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Estimation of Faraday Rotation Measures of

the Near Galactic Sky Using Gaussian Process

Models

Margaret B. Short∗, David M. Higdon† and Philipp P. Kronberg‡

Abstract. Our primary goal is to obtain a smoothed summary estimate of the
magnetic field generated in and near to the Milky Way by using Faraday rotation
measures (RM’s). Each RM in our data set provides an integrated measure of the
effect of the magnetic field along the entire line of sight to an extragalactic radio
source. The ability to estimate the magnetic field generated locally by our galaxy
and its environs will help astronomers distinguish local versus distant properties of
the universe. RM’s can be considered analogous to geostatistical data on a sphere.
In order to model such data, we employ a Bayesian process convolution approach
which uses Markov chain Monte Carlo (MCMC) for estimation and prediction.
Complications arise due to contamination in the RM measurements, and we resolve
these by means of a mixture prior on the errors.

Keywords: Markov chain Monte Carlo, Gaussian process, error mixture model,
spatial model

1 Introduction

There is widespread interest in understanding the role of magnetic fields on all scales
and at all epochs in the history of the Universe. The strength and structure of large scale
magnetic fields in astrophysics is just beginning to be probed with meaningful precision
now that Faraday rotation measurements (RM; see Section 2), the prime detector of
such fields, are available in sufficiently large numbers. This now justifies appropriate
statistical methods to facilitate interpretation of the RM values in terms of cosmic
magnetic fields. This paper describes the application of new statistical treatments to
the largest RM data set available to date. These ca. 1600 RM measurements, spread
over the spherical sky, contain multiple causes for their RM values, so that it is not
trivial to a priori separate out different contributions to a given RM measurement.

Our Milky Way imposes a large imprint of foreground RM on the all-sky distribution
of RM’s. The aim of our analysis is to obtain the most statistically reliable estimate
of this Milky Way foreground in the presence of “anomalous” values so that we can
optimally remove it. This process is a prerequisite for analysing a variety of magnetic
structures in the more distant universe.

∗Department of Mathematics and Statistics, University of Alaska Fairbanks, Fairbanks, AK,
ffmbs1@uaf.edu

†Statistical Sciences Group, Los Alamos National Laboratory, Los Alamos, NM, dhigdon@lanl.gov
‡Institute for Geophysics and Planetary Physics, Los Alamos National Laboratory, Los Alamos, NM

kronberg@lanl.gov

c© 2007 International Society for Bayesian Analysis ba0008

ffmbs1@uaf.edu
dhigdon@lanl.gov
kronberg@lanl.gov


666 Estimation of Faraday Rotation Measures

To date, the attempts to produce a smooth map of RM’s have consisted mostly of
simple, heuristic algorithms such as the one described in
Simard-Normandin and Kronberg (1980). Briefly, the method computes RM values
locally in small circular regions of diameter D on the sky by obtaining a mean and
standard deviation σ of the RM values of extragalactic radio sources within D – after
iteratively discarding RM values that are over xσ from the mean (x is typically 1.3 –
1.5). This method is essentially deterministic and although uncertainty estimates are
not stated explicitly, a statistic such as 2σ might serve as an initial approximation.
Figure 2 in Simard-Normandin and Kronberg (1980) shows estimates of smoothed RM
using their procedure on a fixed grid of points. Several points on the grid have no
estimate since those portions of the sky were lacking in adequate angular coverage of
RM measurements.

Rotation measures are normally calculated at the galactic longitude-latitude posi-
tions (l, b) of discrete radio sources, and thus may be considered analagous to geosta-
tistical data taken at irregularly spaced points on a sphere. In this sense they can be
considered prototypical of other problems involving geostatistical data on a sphere, for
example, atmospheric data. Previous efforts at modeling processes on a sphere include
two papers using wavelet approaches; namely Oh and Li (2004), which estimates global
temperature fields using scattered observations; and Frick et al. (2001) which estimates
RM using 841 observations. While similar to these wavelet approaches, our process con-
volution model is embedded in a larger modeling framework that incorporates outliers
and gives prediction uncertainties.

