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Inferring Particle Distribution in a Proton

Accelerator Experiment

Herbert K. H. Lee∗, Bruno Sansó†, Weining Zhou‡, and David M. Higdon

Abstract. A beam of protons is produced by a linear charged particle accelerator,
then focused through the use of successive quadrupoles. The initial state of the
beam is unknown, in terms of particle position and momentum. Wire scans provide
the only available data on the current state of the beam as it passes through
and beyond the focusing region; the goal is to infer the initial state from these
position histograms. This setup is that of an inverse problem, in which a computer
simulator is used to link an initial state configuration to observable values (wire
scans), and then inference is performed for the distribution of the initial state. Our
Bayesian approach allows estimation of uncertainty in our initial distributions and
beam predictions.

Keywords: computer simulator, inverse problem, exponentially-dampened cosine
correlation

1 Introduction

Particle accelerators are used in a variety of experiments in physics. For an accelerator
to be useful, it is important to understand exactly what the accelerator is producing.
First, the particle beam emitted from the accelerator must be focused, so that it can
be directed to the region of interest. The focusing process depends on the initial state
of the beam. Second, information about the emitted particles may be critical in future
calculations of the experiment. Thus, the statistical problem of interest is that of
inferring the initial distribution (position and momentum) of the particles when they
are first emitted from the accelerator.

The challenge of the problem arises because it is difficult to directly measure infor-
mation about the particles. What can be observed are one-dimensional histograms of
particle frequencies at various points along the path of the beam. Measurements are
taken as the beam passes through a series of focusing quadrupole magnets. A computer
simulator can be used to link an initial distribution state to future spatial location dis-
tributions. We are thus faced with a classic inverse problem, in that we are trying to
learn about the unobservable initial state from highly transformed and simplified data,
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with computer code providing the link (see for example, Yeh 1986). Proposed initial
states can be run through the simulator, the predicted results computed, and then the
initial proposal can be modified in an attempt to better match the computed results
and the observed data. This process is iterated until convergence.

We take a Bayesian approach as it allows better accounting of uncertainty, particu-
larly in the context of computer experiments and inverse problems
(c. f. Kennedy and O’Hagan 2001, where in addition to finding the calibration param-
eters, they also attempt to model the computer simulator). In many inverse problems,
the problem is underspecified, in that many initial states will be able to produce similar
fits for the data. Thus it is helpful for the statistician to produce a range of highly
plausible initial states, which can be done naturally through the Bayesian paradigm by
reporting posterior distributions or intervals.

In the next section we describe the physical experiment, along with the data that are
collected. The following section discusses our statistical model for this problem, which
accounts for some interesting features in the data. We then present some results, and
conclude with some comments and future directions.

2 Physical Setup and Data

The LEDA accelerator is a linear accelerator that produces a beam of protons. The
exact composition of the beam is not known, so the goal of this experiment is to infer
the composition of the beam. The states of the particles in the beam are determined by
their cross-sectional distributions (in the x and y directions) of position and momentum,
denoted (x, px, y, py). The x and y dimensions are treated as independent. However the
position and momentum are expected to be correlated within a dimension, as discussed
below.

With the initial distributions of position and momentum, the future paths of the
particles can be predicted reasonably accurately with physical models (employing, for
example, the Vlasov equation and the Poisson equation) for the particle movement
as well as accounting for external forces on the particles (the focusing magnets that
will be described shortly) and the inter-particle Coulomb field (Dragt et al. 1988). We
are working with computer code (MLI 5.0) supplied by Los Alamos that simulates the
particle paths via numerical solutions of the differential equations generated by the
physical system (Qiang et al. 2000). A typical high fidelity run on a SunBlade 1000
workstation takes about six minutes; a lower fidelity run (with only 8,000 particles
instead of 100,000) runs in about two minutes.

In order for this beam to be useful, it must be further focused, which is done with
a series of magnets called quadrupoles. Magnets are used in sets of pairs, with the first
one focusing the beam in the y direction, but de-focusing in the x direction. The second
pair focuses x but de-focuses y. Through iterative focusing and de-focusing, the beam is
gradually sharpened in both directions. Figure 1 shows a simulation (via the computer
code) of the 5-th, 15-th, . . . , 95-th percentiles of the positions of particles in the beam
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Figure 1: Simulation of particle beamlines passing through a series of quadrupole mag-
nets. The upper panel corresponds to the progression of the particles in the x dimension;
the lower panel is the y dimension. Magnets are denoted by shaded areas, with alter-
nating magnets focusing and de-focusing in each direction. The wires are denoted by
dashed lines.
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as they pass through eight pairs of magnets. The y focusing magnets are shown in red
(dark gray in grayscale), x focusing in blue (light gray). Notice how the beam widens
in the x dimension as it passes through the red magnets and narrows passing through
the blue ones, with the reverse effect for the beam in the y dimension.

