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Conjugate Analysis of the

Conway-Maxwell-Poisson Distribution

Joseph B. Kadane∗, Galit Shmueli†, Thomas P. Minka‡,
Sharad Borle§, and Peter Boatwright¶

Abstract. This article explores a Bayesian analysis of a generalization of the
Poisson distribution. By choice of a second parameter ν, both under-dispersed
and over-dispersed data can be modeled. The Conway-Maxwell-Poisson distribu-
tion forms an exponential family of distributions, so it has sufficient statistics of
fixed dimension as the sample size varies, and a conjugate family of prior distribu-
tions. The article displays and proves a necessary and sufficient condition on the
hyperparameters of the conjugate family for the prior to be proper, and it discusses
methods of sampling from the conjugate distribution. An elicitation program to
find the hyperparameters from the predictive distribution is also discussed.

Keywords: ba0002, convexity, exponential family, Jensen’s inequality, Poisson dis-
tribution, sufficient statistics

1 Introduction

The Conway-Maxwell-Poisson (COM-Poisson) distribution (Conway and Maxwell (1961))
has been used in studies of word lengths (Wimmer et al. (1994), Wimmer and Altmann
(1996)) and of marketing, in which the distribution of the times (in weeks) to next pur-
chase had tails heavier than those of a Poisson distribution (Boatwright, Borle, and Kadane
(2003)). For a general review, see Shmueli, Minka, Kadane, Borle, and Boatwright (2005).
Since over-dispersion is a fairly frequent concern (Breslow (1990), Dean (1992)), it is
worthwhile to explore further the properties of the COM-Poisson distribution, and in
particular the conjugate family of prior distributions associated with it.

The COM-Poisson distribution is a generalization of the Poisson distribution, allow-
ing for over- or under-dispersion. Its probability mass function is

∗Department of Statistics, Carnegie Mellon University, Pittsburgh, PA,

http://www.stat.cmu.edu/~kadane
†Department of Decision and Information Technologies, University of Maryland, College Park, MD,

http://www.smith.umd.edu/faculty/gshmueli/
‡Microsoft Research Ltd., Cambridge, UK, mailto:minka@microsoft.com
§Jones Graduate School of Management, Rice University, Houston, TX,

http://jonesgsm.rice.edu/Faculty/Sharad_Borle/
¶Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA,

http://business.tepper.cmu.edu/display_faculty.aspx?id=42

c© 2006 International Society for Bayesian Analysis ba0002

http://www.stat.cmu.edu/~kadane
http://www.smith.umd.edu/faculty/gshmueli/
mailto:minka@microsoft.com
http://jonesgsm.rice.edu/Faculty/Sharad_Borle/
http://business.tepper.cmu.edu/display_faculty.aspx?id=42


190 COM-Poisson Conjugate Analysis

P{X = x | λ, ν} =
λx

(x!)ν
·

1

Z(λ, ν)
x = 0, 1, 2, . . . , where (1)

Z(λ, ν) =

∞∑

j=0

λj

(j!)ν
. (2)

The ratio of probabilities of successive integers is

P{X = x − 1 | λ, ν}

P{X = x | λ, ν}
=

xν

λ
. (3)

When ν = 1, a Poisson distribution results. Values of ν > 1 indicate under-dispersion
relative to the Poisson, while ν < 1 indicates over-dispersion. As ν → ∞, Z(λ, ν) →
1+λ, and the COM-Poisson approaches a Bernoulli distribution with P{X = 1 | λ, ν} =

λ
λ+1 .

When ν = 0 and λ < 1 , Z(λ, ν) is a geometric sum:

Z(λ, ν) =

∞∑

j=0

λj =
1

1 − λ
,

and the distribution itself is geometric:

P{X = x | λ, ν)} = λx(1 − λ) for x = 0, 1, 2, . . . (4)

When ν = 0 and λ ≥ 1, Z(λ, ν) does not converge, and the distribution is undefined.

The remainder of this article is organized as follows: Section 2 reports on the suf-
ficient statistics and conjugate family associated with the COM-Poisson distribution
and the corresponding predictive distribution. Section 3 shows the use of an elicitation
program (available on the web) for the hyperparameters of the COM-Poisson. Section 4
gives a numerical example of the computation of the posterior for the COM-Poisson
with a conjugate prior distribution. Section 5 explores the marginal and conditional
distributions arising from the conjugate distribution.