Another approach is possible, based on covariance functions. Such functions for
a sphere have been described in the literature. See, for example, Gneiting (1999),
Weber and Talkner (1993), Gaspari and Cohn (1999), and Yaglom (1987). These pro-
vide a basis for standard Bayesian statistical approaches to modeling Gaussian processes,
which typically rely on a parametric covariance function to describe spatial dependence.
Exploration of the resulting posterior is particularly difficult when the number of ob-
servations is moderately large (n > 1000) since evaluating the posterior requires a solve
of an n × n covariance matrix.

Our method uses a process convolution model implementation which does not re-
quire factorizations of large matricies. Markov chain Monte Carlo (MCMC) is used for
parameter estimation as well as prediction on a dense set of spatial locations. Strengths
of our approach are its ability to readily produce uncertainty estimates, its easy incor-
poration of rich error structures, and its ability to handle moderately large data sets
and dense sets of prediction locations.

Section 2 gives a description of the RM data set. Section 3 describes a process
convolution-based Gaussian process model for the sphere, or any other compact man-
ifold. Section 4 spells out the models and model components we are going to explore,
followed by a sketch of our posterior sampling recipe based on MCMC. Section 5 de-
scribes results for the RM data set, while Section 6 discusses the sensitivity of our results
to alternative model choices. Section 7 concludes with a brief discussion.
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2 Faraday rotation measures

Faraday rotation measure is defined as the line integral over a path of length L (in
parsecs, with 1 pc = 3×1018 cm)

RM = k

∫ L

0

neB · ds, (1)

where k = 8.1× 105, ne is the electron density (measured in cm−3), and B is magnetic
field (in units of gauss); it is measured in units of radians per square meter of wavelength.
Earth corresponds to one end point of the integral. Looking outward in any radial
direction to a given radio source gives us another line integral at some position (l, b) on
the galactic sky. Thus we may think of RM as a scalar quantity (positive or negative)
which is a function of location on a sphere.

In fact, the locations on the sphere at which we are able to directly estimate RM are
only in the selected directions where extragalactic radio sources such as radio galaxies
and quasars happen to lie. Signals from these sources are usually highly polarized, and
their polarization angle is rotated during passage through ionized gases in the presence
of a magnetic field according to (1). For each of these radio sources, the data give a
good approximation to the ideal Faraday rotation law, which states that

RM =
χ(λ1) − χ(λ2)

λ2
1 − λ2

2

,

for every pair of wavelengths λ1 6= λ2, where χ(λ) is the polarization angle associated
with a given wavelength λ. This allows us to estimate rotation measure by measuring
the polarization angle associated with various wavelengths, using a radio telescope.

Although we shall start referring to the RM values in our data set as observations,
they are, in fact, values calculated from actual observations. A complete description
of the algorithm used to estimate the RM’s can be found in Simard-Normandin et al.
(1981); that paper also gives associated uncertainty estimates for the observations. A
condensed description of the algorithm is as follows. For each radio source, a collection
of pairs {(λi, χ(λi)}) measured over a range of wavelengths, λi, is used to estimate RM
as the slope of a least squares fit to the line

χ(λ) = constant + RM · λ2.

The number of usable pairs (λi, χ(λi)) varies from one radio source to another. A min-
imum of four such pairs were used for each RM determination, and typically between
four and ten pairs were used. We made no explicit effort to account for the original un-
certainties in χ(λi), but rather took at face value the data we were given. In fact, many
radio sources were omitted from the data set altogether due to investigator uncertainty
over the reliability of the RM estimate.

Most of the data used in this paper are provided by one of us (PPK) and are not yet
publicly available. Figure 1 shows these RM values, which correspond to 1566 distant
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radio sources. Red circles indicate positive RM’s, blue circles negative RM’s. More
intense reds and blues correspond to RM’s having larger magnitude. (Please see the
online version of the paper at ba.stat.cmu.edu if these colors are not apparent in your
copy.) In this figure, the equator corresponds to the plane of the Milky Way. The center
point (l, b) = (0o, 0o) on the figure points directly at the center of the Milky Way. This
is an Aitoff projection map, showing the entire sky. By convention, galactic longitudes
l increase as one moves left. Figure 1 also includes a histogram of the RM data; the
empirical distribution is approximately symmetric and has extremely long tails.

