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Sensitivity analysis and model selection for a
generalized convolution model for spatial

processes

Anandamayee Majumdar∗, Debashis Paul† and Jason Kaye‡

Abstract. We examine a flexible class of nonstationary stochastic models for
multivariate spatial data proposed by Majumdar et al. (2010). This covariance
model is based on convolutions of spatially varying covariance kernels with cen-
ters corresponding to the centers of “local stationarity”. A Bayesian method for
estimation of the parameters in the model based on a Gibbs sampler is applied to
simulated data to check for model sensitivity. The effect of a perturbation of the
model in terms of kernel centers is also examined. Finally, the method is applied to
a bivariate soil chemistry data from the the Central Arizona Phoenix Long Term
Ecological Project (CAP LTER). Prediction bias, prediction standard deviation
and predictive coverage are examined for different candidate models. In addition,
a comparison with the bivariate stationary coregionalization model introduced by
Wackernagel (2003) is carried out. A variant of the model proposed in Majumdar
et al. (2010), with random kernel centers, is also examined. The latter model is
seen to work much better than the stationary coregionalization model, and to per-
form comparably with the model with random kernel centers. Simulations indicate
that the model is sensitive to under- or over-specification of kernel centers. On the
other hand, application to real data seems to indicate that centroids of the regions
that are homogeneous can be used as means of the random kernel centers. Cross
validation can be used as a way of finding the best model with an appropriate
number of kernels.

Keywords: convolution; multivariate spatial data; nonstationary covariance; pos-
terior inference; model robustness

1 Introduction

Spatial modeling with flexible classes of covariance functions is one of the central top-
ics of spatial statistics. A traditional approach is to model the spatial process as a
parametric stationary process. However, the stationarity assumption is often violated
in practice, particularly when the data come from large, heterogeneous, geographic re-
gions. In soil science, environmental science, etc., it is often reasonable to view the data
as realizations of processes that only in a small neighborhood of a location behave like
stationary processes. In addition, there is a need to model two or more processes simul-
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taneously and account for the possible correlation among various coordinate processes.
For example, Majumdar and Gelfand (2007) considered an atmospheric pollution data
consisting of 3 pollutants : CO, NO and NO2, whose concentrations in the atmo-
sphere are correlated. Recently, Majumdar et al. (2010) proposed a flexible model for
multivariate nonstationary spatial processes that allows for incorporation of extraneous
information on possible spatial inhomogeneity. In the current paper, we study the afore-
mentioned model in detail for sensitivity analysis and model selection. A key question
studied here is the impact of possible mis-specification of the number and the locations
of the centers of local stationarity for multivariate spatial processes.

Before going into the issues we are primarily concerned with in this paper, we give a
brief overview of the existing literature on modeling nonstationary spatial processes. A
considerable amount of work in spatial statistics has focussed on modeling locally sta-
tionary processes (Higdon 1997; Fuentes 2002; Nychka et al. 2002; Gelfand et al. 2004;
Fuentes et al. 2005; Paciorek and Schervish 2006). Higdon et al. (1999) and Higdon
(2002) modeled the process as a convolution of a stationary process with a kernel of
varying bandwidth. Fuentes and Smith (2001) and Fuentes (2002) considered a con-
volution model in which the kernel has a fixed bandwidth, while the process has a
spatially varying parameter. Nychka et al. (2002) considered a multiresolution analysis-
based approach to model the spatial inhomogeneity that utilizes the smoothness of the
process and its effect on the covariances of the basis coefficients, when the process is
represented in a suitable wavelet-type basis. One of the central themes of the various
modeling schemes described above is that a process may be represented in the spectral
domain locally as a superposition of Fourier frequencies with suitable (possibly spatially
varying) weight functions. Paciorek and Schervish (2006) derived an explicit represen-
tation for the covariance function for Higdon’s model when the kernel is multivariate
Gaussian and used it to define a nonstationary version of the Matérn covariance function
by utilizing the Gaussian scale mixture representation of positive definite functions.

The modeling approaches mentioned so far focus primarily on univariate processes.
Existing approaches to modeling the multivariate processes include the work by Gelfand
et al. (2004) that utilizes the idea of coregionalization to model the covariance of Y(s)
(taking values in RN ) as

Cov(Y(s),Y(s′)) =
N∑

j=1

ρj(s− s′)Tj ,

where ρj(·) are stationary covariance functions, and Tj are positive semidefinite matrices
of rank 1. Christensen and Amemiya (2002) considered a different class of multivariate
processes that depend on a latent shifted-factor model structure.

Majumdar et al. (2010) deal with the question of modeling nonstationary multi-
variate spatial processes. The model proposed there can be viewed as a generalization
of the convolution model for correlated Gaussian processes proposed by Majumdar
and Gelfand (2007). The authors extend their aforementioned model to nonstation-
ary settings by incorporating information on local inhomogeneity through specification
of kernel weights. A key motivation is the assertion that when spatial inhomogene-
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ity in the process is well-understood in terms of dependence on certain features of the
geographical locations (e.g. local values of some covariates), it makes sense to use
that information directly in the specification of the covariance kernel. For example,
soil concentrations of Nitrogen, Carbon, and other nutrients and/or pollutants, that are
spatially distributed, are relatively homogeneous across similar land use types (e.g. agri-
cultural, urban, desert, transportation - and so on), but are non-homogeneous across
spatial locations with different land-use types. Usually the land use types and their
boundaries are clearly known (typically from satellite imagery). Thus in this instance
nonstationary models will be clearly advantageous compared to stationary models. An-
other example concerns the land values and different economic indicators in a region.
Usually land values are higher around (possibly multiple) business centers, and such
information may be incorporated as the known centers of the kernels in the model (1)
for the covariance kernel of the spatial process. The models (1) proposed by Majumdar
et al. (2010) behave locally like stationary processes, but are globally nonstationary.
Moreover, this model allows for the degree of correlations among the coordinate pro-
cesses to vary across different spatial scales.

