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Bayesian Identification of Differential Gene

Expression Induced by Metals in Human

Bronchial Epithelial Cells

Leanna L. House∗ and Merlise A. Clyde† Yuh-Chin T. Huang‡

Abstract. The study of genetics continues to advance dramatically with the
development of microarray technology. In light of the advancements, interesting
statistical challenges have arisen. Given that only one observation can be made
from each gene on a single array, statisticians are faced with three issues: analysis
with more genes than arrays, separating true differential expression from noise,
and multiple hypothesis testing for regulation. Within this study, we model the
expression of 1185 genes simultaneously in response to five chemical constituents
of particulate matter; arsenic, iron, nickel, vanadium, and zinc. Taking advantage
of a hierarchical Bayesian mixture model with latent variables, we compare mul-
tiple treatments to a control and estimate noise across arrays without assuming
equal treatment means for housekeeping genes. To account for model uncertainty
and hyperparameter specification, model averaging, MCMC, and Rao-Blackwell
estimation are utilized.

Keywords: Bayesian, latent variables, MCMC, differential expression, hierarchical
model, microarray, macroarray, toxicology, model selection

1 Introduction

Documented by observed or in vitro studies, adverse effects occur when humans are
exposed to high or chronic doses of heavy metals (Vahter et al. 2002; Clayton et al.
2002). The scope and/or statistical power of such experiments are limited by ethical
issues concerning the number of people and the amount of exposure to toxic matter.
With the recent development of microarray technology however, researchers may per-
form safe, controlled studies that target specific information pertaining to how, at the
genetic level, toxins may inhibit or interrupt natural functionings of the human body
(Chi et al. 2002). While most current toxicology research aims to assess gene expres-
sion when insulted at the population level, understanding the expression profile provided
by one individual is imperative for further research in the development and utility of
macro/microarrays.
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Specifically, we aim to identify differentially expressed genes from one individual
when exposed to either arsenic, iron, nickel, vanadium, or zinc. Given a non-replicated
human profile consisting of 1185 spots, only one data point exists per gene for analyzing
the effect of a given toxin (in comparison to a control). Without multiple arrays per
treatment, fundamental statistical issues including sample size, dimensionality, separat-
ing signal from noise, and multiple testing arise. Most statistical methods developed to
date cannot adequately address these issues (Yang and Speed 2002). Hence, we propose
a hierarchical multiple response model with latent variables.

Given that multiple treatments were administered to each gene, we consider the
gene-specific parameters to belong to an “experimental population” rather than an ar-
ray specific population. We model the observed up or down gene regulation as a function
of a 5x1 vector containing the true means for differential expression plus noise (resulting
from experimental preparation, implementation, or random error) across the six arrays.
The method by which we estimate precision differs significantly from current work in
that we do not use pre-specified housekeeping genes. Rather, the hierarchical structure
and latent variables induce an internal mechanism for normalizing the data.

Since our efforts are dually motivated by statistical and biological advancements,
Section 2 provides a brief description of the experimental protocol. Section 3 describes
a Bayesian framework that addresses a multiple treatment study design and deciphers
noise from pollutant effect given a limited sample size. The results of the analysis are
summarized in Section 4, where we identify which genes are differentially expressed
and rank them according to their posterior probabilities of up and/or down regulation
under all, none, or one of the pollutants. Section 5 concludes our efforts with a discussion
summarizing the analysis and possible future directions.

2 Study design

Primary bronchial cells were obtained from one individual by bronchoscopy. Clon-
tech Laboratories, Inc (Palo Alto, CA), utilizing 32P-labeled cDNA for hybridization,
provided six gene array filters (Atlas Human cDNA Expression Arrays cat no. 7850) in-
cluding one control and 5 treatment arrays. Each array measures the expression of 1185
genes; 9 housekeeping genes and 1176 genes of interest. Following standard procedures
(http://www.clontech.com/techinfo/manuals/), average array-specific background lev-
els were calculated and subtracted from the corresponding gene intensity levels. The
treatment arrays profile the expression of genes when exposed to the following concen-
trations of metal ions: 50 mM zinc(II), 1 mM iron(II), 50 mM vanadium(IV), 25 mM
arsenic(III), and 100 mM nickel(II).
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3 Methods

