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Convergence properties of a general algorithm

for calculating variational Bayesian estimates

for a normal mixture model

Bo Wang∗, and D. M. Titterington†

Abstract. In this paper we propose a generalised iterative algorithm for calcu-
lating variational Bayesian estimates for a normal mixture model and investigate
its convergence properties. It is shown theoretically that the variational Bayesian
estimator converges locally to the maximum likelihood estimator at the rate of
O(1/n) in the large sample limit.

Keywords: Mixture model, Variational Bayes, Local convergence, Laplace approx-
imation

1 Introduction

A full Bayesian analysis of data involving missing values or based on latent struc-
ture models is almost always non-trivial; tractable closed-form expressions for Bayesian
posterior or predictive distributions are rarely available. Computational tools such as
Markov chain Monte Carlo methods are well established, but even in simple problems
such as the analysis of mixture data, these methods are not totally straightforward
(Celeux et al. (2000)). In addition, the implementation of MCMC may be impractical
- because of computational explosion or analytical intractability, for instance - if the
structure of the incomplete component in the data involves high dimensionality or non-
trivial dependence. In addition, one has to deal with issues such as convergence and
storage of the MCMC realisations.

In the face of these difficulties, deterministic variational Bayesian approximations
have recently been introduced in the machine learning community (for instance by
MacKay (1997) and Attias (1999, 2000)) and are widely recognised to be effective and
promising in a variety of contexts, such as hidden Markov models (MacKay (1997)),
graphical models (Attias (1999, 2000)), mixture models (Humphreys and Titterington
(2000); Penny and Roberts (2000); Corduneanu and Bishop (2001); Ueda and Ghahramani
(2003)), mixtures of factor analysers (Ghahramani and Beal (2000)) and state space
models (Ghahramani and Beal (2001); Beal (2003)). Titterington (2004) gives a more
extensive review and Jordan (2004) provides an overview of a general formulation of the
approach in terms of convex analysis.
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Let Y denote observed data, let S denote missing data, with the letter ‘S’ chosen to
fit in with the mixture context to be discussed in detail later, let p and Θ generically
denote probability density and parameters, and let p(S,Θ|Y ) denote the posterior den-
sity of (S,Θ), given Y . The variational Bayesian approximation, q(S,Θ), for p(S,Θ|Y ),
is defined as the minimiser of the Kullback-Leibler divergence between q and p,

∫

q(S,Θ) log
q(S,Θ)

p(S,Θ|Y )
dSdΘ, (1)

with q restricted to have a special structure, usually corresponding to independence
between Θ and S. If (as in the mixture problem) S is discrete, then the integral is
interpreted as a summation. The variational Bayesian estimator for Θ is defined to be
the mean of the corresponding approximating distribution. The minimisation of the
Kullback-Leibler divergence (1) is equivalent to maximising the so-called negative free
energy,

∫

q(S,Θ) log
p(S,Θ, Y )

q(S,Θ)
dSdΘ.

Clearly, q(S,Θ) depends on Y , but for simplicity we do not indicate this explicitly in
the notation.

Empirically, variational Bayesian approximations have often been shown to perform
well in earlier contributions, but the convergence behaviour of the algorithm has not
been examined in detail, nor have the asymptotic properties of the variational Bayesian
estimator of Θ been established; formal theoretical analysis of the quality of the method
needs to be studied.

Hall et al. (2002) considered a likelihood-based version of the problem in which, for
fixed Θ, a variational approximation q(S) for p(S|Y,Θ) is chosen to maximise

∫

q(S) log
p(S, Y |Θ)

q(S)
dS = F (q,Θ). (2)

Formula (2), with the maximising q(S) substituted, provides a lower bound for the
observed-data loglikelihood, evaluated at Θ. Hall et al. (2002) proved that, for cer-
tain Markov models, the parameter estimator obtained by maximising the resulting
lower bound function is asymptotically consistent provided the proportion of all values
that are missing tends to zero. However, their analysis is likelihood-based rather than
Bayesian and, in any case, this sufficient condition is not satisfied in the case of many
problems, such as state space models and mixture models.

In Wang and Titterington (2004) we investigated the consistency properties of both
so-called mean field and variational Bayesian estimators in the context of linear state
space models, in which the above sufficient condition obviously does not hold. The
mean field estimators are obtained as follows: we assume for q(S) a factorised form,
with a factor for each of the individual missing values, which in this case are the state
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variables; each factor involves variational parameters; alternate maximisation of F (q,Θ)
is carried out with respect to the variational parameters and Θ; and the mean field es-
timators of Θ are the values of Θ to which this algorithm converges. The nature of the
algorithm for obtaining the variational Bayesian estimators is similar but incorporates
priors; details are given in the next section. We proved that the mean field approx-
imation is asymptotically consistent when the variances of the noise variables in the
system are sufficiently small, but neither the mean field estimator nor the variational
Bayes estimator is always asymptotically consistent as the ‘sample size’ becomes large -
essentially because of the unrealistic nature of the independence assumption underlying
the variational approximation to the distribution of the missing states. We subsequently
studied the consistency properties of variational Bayesian estimators for mixture models
involving known component densities in Wang and Titterington (2003). It was shown
in Wang and Titterington (2003) that, with probability 1 as the sample size increases
indefinitely, the iterative algorithm for the variational Bayes approximation converges
locally to the maximum likelihood estimator, in the context of that very special model.

In this paper we investigate a more general mixture model, and we consider a more
general iterative algorithm. So far as the parameters Θ are concerned, we shall see in
Section 2 that the iterative algorithm that leads to the variational Bayes estimators
takes the form

Θ(k) = T (Θ(k−1)), (3)

for k = 1, . . . , where T denotes a certain mapping and {Θ(k)} denotes the sequence of
iterates that are produced. Instead, we investigate algorithms of the form

Θ(k) = (1− ε)Θ(k−1) + εT (Θ(k−1))
4
= Φεn(Θ

(k−1)), (4)

for k = 1, . . . and some ε > 0. Obviously, when ε = 1 algorithm (4) becomes algorithm
(3). For mixture models, iterative procedures, such as the EM algorithm, for obtain-
ing maximum likelihood estimates of the parameters, have been widely investigated;
see, for example, Peters and Walker (1978), McLachlan and Peel (2000) and references
therein. Salakhutdinov and Roweis (2003) studied a class of overrelaxed bound op-
timisation algorithms, which are generalisations of the EM algorithm, and provided
theoretical analysis of the convergence properties. As we shall point out, algorithm (3)
is an analogue of the EM algorithm and algorithm (4) is an analogue of an adaptation
of the EM algorithm proposed by Peters and Walker (1978). Motivated by the earlier
work on the EM algorithm, we investigate the version of (4) for calculating approxi-
mate Bayesian estimates, and we prove that the variational Bayesian estimator, for the
parameters of mixture models of normal densities, converges locally to the maximum
likelihood estimator at the rate of O(1/n) in the large sample limit.