In this paper, model performance is examined by varying the underlying parameters
of the model, when the number and/or locations of the centers of local stationarity are
misspecified. We then concentrate on an application to the soil chemistry data discussed
earlier, where the different land use zones are well-known. Satellite maps provide the
necessary geographic information about the land use zones that can be used to specify
the kernel centers in this application. But it may well happen that some of the land
use zones are redundant in terms of model performance, or that a land use subtype
not taken into account previously plays a significant role in terms of determining the
spatial inhomogeneity. Hence an appropriate model selection procedure for choosing
the centers of local stationarity is important for the specification of an “optimal” model
from the point of view of predictive performance. We propose and examine one such
method by utilizing the principle of cross-validation. In addition to avoiding redundancy
and over-parametrization, these results may also throw light on the hitherto unknown
ecological/environmental aspects of the data.

The main contributions of this paper are: (i) testing for model sensitivity when
the number and centers of local stationarity are misspecified; (ii) an application to
a bivariate soil chemistry data with focus on model selection; and (iii) data analysis
extended to the case when kernel centers are considered random, also as a part of model
selection. We present a Bayesian estimation procedure based on Gibbs sampling for
estimating the parametric covariance functions and predicting the outcomes, and apply
it to simulated and real data.

This paper is organized as follows. In Section 2, we present a special parametric
subclass of the bivariate spatial model specified in Majumdar et al. (2010) to illustrate
some of the key features. In Section 3, we give a summary of the simulation studies
based on this model that illustrates the sensitivity to mis-specifications of the number
of kernels in terms of under- or over-representation of the centers of local stationarity.
We measure the performance of the mis-specified model using prediction coverage of 50
hold out points. In Section 4 we discuss the application of the generalized convolution
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model to a bivariate soil-chemistry data coming from the CAP LTER project in the
Phoenix metropolitan area. In Section 6, we discuss some practical aspects of modeling
using the current framework and the related research directions. Some technical details
can be found in the supplementary materials of Majumdar et al. (2010).

2 Specification of the nonstationary covariance model

In this section we give a short description of the model proposed in Majumdar et al.
(2010). This model has a natural appeal from the perspective of modeling spatially
inhomogeneous multivariate processes, and renders the problem of estimating the non-
stationary covariance kernel computationally quite tractable. The general form of the
covariance kernel for an N -dimensional nonstationary process in Rd is described below.

Let {tl : l = 1, . . . , L} be a sequence of points in Rd; for each l, let Kl(·) be a
nonnegative kernel with

∫
Kl(x)dx = 1; and let {Σl : l = 1, . . . , L} be a sequence of

d× d positive definite matrices. Define, for ω ∈ Rd,

fj(s, ω) =
L∑

l=1

|Σl|−1/2Kl(Σ
−1/2
l (s− tl))fj(ω; θjl), j = 1, . . . , N, (1)

where for every fixed (j, l), fj(·; θjl) is a spectral density function belonging to a paramet-
ric family parameterized by θjl. Let, ρjj′(ω) = ρ0(ω; νjj′ , κ), for parameters {νjj′}N

j,j′=1

and κ be such that the matrix R(ω) = ((ρjj′(ω)))N
j,j′=1 is positive definite with diagonal

entries equal to 1. Also, let ρ1(s− t; τ), for some parameter τ , be the covariance kernel
of a stationary process in Rd. Then, the covariance kernel C?(s, t) of the N -dimensional
process, is determined through

C?
jj′(s, t) = ρ1(s− t; τ)

L∑

l,l′=1

|Σl|−1/2Kl(Σ
−1/2
l (s− tl))|Σl′ |−1/2Kl′(Σ

−1/2
l′ (t− tl′))

·
∫

Rd

eiωT (s−t)fj(ω; θjl)fj′(ω; θj′l′)ρjj′(ω)dω, 1 ≤ j, j′ ≤ N. (2)

Thus, defining Gjj′(s; θjl, θj′l′ , νjj′ , κ) =
∫
Rd eiωT sfj(ω; θjl)fj′(ω; θj′l′)ρ0(ω; νjj′ , κ)dω,

C?
jj′(s, t) = ρ1(s− t; τ)

L∑

l,l′=1

|Σl|−1/2Kl(Σ
−1/2
l (s− tl))|Σl′ |−1/2Kl′(Σ

−1/2
l′ (t− tl′))

·Gjj′(s− t; θjl, θj′l′ , νjj′ , κ). (3)

Typically, the sequence {tl}L
l=1 may be assumed given.

