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Comment on Article by Jain and Neal

C.P. Robert∗

From a stylistic point of view, I think this paper reads very much like a sequel to
the important paper Jain and Neal (2004) and therefore it is not exactly self-contained
since the main bulk of the paper is a commentary of the program provided in Section
4.2. Instead of the current version, I would thus have preferred a truly self-contained
version with a more user-friendly introduction, for instance when reading and re-reading
Sections 3 and 4.1...1

The central point of the paper is to extend Jain and Neal (2004) so that the lack
of complete conjugacy of the prior does not prevent the algorithm from being run.
Indeed, in Jain and Neal (2004), the model parameters are completely hidden in that the
likelihood and the prior only depend on the cluster index vector c, which means working
in a finite set. The difficulty with priors G0 that do not lead to closed form marginals
is that the parameters must take part in the simulation process. The idea at the core
of the current paper is to take advantage of the conditional conjugacy, i.e. the fact that
the prior on a given parameter is still conjugate and thus manageable, conditional on
all the other parameters, so that a Gibbs sampling version can be implemented.

At this stage, I understand the rationale of the partial conjugacy for the Metropolis-
Hastings ratio to be computed (Section 4.1) but I wonder how difficult it would be
to extend the idea to any type of prior distribution. I also note that at both split
and merge stages the algorithm simulates new values of the parameter from the prior
distribution, rather than from a more adapted distribution. This is as generic as it
can be, but simulating from vague priors usually slows down algorithms and it is of
course impossible for improper priors. It thus seems to me that the factor t directing
the number of intermediate Gibbs (or Metropolis-Hastings) iterations in Step 3 must
be influential in the overall behaviour of the algorithm and that large values of t may
be necessary to overcome the dependence on the starting value.

More generally, I also wonder why a more global tempering strategy would not fare
better than the local split-merge proposals used in the paper. For illustration purposes,
I implemented below the regular Gibbs sampler in the [BetaBinomial] Example 1 of
Jain and Neal (2004) and compared it with a näıve tempered version where the tem-
pered likelihood Lτ is made of a product of τ ≥ 1 (sub)likelihoods based on a partition
of the observations in τ random clusters, τ being itself uniform on {1, . . . , n/2}. (The
advantages of using this form of tempering are (a) that the same Gibbs sampler can
be used for the sublikelihoods and (b) that the normalising constant of the tempered
version is still available, as opposed to the choice of a power of the likelihood. The ac-
ceptance probability at the end of the tempered moves is then function of the likelihood
ratio L(θ|x)/Lτ (θ|x) and can be directly computed.) As shown on Figure 1 (bottom),
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explained below, the mixing and the exploration of various likelihood values is quite
improved with this tempered scheme, since no column sticks to a single colour theme.

Since Dirichlet mixtures are closely related to mixtures, I would have liked to
read some discussion on the label switching phenomenon (see, e.g., Stephens 2000;
Marin et al. 2005; Jasra et al. 2005). Indeed, while the original model of Jain and Neal
(2004) is somehow impervious to the issue of label switching, since the clustering pa-
rameterisation only focus on class allocations, the introduction of the parameter in the
game means that a proper exploration of the posterior requires the reproduction of the
symmetry in the various components of the mixture. Using a split-merge basis for this
exploration may then prove to be insufficiently powerful for this task.

In fact, it is close to impossible to judge of the overall convergence performances
from the simulation output, which solely concentrates on the cluster sizes. Addi-
tional graphical summaries would be welcome, like the “allocation map” advertised
in Robert and Casella (2004) and represented on both Figures 1 and 2. The pixelised
lines on the pictures represent the cluster index via different colours for all observa-
tions, the index on the first axis being the index of the observation. The second axis
corresponds to the iteration index. Long vertical stripes of similar colours indicate poor
mixing of the algorithm.

In this illustration, we see clearly that the 5 equal groups of Example 1 of Jain and Neal
(2004) are identified by the Gibbs sampler–as signalled by the homogeneous columns
1 − 20, 21− 40, 41 − 60, 61− 80 and 81 − 100—and, furthermore, that label switching
does occur, even if at a very slow pace—as shown by columns 61 − 80 for instance.

A point of detail (?) is that the algorithm must be (is) validated as a Gibbs procedure
rather than as a Metropolis-Hastings algorithm, given that at any stage only a subset
of the parameters and of the clustering indicators is updated. In addition, this is quite
an interesting example of algorithmic bypassing the varying dimension pitfalls, since
it avoids dealing with the measure theoretic subtleties encountered by reversible jump
for instance (Green 1995) while being in a continuous varying dimension state space,
contrary to the setup of Jain and Neal (2004).
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Figure 1: (top) Allocation map of the simulated cluster index vector c(t) for m = 6,
n = 100 observations and T = 105 Gibbs iterations (subsampled every 1000 iteration),
in the setup of Example 1 of Jain and Neal (2004). The colours used in the graphs range
from red (1) to white (6) and identify the labels of the cluster indicators ci along the
iterations. The superimposed graph is the corresponding sequence of likelihood values
over the T = 105 Gibbs iterations, associated with the scale on the right hand side.
(bottom) Same representation for a tempered version with T = 103 iterations made of
To = 102 tempered moves.
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Figure 2: Same representation as Figure 1 for another run of the Gibbs sampler,
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