2 Sufficient Statistics, Conjugate Family and Predictive
Distribution

2.1 Sufficient Statistics

The likelihood for a set of n identically distributed observations x1, x2, . . . , xn is

L(x1, x2, . . . , xn | λ, ν) =

∏n

i=1 λxi

(
∏n

i=1 xi!)
ν Z−n(λ, ν) = (5)

= λ
∑n

i=1
xie−ν

∑n
i=1

log(xi!)Z−n(λ, ν) (6)

= λS1e−νS2Z−n(λ, ν) (7)
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where S1 =
∑n

i=1 xi and S2 =
∑n

i=1 log(xi!). By the Factorization Theorem, (S1, S2)
are sufficient statistics. Furthermore, (7) displays the COM-Poisson as an exponential
family of distributions.

2.2 Conjugate Family

Since the COM-Poisson forms an exponential family, there is a conjugate family of priors
such that, whatever the data, the posterior is of the same form. For this distribution,
the conjugate prior density is of the form

h(λ, ν) = λa−1e−νbZ−c(λ, ν)κ(a, b, c) (8)

for λ > 0 and ν ≥ 0, where κ(a, b, c) is the integration constant. Then the posterior is
of the same form, with a′ = a + S1, b

′ = b + S2, and c′ = c + n. The distribution whose
density is given in (8) can be thought of as an extended bivariate Gamma distribution.

In order for equation (8) to constitute a density, it must be non-negative and inte-
grate to one. In other words, the values of a, b, and c that lead to a finite κ−1(a, b, c),
which is given by

κ−1(a, b, c) =

∫ ∞

0

∫ ∞

0

λa−1e−bνZ−c(λ, ν)dλdν, (9)

will lead to a proper density.

Using Jensen’s inequality and the convexity of the log-gamma function, the appendix
shows that a necessary and sufficient condition for a finite κ−1(a, b, c) is:

b/c > log(ba/cc!) + (a/c − ba/cc) log(ba/cc + 1) (10)

where bkc denotes the floor of k. The set of hyperparameters (a, b, c) satisfying (10) is
necessarily closed under sampling; i.e., if the prior satisfies (10), so will the posterior
for every possible datum x.

2.3 Predictive Distribution

Given values for the hyperparameters a, b and c, the predictive probability function is
given by

P (X = x | a, b, c) =

∫ ∞

0

∫ ∞

0

P (X = x | λ, ν)h(λ, ν | a, b, c)dλdν

=

∫ ∞

0

∫ ∞

0

[
λx

(x!)νZ(λ, ν)

] [
λa−1e−bνZ−c(λ, ν)κ(a, b, c)

]
dλdν

= κ(a, b, c)

∫ ∞

0

∫ ∞

0

λa+x−1e−ν(b+log(x!))[Z(λ, ν)]−(c+1)dλdν =

=
κ(a, b, c)

κ(a + x, b + log(x!), c + 1)
(11)
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where κ(a, b, c) is defined in (9).

The calculation of the two double integrals in (11) can be done by using a non-
equally spaced grid over the λ, ν space. Numerical routines that aid in the specification
of this region turn out to be more robust in the transformed space

λ∗ = log(λ) (12)

ν∗ = log(ν). (13)

3 Elicitation of the Hyperparameters of the Conjugate
Distribution

To facilitate practice we have created an application to help the practitioner select the
hyperparameters a, b, and c or to aid the statistician in eliciting these values from the
expert who understands the context of the data (see Kadane and Wolfson (1997) and
Garthwaite et al. (2005) for reviews of elicitation issues). Even when a prior is of the
form of a well-used Gaussian distribution, practitioners often have difficulty setting
covariance parameters of the prior (Barnard, McCulloch, and Xiao-Li (2000)). Here,
where the distribution is likely to be new to the practitioner, it is even more difficult
to give meaningful values to a, b, and c. Because the practitioner is very likely to have
some degree of knowledge about P (X = x), our application calculates and plots the
predictive distribution for selected values of a, b, and c. Our application aid can be found
on the web at http://www.stat.cmu.edu/COM-Poisson/.The application has slider
bars which allow the user to select and change values of a, b, and c. The application
ensures that the constraints on a, b, and c are met (equation (10)). If the constraints
are not met, the user is warned in a text window that they should alter their choice
of the triplet (a, b, c); if the user ignores the warning, the program will give an error
message. The application calculates and plots a bar chart of the predictive density for
each triplet (a, b, c). The practitioner can then use knowledge of P (X = x) to select
reasonable values for a, b, and c.