2 The mixture model and the variational approximation

We consider a mixture of m d-dimensional multivariate normal densities p1, . . . , pm
with mean vectors µ1, . . . , µm and precision (inverse covariance) matrices Γ1, . . . ,Γm,
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respectively. Thus the density of an observation is given by

p(yi) =
m
∑

s=1

ps(yi)p(si = s), (5)

where yi ∈ IRd denotes the ith observed data vector, and si indicates the hidden compo-
nent that generated it. The components are labelled by s = 1, . . . ,m, and the component
s has mixing coefficient πs = p(si = s) for any i. We write the parameters collectively
as

π =







π1
...
πm






, µ =







µ1
...
µm






, Γ =







Γ1

...
Γm






, Θ =





π

µ

Γ



 .

For each s, 1 ≤ s ≤ m; πs, µs and Γs are elements of IR, IRd and the set of all
real, symmetric d× d matrices, respectively. We denote by A, M and T the respective
m-fold direct sums of these sets with themselves. Then π, µ, Γ and Θ are elements of
A,M, T and their direct sum A⊕M⊕T , respectively. In fact, A and T are generously
large in that the elements of π are probabilities and the precision matrices should be
positive definite, but this does not cause a problem here - and in any case, the natures
of the priors defined next automatically impose appropriate restrictions.

We use priors on the parameters Θ that would be conjugate were the data complete
(i.e. were S known). The mixing coefficients π follow a symmetric Dirichlet distribution
D(λ0). The precisions are independently Wishart, with Γs ∼ W(ν0,Φ0). The means,
conditioned on the precisions, are independently normal, with µs|Γs ∼ N (ρ0, β0Γs),
where β0Γs is the inverse covariance matrix of the normal distribution.

Suppose that we have (complete) data consisting of a random sample of size n, so
that Y = (y1, . . . , yn)

′ and S = (s1, . . . , sn)
′, then the joint density of S, Θ and Y is

p(S,Θ, Y ) = p(π)

m
∏

s=1

p(µs|Γs)p(Γs)
n
∏

i=1

πsi
psi

(yi).

In the variational Bayesian approach, we use an approximating density q(S,Θ), for
p(S,Θ|Y ), which factorises as

q(S,Θ) = q(S)(S)q(Θ)(Θ),

and such that the factors are chosen to maximise the negative free energy

∫

∑

{S}

q(S,Θ) log
p(S,Θ, Y )

q(S,Θ)
dΘ. (6)
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As a result of the form of p(S,Θ, Y ), it follows immediately, by a variational argument,
that the optimal q(S)(S) and q(Θ)(Θ) must factorise as

q(S)(S) =

n
∏

i=1

q
(S)
i (si) and q(Θ)(Θ) = q(π)

m
∏

s=1

q(µs|Γs)q(Γs).

It also follows that, since conjugate priors are used, the factors of the variational poste-
rior q(Θ)(Θ) are functionally identical to the priors, but with different hyperparameter
values: the mixing coefficients π are jointly Dirichlet, with q(π) = D(π : λ1, . . . , λm),
say; the precisions are independently Wishart, with q(Γs) =W(Γs : νs,Φs), say; and the
means conditioned on the precisions are independently normal, with q(µs|Γs) = N (µs :
ρs, βsΓs), say. Here D(π : λ1, . . . , λm), W(Γs : νs,Φs) and N (µs : ρs, βsΓs) denote the
relevant density functions. Note that this reveals the key simplification created by the
variational approximation; the variational approximation to the posterior distribution
of the parameters is a single member of the corresponding conjugate family, whereas
the true posterior, based on the observed, mixture data, is a complicated mixture of a
large number of such conjugate distributions.

As in Attias (1999, 2000), Humphreys and Titterington (2000), Penny and Roberts
(2000), Corduneanu and Bishop (2001) and Ueda and Ghahramani (2003), the appro-

priate values of the hyperparameters and of {q
(S)
i (si), i = 1, . . . , n} are obtained by

an iterative procedure. Suppose that, as we begin the kth iteration, we have current
hyperparameters and values of q(S)(S) superscripted by (k− 1), for k = 1, . . .. Then we
perform the following two steps.

Step 1. Optimise the hyperparameters in q(Θ)(Θ) for fixed {q
(S)(k−1)
i (si), i = 1, . . . , n}.

This gives

λ(k)s =
n
∑

i=1

r
(k−1)
is + λ0, ρ(k)s =

(

n
∑

i=1

r
(k−1)
is yi + β0ρ0

)/(

n
∑

i=1

r
(k−1)
is + β0

)

, (7)

β(k)s =

n
∑

i=1

r
(k−1)
is + β0, ν(k)s =

n
∑

i=1

r
(k−1)
is + ν0,

Φ(k)
s =

n
∑

i=1

r
(k−1)
is (yi − µ̄

(k−1)
s )(yi − µ̄

(k−1)
s )′

+
[

(

n
∑

i=1

r
(k−1)
is )β0(µ̄(k−1)

s − ρ0)(µ̄(k−1)
s − ρ0)′

]/(

n
∑

i=1

r
(k−1)
is + β0

)

+Φ0,

where

r
(k−1)
is = q

(S)(k−1)
i (si = s), µ̄(k−1)

s =
(

n
∑

i=1

r
(k−1)
is yi

)/(

n
∑

i=1

r
(k−1)
is

)

.
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Step 2. Optimise {q
(S)
i (si), si = 1, . . . ,m, i = 1, . . . , n} for fixed q(Θ)(Θ) = q(Θ)(k)(Θ),

corresponding to the hyperparameters as calculated in Step 1.

For s = 1, . . . ,m and i = 1, . . . , n, this results in

r
(k)
is = q

(S)(k)
i (si = s) ∝ π̃(k)s Γ̃(k)1/2

s e−(yi−ρ
(k)
s )′Γ̄(k)

s (yi−ρ
(k)
s )/2−d/(2β(k)

s ) 4
= γ

(k)
is ,

where

π̃(k)s = exp{

∫

q(k)(π) log πsdπ}, (8)

Γ̃(k)
s = exp{

∫

q(k)(Γs) log |Γs|dΓs}, (9)

Γ̄(k)
s = ν(k)s (Φ(k)

s )−1, (10)

and

q(k)(π) = D(π : λ
(k)
1 , . . . , λ

(k)
m ),

q(k)(Γs) =W(Γs : ν
(k)
s ,Φ

(k)
s ),

q(k)(µs|Γs) = N (µs : ρ
(k)
s , β

(k)
s Γs).

If we let γ
(k)
i =

∑m
s=1 γ

(k)
is , i = 1, . . . , n, then r

(k)
is = γ

(k)
is /γ

(k)
i .

This iterative procedure can be initialised at k = 0 by assigning the observations
in some way (either at random or with the help of a clustering algorithm) to the m
components, estimating the mixing weights and component distributions based on this
assignment, thereby providing point estimates Θ(0) for Θ, and taking, for each i and s,

r
(0)
is equal to the predictive probability p(si = s|yi,Θ

(0)).