2.1 A bivariate process through specification of a parametric spectral
density
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Majumdar et al. (2010) considered a special case of the process with covariance ker-
nel given by (3) to maintain a balance among flexibility, computational cost and in-
terpretability. By assuming that fj(ω; θjl) is of the form cjlγ(ω; θ̃jl) for some scale
parameter cjl > 0, for a parametric class of spectral densities γ(·; θ̃) that is closed under
product, and choosing ρ0(ω; νjj′ , κ) to be of the form νjj′α(ω; κ), where α(ω; κ) ≡ α(ω)
is a real-valued function satisfying − 1

N−1 ≤ α(ω) ≤ 1, and the N × N matrix N =
((νjj′))1≤j,j′≤N is a positive definite correlation matrix, they obtained a closed form
expression for the functions Gjj′(s − t; θjl, θj′l′ , νjj′ , κ). The details can be found in
Section 3 of Majumdar et al. (2010).

For the applications we focus on in this paper, the process is two-dimensional (that
is, N = 2) on a two-dimensional domain (that is, d = 2). For example, the two variables
may be soil salinity and soil moisture content, or, temperature and pressure fields, etc.
We focus on a special case of the aforementioned model. The model specification in
the bivariate case simplifies considerably by making the additional assumption that the
spectral density γ is Gaussian. For this reason, we give a detailed description of the
model and the estimation procedure for this special case only. We model γ(·; θ̃) as a

Gaussian spectral density with scale parameter θ̃, so that γ(ω; θ̃) = 1
2 (πθ̃)

− 1
2 e−ω2/4θ̃;

and that ρ1(s− t; τ) = e−τ‖s−t‖ (exponential correlation kernel). Next, we parametrize
the scaling matrices Σl by the Cholesky decomposition (with Σ−1

l = Σ−1/2
l (Σ−1/2

l )T ):

Σ−1/2
l =

(
σ11l 0
σ21l σ22l

)
. (4)

With these, we obtain a simplified expression for the covariance kernels C?
jj′(s, t). For

ease of expressions, we consider the case when θ̃jl = θ̃l for j = 1, 2. Then,

C?
jj′(s, t) = e−τ‖s−t‖ 1

2π

L∑

l,l′=1

σ11lσ22lσ11l′σ22l′cjlcj′l′νjj′Γjj′(s− t; θ̃l, θ̃l′ , κ)

· exp(−1
2
‖ Σ−1/2

l (s− tl) ‖2 −1
2
‖ Σ−1/2

l′ (t− tl′) ‖2), (5)

where κ = (α1, α2, β), Σ−1/2
l has the form (4), and the Γjj′(s; θ̃l, θ̃l′ , κ) are given as

follows.

Γ12(s; θ̃l, θ̃l′ , κ) = Γ21(s; θ̃l′ , θ̃l, κ)

=
1

2
√

π

[
g1(α1, θ̃l, θ̃l′)e−g2(α1,θ̃l,θ̃l′ )‖s‖2 − βg1(α2, θ̃l, θ̃l′)e−g2(α2,θ̃l,θ̃l′ )‖s‖2

]
, (6)

Γjj(s; θ̃l, θ̃l′ ;κ) =
1

2
√

π

1√
θ̃l + θ̃l′

exp

(
− θ̃lθ̃l′

θ̃l + θ̃l′
‖ s ‖2

)
, j = 1, 2 (7)

where, for k = 1, 2, 1 ≤ l, l′ ≤ L,

g1(αk, θ̃l, θ̃l′) =

√
αk

αk(θ̃l + θ̃l′) + θ̃lθ̃l′
, g2(αk, θ̃l, θ̃l′) =

αkθ̃lθ̃l′

αk(θ̃l + θ̃l′) + θ̃lθ̃l′
. (8)
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3 Simulation results

We discuss some simulation results for the special case of the bivariate model specified
in Section 2.1. We fixed σ11l = σ11, σ22l = σ22, σ21l = σ21, cjl = c, and θ̃jl = θ for all
l = 1, . . . , L; and α1 = α2 = α. Note that, with this simplification, we can reparametrize
by defining γ := θ2/α so that the functions g1 and g2 defined in (8) can be expressed as
g1(γ, θ) = 1/

√
2θ + γ and g2(γ, θ) = θ2/(2θ + γ). Since β and ν12 are not identifiable

together in this bivariate model, we set β = 0. Further, we set σ11 = σ22 = 1, τ = 0.1.
The parameters c, θ, α, σ21, and ν21 are chosen to be random. We generated bivariate
Gaussian data with mean 0.

For estimation, we treated β, σ11, σ22 and τ as known, and the other five parameters,
namely c, θ, α, σ21, and ν21, as unknown and estimated them from the data using a
Gibbs sampling procedure. From equations (5), (6) and (7), c2 is a scale parameter,
we used an InvGamma(2, 1) prior for c2. For the (positive) parameter α, we assumed
a Gamma(0.01, 10) prior. For θ, we assumed a Gamma(0.1, 10) prior. Since ν21 is re-
stricted to the interval (−1, 1), and is a measure of global association between processes,
we assumed a positive association through a Uniform(0, 1) prior. Finally, we chose a
N(0, 10) prior for σ21.

The posterior distribution of c2 is an Inverse Gamma. The posterior distributions
of the rest of the parameters do not have closed forms. Hence we employed Gibbs
sampling within a Metropolis Hastings algorithm to obtain posterior samples of the
parameters. Burn-in was obtained with 2000 iterations, and we thinned the samples by
20 iterations to obtain 1000 uncorrelated samples from the joint posterior distribution
of (c, θ, α, σ21, ν21) given the data. Sensitivity analysis of the priors was carried out by
varying the means and variances. The priors prove to be fairly robust with respect to
the posterior inference results. For data simulated using n = 50 locations, we present
further results in the subsections below.