Calculation of the predictive density involves integrals, which are calculated numeri-
cally in the elicitation application. The numerical integration requires a bounded region,
specified by limits on each variable, over which the integral is to be taken. Since this
approximates an open space with a closed region, it is necessary to ensure that the
integrated region contains almost all of the probability mass. One way to choose such
boundaries is to integrate over the rectangular region defined by

λ̂∗ ± l

√
V ar(λ̂∗) (14)

ν̂∗ ± l

√
V ar(ν̂∗) (15)

where (λ̂∗, ν̂∗) are the points maximizing the prior density, while V ar(λ̂∗) and V ar(ν̂∗)
are the diagonal elements of the inverse of the negative Hessian, and l is a number to
be chosen.
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To find the point of maximizing (λ∗, ν∗) we use a globally convergent Newton Raph-
son routine, a double precision version of the function newt of Numerical Recipes
(Flannery et al. (1994)). For the purpose of approximating the moments, a truncation
of the infinite series is used that bounds the resulting error to be less than 1.0e-8.

Since λ∗ and ν∗ are highly correlated, integration over a rectangular space is ineffi-
cient since many calculations are made over regions with trivial probability mass. We
therefore set integration boundaries using the marginal distributions f(ν∗|λ∗) of the

bivariate normal distribution with mean (λ̂∗, ν̂∗) and covariance matrix equal to the
inverse of the negative Hessian. We retain the bounds on λ∗ as given in equation (14)
and use the mean and variance of ν∗|λ∗ to replace ν̂∗ and V ar(ν∗) in equation (15). In
our elicitation program, we set l = 8.

A snapshot of the predictive distribution plot, created by our web application, is
given in Figure (1). The prior hyperparameters entered in this case were a = b = c = 1.

Figure 1: Predictive distribution for a = b = c = 1, using the Web application
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4 A Numerical Example of Analysis with the COM-Poisson
and a Conjugate Prior

Feller (1950, 1957)[p. 151, Table 5, Experiment 4; p. 152] gives the following data on
chromosome interchanges induced by x-ray irradiation, from Catchside, Lea, and Thoday
(1945, 1946):

0 2278
1 273
2 15
3+ 0

Table 1: Numbers of cells with k interchanges.

Then ∑
xi = 273 + 15(2) = 303 ; n = 2566∑

log xi! = 15 log 2 = 10.4.

Thus for a conjugate prior characterized by (a, b, c), the posterior is again conjugate,
and characterized by (a + 303, b + 10.4, c + 2566).

5 Marginal and Conditional Distribution

We investigate the marginal and conditional densities of λ and ν that arise from a
bivariate distribution of the form:

h(λ, ν) = λa−1e−bν [Z(λ, ν)]−cκ(a, b, c) (16)

where a > 0, b > 0, and c > 0 are hyperparameters. The marginal density of λ can then
be expressed as:

h1(λ) =

∫ ∞

ν=0

h(λ, ν)dν = λa−1κ(a, b, c)

∫ ∞

ν=0

e−bν [Z(λ, ν)]−cdν. (17)

The conditional density of ν given λ is then:

h(ν | λ) =
h(λ, ν)

h1(λ)
∝ e−bν [Z(λ, ν)]−c. (18)

Using the same logic, the marginal distribution of ν can be expressed as

h2(ν) =

∫ ∞

λ=0

h(λ, ν)dλ = e−bνκ(a, b, c)

∫ ∞

λ=0

λa−1[Z(λ, ν)]−cdλ. (19)

The conditional density of λ given ν is then:

h(λ | ν) =
h(λ, ν)

h2(ν)
∝ λa−1[Z(λ, ν)]−c. (20)
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For the three well known cases (ν = 0, 1,∞) this reduces to:

λ |ν=0 ∼ Beta(a, c + 1), (21)

λ |ν=1 ∼ Γ(a, c), (22)

λ |ν=∞ ∼ F (2a, 2(c − a)) if c > a. (23)

The result in (23) is obtained by noticing that

λ

1 + λ
|ν=∞∼ Beta(a, c − a), (24)

and using the relation between the Beta and F distributions (Mood, Graybill, and Boes
(1974, p. 249)).