It is clear from Figure 1 that there are systematic, large scale variations, not yet
entirely understood, often, but not always near the plane of the Milky Way in which we
are embedded. There is also a substantial region close to the galactic plane (b = 0o), and
around the galactic center, having large negative and large positive rotation measures.
As a soft rule, the farther away from the plane of the Milky Way, the smaller are the
magnitudes of the RM’s.

As mentioned earlier, we can directly estimate RM only in the directions of the
extragalactic radio sources. It is a bit of a misnomer to say we wish to estimate a
smooth RM field (although we shall continue in our abuse of the language in this matter).

Rather, we wish to produce a smoothed map of k
∫ L∗

0 neB · ds, where, in each radial
direction, the line integral extends not far beyond the limits of the Milky Way. For
many but not all sources, that line integral is determined largely by the Milky Way.

We note in passing that RM’s have also been measured for some pulsars which lie
in a 3-D space within the Milky Way. But since the line integrals we wish to estimate
(
∫

neB · ds) contain contributions from beyond the limits of the Milky Way, the pulsar
RM data need to be interpreted in a different context and thus we exclude them from
our analysis.

If there are no substantial intervening magnetic fields between us and the radio
source we are examining, then the major contributing factor to RM is usually the Milky
Way itself. However, since RM is a line integral involving the magnitude of the magnetic
field along the entire line of sight, sources having the longest extragalactic lines of sight
are more likely than nearby sources to be intersected by intervening galaxies which may
have substantial magnetic fields. Such interveners, for example, can produce the outliers
that are seen by looking at a histogram of the raw data (Figure 1); the excessively long
tails strongly suggest that a statistical model with simple independent and identically
distributed (iid) errors will be inadequate. The outliers are thus independent of effects
that cause systematic (l, b) variations of RM on the sky. In this context, we shall
begin referring to data as being “contaminated” or “uncontaminated”, contaminated
RM’s being those that are largely intrinsic to distant radio sources whose sightlines pass
through distant intervening magnetized clouds, as illustrated in the sketch in Figure 2.
In order to accommodate the varying degrees of contamination, we explored two mixture
models for the errors. These are discussed in Sections 4 and 6.

The careful observer will note the presence of several extremely large negative and
positive RM’s close to the equator of the Milky Way, with latitudes |b| < 5o. For each
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Figure 1: 1566 RM observations; units are rad/m2. Large RM’s (intense red and blue
circles) tend to cluster along the plane of the Milky Way; higher latitudes exhibit smaller
RM’s. The histogram shows the extremely long tails, corresponding to “contaminated”
observations. (Please see the online version of the paper at ba.stat.cmu.edu if the colors
are not apparent in your copy.)

of these, the line of sight passes through strongly Faraday rotating zones close to the
plane of the Milky Way. It is thus believed that the primary reason these RM’s are so
large is because of local effects due to the Milky Way.

3 Gaussian process models on a sphere

A fairly general Gaussian process (GP) model for a compact manifold S (e.g. a sphere,
a torus, a potato) with distance metric d(·, ·) can be created by taking a collection of
uniform, regularly spaced knot locations w1, . . . ,wJ , and assigning to each of these
locations a knot value x1, . . . , xJ which are assumed to have iid N(0, [Jλx]−1) distribu-
tions. Convolving these knot values with a simple smoothing kernel k(·) then results in
the GP model

z(s) =
J
∑

j=1

xjk(d(s,wj)), s ∈ S. (2)

Figure 3 shows an example where S is the unit circle.

The covariance between any two locations is given by the formula

Cov(z(s1), z(s2)) = [Jλx]−1
J
∑

j=1

k(d(s1,wj))k(d(s2,wj)). (3)

Since S is bounded, increasing J increases the density of knots. Provided the knots are
added uniformly over S as J → ∞, the covariance function (3) converges to a function



670 Estimation of Faraday Rotation Measures
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Figure 2: Cartoon diagram of the Milky Way and contributors to rotation measure.
The RM obtained from radio source B is determined only by the Milky Way, whereas
the RM from radio source A is contaminated by extragalactic interveners along the line
of sight.

that depends only on k(·), the distance d(s1, s2) and λx, so that z(s) is a stationary GP
in the limit. Note that this stationarity is with respect to the distance metric d(·, ·) on
S. Analogous process convolution models for IRd are described in Higdon (2002).