3.1 Sensitivity to under-specification of kernels

To understand the sensitivity of the model to under-specification of number of kernel
centers, or equivalently the number of centers of “local stationarity”, we performed some
simulation studies for the bivariate (N = 2) case, in which we specified the number of
kernels, L = 4; σ1l = σ22ll = σ21l = 1, cjl = 2, θjl = 0.1 for all j = 1, . . . , N , l = 1, . . . , 4;
τ = 0.5, ν12 = ν21 = 0.8, α1 =, α2 =, β = 0.1. We generated 100 realizations (on the
unit square [0, 1] × [0, 1]) of a bivariate spatial process with centers of the four kernels
t1 = (0.1, 0.7), t2 = (0.6, 0.1), t3 = (0.9, 0.6), t4 = (0.6, 0.9). We then used three of
the kernel centers in lieu of all four, and carried out prediction at 50 holdout points.
The prediction coverage of the 95% prediction intervals was noted in 100 simulations.
The results are summarized in the table of figures Table 1. The locations of the kernel
centers are denoted in figures (a)-(d) in Table 1. The blue square corresponds to the
kernel that was left out during estimation, to distinguish the kernel from the holdout
points, even though the true model included this kernel. The red triangles correspond
to spatial points where the prediction coverage was below 85%. In Table 1, we note
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that out of 50, there are at most 3 points that have prediction coverage below 85%, and
about 94% of the remaining data yields more than 95% coverage. Similarly, in Table 3,
for the second spatial process, there is one case for which all prediction intervals resulted
in 95% or more coverage. In the three remaining combinations, the maximum number
of spatial points where the prediction coverage was below 85% was 4. The remainder of
the 92% of the holdout points yield at least 95% coverage. We observe that the points
where the prediction is less than satisfactory are spatial points outside the convex hull
of the kernel centers used in the model.

3.2 Sensitivity to over-specification of kernels

We next perform simulation studies to understand the sensitivity of the model to over-
specification of number of kernel centers or equivalently the over-specifications of the
number of center of “local stationarity”. We again performed simulation studies for
the bivariate (N = 2) case, in which we set the number of kernels, L = 3, σ1l =
σ22ll = σ21l = 1, cjl = 2, θjl = 0.1 for all j = 1, . . . , N , l = 1, . . . , 4; τ = 0.5,
ν12 = ν21 = 0.8 and α1 = α2 = β = 0.1. We generated 100 realizations (on the unit
square [0, 1] × [0, 1]) of a bivariate spatial process with centers of the three out of four
kernel centers: t1 = (0.1, 0.7), t2 = (0.6, 0.1), t3 = (0.9, 0.6), t4 = (0.6, 0.9). We then
used all four of the kernel centers in lieu of the three and carried out prediction at 50
holdout points. Again, the prediction coverage of the 95% prediction intervals were
noted in 100 simulations. The results are summarized in Table 4. The locations of
the kernel centers used in the MCMC are displayed in figures (a)-(b). The blue spatial
point corresponds to the kernel center that was redundant, since the true model did
not include this. The red triangles correspond to spatial points where the prediction
coverage was below 80% and the violet star corresponds to a point that has below 85%
but above 80% coverage. In Table 4, focusing on the first spatial process, we note that
out of 50, there are three points that yield prediction coverage below 80%, and one
point that is close to 85%, about 92% of the remaining hold-out points yield more than
95% coverage. In Table 4, for the second spatial process, we considered one case for
which all but one prediction intervals resulted in 95% or more coverage. There was
one spatial point for which prediction coverage was only 56%. We again note that the
points where the prediction result is less than satisfactory are spatial points fall outside
or just outside the convex hull of the kernel centers used in the model.