3.1 Statistical Model

Consider a multiple response model that describes the intensity levels, after adjusting for
background1, observed on the six Clontech matrices. Let Yg = [yg0, yg01..., ygP ]′ denote
the vector of log intensities, ygp, for gene g and pollutant p where g ∈ {1, 2, ..., 1185}
and p ∈ {0, 1, ..., P}. The number of pollutants, P , equals 5 and P = 0 corresponds to
the control. Conditional on the true gene log intensity levels, µgp, we assume that the
observed expressions, Yg , are independent across arrays

Yg =
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with independent, identically distributed measurement errors. As inferred from inves-
tigative plots and past microarray literature (Broberg 2002; Speed and Group 2000),
the data appear log-normal and are transformed accordingly. Furthermore, we consider
Yg to belong to an “experiment-wide” population where the variance of egp = 1/φ
remains constant within arrays and between arrays. In the Discussion section we reflect
upon relaxing this assumption.

To focus on the difference between control and treatment, we transform and re-
parameterize the previously stated model resulting in
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where Dg is a 5x1 vector of dgp = ygp − yg0 and Sg =
∑5

i=0 ygi. The parameter
τgp refers to the true differential expression for gene g under pollutant p, whereas αg

represents the gene’s true total expression across treatments. Because we consider the
genes independent (conditional on µgp and φ), the re-parameterization induces a block
structure in the covariance matrix across all genes. Each block corresponds to the
covariance matrix for gene g equal to cov(εg) where

εg ∼ N6

([

0
0

]

,

[

6 0
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φ−1

)

and Σε =
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. . .
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. (3)

1From this point forward, any discussion relating to the modeling of gene expression refers to mea-
surements where the background has previously been subtracted.
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Given only one observation per gene and pollutant, all model parameters are uniden-
tifiable without further information. To separate noise, εgp, from signal, τgp, we intro-
duce a latent binary variable, δgp, as an indicator of whether pollutant p causes dif-
ferential expression of gene, g. Precisely, δgp indicates whether or not τgp differs from
zero. For example, in cases where differential expression does not occur, δgp = 0, hence
τgp = 0. Whereas, if δgp 6= 0 then the parameter, τgp does not equal zero and is worthy
of further investigation/estimation. Notice, for each gene, there are 25 different expres-
sion profiles or Latent Expression Models, noted as Mg = [δg1, δg2, ..., δg5]. Using the
binary expansion of values 0-31, we may list all possible model configurations for gene
g. The vector [0 0 0 0 0], the null latent expression model (Model #0), corresponds
to none of the pollutants causing differential expression, whereas [1 1 1 1 1], the full
latent expression model (Model #31), refers to all of the pollutants causing differential
expression.

In addition to maintaining model identifiability and flagging differentially expressed
genes, δ provides an internal mechanism for calculating precision. When δgp = 0,
the observed measurement from the macroarray, dgp, reflects experimental noise rather
than a possible treatment effect of pollutant p. Hence, all observations where δgp = 0
contribute to the estimate of φ. This dramatically differs from common practice where
estimates for array variability are derived from predetermined housekeeping genes, genes
assumed to be unaffected by treatment. Our approach avoids controversial assumptions
including the choice, number, and true immunity to treatment effects of housekeep-
ing genes (Chi et al. 2002; Smyth et al. 2003), and uses the information gathered from
housekeeping genes as though it were collected from genes of interest.

One approach for estimating φ, as well as τ g and αg , entails selecting the profile with
the highest likelihood, and completing maximum likelihood estimation. This method
however, ignores the uncertainty of the expression profile. Instead, we extend the model
by placing prior distributions on all uncertain quantities, including the latent expression
model. In turn, we may state the posterior probabilities of Mg = m and δgp = 1. The
following section describes the priors chosen and the process by which the posterior
probabilities are calculated.

3.2 Prior Specification

Specifying subjective prior distributions, especially in situations with small sample sizes,
is ideal (Berger and Pericchi 1997). However, the task of developing informative priors
for parameters τ , α, and φ under all possible expression configurations, is daunting, at
best. Thus, to avoid overwhelming the information gained from the data and to keep
the number of incorporated hyperparameters to a minimum, we select objective prior
distributions.

Often, improper prior distributions are chosen for model parameters in hopes of re-
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maining “non-informative”. However, with few exceptions, such default priors will skew
the calculation of Bayes Factors by arbitrarily weighting one model over another. For
example, improper distributions generally cause erroneous conclusions when placed on
non-orthogonal elements (Kass and Raftery 1995). Model specific constants for param-
eters that do not occur in each model will not cancel when deriving Bayes Factors and
posterior model probabilities. Hence, improper prior distributions will illegitimately
weight models with and without such arbitrary constants. In our case, αg is indeed
independent of the remaining parameters, but φ is only orthogonal to those in the like-
lihood distribution and τgp does not occur under all latent expression models.