For a finite J , (2) is only approximately stationary. How close to stationary depends
on the size of nearest knot-to-knot distances relative to the width of the convolution
kernel k(·). Through empirical studies on a variety of manifolds using geodesic distance
we have found that if k(·) is normal with SD σk , a knot-to-knot spacing of no more than
σk leads to a very good approximation to the limiting stationary model on S. In IRd, this
construction converges to a GP with the Gaussian covariance function Higdon (2002).
Our initial investigations suggest this rule of thumb works for the circle, the sphere, the
torus, and IRd, d ≤ 3, as well. This gives a recipe for a generalized Gaussian covariance
function on these different manifolds, where σk controls the correlation distance. This
recipe may be more general, we just haven’t tried other manifolds S. It is important to
note that this discrete, process convolution construction is only useful for representing
GP’s with smooth realizations; using a very peaked smoothing kernel will require a very
dense set of knot locations, rendering this discrete construction impractical.

For the application of this paper, we take S to be the unit sphere S2 = {(x, y, z) :
x2 + y2 + z2 = 1} corresponding to the RM sky, k(·; σk) to be a normal density with
standard deviation σk, and d(·, ·) to be great circle distance. We use a recursive tessella-
tion algorithm (http://www.fho-emden.de/∼hoffmann/ikos27042002.pdf, for example)
to determine the knot locations that are fairly evenly distributed over the sphere. The
algorithm begins by embedding an icosahedron in the sphere. This gives us a collec-
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Figure 3: Construction of a realization of a GP on the unit circle. Left panel shows
knot locations and values (positive and negative), along with a typical kernel. Right
panel shows the resulting realization.

tion of 12 equally spaced locations (vertices) on the sphere. We subdivide each of the
20 equilateral triangular faces into four faces – no longer equilateral – by joining the
midpoints of the sides and projecting the three new vertices out onto the surface of the
sphere. This results in 42 vertices, approximately equally spaced, as well as 80 faces.
The subdivision procedure is repeated as many times as necessary. Using v(g) and f (g)

to denote the number of vertices and faces, respectively, after g iterations, it is easy to
verify that v(3) = 642, v(4) = 2562, f (4) = 5120, and f (5) = 20480. We use the vertices
as knot locations (and the centers of the faces for prediction locations). Figure 4 shows
the 642 knot locations corresponding to the third level of subdivision.

For this application, we need enough knots J to ensure that the process convolution
representation (2) gives an adequate approximation to the stationary model. This means
that the neighboring knot-to-knot spacing needs to be no greater than the minimum
plausible size for the kernel SD σk. In practice we select the number of knots by first
making an initial specification for J . By looking at the estimated posterior distribution
for σk, we can then decide if the knot density is adequate. In this application, we started
with the 642 knots shown in Figure 4. Since the lower tail of the posterior distribution
for σk did go below the knot-to-knot spacing, we opted to use the next iteration of
the tessellation algorithm, giving J = 2562. In this case, the posterior distribution for
σk stayed well above the knot-to-knot spacing, with the posterior mean for σk being
about 1.9 times the knot-to-knot spacing. Of course, we could have used the knot
tessellation produced by even finer subdivisions of the recursive algorithm. However
this would greatly increase the computational effort, while giving only a slightly better
approximation to the limiting, stationary model for z(s).
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Figure 4: 642 knot locations. Large dots correspond to the 42 vertices after one subdi-
vision, medium dots correspond to the next subdivision, small dots correspond to the
third subdivision. Each of the large circles has a radius equal to 1.6 times the knot
spacing.