3.3 Sensitivity to mis-specification : impact of parameter values

We next study the effect of the parameters on the performance of the mis-specified
models. We performed simulation studies for the bivariate case in which we specified
the number of kernels, L = 4; σ1l = σ22ll = σ21l = 1, cjl = 2, θjl = 0.1 for all
j = 1, . . . , N , l = 1, . . . , 4; τ = 0.5, ν12 = ν21 = 0.8, and α1 = α2 = β = 0.1. We then
kept all the parameters fixed and varied one parameter at a time to realize the effect of
the parameter on the under-specified model. As before, we generated 100 realizations
(on the unit square [0, 1]× [0, 1]) of a bivariate spatial process with four kernel centers:
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Table 1: Spatial plot identifying low prediction coverage points for the 1st process
when kernel centers are under-specified. Red triangles identify locations of low ( <
80%) posterior predictive coverage and blue squares identify the kernel center that was
erroneously left out of the model during estimation.
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Table 2: Comparison of the length of prediction intervals for correct and under-specified
(in terms of kernel centers) models for the 1st process. The length of the prediction
interval under the model represents the Y-axis and the same under the under-specified
model represents the X-axis. Red triangles identify points of low posterior predictive
coverage. The solid line represents the X = Y line.
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Table 3: Top panel: Spatial plot identifying low prediction coverage points for the
2nd process when kernel centers are under-specified (blue squares identifying the kernel
center erroneously left out). Red triangles identify points with low prediction coverage.
Bottom panel: Comparison of the length of prediction intervals for correct and under-
specified (in terms of kernel centers) for the 2nd process. The length of the prediction
interval under the correct model represents the Y-axis and the same for the under-
specified model represents the X-axis (the solid line represents the X = Y line). Red
triangles identify locations of low posterior predictive coverage.
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Table 4: Spatial plot identifying low prediction coverage points when kernel centers are
over-specified (blue squares identifying the kernel center that was erroneously included).
Red triangles identify locations of low ( < 80%) posterior predictive coverage. A violet
star identify locations of medium ( 80%-85%) posterior predictive coverage. Left panel
represents the first, and right panel represents the second spatial process
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t1 = (0.1, 0.7), t2 = (0.6, 0.1), t3 = (0.9, 0.6), t4 = (0.6, 0.9). We then used the first three
kernel centers in lieu of the four and carried out prediction at 50 holdout points. Again,
the prediction coverage of the 95% prediction intervals were noted in 100 simulations.
The results are summarized in the following table of figures. The locations of the kernel
centers used in the MCMC are denoted from 1-4 in the figures. The blue spatial point
corresponds to the kernel center that was not used in prediction, even if the true model
did include it. The red points correspond to spatial points where the prediction coverage
was below 80%.

In Table 5, we focus on the effect of changing the “cross-correlation parameter”
ν12 = ν21. Observe that ν12 controls the degree of association between the two coordi-
nate processes. When we changed this parameter from 0.8 (top panel) to 0.2 (bottom
panel), the number of points that yield prediction coverage below 80% went up from one
(2%) to three (6%) for the first process and from none (0%) to three (6%) in the second
process. This is to be expected as a higher absolute value of the parameter ν12 involves
more sharing of information between process I and process II, and thereby is expected
to predict better. We also study the change regarding the parameter σ21l = σ21. By
changing this parameter from 1 to 0.5, the number of points that yield prediction cover-
age below 80% went up from one (2%) to six (12%) for the first process and from none
(0%) to two (4%) for the second process. Again, this is to be expected as a higher abso-
lute value of the parameter σ12 involves higher spatial covariance within each process,
and thereby by sharing of spatial information of each is expected to predict better. The
same direction of impact is observed on over-specified models when these parameters
are changed.

Next, we studied the impact of assuming misspecified values of the parameter σ1l =
σ22ll which had been considered fixed (= 1) throughout in this exercise. In table 6,
we a) under-specified this value to 0.5 (top panel) and also b) over-specified the same
value to 2 (lower panel), and thus, compared average prediction coverage (left panels)
and average prediction interval lengths (right panels), between correct and misspecified
models. For both cases the misspecified model yielded poor performance regarding both
prediction coverage and length of prediction intervals, for both Y1 and Y2 processes. The
lesson to take home from this exercise is that the diagonal elements of Σl need to be
treated as random to yield better prediction performance.

We also studied the impact of assuming misspecified values of the “global associa-
tion” parameter ν21. When the true value of ν21 = 0.8, for the estimation procedure we
chose a fixed value of ν21 = 0.0, comparing it with the “correct” approach where ν21 was
assumed random. The results are illustrated in Table 7. The misspecified model yielded
worse performance regarding prediction coverage. However, the length of the prediction
interval on an average was slightly larger for the first process and a bit smaller for the
second process. Hence we can conclude that, disregarding the association parameter
(i.e., assuming independence of processes) tends to decrease the prediction coverage,
but may not adversely affect the prediction accuracy as determined by the length of the
prediction interval.

Next, we compare performance of the generalized convolution model performance in
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terms of parameter estimation, when using only one process realization (for example,
Y1) versus the “full” bivariate process realization (Y1 and Y2). The comparison of
prediction performance is demonstrated in table 8. For this comparison, we use the
median of the MSE (left panel) and standard deviation of the MSE (right panel) of the
relevant random parameters – namely, c, σ21, θ and a. It is clear from the table, that
while the parameters a and c have comparable values of median MSE and sd MSE, the
bivariate model does a better job at estimation for the parameters θ and σ21.

Finally, we compare performance of the generalized convolution model performance
in terms of prediction coverage and prediction accuracy, when using only one process
realization (for example, Y1) versus the “full” bivariate process realization (Y1 and Y2).
The comparison of estimation performance between bivariate and univariate models
is demonstrated in table 9. We observe that using the bivariate model improved the
prediction coverage. The length of prediction intervals had an overall reduction, even
though the length of the prediction intervals for the bivariate cases were more tight.
Overall, we expect some decline in prediction coverage when making use of only one
process realization, compared to the situation where we make use of the bivariate process
realization. In our case, points where the prediction coverage was below 80% went from
0 (0%) to 5 (10%) by ignoring the bivariate process realization and using only one
process realization.