Group-theoretic invariance arguments, enable Jeffrey’s independent prior to remain
an acceptable choice for α and φ (Berger et al. 1998),

f(αg, φ) ∝ 1/φ, (4)

but cannot extend to τgp. Thus, we place a Zellner’s g-prior on τg , conditional on Mg

and φ,

f(τg|φ, γ,Mg) = Nk(0, φ−1γΣMg
). (5)

This choice is a proper distribution, preserves the correlation structure of the likelihood
in the prior, and ensures that the distribution of τ g , under different expression profiles,
is conditionally compatible (Dawid and Lauritzen 2000). The parameter γ represents
the constant in the g-prior and the covariance of τg , ΣMg

, is determined by Σε and
Mgp = [δgp...δg1]. Since Σε is uneffected by any permutation of its rows, we may write
Σε as a partitioned matrix,

Σε =
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. . .
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Σδδ Σδ(δ)

Σ(δ)δ Σ(δ)(δ)

]

,

where (δ) refers to the set of τ ’s in the vector [τg1 τg2 ... τgP ]′ that equal zero or where
δgp = 0, and δ refers to those that remain. Conditional on the set τ g,(δ), the covariance
of τ g,δ , denoted by Σδδ.(δ), is Σδδ − Σδ(δ)(Σ(δ)(δ))

−1Σ(δ)δ , and ΣMg
equals

ΣMg
=

[

Σδδ.(δ) 0
0 0

]

.

Notice the distribution in equation (5) is degenerate at 0 given the null model, Mg = 0.

The hyperparameter γ is often prespecified as a constant value; e.g. γ equals sample
size. In this case, deciding upon an appropriate constant is unclear. Should γ equal the
number of subjects, treatments or genes? Furthermore, using a large value for γ (which
implies the specification of a diffuse prior on τ ) would inevitably lead to the “Bartlett’s
Paradox” (Kass and Raftery 1995), favoring the null expression model, regardless of the
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data. Motivated by Strawderman (1971), we use a Beta prior on γ
1+γ , the shrinkage

factor, and suggest the proper prior,

f(γ) =
1

2
(1 + γ)−3/21(γ>0). (6)

We complete the hierarchical model by specifying the distribution of Mg. We follow
the suggestions of George and McCulloch (1993) for calculating prior expression profile
probabilities. Let ωp = P[δ.p = 1] for p = {1, 2, ...P}) represent the prior probability
that pollutant p causes differential expression, regardless of gene. Assuming expression
across pollutants is conditionally independent, the prior probability of each expression
profile is

P (Mg = m|ω) =

P
∏

p=1

ωδgp
p (1− ωp)

1−δgp . (7)

The prior probability of all expression profiles for the experiment, M, equals the prod-
uct of P (Mg = m|ω) across the 1185 genes of interest, P (M|ω) =

∏G
g=1 P (Mg = m|ω).

Additionally, we place a uniform prior on each ωp.

Notice apriori most parameter distributions are conditionally independent of one
another. However, a posteriori this is not the case. The next section describes in detail
the steps taken to obtain the marginal distributions for each parameter.

3.3 Posterior Analysis

Provided the goal for our effort is to pin-point differentially expressed genes, the primary
parameter of interest is M, which encompasses δg1, δg2, ..., δgP for all genes. Thus, we
formulate 32 Bayes Factors by comparing each model to the full model in order to sim-
plify the calculation of the posterior probabilities of Mg = m. In using posterior model
probabilities to assess expression rather than pure Bayes Factors, we avoid incoherence
issues as described by Lavine and Schervish (1999) and directly quantify our degree of
belief for observing significant up or down regulation to individual pollutants.

Analytical Integration

When dealing with hierarchical models one strategy for diminishing computation time
and minimizing variability in parameter estimates, is to numerically integrate out pa-
rameters when feasible. Integrating the marginal distributions over α and τ g , we derive
the Bayes Factors for comparing different expression profiles, Mg = m, to the full expres-
sion profile, Mg = 31, BFgm ≡ f(Dg , Sg |γ, φ,Mg = m,ω)/f(Dg, Sg |γ, φ,Mg = 31,ω):
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if mg = 31 (full model), BFgm = 1

if mg ∈ [0, 30], BFgm = (1 + γ)(5−kg)/2exp

{

− φ
2

γ
1+γ D

′

g(δ)Σ
−1
(δ)(δ)Dg(δ)

}

.