Based on a quadratic loss function, the Bayesian estimator of a parameter is the
posterior mean; we therefore define the variational Bayesian estimators of parameters
as the means of the variational approximation to the posterior distribution. Therefore,
at stage k of the iteration the corresponding approximations to the variational Bayesian
estimates are given by

π(k)s =
(

n
∑

i=1

r
(k−1)
is + λ0

)

/(n+mλ0), (11)

µ(k)s =
(

n
∑

i=1

r
(k−1)
is yi + β0ρ0

)/(

n
∑

i=1

r
(k−1)
is + β0

)

, (12)

Γ(k)
s =

(

n
∑

i=1

r
(k−1)
is + ν0

)

{ n
∑

i=1

r
(k−1)
is (yi − µ

(k)
s )(yi − µ

(k)
s )′

+
[

(

n
∑

i=1

r
(k−1)
is )β0(µ(k)s − ρ0)(µ(k)s − ρ0)′

]/(

n
∑

i=1

r
(k−1)
is + β0

)

+Φ0

}−1

. (13)
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From this it follows that the hyperparameters in the variational posterior distributions
can be expressed in terms of these estimates as

λ
(k)
s = nπ

(k)
s + λ0, ρ

(k)
s = (nµ

(k)
s π

(k)
s + β0ρ0)/(nπ

(k)
s + β0),

β
(k)
s = nπ

(k)
s + β0, ν

(k)
s = nπ

(k)
s + ν0,

Φ
(k)
s = nπ

(k)
s (Γ

(k)
s )−1 + nπ

(k)
s β0(µ

(k)
s − ρ0)(µ

(k)
s − ρ0)′(nπ

(k)
s + β0)−1 +Φ0.

It is clear from the version of Step 2 corresponding to stage (k − 1) of the iteration

that, for k = 2, . . ., the {r
(k−1)
is } are functions of the elements of Θ(k−1); therefore,

equations (11)-(13) encapsulate the mapping T that corresponds to iteration (3) and
contributes to iteration (4).

3 Convergence of the generalised iterative algorithm for

calculating variational Bayesian estimates

Our theoretical analysis will be somewhat simpler if we deal with a slight modification
of the iterations (11)-(13) in the previous section, corresponding to omission of the
hyperparameters associated with the priors. The theoretical results that we obtain for
the modified iteration will apply also to the original version because, asymptotically,
the choice of prior hyperparameters will have negligible effect on posterior distributions,
whether they be exact or variational approximations; information from the sample will
dominate the prior. Therefore, instead of (11)-(13) we analyse the iteration defined by

π(k)s =
1

n

n
∑

i=1

r
(k−1)
is

4
= Πs(Θ

(k−1)), (14)

µ(k)s =
(

n
∑

i=1

r
(k−1)
is yi

)/(

n
∑

i=1

r
(k−1)
is

)

4
=Ms(Θ

(k−1)), (15)

Γ(k)
s =

(

n
∑

i=1

r
(k−1)
is

)(

n
∑

i=1

r
(k−1)
is (yi − µ

(k−1)
s )(yi − µ

(k−1)
s )′

)−1 4
= Ss(Θ

(k)), (16)

where r
(k−1)
is is as defined in Step 2 in Section 2, but for k − 1 instead of k.

Let

Π(Θ) =







Π1(Θ)
...

Πm(Θ)






, M(Θ) =







M1(Θ)
...

Mm(Θ)






, S(Θ) =







S1(Θ)
...

Sm(Θ)






.

Then Π, M and S are operators from A⊕M⊕T to itself, and the iterative procedure
(14)-(16) can be rewritten in the form of (3) as

Θ(k) = T (Θ(k−1)) =





Π(Θ(k−1))
M(Θ(k−1))
S(Θ(k−1))



 . (17)
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Similarly, the iterative stage in the generalised algorithm corresponding to (4) is

Θ(k) = (1− ε)Θ(k−1) + ε





Π(Θ(k−1))
M(Θ(k−1))
S(Θ(k−1))





4
= Φεn(Θ

(k−1)), (18)

for k = 0, 1, . . . and some ε > 0. As remarked in Section 1, when ε = 1 algorithm (18)
becomes (17).

Suppose that the true value of the parameter Θ is Θ∗; we may then establish the
following theorem.

Theorem 1 With probability 1 as n approaches infinity, the iterative procedure (18)
converges locally to the true value Θ∗ whenever 0 < ε < 2; that is, the iterative procedure
(18) converges to the true value Θ∗ whenever 0 < ε < 2 and the starting values are
sufficiently near to Θ∗.

For mixture models with unknown parameters in the components, the negative free
energy (6) may be multimodal (see for example Duda and Hart (1973)), so that the
variational Bayes algorithm may converge to different local maxima if different starting
values (or hyperparameters) are chosen. Therefore, only the local convergence property
is proved here. The existence of similar multimodality is well known in maximum like-
lihood estimation of mixture parameters.

The details of the proof of Theorem 1 are provided in the Appendix; only a skeletal
account is given here. Although the details are complicated, the strategy is a familiar
one for proving convergence of iterative algorithms. The key is to show that the mapping
Φεn(Θ) is locally contractive at Θ∗. For a deterministic mapping, Ostrowski’s Theorem
provides a sufficient condition for this, namely that the matrix Fréchet derivative of
the mapping should have a norm that is less than 1. Here we show that, if ∇Φε

n(Θ
∗)

denotes the Fréchet derivative of Φε
n(Θ) evaluated at Θ∗, then, with probability 1,

∇Φεn(Θ
∗) converges to an operator of which the sup-norm is less than 1. The main

part of the proof is given in Appendix B, which follows a brief Appendix A in which
appropriate norms are defined. Appendix B provides the detailed calculation of the
Fréchet derivatives of Π,M and S. It then derives the almost sure limits of these
derivatives, which requires the calculation of the limits of ris and their derivatives. To
do this, we first give two necessary lemmas in Appendix C, we then derive the limits of
the Fréchet derivatives of the functions corresponding to the right-hand sides of (8)-(10)
in Appendix D, and we further study the limits of the variational probabilities ris of
the labels and their derivatives in Appendix E. Once this has been achieved, the rest
of Appendix B can go on to show that the operator corresponding to the limits of the
Fréchet derivatives, evaluated at the true Θ∗, has a norm that is less than 1. This
requires the final appendix, Appendix F, which contains an argument similar to that
used by Peters and Walker (1978) in their maximum-likelihood work.
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4 The convergence rate of the variational Bayesian esti-

mator

It is known that in general the (non-variational) Bayesian estimator and the MLE
approach each other at rate O(1/n). In this section we estimate the rate at which the
variational Bayesian estimator converges to the maximum likelihood estimator (MLE).
Suppose that the sample size n is large, and let Θ̃n be the strongly consistent MLE of
the parameter Θ; that is, it is the solution of the following likelihood equations (see, for
example, Redner and Walker (1984)). For s = 1, . . . ,m,

Lns (Θ)
4
= πs −

1

n

n
∑

i=1

ps(yi)πs
p(yi)

= 0,

L̄ns (Θ)
4
= µs −

{ 1

n

n
∑

i=1

yi
ps(yi)

p(yi)

}/{ 1

n

n
∑

i=1

ps(yi)

p(yi)

}

= 0,

L̃ns (Θ)
4
= Γs −

{ 1

n

n
∑

i=1

ps(yi)

p(yi)

}{ 1

n

n
∑

i=1

ps(yi)

p(yi)
(yi − µs)(yi − µs)

′
}−1

= 0.