3.4 Sensitivity to jitter in the kernel centers

Our next step was to examine the performance of the model when the kernel centers had
a jitter added to them. In the simulations, instead of the true kernel centers, the model
used had slight random, independent shifts for each of the centers. Prediction coverage
for 50 hold out points indicated that some prediction intervals had low coverage. An
increase in the magnitude of the jitter worsened the model performance. A way to
address the problem was to use kernel centers at the corners of the unit square and one
kernel center at the center of the unit square, thus spacing out the centers, and this
improved the model performance quite a bit in terms of the prediction coverage. Note
that points too far from all the kernel centers could have a low impact in the model, and
thereby points far away from any kernel center might yield bad prediction. Thus, when
the model is known to be nonstationary, yet the centers of local stationarity can not be
identified, this idea of spacing out the kernel centers may yield reasonable results. We
note that model choice is still required by varying the number of the kernel centers.

4 Data Application: The CAP LTER soil Nitrogen and
Carbon content

Two of the most basic metrics of ecosystem structure are the quantities of carbon (C) and
nutrients such as nitrogen (N) stored in soil. Soil C is the largest store of carbon in the
terrestrial biosphere, so understanding spatial variation in this property is essential for
improving understanding of soil-carbon-climate change linkages (Jobbagy and Jackson



A. Majumdar, D. Paul and J. Kaye 505

Process I Process II

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1

2

3

4

Process I Process II

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1

2

3

4

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1

2

3

4

Table 5: Comparison of prediction coverage for different “true” parameter values. Red tri-
angles identifying spatial points with low posterior predictive coverage for the first (left) and
second (right) spatial process when we have ν12 = 0.8 (top panel) and ν12 = 0.2 (bottom
panel). Note that for process II, there are no spatial points with low post. pred. coverage
when we have ν12 = 0.8 (top right panel)
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Table 6: Comparison between correct and misspecified models when (a) σ1l = σ22ll = 0.5 is
erroneously used (half the correct value) and when (b) σ1l = σ22ll = 2 is erroneously used (twice
the correct value). The left panel compares prediction coverage, the right panel compares the
length of the intervals. In each figure the left two box plots correspond to Y1 and the two right
box plots correspond to Y2.
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Table 7: Comparison between correct and misspecified models when ν21 = 0 corresponding
to no association is erroneously assumed (correct value is ν21 = 0.8). Left panel compares
prediction coverage and right panel compares the length of the intervals. In each figure the
two leftmost box plots correspond to Y1 and the two rightmost box plots correspond to Y2.
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Table 8: Comparison of model estimation performance between bivariate and univariate pro-
cesses for parameters (a) θ and a and (b) c and σ21. Left panel compares median (med) MSE
and right panel compares standard deviation (sd) of the MSE’s.
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Table 9: Comparison between the bivariate and the univariate model. Left panel compares
prediction coverage and the right panel compares the lengths of the intervals. In each figure
the box plot on the left corresponds to (Y1, Y2) and the box plot on the right corresponds to
Y1.
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2000). Soil N is a major source of nutrients to plants and is also an important sink for
atmospheric nitrogen pollution, thus, again, understanding variation in this property
will increase our ability to predict environmental change (Vitousek et al. 1997). In
previous studies, a common approach to modeling variability in these chemicals has
been to assemble soil carbon and nutrient data from many sites and use traditional
multiple regression techniques to determine which independent variables are significant
predictors of nutrient and carbon pools (Burke et al. 1989). While this approach provides
estimates of variability in regional soil carbon storage, it has several weaknesses. Large
scale studies simplify the region by restricting analyses to a few landscape components
(e.g. just natural or agricultural portions) and these components are generally described
by separate models. By avoiding urban ecosystems, these models also simplify the
potential drivers of soil chemical variability by excluding socioeconomic measures from
the list of independent variables. Oleson et al. (2006) have introduced a spatial Bayesian
approach to explain the variability arising from different land use patterns, but they
have treated the data across land use types as independent. This approach fails to
attribute spatial association in the boundary regions of the land use specifications.

One of our goals here is to improve upon these modeling approaches by increasing the
number of land use types being represented in the model, and by incorporating the local
stationarity structure in the model. Soil C and N are significantly impacted by human
management practices. Specifically, fertilization, irrigation, and plant manipulations
(crops, lawn plantings, etc.) on urban and agricultural lands lead to large changes in
soil C and N (Kaye et al. 2005, 2008). These management practices may lead to spatial
structures that are distinct among land use types. In other words, land use patterns may
impart local stationarity to soil C and N storage. Since management practices that alter
soil C and N are strongly correlated with mapped land use categories, satellite-derived
maps of land use could be coupled with models of local stationary to greatly improve our
predictions of regional scale soil C and N storage. In our prior work describing the soil C
and N from the mixed land-use area around Phoenix, AZ (Kaye et al. 2008; Majumdar
et al. 2008), we observed large differences in soil C and N among the satellite-mapped
land use types, but we determined the spatial structure globally. Thus, the major
advancement here is to explicitly model the local stationarity in this data set.

Another shortcoming of traditional regression approaches is that multiple soil pro-
cesses are not modeled simultaneously, even when we know they are associated. For
example, in trying to understand how C and N vary across a landscape separate models
are constructed for each element, despite the fact that C:N ratios are known to be quite
predictable. Most of the N in soil (> 90%) is covalently bound to organic (i.e. C con-
taining) molecules. Thus, as C storage in the soil increases the N storage also increases
because the these covalent bonds stabilize the N in soil (Kaye et al. 2002). It would be
advantageous, and more realistic, to include C and N (and possibly other elements) in
the same model, so that variability in one soil pool could be used to improve prediction
of other soil pools of interest.