We eliminate the remaining parameters upon which the Bayes Factors are conditional
and obtain P[Mg = m|D,S] using stochastic integration and Rao-Blackwell techniques.

Stochastic Integration

To estimate the marginal posterior distributions of φ, γ, M, and ω, we stochastically
integrate the full joint distribution using MCMC. The process is a straight forward
Gibbs sampler (Gelfand and Smith 1990). Note that by analytically marginalizing over
τ we effectively avoid the problem of “changing dimensions” within a sampler. A
detailed derivation of the full conditional for Mg is in the appendix. Rather than es-
timating P[Mg = m|Dg , Sg ] via Monte Carlo frequency from the MCMC, we derive
Rao-Blackwellized estimators of P[Mg = m|Dg , Sg] and P[δgp = 1|Dg, Sg ]. All other
full conditionals follow from standard distribution theory: given all remaining param-
eters, φ and 1

1+γ come from Gamma distributions and ω has a Beta distribution. The
explicit distributions are provided in the Appendix.

The next section summarizes the results after running the Markov Chain for 100,000
iterations, removing the first 5000 observations to account for burn-in and selecting every
tenth observation to minimize autocorrelation within samples.

4 Results

Table 1 summarizes the posterior, empirical means and credible intervals for φ, γ, and
ω. Incidentally, recall the question surrounding the prespecification of a fixed γ. The
posterior mean of γ is clearly closer to the number of arrays than the number of genes,
but does not equal either quantity.

Table 1: Mean and credible intervals for φ, γ, and ω

Parameter Posterior Mean Credible Interval

φ 4.338 (3.855, 4.902)
γ 7.750 (6.841, 8.734)
ω1 0.788 (0.723, 0.851)
ω2 0.263 (0.211, 0.318)
ω3 0.407 (0.354, 0.463)
ω4 0.466 (0.402, 0.533)
ω5 0.566 (0.502, 0.630)
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4.1 Relative Gene Behavior

One advantage for using the proposed method is that we may rank the genes according
to the posterior probabilities of differential expression. Sorting the posterior means of
Pmg and/or the P[δgp = 1|D,S], provides an ordered list, where, quite simply, genes
with high posterior probabilities of expression will rank above those with low poste-
rior probabilities of expression. A histogram of the posterior probabilities displays the
number of genes that fall within pre-specified intervals. Figure 1 graphs the posterior
probabilities of the null (P0,g) and full (P31,g) expression models across all genes. From
the plots, we see that only a few genes require the full model with probability 1, whereas
no genes require the null model with probability greater than .25. Similarly, the effects
of the individual pollutants are graphed in Figure 2. Arsenic causes a greater than .50
probability of differential expression a posteriori for all genes, whereas for approximately
40% of the genes, the posterior probability of differential expression when exposed to
iron is less than .20.
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Figure 1: Frequency histograms of posterior model probabilities, across all genes; Model
#0 (left): Null model indicating no differential expression and Model #31 (right): Full
model indicating all pollutants cause differential expressions.

To obtain a general idea of the active locations on the macroarrays, we recreate a
map of the slides and plot the posterior odds of expression. For this summary only, we
depict the posterior odds of expression rather than the posterior probability of expres-
sion. For example, the scaling in Figure 3 is chosen to comply with Jeffreys’ suggestion
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Figure 2: Frequency histograms of posterior probabilities of differential expression across
all genes per pollutant, arsenic(a), iron(b), nickel(c), zinc(d) and vanadium(e); control-
ling the false discovery rate to .05, genes falling to the right of the solid line (β∗) are
declared differentially expressed.

to the use of half- units on the log scale (Kass and Raftery 1995) to determine strong
or weak evidence against a null hypothesis (Table 2). Figure 3 shows consistent activity
in the bottom right quadrant of each slide.

Table 2: Purpose of scaling in Figure 3

Posterior Odds Strength of Evidence

< 1 None
Not worth more

1-3.2 than a bare mention
3.2-10 Substantial

10 - 100 Strong
> 100 Decisive
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Nickel Zinc

Vanadium

Posterior Odds:

>100
10 to 100
3.2 to 10
1 to 3.2
<1

Figure 3: Map posterior odds of expression; circled genes indicate P[δgp = 1|D,S] = 1.