Note that this focusing affects the beam. In particular, it induces a negative corre-
lation between the position and momentum—i.e., it causes particles further away from
the center to be pushed back toward the center, with the force being a function of the
distance. This is a consequence of Maxwell’s equations for electromagnetic fields. In
contrast, de-focusing will induce a positive correlation.

The dashed vertical lines in Figure 1 represent wirescans. As the beam crosses these
lines, electrical current is produced and a histogram (here with 256 bins, which makes it
appear sort of like a curve) of particle positions can be created. It is these nine wirescans
in each dimension that are the observable data. Figure 2 shows some additional views.
The top row are the first, third, fifth, seventh, and ninth (final) wirescans in the x
direction, with the bottom row showing the y wirescans. For illustration, particle clouds
are also shown in Figure 2. The second row shows the x-position versus x-momentum
distribution at these five wirescan locations, and the fourth row are the corresponding
distributions for the y position and momentum. The middle row shows the joint x and
y positions. Notice that these are independent.

The plots in these two figures all fit together. For example, at the start of the beam
(the left side) in Figure 1 is the first wirescan, where the trajectories are shown as
somewhat spread apart for x and relatively tight for y. The upper left plot of Figure 2
shows the resulting spread out x wirescan and the lower left shows the highly peaked
histogram for y position. After passing through two sets of magnets, the second column
of Figure 2 shows the wirescans and particle clouds at the third wirescan (third dashed
line from the left in each panel of Figure 1). Now the x positions are relatively tight
while the y distribution is wider. Note also the non-linear behavior of the particle clouds,
showing intriguing relationships between position and momentum in each direction.

In practice, we will only be able to observe wirescans, and not any of the trajectories
or particle clouds, which we have been able to plot here by running the computer code
on simulated data. Furthermore, the Heisenberg uncertainty principle declares that it is
not possible to measure both the position and momentum of a particle. Thus we must
make do with just the series of wirescan position histograms (the top and bottom rows
of Figure 2) and attempt to work backwards by combining this information with the
particle simulator to to infer the initial distribution statistically.

3 Statistical Model

We start our analysis by performing a simulation study using a high fidelity simulated
beam of 100,000 particles as a proxy for a real particle accelerator beam. We use the
simulator with a much lower fidelity beam of 8,000 particles to explore the known initial
distribution of the high fidelity beam. We configure the simulator to have nine wires
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Figure 2: Simulation of wirescans and particle clouds at the locations of wirescans 1, 3,
5, 7, and 9 for the same experiment as in Figure 1. Top row is the x wirescans, second
row is x-momentum vs. position, third row is y-position vs. x-position, fourth row is
y-momentum vs. position, and bottom row is the y wirescans.
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with 256 bins each. 8,000 particles were chosen since such number provides reasonable
approximations to the high fidelity beam, yet low enough computational times to make
MCMC feasible. We use a family of Gaussian distributions to parameterize the initial
distribution for the cloud of particles. The likelihood is based on a modified squared-
error loss, in that we use a correlated Gaussian structure for the discrepancies between
the high fidelity wirescans and the low fidelity ones. We expect errors in nearby bins to
be dependent as explained below.

We first validated our model using the high fidelity simulations. Next we considered
data obtained from actual readings of four wirescans in a particle accelerator.

3.1 Probability model for the initial particle clouds

We model x position and momentum as bivariate normal and y position and momentum
as bivariate normal independently of x. Thus,

x, px, y, py ∼ N4
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and so the initial configuration is described by parameters: σx, σpx
, σy, σpy

, ρx and ρy.
Our prior specifications are fairly vague, in fact, we assume that
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)

; ρx ∼ U(0, 1) and ρy ∼ U(−1, 0).

We note that ρx and ρy must have opposite signs because of physical constraints as
discussed previously.

