant densities refer

again to h∗q(θ) = q(yi)/p0(yi|θ). Then

p̃λ(yd, θ) = c(λ)πω(yd|θ)qλ(yi)p0(θ)

yields

p̃λ(yd) = c(λ)qλ(yi)

∫
πω(yd|θ)p0(θ)dθ

and hence

p̃λ(θ|yd) = πω(θ|yd).
Thus the results obtained by Millar and Stewart (2005) correspond to special choices

of multiplicative modes of perturbation with a geometric mixture. Their results are

justified here in a different Bayesian set-up that technically avoids constant densities.

In this set-up the normalizing constant of πω(yd|θ)qλ(yi) as a function of yd becomes

part of p̃λ(θ) 6= p0(θ). The existence of a normalizing constant c(λ) in the geometric

mixture has still to be assumed, though.

2.2.4 Case weights: intrinsic or formal parameters ?

In robustness analyses of regression models (Cook (2004)) case weights indicating a

large variance of a response variable have been considered. Let for example p(yj |µ, ω) be

obtained from Yj |µ ∼ N(µ, σ2/ω) with σ2 known, and assume independent observations.

Define the null model by ω = 1 for all observations, that is p0(yj |µ) = p(yj |µ, 1) for all

j. Let further p1 correspond to a single weighted observation yi such that p1(yj |µ, ω) =

p(yj |µ, 1) for j 6= i and p1(yi|µ, ω) = p(yi|µ, ω). The local measure of influence induced

by the direct parameterization with case weights ω is given by

d2

dω2
DφKL

(p0(µ|yd), p1(µ|yd, ω))|ω=1

= var0µ|yd
[
d

dω
ln(p1(yd|µ, ω))|ω=1] (32)

= var0µ|yd
[
(yi − µ)2

2σ2
] (33)

= var0µ|yd
[ln(p0(yi|θ))] (34)

as in (26). Whether case weights are intrinsic or artificial parameters has been con-

troversial (cp. the contributions by Loynes and Lawrence to the discussion of Cook’s

paper (Cook (2004))). A case weight seems to be an intrinsic perturbation parameter

whenever it is a scaling parameter with the mode of perturbation corresponding to case

deletion. This approach was investigated by McCulloch (1989) and extended by Lavine
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(1992) both using the (directed) Kullback-Leibler divergence. The present analysis em-

phasizes that a case weight in scaled families and more generally is a formal geometric

mixing parameter.

2.2.5 Fixed case weights

Whenever the case weight ω is used as the parameter according to which the derivative is

formed to obtain a local measure of influence it describes the amount of deviation from

the unperturbed likelihood (for instance as over- or underdispersion) with the mode

of perturbation corresponding to case deletion. In contrast, a fixed value ω defining

a certain degree of over- or underdispersion as the mode of perturbation for Gaussian

distributions as above, the amount of deviation from the null model in the direction of

that fixed over- or underdispersed density may be represented by a mixing parameter

in a geometric mixture. The influence of the fixed over- or underdispersion can then be

assessed evaluating for example d2

dλ2DφKL
(p0(µ|yd), p̃λ(µ|yd, ω))|λ=0 with p̃λ(yd, µ, ω) =

c(λ)p1−λ
0 (yd|µ)pλ1 (yd|µ, ω)p0(µ). The local measure of influence

var0µ|yd
[ln

pN(µ,σ2/ω)(yi)

pN(µ,σ2)(yi)
] = var0µ|yd

[(1 − ω)(
(yi − µ)2

2σ2
)]. (35)

differs from the one in equation (33) in that the amount of over- or underdispersion is

taken into account by the factor (1 − ω).

3 Examples

In order to illustrate and compare different modes of perturbation yielding measures

of local influence, two simple examples with additive mixtures are given. The first

example focuses on changes of the likelihood, in the second example changes of the

prior are considered.

More examples with modifications of the prior can be found in the paper by

Dey and Birmiwal (1994). As case deletion represented by a mode of perturbation with

the non-informative (predictive) density yields equality (13) of the Fisher information to

the χ2−divergence, the computationally more complex examples given by Peng and Dey

(1995) for the χ2−divergence as global measure of influence also fit in here. Examples

for the effect of case deletion using a geometric mixture as discussed in section 2.2.3 are

presented by Millar and Stewart (2005).

Computational issues in the calculation of the Fisher information of the form

var0ζ|yd
[E0
θ|ζ,yd

{h∗(θ)}] or var0ζ|yd
[E0
θ|ζ,yd

{ln(h∗(θ))}] are not special within a Bayesian

analysis as ‘only’ (conditional) posterior means and variances of analytically known

functions of the parameters are required. Sampling from a conditional posterior distri-

bution may not be immediate in a complex model but no extra effort is to be made for

a local sensitivity analysis of the type discussed in this paper.
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3.1 Example 1: Stack loss data

The famous stack loss data have been analyzed with several regression procedures (e.g.

Spiegelhalter et al. (1996)) and are known to comprise at least three ‘outliers’. The

response variable Y is ‘stack loss’, the three covariables are X1 = ‘air flow’, X2 = ‘tem-

perature’, X3 = ‘concentration’. A standard conjugate Bayesian regression analysis was

applied to this data set and used as null model. More precisely, it was assumed that

independently Yi|β, σ2 ∼ N(xTi β, σ
2), i = 1, ..., 21, xTi = (1, x1i, x2i, x3i), and the priors

were β|σ2 ∼ N(0, νσ2I4) with ν = 1000 and σ2 ∼ Inv − Γ(0.001, 0.001). The posterior

estimates are similar to those given in previous analyses under slightly different assump-

tions: E(βT |yd) = (−39.39, 0.717, 1.293,−0.158), SD(βT |yd) = (11.23, 0.13, 0.35, 0.15);

E(σ|yd) = 3.04, SD(σ|yd) = 0.52; the response Ỹ at x̃T = (1, 60, 20, 85),which is within

the range of but not exactly comprised by the experimental design, follows a posterior

Student-t-distribution with mean 16.01, standard deviation 0.37 and 21 degrees of free-

dom. Using the posterior probability of a large residual, |yi−xTi β| > 2.5σ, as an indicator

of ‘outlyingness’ of the i-th observation, the observations y21, y4, y3, y1, y17 (in this order)

were suggested for an assessment of influence.