Keeping these in perspective, in this section we handle the problem of modeling and
analyzing the spatial distribution of C and N in soil using a spatial regression approach
in which the residual variation is modeled thorough the generalized convolution model
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studied in earlier section. Effectively, we apply a Bayesian solution to the problem of
modeling the spatial distribution of multi-element soil chemistry across a landscape of
heterogeneous land use.

4.1 The data set

The research was conducted within and around the Phoenix Metropolitan area of 3.5
million people (US Census Bureau, 2000). The study region was a roughly rectangular
area of 6400 km2 that includes the city and surrounding agricultural lands and desert.
A randomized, tessellation-stratified design was achieved by superimposing a 4 km × 4
km grid on the study area, giving 462 potential sampling units. It was expected that
landscape heterogeneity would be greater in the urban core, so a random sample point
was assigned within every square inside the urban core and in every third square outside
that area, giving a total sample size of 206.

4.2 Modeling

Various modeling schemes have been developed and applied to explain soil-nutrient
and carbon concentrations. These include deterministic and stochastic models, phe-
nomenological and mechanistic models, spatial and non-spatial models. In the context
of explaining soil nutrient characteristics, the data layers are inherently spatial and
highly correlated. The data arise from different land use types within which the ob-
served process can be assumed to be fairly homogeneous. Since some land use categories
mentioned in Table 10 (the land use map) do not have enough points needed for mak-
ing valid predictions, we clumped some of the land use categories together leaving only
those that had a significant representation in terms of the proportion of areal coverage.
Thus, the main land use categories used in our analysis are: 1) urban 2) open desert
3) agriculture and (remaining groups put together) 4) a mixture of multiple land-use
types. For these land use zones, the kernel centers are evaluated using empirical esti-
mates, namely, the averages of spatial coordinates (i.e., the centroids) of the available
data points. We use 50% of the data to build the model, and the other 50% to make
predictions. Thus the application of the generalized convolution model for the covari-
ance, as discussed in Section 2, for modeling the aforementioned data seems reasonable.
Some spatial features can be described through the mean structure of the model (or in
the case of categorical or count data, the mean on a transformed scale) and the mean
of the spatial distribution of log(Organic C) and log(Total N) shall be modeled using
the spatial regressor variables.

We model the joint distribution of the natural logarithms of Organic Carbon and
Total Nitrogen concentrations (gm/m2) (a log transform of the bivariate data revealed
that a Gaussian model of the log transformed data was viable and that the residuals of
the regression analysis were close to zero). Let Y1(sj), Y2(sj) denote the corresponding
concentrations in the j-th spatial location sj . We also observe at each plot elevation
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Table 10: Land use map of the Central Phoenix Arizona Long Term Ecological Project
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(meters) and annual per capita income. So the model is

Y(sj) = Xjβ + εj (9)

where Y(sj) = (Y1(sj), Y2(sj))
T , Xj is design matrix of order 2×6. This design matrix

is block diagonal in our case, each block containing three columns of regressor vectors.
In this case these three regressors are the intercept term, percent of area in the soil that
is impervious, (for instance, covered by concrete), and slope (the angle of the ground
surface from the vertical in degrees from 0 to 90). These regressors were all significant
in conventional regression analysis, and thus incorporated into the model.

β is a 6 × 1 vector, the first three corresponding to the regression coefficients for
log(Organic C) and the last three corresponding to the regression coefficients for
log(Total N). Finally the error component is εj = (ε1(sj), ε2(sj))T . We assume that
the latter has a cross covariance function given by (5) with L = number of land use
zones used in the model (3 or 4), n = 98, N = 2, σjjl = 1 cjl = c, α1 = α2 = α, θjl = θ
and for identifiability purposes, as α1 = α2 = α so β is set to 0. So the covariance
function involves a 6-parameter vector (c, θ, σ21, τ, ν12, α). c is assigned an inverse
Gamma prior with infinite variance, α, τ and θ are assigned Gamma priors with mean
1 and variance 10, ν12 is assigned the Uniform(0, 1) prior as the association between
the two variables is known to be positive (Kaye et al. 2002). Finally the parameter
σ21 is assigned a Normal(0, 10) prior. The regression coefficient vector β is assigned
a Multivariate Normal prior with zero mean and large variance. We do not use any
hyperpriors. As explained above, we use the centroids of the land use zones, based on
the available data, to determine the tl’s, i.e., the kernel centers.

Further, to compare the prediction performance of our model with that of a known
bivariate stationary spatial model, we used the coregionalization model (stationary) of
Wackernagel (2003) as implemented by the spBayes package (Carlin et al. 2007) in R,
which uses one extra parameter than the model of generalized convolution, and com-
pared predictive distributions of 95 holdout points (about 50% of the data available).
The spBayes package uses priors with large variances (infinite variance for scale or vari-
ance parameters) for all but one of the parameters used in the model, and that is also
the case in our model. One parameter, namely the decay parameter, was assigned a
mean of 0.18 and variance of 0.54 in the model implemented by spBayes. The gener-
alized convolution model, on the other hand, assigned a prior to the parameter α with
mean 0.1 and variance 1. No hyper-prior was used in either model.