4 Statistical model

We use the GP model over the sphere z(s) described in the previous section to model
the smooth RM field. This model uses J = 2562 knots distributed over the unit sphere,
which give a neighboring knot-to-knot distance of approximately 2π/80. The N obser-
vations taken at locations s1, . . . , sN are modeled as

Y(si) = z(si) + εi, i = 1, . . . , N

where the errors εi are independent with N(0, [ωiλε]
−1) distributions. The ωi’s, which

modify the error precision, account for the possibility that some measurements are
contaminated by one (or more) intervening magnetic field zones. The effect of a given
intervener can be similar to the effect of our local Milky Way galaxy (which is responsible
for the RM field we are attempting to estimate), or can be an order of magnitude
stronger. Hence, for a given observation i, the appropriate value for the precision
modifier ωi could range from slightly less than one to nearly zero. A priori, we expect
somewhere around 80% of the measurements to be free of contamination. We explore
the sensitivity of our analysis to some of these assumptions in the next section.
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Our prior specification is summarized below. Additional detail follows.

x|λx ∼ MVN(0, λx
−1IJ×J )

σk ∼ U(2π/80, 5 · 2π/80)

λx ∼ Γ(1, .001)

λε ∼ Γ(1, .001)

ωi
iid∼

{

δ1 with probability .8
Uniform(0, 1) with probability .2

.

Here the gamma priors for λx and λε have a prior mean of 1000; δ1 denotes a point
mass at 1. Note that any overall mean for the RM field is to be absorbed in z(s). This
should be adequate since it appears from Figure 1 that the RM field is, for the most
part, centered near zero. The prior for the kernel SD σk is uniform, with a lower limit
that is set to the knot-to-knot distance of the J = 2562 knot tessellation, and an upper
bound that is five times that spacing. This ensures that z(s) contains no artifacts due
to overly dispersed knot locations.

The resulting full conditional distributions are given by

xj | · · · ∼ N(
λεk

jT

Σ−1rj

kjT Σ−1kj + λx
,

1

λεkjT Σ−1kj + λx
)

λx| · · · ∼ Γ(1 +
J

2
, .001 +

1

2
x

T
x)

λε| · · · ∼ Γ(1 +
N

2
, .001 +

1

2
(Y − Kx)T Σ−1(Y − Kx))

,

p(ωi| · · · ) ∝ ω
1
2

i exp

{

−1

2
ωiλε(Y (si) − z(si))

2

}

[.8δ1 + .2I [0 < ωi < 1]]

and

p(σk | · · · ) ∝ exp

{

−λε

2
(Y − Kx)T Σ−1(Y − Kx)

}

I [2π/80, 10π/80]

where kj is the jth column of the matrix K, and rj is an n × 1 vector given by

rj = Y −
∑

j′ 6=j

kj′xj′

and
Σ = Diag(1/ω1, . . . , 1/ωN).

5 Results

The model described in Section 4 was implemented in C++. Draws from the posterior
distribution for the parameters were obtained via MCMC, using Gibbs steps for the
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knot values x and for the precision parameters λx and λε. Metropolis steps were used
for the remaining parameters, i.e. {ωi}, and the kernel SD σk.

The first 50,000 MCMC iterations were discarded, as they occurred during an adap-
tive phase that was used to bring the Metropolis acceptance rates into the range of 30%
to 60%. Of the next 200,000 iterations, 2000 equally spaced iterations were retained for
posterior summarization. Visual inspection of trace plots of the parameters indicated
that convergence had occurred. Additionally, we note that the MCMC error for each of
the parameters was less than 2% of its posterior mean, and was often substantially less.

Prediction at spatial locations (s̃1, s̃2, . . . , s̃m), was accomplished by evaluating the

expression Ỹ = 1
G

∑G
g=1 K(g)

x
(g), where {x(g)}G

g=1 are the posterior draws for x, and

the (i, j) entry of K(g) is given by K
(g)
ij = k(d(s̃i,wj); σ

(g)
k ). Note that with this process

convolution formulation, constructing posterior draws of z(s) over a large prediction
grid is trivial; this is a substantial undertaking under a standard covariance-based GP
formulation.

Final results appear in Figures 5 – 8. Figure 5 shows predicted RM values at
5120 approximately equally spaced locations. The plot is generally consistent with
the data (indicated by small circles). It shows blocks of large RM values along the
galactic equator and small values near the poles. For this plot, there were N = 1566
observations, J = 2562 knots, m = 5140 prediction locations, and G = 2000 MCMC
samples.