Denote by Θ̂n the variational Bayes estimator, which is the stationary point of
iteration (18) in the neighbourhood of the true value; that is, Θ̂n satisfies

Θ̂n −





Π(Θ̂n)

M(Θ̂n)

S(Θ̂n)



 = 0, (19)

and the hyperparameters in the variational posterior distributions q(π), q(Γs) and
q(µs|Γs) are correspondingly given by

λ̂ns = nπ̂ns + λ0, ρ̂ns = (nµ̂ns π̂
n
s + β0ρ0)/(nπ̂ns + β0),

β̂ns = nπ̂ns + β0, ν̂ns = nπ̂ns + ν0,

Φ̂ns = nπ̂ns (Γ̂
n
s )

−1 + nπ̂ns β
0(µ̂ns − ρ

0)(µ̂ns − ρ
0)′(nπ̂ns + β0)−1 +Φ0.

Denote by γ̂nis and γ̂ni the converged values of γ
(k)
is , γ

(k)
i , as k →∞, and by p̂nis and

p̂ni the evaluations of ps(yi) and p(yi) at Θ̂
n, respectively. It then follows from the first

equation of (19) that

0 = π̂ns −
1

n

n
∑

i=1

γ̂nis
γ̂ni

= Lns (Θ̂
n) +

1

n

n
∑

i=1

{

π̂ns p̂
n
is

p̂ni
−
γ̂nis
γ̂ni

}

= Lns (Θ̂
n) +

1

n

n
∑

i=1

π̂ns p̂
n
isγ̂

n
i − p̂

n
i γ̂

n
is

p̂ni γ̂
n
i

. (20)
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From (31) in Appendix E we obtain

γ̂nis = π̂ns |Γ̂
n
s |

1/2e−(yi−µ̂
n
s )

′Γ̂n
s (yi−µ̂

n
s )/2 +O(

1

n
) = π̂ns p̂

n
is +O(

1

n
)

and thus γ̂ni = p̂ni + O(1/n), so that the second term of (20) is of order O(1/n). From
Taylor’s expansion the first term can be rewritten as

Lns (Θ̂
n) = Lns (Θ̃

n) +∇Lns
(

Θ̃n + λ(Θ̂n − Θ̃n)
)

(Θ̂n − Θ̃n)

= ∇Lns
(

Θ̃n + λ(Θ̂n − Θ̃n)
)

(Θ̂n − Θ̃n),

where 0 ≤ λ ≤ 1. Thus, we obtain

0 = ∇Lns
(

Θ̃n + λ(Θ̂n − Θ̃n)
)

(Θ̂n − Θ̃n) +O(
1

n
).

Along the same lines as above, from the second and the third equations of (19), we have

0 = ∇L̄ns
(

Θ̃n + λ(Θ̂n − Θ̃n)
)

(Θ̂n − Θ̃n) +O(
1

n
),

0 = ∇L̃ns
(

Θ̃n + λ(Θ̂n − Θ̃n)
)

(Θ̂n − Θ̃n) +O(
1

n
).

If we let

Ln =



































Ln1
...
Lnm
L̄n1
...
L̄nm
L̃n1
...

L̃nm



































,

the last three equations give

∇Ln
(

Θ̃n + λ(Θ̂n − Θ̃n)
)

(Θ̂n − Θ̃n) +O(
1

n
) = 0.

We have proved that Θ̂n converges to the true value Θ∗, and it is known that the
MLE Θ̃n tends to Θ∗, so a derivation similar to the proof of Theorem 1 gives that, for
any B ∈ A⊕M⊕ T , ∇Ln

(

Θ̃n + λ(Θ̂n − Θ̃n)
)

(B) converges to ΨIE(HR(B)), which is
positive definite, where Ψ, H and R(·) are as defined in the Appendix B. Therefore, it
follows that Θ̂n = Θ̃n +O(1/n).
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5 Conclusion

Exact theoretical analysis of the quality of variational Bayesian approximations is an
important issue. In this paper we have investigated iterative algorithms for estimating
parameters in normal mixture models. Its results are twofold. First we proposed a
generalised algorithm, involving a step-size parameter ε, for obtaining the variational
Bayesian estimates. Small-scale numerical experiments (not reported here) showed that,
for appropriate step sizes, the generalised algorithm provides accelerated convergence
relative to the basic algorithm, which corresponds to ε = 1; if the components in the
mixture model are widely separated, the optimal ε appears to be only slightly greater
than 1, whereas, if the components are nearly identical, the optimal ε is close to 2. This
coincides with the theoretical analysis of Peters and Walker (1978), who discussed the
optimal ε for obtaining maximum likelihood estimates.

Secondly, we proved theoretically that the variational Bayesian estimators for mix-
ture models of normal densities converge locally to the maximum likelihood estimators
at the rate of O(1/n) in the large sample limit, which had not been justified in the
previous literature. This implies that in mixture models, and so far as point estimation
is concerned, the factorised form of the posterior distribution does not cause bias for
large samples, so the variational Bayesian estimator is very effective and asymptotically
consistent for mixture models. However, this property may not hold for other models;
for example, we proved in Wang and Titterington (2004) that the variational Bayes es-
timators for linear state space models are not always asymptotically consistent as the
‘sample size’ becomes large, essentially because the factorised form of Q(S)(S) destroys
the intrinsic correlations between the hidden states in the models.

Of course, proving that the means of the variational posterior distribution converge
to the maximum likelihood estimators is a rather limited achievement, and it is ap-
propriate to investigate more features of the distributions. As remarked in Section 2,
in scenarios like mixtures, where the complete-data Bayesian analysis can be based on
conjugate priors, the variational posterior typically takes the conjugate form whereas
the correct posterior based on the observed data certainly does not. It is of particular
interest to ask if the variances (covariances) of the variational posteriors have the same
properties as the means; that is, do the variances (covariances) associated with vari-
ational Bayesian approximations converge to those of the true posterior distributions
in some sense? In Wang and Titterington (2005) we examine this problem and investi-
gate the performance of variational Bayesian approximations in this context for interval
estimation. It turns out that the covariance matrices corresponding to the variational
Bayesian approximation are normally ‘too small’ compared with those for the MLE, and
therefore the variational Bayes approximations to interval estimates are unrealistically
narrow.
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Appendix: Proof of Theorem 1

Appendix A The establishment of suitable norms.

In order that the derivative in the vector space A⊕M⊕T makes sense, we endow
the various spaces with norms. We define the norm of µ ∈ IRd as ‖µ‖ = (µ′µ)1/2, and
the norm of a real, symmetric d× d matrix Γ as

‖Γ‖ = sup
µ∈IRd

, ‖µ‖=1

‖Γµ‖.

The norms on the direct sums A, M, T and A⊕M⊕ T are defined naturally as

‖π‖ =
∑m

s=1 |πs|, for π =







π1
...
πm






∈ A,

‖µ‖ =
∑m

s=1 ‖µs‖, for µ =







µ1
...
µm






∈M,

‖Γ‖ =
∑m

s=1 ‖Γs‖, for Γ =







Γ1

...
Γm






∈ T ,

‖Θ‖ = ‖π‖+ ‖µ‖+ ‖Γ‖, for Θ =





π

µ

Γ



 ∈ A⊕M⊕ T .