5.1 Generating data from h(λ|ν) when c > a

The above special cases hint that the conditional for λ always has a shorter tail than
an F distribution. By constructing an F-type dominating curve, we can get a rejection
sampling scheme for the conditional in cases where c > a. That Z(λ, ν) is convex in λ is

a consequence of the fact that its second derivative with respect to λ is
∑∞

j=2
j(j−1)λj−2

(j!)ν ,

which is positive. Convexity means that all tangent lines are lower bounds; thus for any
λ0 we have

Z(λ, ν) ≥ q(λ0)(λ − λ0) + Z(λ0, ν), (25)

where q(λ0) =
dZ(λ, ν)

dλ

∣∣∣∣
λ=λ0

= Z(λ0, ν)E[x; λ = λ0, ν]. (26)

Substituting this bound into (20) gives an F approximation to p(λ|ν) as well as the
minimal scale factor to make it dominate the true conditional. This gives the following
rejection algorithm:

1. Choose λ0 and compute q(λ0).

2. Draw λ from the F distribution proportional to λa−1 (q(λ0)(λ − λ0) + Z(λ0, ν))−c.
This can be done by dividing a Γ(a) variate by a Γ(c−a) variate and then dividing
by the constant Z(λ0, ν) − λ0q(λ0).

3. Draw a uniform variate u ∼ U(0, 1) and accept λ if

u ≤
Z(λ, ν)−c

(q(λ0)(λ − λ0) + Z(λ0, ν))
−c

. (27)

4. If λ is rejected, repeat from step 2.
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5.2 Generating data from h(λ|ν), ν < 1

When ν < 1, an even tighter dominating curve is possible. The special cases hint that
when ν < 1, the conditional for λ has a shorter tail than a Gamma distribution. By
constructing a Gamma-type dominating curve, we can get a more efficient rejection
sampling scheme, which applies regardless of whether c > a. In appendix B, it is shown
that log Z(λ, ν) is convex in λ. Again, convexity means that all tangent lines are lower
bounds, thus for any λ0 we have

log Z(λ, ν) ≥ q(λ0)(λ − λ0) + log Z(λ0, ν), (28)

Z(λ, ν) ≥ exp(q(λ0)(λ − λ0))Z(λ0, ν), (29)

where q(λ0) =
d log Z(λ, ν)

dλ

∣∣∣∣
λ=λ0

= E[x; λ = λ0, ν]. (30)

Substituting this bound into (20) gives a Gamma approximation to p(λ|ν) as well as the
minimal scale factor to make it dominate the true conditional. This gives the following
rejection algorithm:

1. Choose λ0 and compute q(λ0).

2. Draw λ from the Gamma distribution p(λ|ν) ∝ λa−1 exp(−cq(λ0)λ).

3. Draw a uniform variate u ∼ U(0, 1) and accept λ if

u ≤
Z(λ, ν)−c

exp(−cq(λ0)(λ − λ0))Z(λ0, ν)−c
. (31)

4. If λ is rejected, repeat from step 2.

Appendix

A Propriety of the conjugate density

Theorem: The conjugate density is proper if and only if

b/c > log(ba/cc!) + (a/c − ba/cc) log(ba/cc+ 1). (A.1)

Proof: The conjugate density is proper if and only if the normalizing constant κ−1(a, b, c)
is finite.

A.1 Proof that (A.1) is a Necessary Condition

A lower bound on κ−1(a, b, c) is obtained via an upper bound on Z(λ, ν), which in turn
comes from a lower bound on the factorial function. Because the log-gamma function is
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convex, i.e. has a positive second derivative, we can lower bound the log-factorial with
a linear function. In particular, the following bound is valid for all integers j and x:

log j! ≥ log x! + (j − x) log(x + 1). (A.2)

The bound is tight at j = x and j = x + 1. This gives the following bound Z(λ, ν) on
Z(λ, ν):

Z(λ, ν) =

∞∑

j=0

λj

j!ν
≤

∞∑

j=0

λj

x!ν(x + 1)(j−x)ν
= Z(λ, ν) (A.3)

Z(λ, ν) =
(x + 1)xν

x!ν

∞∑

j=0

(
λ

(x + 1)ν

)j

(A.4)

=





(x + 1)xν

x!ν
1

1 − λ(x + 1)−ν
if λ < (x + 1)ν

∞ otherwise
. (A.5)

From this we obtain a lower bound on the double integral:

κ−1(a, b, c) ≥

∫ ∞

0

e−bν

∫ ∞

0

λa−1

Z(λ, ν)c
dλdν (A.6)

=

∫ ∞

0

e−bνx!cν

(x + 1)cxν

∫ (x+1)ν

0

λa−1
(
1 − λ(x + 1)−ν

)c
dλdν. (A.7)

Change from λ to ω = λ(x + 1)−ν :

κ−1(a, b, c) ≥

∫ ∞

0

e−bνx!cν(x + 1)aν

(x + 1)cxν
dν

∫ 1

0

ωa−1(1 − ω)cdω. (A.8)

The integral over ω is always finite. The integral over ν is finite only if

b/c > log x! + (a/c − x) log(x + 1). (A.9)

This condition is necessary for every x, including x = ba/cc, which gives condition
(A.1).

