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Comment on Article by Jain and Neal

Steven N. MacEachern∗

1 Introduction

It was with great interest that I read Jain and Neal’s paper. In the paper, they address a
tough problem, namely how to improve the mixing/convergence of Markov chain Monte
Carlo (MCMC) algorithms for an important class of models. The models are those
involving mixtures of Dirichlet processes, ranging from a fairly straightforward mixture
of Dirichlet processes model to the more complex models that are springing up in a wide
variety of applications. The algorithms are in the split-merge vein, allowing a different
kind of step than incremental Gibbs samplers. The extension of the split-merge tech-
nology with targeted proposals to conditionally conjugate models is a welcome addition
to the collection of transitions available for fitting models that include the Dirichlet
process as a component.

Jain and Neal’s algorithms (see also Dahl, 2005) have refined the technology of split-
merge samplers so that proposals are no longer “blind”, but, through intermediate Gibbs
scans, move toward a region of higher posterior probability. The ability to target better
proposals results in algorithms that naturally make better proposals, and this improves
mixing of the Markov chain. An important element of these intermediate Gibbs scans
is their ability to move toward a more appropriate launch state.

This discussion focuses on two features that are hidden in the innards of the algo-
rithm. The first is the notion of identifiability and the second is that of a random scan.
Jain and Neal’s algorithms make nice use of a non-identifiable model for the interme-
diate Gibbs scans (section 4.2, step 3 and following) to produce what are presumably
better proposals. They also implicitly use a random scan for split and merge proposals
in the sense that cases i and j are selected at random (section 4.2, step 1). The remain-
der of this discussion looks at these issues in the context of a simple, artificial example
where one can explicitly calculate rates of convergence for a variety of incremental Gibbs
algorithms. The hope is that the example, in spite of its simplicity, provides insight into
the effectiveness of the algorithms and suggests potential directions for their further
refinement.

2 Identifiability

While details of various algorithms are left for the next section, one recurring issue
in proposals for novel algorithms for Dirichlet based models is identifiability. This is-
sue is not limited to mixture models, but arises in many other contexts. There is
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often a connection between identifiability and the convergence rate of a Markov chain:
Identifiable models may show quicker convergence to the limiting distribution than do
non-identifiable models. This has led some to suggest a general principle that non-
identifiable models be avoided when MCMC methods are to be used to fit the model.
This section reviews the arguments raised against non-identifiable models, and the fol-
lowing section develops the arguments in more detail through consideration of a simple
example.

Consider a model where there is a parameter space, say Θ. The distribution of the
data depends on the value of the parameter, so that X ∼ Fθ for some θ ∼ Θ. A model
is non-identifiable if there exist θ1, θ2 ∈ Θ, with θ1 6= θ2, for which Fθ1

= Fθ2
. Models

that are not non-identifiable are called identifiable models. Typically, when the model
is non-identifiable, it will be the case that for every θ1 ∈ Θ there exists a θ2 ∈ Θ, with
θ2 6= θ1 for which Fθ1

= Fθ2
.

Several reasons have been given for avoiding the use of non-identifiable models.
First, while a Bayesian approach places a prior over the parameter space, and so, in
principle, there is no difficulty in creating estimates with this methodology, there is the
question of consistency. Identifiability is closely connected with parameter estimation.
Methods such as maximum likelihood cannot distinguish between parameter values that
imply the same distribution for the data, and so may not produce unique estimates.
Bayes estimates, heavily based on the likelihood, are typically also inconsistent for non-
identifiable models. However, if consideration is restricted to identifiable functionals,
the Bayes estimates will typically be consistent, as they are under identifiable models. A
desire to interpret parameter values directly is closely related to a desire for consistency.
Restricting interpretation to identifiable quantities g(θ), such that if g(θ1) 6= g(θ2) then
Fθ1

6= Fθ2
, the worry about non-identifiability disappears. A complete, identical Bayes

analysis could be done on an identifiable model. This first objection has no connection
to the use of MCMC methods.