3.1.1 Case deletion

To analyze case deletion h∗(θ) = p0(yi|yd\i)/p0(yi|θ) was used. Calculation of the Fisher

information (equal to the χ2−divergence here) for each case deleted in turn indicated

that observation y21 is by far most influential for all parameters. The four remaining

observations y4, y3, y1, y17 are (in this order) the next influential observations for θ and

are split into the subsets {y1, y17}, {y3} and {y4} as being influential for β, σ−2, ỹ
respectively.

3.1.2 Sequence of fixed case weights

The sequence of weights ω−1 ∈ {2, 5, 10, 100, 1000, 10000} was tried for each individual

case yi ∈ {y21, y4, y3, y1}, and the χ2−divergences were evaluated for each fixed ω.

For each parameter ζ ∈ {θ, β, σ−2, ỹ} and each case the χ2−divergence increases with

ω−1 and approximates the value of the χ2−divergence obtained with case deletion at

ω−1 = 100. For higher weights ω−1 the χ2−divergences stabilize.

As mentioned before the χ2−divergence is based on the ratio of posterior densities

whereas the Fisher information is based on the ratio of joint densities reflecting directly

the perturbation introduced in the likelihood or prior. For case weights the ratio of

marginal densities does not equal 1, and therefore the Fisher information assesses ‘prior

input’ rather than ‘posterior output’. For example, the sequence of weights applied to

the cases y21, y4, y3 simultaneously yields for β again an increasing χ2−divergence in

ω−1, but the Fisher information first increases, then peaks at ω−1 = 10 and decreases

for ω−1 ≥ 100. The peak thus indicates the maximum induced perturbation.
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3.1.3 More robust distributional assumptions

In order to account for outlying observations alternative distributional assumptions like

the t4− or double exponential instead of the Normal distribution have been suggested

for the stack loss data. First the td−distribution for all observations was assessed

for d ∈ {4, 10, 15, 20, 40} and, as expected, the Fisher information for ζ ∈ {θ, β, σ−2}
decreased rapidly as the degrees of freedom increased and the td−distribution approxi-

mated the Normal distribution. In comparison the assumption of a double exponential

distribution for all response variables turns out to be more influential in terms of the

Fisher information for all parameters than the t4−distribution. The same statement

holds if the alternative distribution is assumed for Y21, Y4, Y3 only.

3.2 Example 2: Casino data

In his introductory text on Bayesian Statistics Bolstad (2004) discusses several prior as-

sumptions for the success rate θ in a sequence of Bernoulli trials to exemplify robustness

issues. The data represent the amount of support for a casino by a town’s population.

Out of n = 100 inhabitants r = 26 voted for the casino. The prior distributions under

consideration are a) the reference prior Beta(0.5, 0.5), b) the uniform prior Beta(1, 1),
c) a conjugate informative prior Beta(4.8, 19.4) and d) a subjective informative prior

p(θ) =
1

0.7
〈

20θ 0 ≤ θ ≤ 0.1
2 0.1 ≤ θ ≤ 0.3

5 − 10θ 0.3 ≤ θ ≤ 0.5
0 0.5 ≤ θ ≤ 1

. (36)

In this case the Fisher information assesses the induced initial perturbation as the

posterior variance of the ratio of prior densities. The Beta(0.5, 0.5)−prior is chosen

as reference. A first comparison of Beta(α, α)-priors with α ∈ {0.6, 0.7, 0.8, 0.9, 1}
confirmed that the Fisher information for θ increases with α. In a second comparison

of the priors b)-d) to the reference prior the Fisher information points to prior c) as

the most influential perturbation followed by prior d). The posterior densities though

are rather similar (cp. Bolstad (2004), fig.10.1 and fig.10.2), and the difference seen in

the Fisher information is compensated in the χ2−divergence by the ratio of marginal

densities, that is by a high (unperturbed) posterior mean of the perturbation function

according to eq. (14).

4 Discussion

The Fisher information Iζ|yd
(0) refines a global analysis of influence based on a (χ2−)

divergence. It points to that mode of perturbation that introduces the largest devia-

tion in the ingredients of a Bayesian analysis, likelihood and prior. It does not directly

assess the effect of the mode of perturbation on the posterior distribution of a pa-

rameter of interest but is counterbalanced by the impact on the marginal densities.
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Hence the measure of global and local influence usually differ. Only if case deletion is

represented by the predictive density in an additive mixture, the two measures coin-

cide. In this case the Fisher information might offer a computational alternative to the

χ2−divergence and vice versa. In the examples the local measure of influence is applied

only in comparisons of several modes of perturbation, and thus calibration does not

matter. However, in order to assess the magnitude and hence relevance of a potentially

influential mode of perturbation some calibration is needed. The calibration initially

suggested by McCulloch (1989) has been referred to by many authors.

Applied to case deletion the additive mixture (with non-informative observations)

preserves integrability to one and thus avoids the problem of possibly non-existing nor-

malizing constants occurring with geometric mixtures. Therefore it might be preferred.

An additive mixture of posterior densities can be induced by either an additive mixture

of sampling densities or an additive mixture of priors. Thus it is always in this sense

coherent and an additive mixture of sampling densities corresponds to conventional

models for robustness.
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