Figure 6 shows the width of 95% credible sets at the same set of 5120 locations.
Not surprisingly, the widest sets occur where the non-contaminated data are sparsest.
Figure 7 provides North Pole and South Pole perspectives, and is included to remove
the high latitude distortion of the Aitoff projection used in Figure 5. Figure 8 shows
the corresponding credible sets.

Posterior diagnostic plots are shown in Figure 9. In the left panel, which shows
the posterior mean of the ω’s versus observed RM’s for which |RM | < 1000, we see
that smaller RM’s generally correspond to larger ω’s and vice versa. This is in accor-
dance with our model, since ω = 1 implies uncontaminated data, and ω’s progressively
closer to 0 imply progressively larger degrees of contamination. The marginal posterior
probability that a randomly chosen observation is an outlier is 0.23. The histogram
in the middle panel shows the posterior mean value of the ω’s for all 1566 RM values.
As expected, a sizable majority of the observations are designated as uncontaminated,
having values of ω close to 1. An empirical influence function appears in the right panel,
showing standardized residuals, [λ̂ω̂i]

− 1
2 (Yi − Ŷi), versus residuals, Yi − Ŷi. As expected

from the model, contaminated observations correspond to large residuals, which are in
turn downweighted by small ω̂i’s.
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Figure 5: Posterior plot for the final model. Contour lines appear at levels corresponding
to RM values of -50, -25, 0, 25 and 50 rad/m2. The most extreme data are depicted by
circles that are larger than those used for the remainder of the data.

6 Sensitivity analysis and model assessment

Here we assess the sensitivity of our analysis to modeling choices regarding the normal
mixture model for the errors εi and the spatial process model z(s) made in the previous
section. As for the error model, the posterior influence shown in the right hand frame
of Figure 9 shows how the data are being treated to estimate the RM field. The linear
piece in the plot shows that the middle 77% of the deviations are basically treated as
iid normals, with a common standard deviation. The most extreme residuals are being
downweighted so that they have the effect of a residual that is slightly more than a
standard deviation away from the fitted value. One may prefer that the outlier model
give these residuals zero weight. This could be accommodated by specifying a prior
for ωi that has point masses at 0 and 1. The changing dimensionality of such a model
makes it a bit more difficult to fit. We assessed the influence of these extreme weights
by refitting the model after removing all of the RM data for which the posterior median
for ωi was not one. This was about 15% of the observations. As expected, the RM
field estimated from our original analysis which includes all of the data shows a slight
influence from the extreme observations. The average absolute deviation between the
two posterior mean fields at the 5140 prediction locations was about 9 radians/m2. This
is small given the posterior mean field varies between ±300, and the posterior mean for
(λεωi)

− 1
2 for the uncontaminated observations is about 28.

The sensitivity to the prior probability of 80% that any given observation is con-
taminated was also investigated. This was done by refitting the model using the values
60%, 70% and 90%. In each case, the differences in the posterior mean field for z(s)
are very slight. Most differences appear near data points that are slightly extreme, but
not obviously contaminated. The effect of the uncontaminated observations remains the
same since the error precision λε can compensate for changes in ωi that are common to
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Figure 6: Pointwise 95% credible set width for the final model. Note that the widest
intervals occur near the plane of the Milky Way, which also is where the most extreme
RM values occur. Contour lines correspond to credible set widths of 25 (white), 50
(light gray), 75 (dark gray), and 100 (black) rad/m2. As before, (l, b) = (0, 0) points to
the Galactic Center.

all observations.

The approximately stationary model for the RM field z(s) is fairly simplistic. We
also fitted more complicated models – one with a mean, and one that was the sum of
two processes, one with a wide smoothing kernel, and one with a narrow kernel. Upon
adding a constant mean term to the model (using a N(0, 4002) prior distribution),
we found very little difference between the resulting model fit and our original one.
This is not surprising since the posterior global mean for z(s) was estimated to be not
significantly different from 0. The additional computational burden of including this
additional parameter (µ) was substantial since the single site MCMC scheme becomes
far less efficient in exploring the posterior with the additional mean parameter. The
mean parameter trades off with the knot values resulting in a chain that mixes much
more slowly than with our original mean-free formulation.