We then carry out model comparison using prediction coverage of the 95 hold out
points as indicated in Table 11. Tables 12 and 13 show respectively the prediction
bias and prediction standard deviations corresponding to each generalized convolution
approach, with several choices of kernel centers. Cross-validation and model comparison
were carried out using the performance of (i) predictive coverage of 95% predictive
intervals of the 95 hold out points, (ii) prediction bias and (iii) prediction standard
deviation. By cross-validation we mean the following. We are using 50% of the original
sample (randomly selected from the data) for model fitting. The other 50% of the data
are being used as hold-out points for checking (i) predictive coverage, (ii) prediction
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Prediction coverage Prediction coverage
Model of 95% pred. int.s of 95% pred. int.s

log(Org C) log(Total N)
Correg. 47% 49%
(1, 2, 3) 80% 81%
(1, 2, 4) 81% 80%
(1, 3, 4) 82% 82%
(2, 3, 4) 81% 80%

(1, 2, 3, 4) 80% 80%
random centers (3) 83% 81%

Table 11: Percent of prediction coverage of 95 holdout points for the first (left) and
second (right) spatial process

bias and prediction standard deviation. So, this procedure is similar in spirit to the v-
fold cross validation procedure commonly used for model validation (cf. Breiman et al.
(1984)). Here model (i, j, k) will denote a generalized convolution model with three
kernels, with centers at land use zones i, j, k, respectively. Model (1, 2, 3, 4) will denote
the “full” model, i.e. the model using all the four land use zones to determine the kernel
centers (four). We employ another model (“random”) with random kernel centers, in
which case we have 6 extra parameters for the coordinates of these centers, which are
assigned independent Gaussian priors with mean set to the kernel centers of the “best
model” (best in terms of prediction coverage) and variances equal to 0.5. Altering the
variance does not improve the results we get. Finally, for model comparison, we have
also used the stationary model of coregionalization. Table 11 shows that in terms of
predictive coverage the choice of a generalized convolution approach which uses one less
parameter than the stationary model of coregionalization does much better, even when
only three kernel centers are used. The model (1, 3, 4) does a little better among the
rest, but in terms of bias and standard deviations, all the models using the generalized
convolution approach perform similarly. Overall the predictions are negatively biased
as seen from Table 12. Using random kernel centers improves this situation a little, but
does not improve the prediction coverage.

Scientific/practical merit of the findings can be summarized as follows. This study
shows: (i) applicability to a large set of multivariate or univariate spatial data sets when
the stationarity assumption is violated, (ii) effectiveness of a cross-validation technique
for choosing the optimal model with minimal number of centers of local stationarity
when the focus is to choose (a) high posterior predictive coverage (b) low posterior
predictive bias and (c) low posterior predictive variance, (iii) a practical way to choose
the kernel centers or centers of local stationarity by obtaining centroids of the “homoge-
neous” areas (such as the land uses) under consideration, (iv) when local stationarity is
assumed, but the centers are not specified or known, then a choice of centers that span
the spatial grid can be chosen, and the minimal grid which yields the best prediction
inference over a random set of hold-out points can be selected.
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Table 13: Prediction standard deviation of 95 holdout points for log(Org C) (left) and
log(Total N) (right)
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5 Discussion

In this section we summarize some practical rules for choosing the kernel centers. When
the area of spatial homogeneity are specified (such as census tracts, land use types etc)
and when a large number of data points span these areas, then the centroids of these
areas arising from the average of the x and y spatial locations can be chosen as the
centers of local stationarity. Suppose K is the maximum number of centers. One can
then examine among several submodels by comparing the full model – with all K centers
with models that have less than or equal to (K − 1) centers. So theoretically, one can
consider 2K − 1 such models, but in practice a greedy procedure may be employed
instead of running MCMC for all of these choices. By relaxing the definition a bit, we
may declare a model with k kernel centers, where 1 < k < K, to be optimal if this is the
smallest model such that all the models with (k−1) centers, and all models with m > k
centers are less favorable according to some specific criteria. Our recommendation for
the criteria of choosing the “optimal” model is to focus on predictive inference based
on a large set of hold-out points. We can choose either the average posterior prediction
coverage error, or posterior prediction mean squared error. The theoretical and practical
performance of such procedures need to be examined.

In spite of the versatility of the proposed procedure, there are a few methodological
limitations. Firstly, in spatial statistics, there is a potential lack of identifiability of
the effects while estimating both the mean function and covariance kernel from the
observed data. Indeed, from observed data it is difficult to ascribe the true source of
heterogeneity in the process, that is, whether it is from the mean (representing the
fixed effect) or from the covariance (representing the stochastic effect). In our modeling
scheme, prior knowledge of the spatial field (in our application, the land use pattern)
mitigates the problem by allowing us to choose the kernel centers with some degree of
assurance. Nevertheless, the estimation of the bandwidth and directionality of the kernel
can have an offsetting effect with the estimation of the mean, including the covariate
effects. Secondly, there are a few settings in which the proposed modeling scheme may
be inadequate for capturing the inhomogeneity in a nonstationary spatial process. One
such scenario is when the zones of spatial homogeneities are either too fragmented, or
occur along some thin or fibrous structures which cannot be represented very well by
a limited number of kernels. Another potential difficulty with this procedure is that,
if the number of kernels is over-specified and/or the kernel bandwidths are badly mis-
specified, it may lead to a near-singularity of the covariance kernel of the process under
the model. This will have negative implications in terms of model fitting as well as
prediction. However, this issue can be addressed effectively by adopting an appropriate
model selection procedure.
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