For any operator Φ on the vector space A⊕M⊕ T , its norm is defined as

‖Φ‖ = sup
‖B‖=1

‖Φ(B)‖. (21)

Also, ∇Φ denotes the Fréchet derivative of Φ. When ambiguity exists, the specific vector
variable of differentiation appears as a subscript of the symbol ∇. ∇Φ(Θ) denotes the
Fréchet derivative evaluated at Θ, and is a linear operator on A⊕M⊕T ; see Chapter
X of Bhatia (1997).

Appendix B Proof of Theorem 1.
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We first prove that, with probability 1 as n approaches infinity, the operator Φε
n

on A ⊕M⊕ T is locally contractive in the norm defined above; that is, there exists a
number λ, 0 ≤ λ < 1, such that

‖Φεn(Θ̄)− Φεn(Θ
∗)‖ ≤ λ‖Θ̄−Θ∗‖,

whenever Θ̄ lies sufficiently near Θ∗.

Since Θ̄ is near Θ∗, it follows from Taylor’s theorem on Banach spaces (see p.315 of
Bhatia (1997)) that

‖Φεn(Θ̄)− Φεn(Θ
∗)‖ ≤ ‖∇Φε

n(Θ
∗)‖‖Θ̄−Θ∗‖+O(‖Θ̄−Θ∗‖2).

Consequently, it is sufficient to show that ∇Φε
n(Θ

∗) converges with probability 1 to an
operator which has norm less than 1.

For

B =





u

v

W



 =



































u1
...
um
v1
...
vm
W1

...
Wm



































∈ A⊕M⊕ T ,

from the definition of the operator Φε
n, we have

∇Φεn(Θ)(B) = (1− ε)Im(1+2d)B + ε





∇πΠ ∇µΠ ∇ΓΠ
∇πM ∇µM ∇ΓM
∇πS ∇µS ∇ΓS









u

v

W



 ,

where Im(1+2d) denotes the m(1 + 2d)×m(1 + 2d) identity matrix. Also, the entries of
the above matrix can themselves be represented as matrices of Fréchet derivatives.

In the sequel, we drop the superscript (k−1) from ris, γis and γi to indicate that the
operator Φε

n is being evaluated at some given Θ, and not at a member of the iterative
sequence obtained by the algorithm. After a straightforward calculation we obtain, at
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the true value Θ∗,

∇πj
Πs(Θ

∗) =
1

n

n
∑

i=1

∇πj
ris,

∇µj
Πs(Θ

∗) =
1

n

n
∑

i=1

∇µj
ris,

∇Γj
Πs(Θ

∗) =
1

n

n
∑

i=1

∇Γj
ris,

∇πj
Ms(Θ

∗) =
[

(

n
∑

i=1

ris
)(

n
∑

i=1

yi∇πj
ris
)

−
(

n
∑

i=1

risyi
)(

n
∑

i=1

∇πj
ris
)

]/

(

n
∑

i=1

ris
)2
,

∇µj
Ms(Θ

∗) =
[

(

n
∑

i=1

ris
)(

n
∑

i=1

yi∇µj
ris
)

−
(

n
∑

i=1

risyi
)(

n
∑

i=1

∇µj
ris
)

]/

(

n
∑

i=1

ris
)2
,

∇Γj
Ms(Θ

∗) =
[

(

n
∑

i=1

ris
)(

n
∑

i=1

yi∇Γj
ris
)

−
(

n
∑

i=1

risyi
)(

n
∑

i=1

∇Γj
ris
)

]/

(

n
∑

i=1

ris
)2
,

∇πj
Ss(Θ

∗) = (
n
∑

i=1

∇πj
ris)

(

n
∑

i=1

ris(yi − µ
∗
s)(yi − µ

∗
s)

′
)−1

−(
n
∑

i=1

ris)
(

n
∑

i=1

ris(yi − µ
∗
s)(yi − µ

∗
s)

′
)−1( n

∑

i=1

(yi − µ
∗
s)(yi − µ

∗
s)

′∇πj
ris

)

×
(

n
∑

i=1

ris(yi − µ
∗
s)(yi − µ

∗
s)

′
)−1

,

∇µj
Ss(Θ

∗)vj =
(

n
∑

i=1

ris(yi − µ
∗
s)(yi − µ

∗
s)

′
)−1

(

n
∑

i=1

∇µj
risvj)

−(
n
∑

i=1

ris)
(

n
∑

i=1

ris(yi − µ
∗
s)(yi − µ

∗
s)

′
)−1( n

∑

i=1

[

(yi − µ
∗
s)(yi − µ

∗
s)

′∇µj
risvj

−risvj(yi − µs)
′δsj − ris(yi − µs)v

′
jδsj

]

)(

n
∑

i=1

ris(yi − µ
∗
s)(yi − µ

∗
s)

′
)−1

,

∇Γj
Ss(Θ

∗)Wj =
(

n
∑

i=1

ris(yi − µ
∗
s)(yi − µ

∗
s)

′
)−1

(

n
∑

i=1

∇Γj
risWj)

−(
n
∑

i=1

ris)
(

n
∑

i=1

ris(yi − µ
∗
s)(yi − µ

∗
s)

′
)−1( n

∑

i=1

(yi − µ
∗
s)(yi − µ

∗
s)

′∇Γj
risWj

)

×
(

n
∑

i=1

ris(yi − µ
∗
s)(yi − µ

∗
s)

′
)−1

,
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where δsj is the Kronecker delta function; δsj = 1 if s = j and δsj = 0 otherwise.

To obtain the limits of these derivatives as n tends to infinity, we need the limits
of ris and all its derivatives with respect to π, µ and Γ, evaluated at π∗, µ∗ and Γ∗.
These limits are established in Appendix E, which is based on Appendices C and D.
For s = 1, . . . ,m, we denote by φ∗s and φ∗ the evaluations of ps(y) and p(y) at Θ∗ for
any random vector y distributed according to the probability density of the form (5),
and introduce the notation

α1s =
φ∗s
φ∗ , α2s = π∗s

φ∗s
φ∗Γ

∗
s(y − µ

∗
s),

α3s =
1
2π

∗
s
φ∗s
φ∗

[

Γ∗s(y − µ
∗
s)(y − µ

∗
s)

′Γ∗s − Γ∗s
]

,

Λ = diag(π∗s ), Ω = diag(π∗−1
s Γ∗−1

s ), Σ = diag(2π∗−1
s Γ∗−2

s ).