We were concerned that our basic model might be tuning itself to fine scale features
of the RM field, while neglecting important global features. To address this concern, we
developed a multi-scale prior for z(s) on the sphere which is analogous to the formulation
for IRd given in Higdon (2002). Here z(s) is represented as the sum of two independent
process convolution fields

z(s) = zc(s) + zf (s)

where the coarse field zc(s) is constructed using a wide smoothing kernel, and the fine
field zf (s) is constructed using a narrow smoothing kernel. We constrained the narrow
kernel SD to be less than that of the wide kernel. The resulting posterior puts all of the
variation in the fine process, while the coarse process is essentially 0. The kernel width
for this fine process matched our estimate using our original model. We tried a number
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Figure 7: Posterior plots for the final model. Left panel: North Galactic Cap (NGC), in
which b ≥ 30oN. Right panel: South Galactic Cap (SGC); b ≤ 300S. The contour lines
are the same as in Figure 5. The rotation measures at the highest latitudes tend to be
much smaller than those near the plane of the galaxy.

of different initializations; still, each time the MCMC gave the same results. Hence we
were satisfied that the single process convolution adequately models the RM field.

7 Summary and conclusions

In conclusion we emphasize that this analysis gives a principled, statistical estimate of
the RM field in the near galactic sky while accounting for contamination from extra-
galactic sources, using the most complete set of RM measurements to date. This enables
us to start to distinguish certain near and distant features of the universe. The large
number of observations in this current collection of measurements has forced us to
make modeling choices that adequately address the specific features of this application
while still making a fully Bayesian estimation analysis feasible via MCMC. The process
convolution model for the RM field allows the MCMC scheme to avoid computationally
costly inverses of large matrices. It also facilitates the inclusion of non-standard error
models in the analysis.

The computational burden of our approach is moderate, considering the size of our
data set, which has N = 1566 data points. A typical MCMC run of 250,000 iterations,
including posterior prediction for a final smoothed map, required slightly over 3 days
on a desktop PC. Had we gone with an approach based on covariance functions, the
factorizations of 1566 × 1566 matrices at both the MCMC and prediction steps would
have stopped us in our tracks. In particular, given the mixture model used for the
errors, in order to sample the ω’s, we would have needed as many as 1566 factorizations
per MCMC iteration. Since new surveys will likely result in tens of thousands of RM
observations, it is crucial that our approach accommodate large numbers of observations,
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Figure 8: Credible set widths. As in Figure 7, the NGC is on the left and the SGC is
on the right. The contour lines are the same as in Figure 6.

while automatically accounting for outliers.

We expect future investigations to focus in two opposite directions – mapping out
the magnetic field of our local galaxy, and investigating magnetic fields in the distant
universe. Within the Milky Way, more localized RM’s can be obtained from pulsars.
Since the spatial location of these objects can be estimated independently of their RM
values, these observations lend additional spatial information regarding the magnetic
fields within the Milky Way. Combining these pulsar RM’s with future large scale RM
surveys may give sufficient information for a 3-D reconstruction of the Milky Way’s
magnetic field. Rotation measures also serve as probes for identifying magnetic fields in
the more distant universe. In this case, the effect of the Milky Way on RM’s obtained
from very distant sources is a nuisance, perturbing the signal from distant universe.
Improving our estimate of the local RM sky will enhance our ability to detect magnetic
fields in the distant universe in the future.
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Figure 9: Diagnostic plots. The left panel shows the posterior mean of the ω’s versus
the RM’s in the event that |RM | < 1000. In general, observations with small |RM |
have mean(ω) close to one, i.e. are likely uncontaminated according to our model;
conversely, observations with large |RM | tend to have mean(ω) close to zero. The
histogram in the middle panel is of the posterior mean of the ωi’s. Note the bimodal
distribution; a fair number of the observations are being flagged as contaminated, and
many of these have mid-range RM values. An empirical influence function appears
in the right panel, showing standardized residuals versus residuals. As expected from
the model, contaminated observations correspond to large residuals, which are in turn
downweighted by small ω̂i’s.
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