Second, there are examples where the convergence rate of a Markov chain is improved
by the choice of an identifiable model. The convergence here is convergence of πn, the
distribution of θn|θ0, to the limiting distribution of the Markov chain. The limiting
distribution is, by construction, also the posterior distribution of θ. The main purpose
of the simulation is to provide estimates of posterior summaries, and, although there is
a difference between the accuracy of these estimates and the convergence rate, in most
circumstances the two produce qualitative agreement: A better convergence rate means
more accurate estimators. This issue is examined in the next section.

Third, there is the practical issue of how well the MCMC algorithm works when ac-
tually implemented. The main concerns are the numerical accuracy and stability of the
computations. In some instances, particularly with very diffuse posterior distributions,
some of the parameter values generated during the course of the simulation may be
enormous. This can lead to unstable computations and hence to inaccurate estimates.

Fourth, there is the issue of prior elicitation. The choice of a model has an impact on
the particular prior that is chosen. This choice is not directly tied to the use of MCMC
methods, but is an issue of increasing importance now that more complex models are
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being fit. Examples include collinearity and the variable selection problem where priors
are chosen according to prescription, problems based on the hierarchical model, and
nonparametric Bayes problems.

Consider fitting models with MCMC methods. The Markov chain upon which the
simulation is based is realized through successive generations of a parameter vector, θ.
The chain, assumed to be irreducible and aperiodic, is also assumed to have a fixed
transition matrix, say P . Consequently, it has a limiting distribution, π. The transition
matrix is chosen in such fashion that π is the posterior distribution for θ|X . A realization
of the chain consists of a sequence θ1, θ2, . . . , θN . Convergence is often described in
terms of the total variation norm: We wish ||πn − π|| to approach 0 quickly. For finite
state chains, the rate of convergence is governed by the second largest eigenvalue of the
transition matrix. The convergence rate of more complex chains is determined by a
similar quantity.

The MCMC method constructs P by creating a set of transition kernels. For a fixed
scan algorithm, the overall transition kernel is the product of, say, p transition kernels,
P = P1 . . . Pp. A random scan sampler selects one of the Pi at random. A popular
choice is to select the Pi with equal probabilities, so that P = p−1

∑

Pi.

Two useful techniques for improving convergence of a sampler are (i) to gener-
ate a block of parameters at a time (say θ1, . . . , θc is generated from [θ1, . . . , θc|θ −
{θ1, . . . , θc}, X ]), and (ii) to collapse or coarsen the state space of the Markov chain
by reducing the dimension of θ. The dimension of θ is reduced through integration.
For example, θp may be marginalized, leaving only θ1, . . . , θp−1. For discussion, theory
and examples of (i) and (ii) see Liu (1995); of (ii) see also MacEachern (1994). The
impact of non-identifiability on MCMC algorithms is closely connected to blocking and
coarsening.

3 Illustration

Nonparametric Bayesian models have been considered for several decades. Early mod-
els, such as those of Kraft and van Eeden (1964) and Ramsey (1972) for the bioassay
problem, provided a start in the area. These models were based on the notion of a
Dirichlet distribution being the conjugate prior for multinomial data. The models were
nonparametric in the sense that the prior had full support on the set of multinomial
probability vectors. This work was followed by the well-known work of Ferguson (1973)
and Antoniak (1974). Early work exploiting mixtures of Dirichlet processes includes
Berry and Christensen (1979) and Lo (1984).

The mixture of Dirichlet process model has many applications beyond bioassay. The
basic mixture of Dirichlet processes model may be written as follows:

F ∼ Dir(α)

θ1, . . . , θp|F ∼ F

Xi|θi ∼ Gθi
, for i = 1, . . . , p.
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Here, following Ferguson’s notation, α, the positive, finite measure that parameterizes
the Dirichlet process, is often split into its total mass, M , and its shape, say F0. Thus if
α is a measure on the real line, F0 is a distribution function, M > 0, and α((−∞, x]) =
MF0(x).

Gθ is a distribution indexed by the parameter θ. The models are easily generalized
to include hyperparameters that index α, groups of observations associated with each
θi, observation specific covariates, and additional parameters common to some or all
observations. The bioassay problem is one which fits into this framework.