4.2 Declare Differential Expression

To declare a gene as significantly regulated, we must decide upon an appropriate cutoff
β, so that if P[δgp = 1|D,S] > β then gene g is differentially expressed under pollutant
p. Provided an equal cost for false positives as false negatives, Bayesians often choose
β = 0.5. In most cases, however, there exists a need to control the false discovery or non-
discovery rate. Limiting the type II error to .05, we choose β∗ as the smallest β such that
the average posterior probability of acceptance equals .05 (Genovese and Wasserman
2002),

β∗ = inf

{

β :

∑n
i=1 I(δ̂gp>β)(1− δ̂gp)
∑n

i=1 I(δ̂gp>β)

≤ .05

}

.
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Using the posterior probabilities of expression, Figure 2 and Table 3 depict the
effects of β∗. Table 3 lists the calculated values for β∗ and documents the difference
between the number of genes declared differentially expressed when controlling and not
controlling the false discovery rate. Figure 2 displays this difference by plotting β and
β∗ on the histograms. Needless to say, across all pollutants, the number of declared
genes dramatically decreases when β∗ is utilized.

Table 3: Number of genes declared (Decl.) differentially expressed.

β∗ β = .5Pollutant
Value No. Decl. No. Decl.

Arsenic 0.80 552 1185
Iron 0.79 104 162

Nickel 0.76 211 297
Zinc 0.80 214 379

Vanadium 0.76 304 521

4.3 Up/Down Regulation

Thus far, we only addressed whether genes exhibit any change from the baseline, re-
gardless of an increase or decrease in intensity. In order to calculate the posterior
probability of up or down regulation, the posterior marginal distribution of τ is needed.
Even though we analytically integrate out τ to complete the MCMC, we may still use
other sampled parameters at each MCMC iteration to calculate the Rao-Blackwellized
estimates, τ̂gp, and P [τgp > 0|D,S]. Focusing on the genes that we declare differen-
tially expressed in Table 3 (when using β∗), we plot by pollutant the distribution of
τ̂ across all genes and the posterior probabilities of up regulation in Figures 4 and 5
respectively. In Figure 4, we see most of the mass in each distribution lies outside the
interval [log(1/2),log(2)]. This implies that the genes we flag as differentially expressed
are centered around a two fold change or greater. Genes depicted on the right hand side
of the plots in Figure 5 indicate a high probability of up regulation, whereas those that
occur on the left hand side display a low probability of up regulation or high probability
of down regulation. More genes are likely to experience down regulation than up when
exposed to arsenic, zinc and vanadium.

5 Discussion

We propose a theoretical model and practical approach for assessing differential ex-
pression when only one data point exists per gene and pollutant. Given the extremely
limited amount of data, all conclusions that we make reflect the person from whom
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Figure 4: Frequency histogram of Rao-Blackwellized estimates for τg by pollutant: ar-
senic(a), iron(b), nickel(c), zinc(d) and vanadium(e). The dotted lines are placed at
log(1/2) and log(2).

the data were collected, and do not extrapolate to larger populations. Additionally,
small samples of data imply heavy reliance on accurate technology. Using hierarchi-
cal modeling, this individual specific model may certainly extend to borrow strength
in hyperparameters from a population of subjects or repeated measures. Nevertheless,
we maintain that thoroughly understanding an individual’s macro/microarray profile is
a vital component to genomic research. Since our approach does not require replicate
data, we conceivably have a cost efficient and effective tool for summarizing one person’s
genomic profile.

By considering the observations as multivariate responses (5x1 vectors) driven by
latent variables, we design a hierarchical process that enables us to explore all of the
possible expression models, as well as to internally standardize the data without relying
on housekeeping genes to estimate variance. At the completion of running MCMC, we
use Rao-Blackwellized estimates to summarize parameters of interest. We note that
originally an Empirical Bayes approach similar to that of Newton et al. (2001) and
Clyde and George (2000) was pursued. Doing so, however, required the enumeration
of 321185 models. MCMC avoids this impossible task and supplies an easy method
to stochastically integrate the full joint posterior distribution over all possible models.
Furthermore, upon assuring chain convergence we may, unlike frequentist analyses, rank
the studied genes according to the posterior probabilities of general gene expression, up
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Figure 5: Frequency histograms of posterior probabilities of up regulation, across genes
declared differentially expressed by pollutant: arsenic(a), iron(b), nickel(c), zinc(d) and
vanadium(e).

regulation, or down regulation. For the studied individual, arsenic had the most impact
on the investigated genes.