3.2 Correlation structure of the wirescans

Inverse problems typically require that the likelihood function be fully specified, since
there is insufficient information in the data to estimate both the initial configuration and
additional parameters in the likelihood (see, for example, Oliver et al. 1997; Lee et al.
2002). In order to specify our likelihood, we used the errors between the readings at
the nine wirescans produced by the high fidelity and the low fidelity simulations, using
the same initial configuration. The errors in bin counts are not independent, as nearby
bins are correlated. Heuristically, the scientists expect “blobs” of mass in the initial
distribution (e.g., ellipsoid contours). Such a structure leads to a relatively smooth
wirescan, and so if one bin is too large, we also expect the nearby bins to be too large. As
the frequencies must total to one, we also expect negative correlation at larger distances.
We obtained empirical correlograms and observed a distinctive sinusoidal decay. Thus
we model the error correlation between bins with an exponentially-dampened cosine
function. For each wirescan j, the correlation function is defined by parameters λj and
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ωj . Let d be the distance between two bins, then

ρj(d) = e−3d/λj cos(ωjd) . (1)

This defines a valid positive definitive covariance, as shown in Yaglom (1986). Figure 3
shows the fits obtained for some of the wirescans using ρj for both x and y dimensions.

The likelihood is obtained by assuming that the errors of the wirescans for each di-
mension are conditionally normal. Let Σxj

and Σyj
denote the covariances correspond-

ing to the j-th wirescans in the x and y dimensions respectively. These are obtained
using the correlation in (1). Denote the corresponding errors as exj

and eyj
. Then the

likelihood is proportional to

9
∏

j=1

(2πτ2)−2∗256/2 exp

{

− 1

2τ2
(e′xj

Σ−1
xj

exj
+ e′yj

Σ−1
yj

eyj
)

}

.

We assume that τ2, Σxj
and Σyj

, j = 1, . . . , 9 are known. The Σs were determined from
simulation experiments; τ2 requires additional attention. First we note that in many
inverse problems, such as this one, there is not enough information to fully estimate all
of the parameters and here τ 2 is a problematic one (see, for example, Oliver et al. 1997;
Lee et al. 2002). Ideally it will be chosen based on considerations about the expected
size of discrepancies in the wirescans, relying on knowledge from subject area experts
in a real application. In practice, the choice of τ 2 represents a trade-off between (i) the
closeness of the fitted wirescans to the observed ones and (ii) the convergence properties
of the MCMC sampler. Smaller values of τ 2 will produce better matches between the
fitted and observed wirescans. The problem is that if τ 2 is too small, it can be nearly
impossible to get the MCMC sampler to fully explore the posterior space, and the chain
will typically fail to find a good fit in a reasonable amount of time (i.e., not getting
anywhere near the posterior mode in two weeks). Without starting MCMC very close
to the posterior mode (which would not be known ahead of time in practice), the chain
will fail to converge properly when τ 2 is too small. Thus τ2 must be chosen to be large
enough for the chain to effectively explore the parameter space, yet not too large that
the discrepancies in the fits are unbearable. Our choice here is a practical compromise.

3.3 MCMC

We use a Metropolis-Hastings algorithm (see for example, Gamerman 1997) to explore
the distributions of the six parameters that define the distribution of the initial config-
uration. We sample the parameters in two blocks, one for the variances and correlation
of the x dimension and another for those of the y dimension. To produce proposals
for the variances we use random walks on the log scale. Proposals for the correlation
parameters are obtained with constrained random walks. The x dimension correlation
is constrained to the interval (0, 1), while the y dimension correlation is constrained to
(−1, 0), since the physics of the problem requires that the correlations have opposite
signs (as discussed in Section 2).
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Figure 3: Autocorrelation function plots for the differences between wirescans of high and
low fidelity simulated beams. Only the odd numbered wirescans are shown. The dotted lines
correspond to the empirical autocorrelations. The continuous line corresponds to the least
squares fit using the correlation function defined in (1).
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3.4 Simulation Results

Figure 4 shows our results on the simulated data. Each column represents a wire. There
were actually nine wirescans, but only four are shown to improve the visibility of the
graphs; the other five are similar in character. The top two rows are for the x dimension,
the bottom two rows for the y dimension. The first and third rows are the estimated
posterior distributions of the particle cloud (x or y position and momentum) as the
beam passes through the quadrupole magnets. The second and fourth rows show the
true wirescans (circles), the estimated posterior mean scans (solid line), and posterior
interval estimates (dashed lines). Only 32 bins are pictured so that the results can
be seen visually (using all of them produces a smear of black ink). This number was
chosen to match the number of bins used in the real data example of the next section.
The posterior mean is generally close to the truth, and the credible intervals provide a
measure of our uncertainty.