There are three main types of MCMC methods that have been widely used for the
mixture of Dirichlet process models. The first is based directly on the hierarchical model
written above. It makes use of the sequence of conditional generations [F |θ], [θ|F ]. See
Kuo and Smith (1992), Gelfand and Kuo (1991) and, in a general setting, Ishwaran
and Zarepour (2000) for details. See also Diebolt and Robert (1994) in the context of
a related finite mixture model.

The second type of Markov chain method makes use of an alternative representation
of the Dirichlet process known as the Polya urn scheme (Blackwell and MacQueen,
1973). Under the Polya urn scheme, the random distribution function F is marginalized,
resulting in the model

θ1, . . . , θp ∼ Fθ1,...,θp

Xi|θi ∼ Gθi
, for i = 1, . . . , p.

To simplify description, take F0 to be continuous. With this model, the components
θi are no longer conditionally independent. Instead, they have a distribution that is
built up sequentially: θ1 ∼ F0. For i > 1, θi is set equal to θj with probability
1/(M + i − 1) and is drawn from F0, independent of previous draws from F0, with
probability M/(M + i − 1). The induced distribution on the vector θ is often thought
of in two parts. The first is the partition of θ into distinct values, and the second is
the location of the, say k, elements of the partition. Each partition receives positive
probability under the prior. Given a partition, the k locations of the elements, denoted
θ∗1 , . . . , θ

∗
k, are i.i.d. draws from F0. A Markov chain based on this representation of

the model involves sequential generation of [θi|θ−i], for i = 1, . . . , p, with the updating
performed immediately in each case. See Escobar (1994) and Escobar and West (1995)
for algorithms of this sort. These algorithms may be refined by discarding the locations
of the clusters and running a Markov chain on only the space of partitions of θ (Neal,
1992; MacEachern, 1994). Such chains tend to produce quicker convergence to the
posterior and naturally suggest better estimators. The calculations below refer to this
last refinement of the algorithm, though they can be replicated when the locations are
present.

The third type of algorithm is the split-merge algorithm with its ability to make
large moves in directions not easily traveled in with algorithms of the first two types.
The simple example can be fit with the simple split-merge algorithm of Jain and Neal
(2000). In this case, the improvements in the algorithm do not change its performance.
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The Markov chain runs on a state space which consists of all partitions of θ into
clusters. This is a finite state space, which is denoted by S. An element in the state space
is a p-dimensional vector, s = (s1, . . . , sp), with component si indicating to which cluster
θi belongs. If there are k clusters of θi, there will be k distinct integers in the partition
vector. If θi and θj are in the same cluster, si = sj ; if in different clusters, si 6= sj .
The fact that the state space is finite allows us to perform exact calculations on the
transition matrix of the Markov chain in small examples. Several chains are compared
for the case of p = 3. A major issue is the labelling of the state space. Two identifiable
labellings and one non-identifiable labelling are considered. The labelling/identifiability
issue is cleanest for Type II algorithms. The labellings are presented in Table 1.

The first Type II scheme numbers the clusters consecutively from 1 to k as they are
built up from the Polya urn scheme. Thus s1 = 1, and for all i for which θi = θ1, si = 1.
The second cluster is begun by the first θi 6= θ1, and so si = 2 for i = inf [j|θj 6= θ1]. All
other θj equal to this θi are in this cluster and so are assigned sj = 2. The numbering of
the later clusters proceeds in a similar fashion, so that for a legitimate partition vector
(i.e., one which receives positive probability under the prior) representing k clusters,
the numbers 1 through k will appear and their first appearances will occur in increasing
order. The final legitimate values of s for the case p = 3 appear in Table 1 under
the heading scheme 1. With this parameter space, the model is identifiable. Each
legitimate configuration vector produces a distinct partition of the θ and hence (under
the mild regularity condition that there is a set of θi with positive F0 probability such
that Gθ1

= Gθ2
iff θ1 = θ2) produces a distinct distribution for X .

The second Type II scheme is similar to the first in that there is a 1-1 mapping
between partitions and legitimate configuration vectors. The difference is in how the
clusters are labelled. Again, all θi in a cluster will have the same index in the config-
uration vector. Those θi in the cluster with θ1 have si = 1. Further clusters have an
index equal to inf [j|θj in cluster]. For example, define i = inf [j|θj 6= θ1]. Then sj = i
for all j such that θj = θi. The legitimate values for s under this labelling scheme when
p = 3 appear in Table 1 under the heading scheme 2. Since there is a 1 − 1 mapping
between this labelling and the previous one, identifiability for this model follows from
identifiability of scheme 1.