It can be verified that

IE
(φ∗s
φ∗

)

=

∫

φ∗s
φ∗
p(y|Θ∗)dy = 1, (22)

IE
(φ∗s
φ∗

(y − µ∗s)
)

=

∫

φ∗s(y − µ
∗
s)

φ∗
p(y|Θ∗)dy = 0, (23)

IE
(φ∗s
φ∗

(y − µ∗s)(y − µ
∗
s)

′
)

=

∫

φ∗s(y − µ
∗
s)(y − µ

∗
s)

′dy = Γ∗−1
s , (24)

IE
(φ∗s
φ∗

(y − µ∗s)(y − µ
∗
s)

′(y − µ∗s)
)

= 0, (25)

IE
(φ∗s
φ∗
[

(y − µ∗s)(y − µ
∗
s)

′
]2
)

= 3Γ∗−2
s . (26)

Thus, by (32)-(35) and (22)-(26) we can study the limits of the above Fréchet derivatives.
As a demonstration of how the calculations go, we consider ∇µj

Ms(Θ
∗) for s 6= j. For

this we have

∇µj
Ms(Θ

∗) =
( 1

n

n
∑

i=1

ris
)−2

[

( 1

n

n
∑

i=1

ris
)( 1

n

n
∑

i=1

yi∇µj
ris
)

−
( 1

n

n
∑

i=1

risyi
)( 1

n

n
∑

i=1

∇µj
ris
)

]

→ −IE[y(y − µ∗j )
′Γ∗j (φ

∗
sπ

∗
jφ

∗
j/φ

∗2)]

+IE[yφ∗s/φ
∗]IE[(y − µ∗j )

′Γ∗j (φ
∗
sπ

∗
jφ

∗
j/φ

∗2)]

= −π∗−1
s Γ∗−1

s IE(α2sα
2
j ).

Using similar manipulations and after very careful calculations, we obtain

∇πΠ(Θ∗)u→ Imu− ΛIE







α11
...
α1m







{

m
∑

s=1

α1sus

}

,
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∇µΠ(Θ∗)v → −ΛIE







α11
...
α1m







{

m
∑

s=1

(α2s)
′vs

}

,

∇ΓΠ(Θ∗)W → −ΛIE







α11
...
α1m







{

m
∑

s=1

tr{α3sWs}
}

,

∇πM(Θ∗)u→ −ΩIE







α21
...
α2m







{

m
∑

s=1

α1sus

}

,

∇µM(Θ∗)v → Imdv − ΩIE







α21
...
α2m







{

m
∑

s=1

(α2s)
′vs

}

,

∇ΓM(Θ∗)W → −ΩIE







α21
...
α2m







{

m
∑

s=1

tr{α3sWs}
}

,

∇πS(Θ
∗)u→ −ΣIE







α31
...
α3m







{

m
∑

s=1

α1sus

}

,

∇µS(Θ
∗)v → −ΣIE







α31
...
α3m







{

m
∑

s=1

(α2s)
′vs

}

,

∇ΓS(Θ
∗)W → ImdW − ΣIE







α31
...
α3m







{

m
∑

s=1

tr{α3sWs}
}

.

Set

R(B) =

m
∑

s=1

α1sus +

m
∑

s=1

(α2s)
′vs +

m
∑

s=1

tr{α3sWs},

Ψ =





Λ 0 0
0 Ω 0
0 0 Σ



 , H =





H1

H2

H3



 =



































α11
...
α1m
α21
...
α2m
α31
...
α3m



































.
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Accordingly, we have that, as n tends to infinity, ∇Φε
n(Θ

∗)(B) converges to

Im(1+2d)B − εΨIE(HR(B)).

We define the inner product on IR as scalar multiplication, the inner product on
IRd as 〈µ, ν〉 = µ′ν and the inner product on the set of real, symmetric d × d matrices
as 〈A,B〉 = tr{AB}. Naturally, the inner products on the direct sums A, M, T and
A⊕M⊕T are the corresponding direct sum inner products. For instance, 〈Θ1,Θ2〉 =
〈π1,π2〉+ 〈µ1,µ2〉+ 〈Γ1,Γ2〉, for

Θ1 =





π1

µ1

Γ1



 ∈ A⊕M⊕ T , Θ2 =





π2

µ2

Γ2



 ∈ A⊕M⊕ T .

For any operator Φ on the vector space A⊕M⊕T , its norm as defined in (21) is equal
to sup‖B‖=1〈B,Φ(B)〉.

It is obvious that Ψ and IE(HR(·)) are positive definite and symmetric with re-
spect to the inner product which we have defined. Therefore, as n tends to infinity,
∇Φεn(Θ

∗)(·) < Im(1+2d) whenever ε > 0.

Furthermore, Peters and Walker (1978) proved that, when 0 < ε < 2, the operator
of the form Im(1+2d)− εΨIE(HR(·)) is greater than −Im(1+2d) with respect to the inner
product. For completeness, we have included a brief proof in Appendix F.

Thus we have proved that ∇Φε
n(Θ

∗) converges with probability 1 to an operator
with norm less than 1, and consequently the operator Φε

n is locally contractive.

Moreover, along lines similar to the above argument it is easy to deduce that Φε
n(Θ

∗)
tends to Θ∗ as n approaches infinity. Therefore, since

‖Θ(k+1) −Θ∗‖ ≤ ‖Φεn(Θ
(k))− Φεn(Θ

∗)‖+ ‖Φεn(Θ
∗)−Θ∗‖

≤ λ‖Θ(k) −Θ∗‖+ ‖Φεn(Θ
∗)−Θ∗‖,

the iterative procedure (18) converges locally to the true value Θ∗ as n approaches
infinity.

Appendix C Two necessary lemmas.

Lemma 1 is a variant of the Laplace approximation; see Chapter 4 of Evans and Swartz
(2000). Its role is twofold: on one hand, it proves that the mean of a function of a random
vector converges to the function evaluated at the mean, under prescribed conditions,
which will be used for studying the limits of ris; on the other hand, it gives the order of
the difference between them, which serves to estimate the convergence rate in section 4.
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Lemma 1 Suppose that pn(x) is the probability density function of the IRm-valued ran-
dom vector Xn = (x1n, . . . , x

m
n )′, that IE(Xn) = µn → µ and that Covij(Xn) = O(1/n)

as n→∞. Then, for any function f(·) with continuous second-order derivative near µ,
it holds that

IE(f(Xn)) = f(µn) +O(
1

n
).

Proof. From Taylor expansion we have that

f(Xn) = f(µn) +
∑m

i=1
∂f(µn)
∂xi

n
(xin − µ

i
n) +

1
2

∑m
i,j=1

∂2f(µn)

∂xi
n∂x

j
n

(xin − µ
i
n)(x

j
n − µ

j
n)

+o(‖Xn − µn‖
2),

and thus

IE(f(Xn)) = f(µn) +
∑m

i=1
∂f(µn)
∂xi

n
IE(xin − µ

i
n)

+ 1
2

∑m
i,j=1

∂2f(µn)

∂xi
n∂x

j
n

IE((xin − µ
i
n)(x

j
n − µ

j
n)) + o(IE(‖Xn − µn‖2)).

Since f(·) has continuous second-order derivative near µ, ∂2f(µn)

∂xi
n∂x

j
n

is bounded. Noting

that IE(xin) = µin and IE((xin − µ
i
n)(x

j
n − µ

j
n)) = O(1/n), we have IE(f(Xn)) = f(µn) +

O(1/n).

The following lemma is a slight generalisation of the strong law of large numbers. It
establishes a law of large numbers result for functions of a random variable when the
functions involved have a limit.

Lemma 2 If {Xn} is a sequence of independent and identically distributed random
variables and Fn(·)→ F0(·) uniformly, then, with probability 1,

1

n

n
∑

i=1

Fn(Xi)→ IE(F0(Xi)).