Figure 5 shows the estimated posterior distribution for the six parameters of our
inverse problem (the variance of position and momentum for each of x and y, and the
correlation between the position and momentum for each of x and y), along with the
true values (the large black dots). We are pleased that the estimated posterior has most
of its mass near the truth for all six parameters.

We note that the fit is not perfect in some of the plots. This is partly a result of
the choice of τ2, which represents a trade-off between goodness-of-fit and computational
efficiency in convergence of the MCMC. Here we used a value of τ 2 = 0.0005, which
leaves the likelihood somewhat “loose” in the sense that the wirescans match most of
the time but not all, as shown in Figure 4. The reason we do this is that each MCMC
iteration requires a run of the simulator and that takes about two minutes. So a 3000-
iteration MCMC run takes about five days on a SunBlade 1000 workstation. With
this value of τ2, this number of iterations is sufficient for convergence of the chain from
typical arbitrary starting values. When we try to use smaller values of τ 2 to decrease the
error in the fitted values, we find that convergence of the chain decreases significantly.
An order of magnitude decrease in τ 2 appears to increase the time to convergence by at
least an order of magnitude, which makes the computational requirements impractical
with the current technology. As computers get faster, we expect that our approach will
be able to achieve better fidelity. For the present, we must accept some error in our fits
in order to be able to produce results in a reasonable amount of time. In our goal of
inferring the initial distribution, Figure 5 shows that we are doing a reasonable job in
that regard.

4 Application to Real Data

We now apply our methodology to a real dataset provided by scientists at Los Alamos
National Laboratory (Allen et al. 2002; Allen and Pattengale 2002). In this setting, only
four wirescans are available, analogous to the first four scans in the simulated example
above. From these four scans we attempt to infer the unknown initial distribution of
the beam. The data seem a bit more complex than can be perfectly matched under our
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paired bivariate normal model, but the model captures the key features in the data.
We note that for the real dataset, the correlation parameter for x is positive and y is
negative, the reverse of our simulated example (the physical constraint is merely that
the signs must be opposite), so we modify the relevant priors and proposal distributions
accordingly.

Figure 6 shows our results on this dataset. As in Figure 4, each column is a wire; the
top two rows are for x, the bottom two for y, with estimated particle cloud posteriors
and fitted scans with 95% credible intervals for each. As with the simulated data, there
is room for improvement in some of the fits, but the computational requirements make it
difficult to achieve significant improvements. Our methodology provides a good starting
point for solving this inverse problem. The bivariate normal assumption is useful for its
intuitive simplicity yet it provides enough flexibility to do a reasonable job of modeling
the true process.

5 Conclusions

The Bayesian approach is helpful in this problem as it gives a natural measure of un-
certainty. Such an uncertainty estimate would be nearly impossible to obtain from a
classical analysis, yet is valuable in understanding the functioning of the particle ac-
celerator. As with many inverse problems, multiple initial conditions can be consistent
with the observed data, and the Bayesian approach also provides a natural mechanism
for either exploring this multimodal surface, or for restricting the problem through the
imposition of structure in the prior based on substantive information (as we do here).

Extensions of the current model can be considered in several directions. One is the
acceleration of computations and the other is exploring more complex distributions for
the initial configuration. A typical MCMC run would take several days because of the
time spent running the simulator at each iteration. To make the MCMC faster, we can
consider a multiresolution approach where a very low fidelity simulator (faster but less
accurate) is coupled with a high fidelity one (slower but more reliable); we expect that a
multiresolution approach will also help improve the time necessary for convergence of the
MCMC sampler. An alternative approach is that of replacing the current simulator with
a simplified version that uses linear or non-linear approximations between subsequent
positions of the accelerator, such as in Craig et al. (1996) or O’Hagan et al. (1999).
Improvements to the initial configuration may be obtained by using a more flexible
family of distributions, such as mixtures of normals or Gaussian processes.
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Figure 4: Results for the simulated dataset: the columns are the positions of the four wires-
cans. The top row shows the estimated posterior particle cloud distributions for x position vs.
momentum. The second row shows the data (circle), posterior mean (solid line), and posterior
95% interval estimates (dashed lines). The third and fourth rows are the analogous plots for
the y dimension.
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Figure 5: Posterior distribution estimates for the parameters for the simulated data set. The
truth is shown as the large black dot.
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Figure 6: Results for the real dataset: the columns are the positions of the four wirescans.
The top row shows the estimated posterior particle cloud distributions for x dimension vs.
momentum. The second row shows the data (circle), posterior mean (solid line), and posterior
95% interval estimates (dashed lines). The third and fourth rows are the analogous plots for
the y dimension.