The third Type II scheme produces a non-identifiable model. With this scheme,
the clusters will each receive a distinct integer from 1 to n, and each θi in a particular
cluster will receive the same index. There is, however, no other restriction on the index
values assigned to the clusters. To create this scheme formally, begin with the first
labelling scheme. Probabilities of the legitimate states are determined by the Polya
urn scheme. Then the probability for a particular configuration is distributed among
the possible labellings for the configuration. For a configuration with k clusters, there
are n!/(n − k)! distinct labellings. The probability for this configuration is distributed
uniformly among these labellings. This model is clearly non-identifiable, since there are
several parameter values (here several different configuration vectors) which produce the
same distribution for the data. Interestingly, [F |θ, X, s] depends on s only through the
configuration. Hence, any inference depends only on the equivalence class on s defined
by the configuration itself.
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State Configuration scheme 1 scheme 2
a θ1, θ2, θ3 1,2,3 1,2,3
b θ1 = θ2; θ3 1,1,2 1,1,3
c θ1 = θ3; θ2 1,2,1 1,2,1
d θ1; θ2 = θ3 1,2,2 1,2,2
e θ1 = θ2 = θ3 1,1,1 1,1,1

Table 1: Labellings of configurations under schemes 1 and 2.

Gibbs samplers were developed for each of the labelling schemes above for the no-
data problem. The transition matrix for a fixed scan, in the order [s1|s2, s3], [s2|s1, s3],
and then [s3|s1, s2] was calculated analytically. For the first two schemes, the second
largest eigenvalue of the transition matrix was determined. To compare the third scheme
to the first two, identifiable functions are considered. In order to determine an effec-
tive rate of convergence for these functions, the transition matrix for the sampler is
rewritten in terms of an identifiable model. Happily, all of the transition vectors from
each non-identifiable state corresponding to a particular configuration to the distinct
configurations are identical (e.g., the transition probability for moving from the state
s = (1, 1, 3) to the configuration θ1 = θ2 = θ3 is the same as the transition probability
for moving from the state s = (2, 2, 1) to the configuration θ1 = θ2 = θ3). The chain,
in terms of this identifiable state space, retains the Markov property. The implication
is that the second largest eigenvalue of the rewritten transition matrix governs the rate
of convergence in the identifiable space.

The three Gibbs samplers corresponding to the three labelling schemes were com-
pared by means of the second largest eigenvalue of their transition matrices, presented
in Table 2. The comparison of the three schemes shows that scheme 3, based on the non-
identifiable model, produces the best performance. The non-identifiable model results
in better mixing.

Simulations were carried out to compare the Type I algorithm to the Type II algo-
rithms. The simulation made use of a non-identifiable version of the Type I algorithm.
The estimated second largest eigenvalue of the Type I algorithm appears in Table 2
along the row labelled Type I. Scheme 3 appears to dominate this type of algorithm.
This conclusion agrees with results that suggest a collapse of the state space improves
the convergence rate of a Markov chain, since the scheme 3 algorithm may be con-
structed by adding generations to a Type I algorithm and then collapsing the state
space. Interestingly, this is in opposition to the sometimes expressed intuition that a
two-stage Gibbs sampler, as the Type I method, should show quicker convergence than
a three-stage Gibbs sampler, as the scheme 3 algorithm is. These results in this sim-
ple context are in agreement with the careful simulations for more realistic settings in
Papasiliopoulos and Roberts (2008).

