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Congratulations to Drs. Celeux, Forbes, Robert, and Titterington (henceforth CFRT)

on a stimulating, important, and much-awaited paper. At least one of the authors’ in-

terest in the problem dates to the discussion of the original DIC paper (Spiegelhalter et

al., 2002) by DeIorio and Robert (2002), where it was shown that the effective sample

size pD as originally defined can behave badly (in particular, it can be negative, a clearly

nonsensical result) for classes of missing data models, especially mixture models. CFRT

suggest that the root problem is poor identifiability of the model parameters, leading

to their posterior mean being a poor estimate, which in turn hurts pD. In the context

of the issues brought about by the missing data Z (which can be treated symmetrically

with the parameters θ, asymmetrically, or integrated out entirely), the authors devlop a

large number of new pD and DIC possibilities, which they classify as “observed,” “com-

plete,” and “conditional.” After defining these new DICs, the authors investigate them

in two settings (a simple random effects setting and a much more challenging mixture

setting) and comparing them in two data examples, one real (the classic “galaxy data”

often used to illustrate mixture modeling) and one simulated.

I like the authors’ cleverness in coming up with alternate DICs that solve certain

problems. The justification for DIC in the original paper, as well as its subsequent vali-

dation in practice, is essentially only within the exponential family, so calling attention

to defects and proposing remedies outside this family is important work. However, the

approach is fairly ad hoc, and also leads us into “casework” (comparing a large number

of competitors in a potentially large number of problem settings) which may not be

a tenable strategy in the long run. DIC is not derivation free, but the authors’ work

does not refer at all to any derivation, nor to any subsequent interpretation of model

complexity. As a result, it’s sometimes hard to get a good feel for why a certain version

works or doesn’t work except through case-specific exemplification.

Still, the approach pays clear dividends. The authors note that pD3 does not perform

well in Table 1, and it also gets the “wrong answer” (1− log 2) in Section 4.1, a setting

where an effective model size statistic that works by counting degrees of freedom (DF)

should obtain 1, since the univariate grand mean θ is the only unknown parameter in

this simple model. While every reader will have his or her favorite, my own preference

is for pD7 since it treats Z and θ symmetrically (though maybe that’s just because I

am not a mixture modeler). Indeed, this is essentially the approach adopted by the

WinBUGS DIC tool, except of course for the means replacing CFRT’s modes. Thus the

performance of this approach here may thus inform about the appropriateness of its use

more broadly, as has occurred with the rise of WinBUGS as a tool for routine Bayesian

data analysis, and hence its seductively easy-to-use DIC tool for model choice as well.
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Other authors have pointed out the problem of the original pD’s tendency to go

outside of the plausible range (i.e., 0 to the actual raw parameter count) in other settings.

An alternate approach often suggested is to generalize more traditional tools for counting

degrees of freedom based on the trace of the hat matrix in Gaussian linear models to

nonlinear and non-Gaussian settings. Lu, Hodges and Carlin (2005, U of M Biostat

tech report) do just this for the DF counter developed by Hodges and Sargent (2001),

obtaining a parametric summary ρ that avoids the “out of range” problem in generalized

linear binomial and Poisson response model settings. Once again, a certain amount of

“casework” is required, but the approach enables a full posterior for DF (instead of a

mere point estimate as pD does), and is also useful in settings where we wish to specify

a sensible prior on the DF allocated to various components of the model. For example,

our idea of how much shrinkage we expect in the collection of Section 4 random effects

may be most easily quantified not by a prior on the variance components τi and λ, but

a prior on the number of effective parameters remaining after the εi are shrunk toward

each other. For models with multiple sets of random effects, we may wish to control

each set separately through priors on the DF each contributes.

Finally, it’s important to continue to monitor the potentially confounding effect of

poor MCMC convergence in the missing data settings the authors stress. Several recent

papers have shown that nonidentifiability is actually better for MCMC convergence

than weak identifiability, since the latter is what leads to the large autocorrelations

that in turn destroy the sampler’s ability to accurately estimate anything. The authors

have worked separately on this problem for some time, but general purpose algorithms

and software for users less expert than themselves (which when it comes to mixtures is

pretty much everybody) appear a few years away.

In summary, model choice is to Bayesians what multiple comparisons is to frequen-

tists: a really hard problem for which there exist several potential solutions, but no

consensus choice. I laud the authors for leading the fight to shed light on the issue in

the context of a challenging and increasingly important class of models.