Aside from possible complications of the Neyman-Scott problem, we have no reason
to believe that the proposed method cannot accommodate larger arrays (i.e. microar-
rays). However, we make certain assumptions that could be relaxed with further com-
putational effort. For example, we assume that all six arrays have the same degree of
random variation and consider two sources of variability: treatment effects and random
error. Incorporating either gene-specific (φg) or a treatment-specific (φp) precision pa-
rameters might model the data better than using a single φ, as we propose. In fact, some
analyses suggest that the log transformation does not entirely alleviate inconsistent vari-
ance within arrays. MCMC and Rao-Blackwell techniques can, in principle, adapt to
the model inclusion of multiple precision parameters. Incorporating gene-specific preci-
sion parameters that are constant across arrays, φg, would merely require another level
in the proposed hierarchical model. Using the model as presented here, no data would
be available to assess a gene-specific variance when Mg = [1, 1, ..., 1]. Adding another
level in the hierarchical model could enable genes to “borrow” information about the
precision from other genes. A model that assumes the precision to remain constant
within but not across arrays, φp, suggests a Reversible Jump MCMC (RJMCMC) algo-
rithm. Since the block-covariance structure as described in section 3.1 is lost when φp is
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included, the analytical integration of τ is no longer tractable. RJMCMC is necessary
to effectively explore the distribution of models or expression profiles.

6 Appendix

The Gibbs sampler implemented for parameter estimation entailed sampling from gamma,
beta and multinomial distributions. Here, we derive the multinomial full conditional
posterior distribution for the primary parameter of interest, Mg , and state full condi-
tionals for φ, 1/(1 + γ), and ω.

The 32 posterior latent expression model probabilities for each gene, Pmg , are ob-
tained via the posterior latent expression model odds, Ogm (in comparison to the full
model, Mg=31). If we let Pg=[Pg0, Pg1, ..., Pg31] then we have

f(Mg|ω, γ, φ,D,S) = Multinomial(1,Pg) and

Pgm = P [Mg = m|φ, γ,ω,Dg , Sg] =
Ogm

∑G
g=1 Ogm

,

where

Ogm = Odds(Mg = m|φ, γ,ω,Dg , Sg)

=
f(Dg , Sg|φ, γ,Mg = m,ω, )

f(Dg , Sg |φ, γ,Mg = 31,ω)

f(Mg = m|ω)

f(Mg = 31|ω)

= BFgm

∏5
p=1 ω

δmp
p (1− ωp)

1−δmp

∏5
p=1 ωp

.

Ultimately, we provide Rao-Blackwellized estimates for Mg and δgp. At each iteration
i, the expected values for Mg and δgp are calculated conditional upon φ, γ, ω, Dg , and
Sg ,

E[Mg = m|φ, γ,ω,Dg , Sg ]
(i) = P[Mg = m|φ, γ,ω,Dg , Sg]

(i) and

E[δgp|φ, γ,ω,Dg , Sg ]
(i) =

32
∑

m=1

1{δp=1}P[Mg = m|φ, γ,ω,Dg, Sg ]
(i).

Upon the completion of the MCMC, the expected values are averaged across all I
iterations- i.e. the Rao-Blackwellized estimates for Mg and δgp are

P[Mg = m|Dg , Sg] = E[Mg = m|Dg , Sg] ≈

∑I
i=1 E[Mg = m|φ, γ,ω,Dg , Sg]

(i)

I
and

P[δgp = 1|Dg, Sg ] = E[δgp = 1|Dg, Sg] ≈

∑I
i=1 E[δgp = 1|φ, γ,ω,Dg , Sg ]

(i)

I
.
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The full conditional distributions for the remaining parameters are

f(φ|D,S,M, γ)

∼ Gamma(
1185(5)

2
,1Mg∈[1,31]

.5

1 + γ
D

′

g(Σε
−1 + γΣ(δ)(δ)

−1)Dg + 1Mg=32D
′

gΣε
−1Dg),

f( 1
1+γ |D,S,M, φ)

∼ Gamma

(

3 +
∑1185(5)

gp δgp

2
−1,

φ

2
(

1185
∑

i=1

D
′1
g ΣεDg+1Mg∈[2,31]D

′

g(δ)Σ(δ)(δ)
−1Dg(δ))

)

, and

f(ωp|D,S,M, φ) ∼ Beta(1 +
∑1185

g=1 δgp, 1185 + 1−
∑1185

g=1 δgp).
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