The random scan Gibbs sampler was investigated in a similar fashion. Table 2 con-
tains a summary of the results for 3 transitions (so chosen to match the three transitions
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M 1 5 10 100
scheme 1 .222 .327 .389 .485
scheme 2 .222 .0408 .0139 .000192
scheme 3 .0370 .00292 .000579 9.42e-7
Type I .301 .0837 .0332 .000559

M 1 5 10 100
scheme 1 .559 .630 .669 .726
scheme 2 .559 .395 .352 .303
scheme 3 .171 .0787 .0588 .0393
Split-merge 1.00 .152 .216 .287

Table 2: Second largest eigenvalues for MCMC algorithms. The top table is for fixed
scan samplers; the bottom table is for random scan samplers. M is the mass of the base
measure of the Dirichlet process.

of the fixed scan sampler). Notice that the second largest eigenvalues are considerably
larger for random scan samplers, corresponding to the potentially long lags between suc-
cessive sampling of a component. Again, scheme 3, corresponding to the non-identifiable
model, is preferable to the Type II schemes. The Type III (split-merge) sampler is, for
the larger values of M , preferable to the Type II samplers that impose identifiability.
In this example, it does not mix as well as the non-identifiable algorithm. Interestingly,
when M = 1, the sampler yields a periodic Markov chain, and so mixing is poor al-
though estimation (barring an even subsampling rate) is fine. It should be noted that
this periodicity is very special to this example.

4 Heuristics

The simplicity of the example allows us to focus on features of the algorithms that impact
mixing: Comparisons among the Type II algorithms suggest that non-identifiability (of a
certain sort) improves mixing; the comparison between fixed and random scans suggests
that fixed scans lead to better mixing; a good Type II algorithm leads to better mixing
than a Type I algorithm; for small clusters, the Type II algorithm mixes better than
the Type III algorithm.

Within Type II algorithms, the example shows a remarkable advantage for the non-
identifiable model. This appears to follow from the conditioning sets used to create
the Gibbs sampler. The non-identifiable model leads to conditioning sets that contain
the conditioning sets arising from the identifiable model. To illustrate this point, a
schematic of the transition matrices is provided in Table 3. Comparing the two P1’s, for
instance, under scheme 1 the transition matrix is the identity while under scheme 3 it
is a block diagonal matrix with only two blocks. Both chains are based on conditional
generations. For each current state, the set conditioned upon for the generation under
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P1

From To a b c d e a b c d e
a x - - - - x x x - -
b - x - - - x x x - -
c - - x - - x x x - -
d - - - x - - - - x x
e - - - - x - - - x x
P2

From To a b c d e a b c d e
a x - - - - x x - x -
b - x - x - x x - x -
c - - x - x - - x - x
d - x - x - x x - x -
e - - x - x - - x - x
P3

From To a b c d e a b c d e
a x - x x - x - x x -
b - x - - x - x - - x
c x - x x - x - x x -
d x - x x - x - x x -
e - x - - x - x - - x

Table 3: Scheme 1 transition matrices on the left, scheme 3 transition matrices on the
right. The states are described in Table 1. A dash indicates that a transition cannot
take place, an x that it can. Note the enlargement of the sets over which conditional
generations take place with scheme 3.

the scheme 3 chain contains the set conditioned upon for the generation under the
scheme 1 chain. Thus the conditioning sets for the scheme 1 chain are nested in those
for the scheme 3 chain. The following result connects the nesting of conditioning sets
to total variation distance.

Proposition 1. Suppose that we have a countable state space, and a distribution
π which assigns positive probability to each state. Further suppose that this state
space is partitioned into conditioning sets Ci. Define row i of the transition matrix
P to consist of the distribution π, restricted to the conditioning set in which state i
lies. Consider two partitions, A and B, where {CA,i} is a refinement of {CB,i} and the
corresponding transition matrices PA and PB . Then, for any initial distribution, πI ,
||π

′

IPA − π|| ≥ ||π
′

IPB − π||.

Proof. The total variation distance between the distributions F and G is defined
by ||F −G|| = supA(|F (A)−G(A)|+ |F (AC )−G(AC)|) where A ranges over all subsets
of the state space. When the initial distribution πI is modified through a transition
governed by a conditional distribution over a partition, the supremum is attained by a
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set A for which each element of the partition is either entirely contained in A or entirely
contained in AC . Since the conditioning sets used to create PA are a refinement of those
used to create PB , we may view the supremum in the former case as being taken over
a larger set. Hence, ||π

′

IPA − π|| is at least as large as ||π
′

IPB − π||.