Proof. In fact, we have that

|
1

n

n
∑

i=1

Fn(Xi)− IE(F0(Xi))|

≤ |
1

n

n
∑

i=1

Fn(Xi)−
1

n

n
∑

i=1

F0(Xi)|+ |
1

n

n
∑

i=1

F0(Xi)− IE(F0(Xi))|

≤
1

n

n
∑

i=1

|Fn(Xi)− F0(Xi)|+ |
1

n

n
∑

i=1

F0(Xi)− IE(F0(Xi))|

≤ sup
x
|Fn(x)− F0(x)|+ |

1

n

n
∑

i=1

F0(Xi)− IE(F0(Xi))|.

By the strong law of large numbers, the second term tends to zero, as does the first
term because of the uniform convergence.
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Appendix D Limits of certain Fréchet derivatives.

Here we consider the limits of the Fréchet derivatives, with respect to π, µ and Γ,
of the quantities

I1 =
∫

q(π) log πsdπ, I2 =
∫

q(Γs) log |Γs|dΓs, I3 = νs(Φs)
−1,

with

q(π) = D(π;λ1, . . . , λm), (27)

q(Γs) = W(Γs; νs,Φs), (28)

q(µs|Γs) = N (µs; ρs, βsΓs), (29)

and
λs = nπs + λ0, ρs = (nµsπs + β0ρ0)/(nπs + β0),

βs = nπs + β0, νs = nπs + ν0,
Φs = nπs(Γs)

−1 + nπsβ
0(µs − ρ0)(µs − ρ0)′(nπs + β0)

−1 +Φ0.

If we write

ψ(x) =
d

dx
log Γ(x) = Γ−1(x)

∫ ∞

0

zx−1e−z log zdz,

where Γ(x) is the gamma function, then we have

∫

q(π) log πsdπ = ψ(λs)− ψ(
m
∑

s=1

λs).

Since
∑m

s=1 λs = n+mλ0, it follows that

∇πs

∫

q(π) log πsdπ = ∇πs

[

Γ−1(λs)

∫ ∞

0

zλs−1e−z log zdz
]

= nΓ−2(λs)

[ ∫ ∞

0

zλs−1e−z log2 zdz

∫ ∞

0

zλs−1e−zdz

−
(

∫ ∞

0

zλs−1e−z log zdz
)2
]

. (30)

We consider the integral of the form
∫ ∞

0

zλs−1e−zf(z)dz

for some function f(·) with continuous second-order derivative.

If we make the change of variable z = u(λs − 1) and denote f(u(λs − 1)) by h(u),
we obtain

∫ ∞

0

zλs−1e−zf(z)dz = (λs − 1)λs

∫ ∞

0

e−(λs−1)(u−log u)h(u)du.
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Obviously, k(u)
4
= u − log u attains its global minimum at û = 1, and therefore

an application of the Laplace approximation yields (see for example Chapter 4 of
Evans and Swartz (2000))

∫∞

0
e−(λs−1)(u−log u)h(u)du = (2π)1/2e−(λs−1)

{

h(û)(λs − 1)−1/2

+(λs − 1)−3/2[a1h(û)− a2h′(û) + a3h
′′(û)] + o((λs − 1)−3/2)

}

,

where

a1 = −
3k(4)(û)

4!
+

1

2

(k(3)(û)

3!

)2

15, a2 =
3k(3)(û)

3!
, a3 =

1

2
.

Letting f(z) be 1, log z and log2 z, respectively, we obtain

∫ ∞

0

zλs−1e−zdz = (2π)1/2e−(λs−1)(λs − 1)λs

{

(λs − 1)−1/2 + a1(λs − 1)−3/2 + o((λs − 1)−3/2)
}

,

∫ ∞

0

zλs−1e−z log zdz = (2π)1/2e−(λs−1)(λs − 1)λs

{

(λs − 1)−1/2 log(λs − 1) + (λs − 1)−3/2[a1 log(λs − 1)− a2 − a3]

+o((λs − 1)−3/2)
}

,

∫ ∞

0

zλs−1e−z log2 zdz = (2π)1/2e−(λs−1)(λs − 1)λs

{

(λs − 1)−1/2 log2(λs − 1) + (λs − 1)−3/2[a1 log
2(λs − 1)− 2a2 log(λs − 1)

+2a3(1− log(λs − 1))] + o((λs − 1)−3/2)
}

.

Hence, after a straightforward calculation we obtain, as n→∞,

∇πs

∫

q(π) log πsdπ ∼
2a3n(λs−1)−2+o((λs−1)−1)

(λs−1)−1+2a1(λs−1)−2+o((λs−1)−2)

→ 1
πs
.

It is obvious that the derivatives of
∫

q(π) log πsdπ with respect to µ, Γ and πj
(j 6= s) are zero.

The integral I2 can be rewritten as

∫

q(Γs) log |Γs|dΓs =
d
∑

k=1

ψ((νs + 1− k)/2)− log |Φs|+ d log 2,
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and it follows that

∇πs

∫

q(Γs) log |Γs|dΓs

= ∇πs

{

∑d
k=1 Γ

−1((νs + 1− k)/2)
∫∞

0
z(νs+1−k)/2−1e−z log zdz

}

−∇πs
log |Φs|,

Along the same lines as (30), we obtain

∇πs

{

Γ−1((νs + 1− k)/2)

∫ ∞

0

z(νs+1−k)/2−1e−z log zdz
}

→
d

πs
,

and it is easy to show that

∇πs
log |Φs| = tr

(

Φ−1
s ∇πs

Φs

)

→ tr
(

[

πsΓ
−1
s

]−1
Γ−1
s

)

=
d

πs
.

Therefore,

∇πs

∫

q(Γs) log |Γs|dΓs → 0.

Similarly, for any real, symmetric d× d matrix W ,
{

∇Γs

∫

q(Γs) log |Γs|dΓs
}

W

=
{

∇Γs

[

∑d
k=1 Γ

−1((νs + 1− k)/2)
∫∞

0
z(νs+1−k)/2−1e−z log zdz

− log |Φs|+ d log 2
]}

W

= −
{

∇Γs
log |Φs|

}

W = −tr
{

Φ−1
s ∇Γs

ΦsW
}

→ tr{
[

πsΓ
−1
s

]−1
πsΓ

−1
s WΓ−1

s } = tr{Γ−1
s W}.

The derivatives of
∫

q(Γs) log |Γs|dΓs in π, µ, Γj (j 6= s) are zero.

It is easy to obtain that ∇Γs
I3 converges to Id and the other derivatives converge to

zero.

Appendix E Now we study the limits of ris and their derivatives.