A.2 Proof that (A.1) is a Sufficient Condition

An upper bound on κ−1(a, b, c) is obtained by breaking the integral into two parts and
bounding each part:

κ−1(a, b, c) =

∫ ∞

0

e−bν

∫ 1

0

λa−1

Z(λ, ν)c
dλdν +

∫ ∞

0

e−bν

∫ ∞

1

λa−1

Z(λ, ν)c
dλdν(A.10)

= I1 + I2. (A.11)
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Since Z(λ, ν) ≥ 1, I1 ≤
∫ ∞

0
e−bν

∫ 1

0
λa−1dλdν, which is finite for all a > 0 and b > 0.

We use a different lower bound on Z(λ, ν) to handle I2. Because log(x) is concave, i.e.
the second derivative is always negative, we know from Jensen’s inequality that

log(

∞∑

j=0

qjaj) ≥

∞∑

j=0

qj log aj if

∞∑

j=0

qj = 1. (A.12)

Therefore by introducing variables qj we have

log Z(λ, ν) = log

∞∑

j=0

qj

λj

qj(j!)ν
≥

∞∑

j=0

qj log

(
λj

qj(j!)ν

)
(A.13)

=




∞∑

j=0

jqj


 log λ − ν




∞∑

j=0

qj log(j!)


 −

∞∑

j=0

qj log qj . (A.14)

Let Q be a random variable on the non-negative integers with probability mass function
Pr(Q = j) = qj . Then the bound can be written succinctly as

Z(λ, ν) = λE[Q]e−E[log Q!]ν
∞∏

j=0

q
qj

j . (A.15)

Now we have an upper bound on the double integral:

I2 ≤

∫ ∞

0

e−bν

∫ ∞

1

λa−1

Z(λ, ν)c
dλdν (A.16)

=

∫ ∞

0

e−bνecE[log(Q!)]νdν

∫ ∞

1

λa−1λ−cE(Q)dλ
∞∏

j=0

q
−cqj

j . (A.17)

This integral, and therefore κ−1(a, b, c), is finite if

E(Q) > a/c and E(log Q!) < b/c. (A.18)

Given (10), we just have to show that there exists a distribution satisfying (A.18).
Let

qj =





1 − (a/c − ba/cc + ε) if j = ba/cc
a/c − ba/cc + ε if j = ba/cc+ 1
0 otherwise.

(A.19)

Then E[Q] = a/c + ε (A.20)

and E[log Q!] = logba/cc! + (a/c − ba/cc + ε) log(ba/cc+ 1). (A.21)

This qj will satisfy (A.18) if we choose ε > 0 small enough. Therefore (A.1) is a sufficient
condition. 2
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B Proof of convexity of log Z(λ, ν) when ν < 1

To show convexity, we show that the second derivative of log Z(λ, ν) with respect to λ is
positive. First we prove that the second derivative is proportional to cov(X, (X+1)1−ν).
Then we prove that this covariance is positive.

∂2

∂λ2
log Z(λ, ν) =

∂

∂λ

[
Z−1(λ, ν)

∞∑

x=0

xλx−1/(x!)ν

]

=
∂

∂λ

1

λ
E(X) =

∂

∂λ
E(X + 1)1−ν

=
∂

∂λ

∞∑

x=0

(x + 1)1−νλx/(x!)νZ−1(λ, ν)

=

∞∑

x=0

(x + 1)1−ν/x!ν
[
xλx−1Z−1(λ, ν) − λx−1Z−1(λ, ν)E(X)

]

=
1

λ

[
∞∑

x=0

x(x + 1)1−νλx/x!νZ−1(λ, ν)−

∞∑

x=0

(x + 1)1−νλx/x!νZ−1(λ, ν)

]

=
1

λ

[
E(X(X + 1)1−ν) − E(X + 1)1−νE(X)

]

=
1

λ
cov(X, (X + 1)1−ν).

The less well-known Tchebychef inequality (Hardy, Littlewood, and Polya (1934, 1952,
p. 43)) says that the covariance between two increasing functions of X must be positive.
The function (X + 1)1−ν is increasing when ν < 1; therefore, the covariance is positive
and the proof is complete.
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