Proposition 1 shows that one step of the chain based on larger conditioning sets
(i.e., the sampler based on the non-identifiable model) is preferable to one step of the
chain based on the smaller conditioning sets. However, the proof given here does not
extend to more steps. Presumably, the quicker one-step movement toward the posterior
will often carry over into a quicker rate of convergence for the chain, as it does in the
example of Section 3. Consideration of the impact of identifiability underlay, in part,
the development of nonconjugate algorithms in MacEachern and Muller (1998).

As Jain and Neal comment, the Type III algorithms are most beneficial when there
are large clusters of observations. With only a few large clusters, all observations will
frequently have a chance to switch clusters. However, my experience with models involv-
ing the Dirichlet process is that the posterior distribution typically includes a number
of small clusters (in addition to the large clusters). The simple example suggests that
including Type II steps is important to facilitate mixing for these small clusters.

5 Conclusions

The example presented herein, as well as others that I have examined, lead to the follow-
ing viewpoint on the four reasons presented earlier for avoiding non-identifiable models.
The first, interpretation of the model, has no connection to whether MCMC methods
are used to fit the model, and so in no way suggests that one restrict themself to use of
identifiable models. The second reason seems to be largely irrelevant. The important
convergence rate (if an identifiable model is to be considered at all) is convergence for
estimates of identifiable functionals. This may be quicker than the convergence rate of
the chain in the non-identifiable space. In any event, if an effective chain can be created
based on the identifiable form of the model, the same chain can be created based on
the non-identifiable form of the model. The third concern, for numerical stability of
the computations, remains a concern. The fourth issue is one of prior elicitation. Since
models and prior distributions are subjective and situation specific, any recommenda-
tion for one form of model over another is open to criticism. Nevertheless, some classes
of models seem much more natural than do others. Often, as in the case of the hier-
archical model, these classes contain non-identifiable models. A decision to replace a
natural, non-identifiable model with an identifiable model that seems to be less natural
seems unwise without a demonstrated improvement in the ease or effectiveness with
which the model is fit.

My own view on problems necessitating MCMC methods is this. One should first
write down the most natural model, whether it be identifiable or non-identifiable. Next,
lay out several MCMC methods for this version of the model. Further consider expand-
ing the parameter space to create non-identifiable models. Particular consideration
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should be given to inducing non-identifiability by adding symmetries such as the re-
labelling of the clusters in the simple Dirichlet process example. Again, examine a
batch of MCMC algorithms, with attention to generating blocks of parameters and to
marginalizing parameters. Finally, select an algorithm based on the heuristics of pre-
ferring those derived from larger conditioning sets, those that have collapsed the state
space, and those that generate blocks of parameters at a time. To this algorithm, add
steps that target particularly difficult transitions–such as splitting and merging large
clusters.

The hints in Jain and Neal’s paper and the simple example suggest a natural direction
for extension of the split-merge moves: a move away from a random scan (i.e., random
selection of observations i and j that determine the attempted split/merge) and toward
a scan with reduced randomness. The randomness of the scan can be lessened, for
example, by permuting the indices from 1 through n, and using successive pairs for
i and j. This type of permutation bounds the time between successive attempts at
updating each observation’s cluster membership. In turn, this ensures that the number
of iterates until every observation-specific parameter has had a chance to be updated
is controlled. I suspect that the benefits that Jain and Neal have demonstrated of
combining both incremental and split-merge moves in an algorithm are partly due to
the implicit reduction in randomness–a complete incremental Gibbs scan ensures that
all cases have had the opportunity to move.

A second possible extension is to reserve the split/merge moves for clusters of sub-
stantial size. To do so, one could partition the parameter space into two parts–one part
where the combined number of cases in clusters identified by observations i and j ex-
ceeds some threshold and the second part where the combined number of cases is small.
If the current state were in the first part, a split-merge move would be attempted, and
the state after transition would also remain in the first part. If the current state were
in the second part, slightly modified incremental steps would be attempted, with the
modification ensuring that the state after transition would also remain in the second
part. Alternatively, for this second part, one could make no transition at all. With
the posterior distribution invariant for each potential step, the posterior distribution
would remain invariant for the chain as a whole. Supplementing this type of move with
incremental Gibbs scans would yield irreducibility of the chain.
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