Since π, Γs and µs have the variational posterior densities as (27)-(29), it is obvious
that, as n tends to infinity, the mean of πs corresponding to the density q(π) is

λs

/

m
∑

s=1

λs = (nπs + λ0)
/

m
∑

s=1

(nπs + λ0)→ πs,

the covariance between πs and πt, for s 6= t, is

−λsλt
/[

(
∑m

s=1 λs)
2(
∑m

s=1 λs + 1)
]

= − (nπs + λ0)(nπt + λ0)
/

[(n+mλ0)2(n+mλ0 + 1)]
= O( 1n )→ 0,
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and the variance of πs is

λs(

m
∑

s=1

λs − λs)
/

[

(

m
∑

s=1

λs)
2(

m
∑

s=1

λs + 1)
]

= O(
1

n
)→ 0;

similarly, the mean of Γs corresponding to the density q(Γs) is

νs(Φs)
−1 → Γs,

and its covariance matrix is 2νs(Φs)
−1 ⊗ (Φs)

−1 = 2νs(Φs ⊗ Φs)
−1, whose components

obviously tend to 0 at the rate of O(1/n), where ⊗ denotes the Kronecker product.

Thus from Lemma 1 of Appendix C and Taylor’s expansion we have

π̃s = exp{
∫

q(π) log πsdπ} = exp{log(πs) +O( 1n )} = πs +O( 1n ),

Γ̃s = exp{
∫

q(Γs) log |Γs|dΓs} = |Γs|+O( 1n ).

It is also obvious that Γ̄s = νs(Φs)
−1 = Γs + O(1/n), ρs = µs + O(1/n) and 1/βs =

O(1/n).

Therefore, noting the definition of γis we obtain that

γis = πs|Γs|
1/2e−(yi−µs)

′Γs(yi−µs)/2 +O(
1

n
). (31)

Furthermore, we note that the ris and their derivatives with respect to π, µ and Γ
are functions of yi, which converge uniformly in yi as n tends to infinity, according to
(31) and Appendix D. Thus, if {yi} is a sequence of samples of the random vector y
distributed according to the probability density of the form (5) and f(·) is any continuous
function on IRd, it follows from Lemma 2 of Appendix C that, with probability 1,

1

n

n
∑

i=1

f(yi)ris → IE[f(y)πsφs/φ], (32)

1

n

n
∑

i=1

f(yi)∇πj
ris → δsjIE[f(y)φs/φ]− IE[f(y)πsφsφj/φ

2], (33)

1

n

n
∑

i=1

f(yi)∇µj
ris → δsjIE[f(y)φsπs(y − µs)

′Γs/φ]

−IE[f(y)πsφs(y − µj)
′Γjπjφj/φ

2], (34)

1

n

n
∑

i=1

f(yi)∇Γj
risWj → δsjIE

[

f(y)πsφs/(2φ)tr
{[

Γ−1
s − (y − µs)(y − µs)

′
]

Wj

}

]

−IE
[

f(y)πsφsπjφj/(2φ
2)tr

{[

Γ−1
j − (y − µj)(y − µj)

′
]

Wj

}

]

, (35)

where δsj is the Kronecker delta function. Note that φs and φ denote the evaluations
of ps(y) and p(y) at π, Γs and µs, s = 1, . . . ,m.
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Appendix F Here we prove that Im(1+2d) − εΨIE(HR(·)) > −Im(1+2d).

Since 0 < ε < 2 and Ψ is positive definite diagonal matrix, it suffices to show that

〈B, IE(HR(B))〉 ≤ 〈B,Ψ−1B〉.

In fact, we have

〈B, IE(HR(B))〉
= IE

(

〈B,H〉R(B)
)

= IE
[

(

〈u, H1〉+ 〈v, H2〉+ 〈W , H3〉
)

R(B)
]

= IE
(

∑m
s=1 α

1
sus +

∑m
s=1(α

2
s)

′vs +
∑m

s=1 tr{α
3
sWs}

)2

= IE

(

∑m
s=1 π

∗
s
φ∗s
φ∗

[

usπ
∗−1
s + (y − µ∗s)

′Γ∗svs

+tr
{

1
2

[

Γ∗s(y − µ
∗
s)(y − µ

∗
s)

′Γ∗s − Γ∗s
]

Ws

}

]

)2

.

As a corollary of Schwarz’s inequality it holds that, if ηs ≥ 0 for s = 1, · · · ,m and
∑m

s=1 ηs = 1, then |
∑m

s=1 ξsηs|
2 ≤

∑m
s=1 ξ

2
sηs for all {ξs}s=1,··· ,m (see Peters and Walker

(1978)). Applying this result and noting that
∑m

s=1 π
∗
sφ

∗
s/φ

∗ = 1, we obtain

〈B, IE(HR(B))〉

≤ IE

(

∑m
s=1 π

∗
s
φ∗s
φ∗

[

usπ
∗−1
s + (y − µ∗s)

′Γ∗svs

+tr
{

1
2

[

Γ∗s(y − µ
∗
s)(y − µ

∗
s)

′Γ∗s − Γ∗s
]

Ws

}

]2
)

=
∑m

s=1 IE

(

π∗s
φ∗s
φ∗

[

u2sπ
∗−2
s + [(y − µ∗s)

′Γ∗svs]
2

+
(

tr
{

1
2

[

Γ∗s(y − µ
∗
s)(y − µ

∗
s)

′Γ∗s − Γ∗s
]

Ws

})2
+ 2usπ

∗−1
s (y − µ∗s)

′Γ∗svs
+usπ

∗−1
s tr

{[

Γ∗s(y − µ
∗
s)(y − µ

∗
s)

′Γ∗s − Γ∗s
]

Ws

}

+(y − µ∗s)
′Γ∗svstr

{[

Γ∗s(y − µ
∗
s)(y − µ

∗
s)

′Γ∗s − Γ∗s
]

Ws

}

)

=
∑m

s=1

(

u2sπ
∗−1
s IE(

φ∗s
φ∗ ) + v′sπ

∗
sΓ

∗
sIE[

φ∗s
φ∗ (y − µ

∗
s)(y − µ

∗
s)

′]Γ∗svs

+IE
[

π∗s
φ∗s
φ∗

(

tr
{

1
2

[

Γ∗s(y − µ
∗
s)(y − µ

∗
s)

′Γ∗s − Γ∗s
]

Ws

})2
]

+2usIE[
φ∗s
φ∗ (y − µ

∗
s)

′]Γ∗svs

+ustr
{[

Γ∗sIE[
φ∗s
φ∗ (y − µ

∗
s)(y − µ

∗
s)

′]Γ∗s − IE[
φ∗s
φ∗ ]Γ

∗
s

]

Ws

}

+tr
{

Γ∗sIE[
φ∗s
φ∗ (y − µ

∗
s)(y − µ

∗
s)

′(y − µ∗s)
′]Γ∗svsΓ

∗
sWs

}

−IE[φ
∗
s

φ∗ (y − µ
∗
s)

′]Γ∗svstr
{

Γ∗sWs

}

)

=
∑m

s=1

{

u2sπ
∗−1
s + v′sπ

∗
sΓ

∗
svs + tr

{

1
2π

∗
sWsΓ

∗2
s Ws

}

}

= 〈B,Ψ−1B〉,
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where the second-last equality comes from (22)-(26) and the fact that

IE
[

π∗s
φ∗s
φ∗
(

tr
{1

2

[

Γ∗s(y − µ
∗
s)(y − µ

∗
s)

′Γ∗s − Γ∗s
]

Ws

})2
]

= tr
{1

2
π∗sWsΓ

∗2
s Ws

}

,

which can be verified by expressing the matrices in terms of their components and
carrying out a straightforward simplification.
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