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Exact Bayesian Regression of Piecewise

Constant Functions

Marcus Hutter∗

Abstract. 1We derive an exact and efficient Bayesian regression algorithm for piece-
wise constant functions of unknown segment number, boundary locations, and lev-
els. The derivation works for any noise and segment level prior, e.g. Cauchy which
can handle outliers. We derive simple but good estimates for the in-segment vari-
ance. We also propose a Bayesian regression curve as a better way of smoothing
data without blurring boundaries. The Bayesian approach also allows straight-
forward determination of the evidence, break probabilities and error estimates,
useful for model selection and significance and robustness studies. We discuss the
performance on synthetic and real-world examples. Many possible extensions are
discussed.

Keywords: Bayesian regression, exact polynomial algorithm, non-parametric infer-
ence, piecewise constant function, dynamic programming, change point problem.

1 Introduction

“In science the primary duty of ideas is to be useful and interesting, even

more than to be true.”
— Wilfred Trotter (1941)

We consider the problem of fitting a piecewise constant function through noisy one-
dimensional data, as e.g. in Figure 1, where the segment number, boundaries and levels
are unknown. Regression with piecewise constant (PC) functions, a special case of
change point detection, has many applications, e.g. in seismology, tomography, biology,
and econometric modeling. Determining DNA copy numbers in cancer cells from micro-
array data is a very recent application.

Bayesian piecewise constant regression (BPCR). We provide a full Bayesian
analysis of PC-regression. For a fixed number of segments we choose some prior over all
possible segment boundary locations. Some prior on the segment levels and data noise
within each segment is assumed. Finally a prior over the number of segments is chosen.
From this we obtain the posterior segmentation probability distribution (Section 2). In
practice we need summaries of this complicated distribution. A simple maximum (MAP)
approximation or mean does not work here. The right way is to proceed in stages from
determining the most critical segment number, to the boundary location, and finally to
the then trivial segment levels. We also extract the evidence, the boundary probability
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distribution, and an interesting non-PC mean regression curve including error estimate
(Section 3). We derive an exact polynomial-time dynamic-programming-type algorithm
for all quantities of interest (Sections 5, 6 and 9). Our algorithm is applicable for
any noise and level prior. We consider more closely the Gaussian “standard” prior
and heavy-tailed robust-to-outliers distributions like the Cauchy, and briefly discuss the
non-parametric case (Sections 4 and 7). Finally, some hyper-parameters like the global
data average and variability and local within-level noise have to be determined. We
introduce and discuss efficient semi-principled estimators, thereby avoiding problematic
or expensive numerical EM or Monte-Carlo estimates (Section 8). We test our method
on some synthetic examples (Section 10) and some real-world data sets (Section 11).
The simulations show that our method handles difficult data with high noise and outliers
well. Our basic algorithm can (easily) be modified in a variety of ways: For discrete
segment levels, segment dependent variance, piecewise linear and non-linear regression,
non-parametric noise prior, etc. (Section 12).

Comparison to other work. Sen and Srivastava (SS75) developed a frequentist
solution to the problem of detecting a single (the most prominent) segment boundary,
called change or break point. Olshen et al. (OVLW04) generalize this method to detect
pairs of break points, which improves recognition of short segments. Both methods
are then (heuristically) used to recursively determine further change points. Another
approach is penalized Maximum Likelihood (ML). For a fixed number of segments, ML
chooses the boundary locations that maximize the data likelihood, which is equivalent
to minimizing the mean square data deviation in case of Gaussian noise. Jong et al.
(Jon03) use a population based algorithm as minimizer, while Picard et al. (Pic05) use
dynamic programming, which is structurally very close to our core recursion, to find the
exact solution in polynomial time. An additional penalty term has to be added to the
likelihood in order to determine the correct number of segments. The most principled
penalty is the Bayesian Information Criterion (Sch78; KW95). Since it can be biased
towards too simple (Wea99) or too complex (Pic05) models, in practice often a heuristic
penalty is used. An interesting heuristic, based on the curvature of the log-likelihood as
a function of the number of segments, has been used in (Pic05). Our Bayesian regressor
is a natural response to penalized ML. Another related work to ours is Bayesian bin
density estimation by Endres and Földiák (EF05), who also average over all boundary
locations, but in the context of density estimation. Another related series of papers,
developing exact Bayesian algorithms for PC regression is (Yao84; BH92; Fea06), which
we discuss in more detail in Section 13. All three papers consider renewal processes
(which have a highly informed prior for the number of segments k) and derive recursions
over the number of data points n, while we consider a noninformative uniform prior over
k (which is not a renewal process) and derive a recursion over k. See also (Fea05) for
a similar Bayesian/MAP approach. Many other approximate, heuristic, sampling, or
non-Bayesian approaches to PC regression exist; too many to list them all.

Advantages of Bayesian regression. A full Bayesian approach, when computa-
tionally feasible, has various advantages over others: A generic advantage is that it is
more principled and hence involves fewer heuristic design choices. This is particularly
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important for estimating the number of segments. Another generic advantage is that
it can be easily embedded in a larger framework. For instance, one can decide among
competing models solely based on the Bayesian evidence. Finally, Bayes often works
well in practice, and provably so if the model assumptions are valid.2 We can also easily
extract other information, like probability estimates and variances for the various quan-
tities of interest. Particularly interesting is the expected level (and variance) of each
data point. This leads to a regression curve, which is very flat, i.e. smoothes the data,
in long and clear segments, wiggles in less clear segments, follows trends, and jumps at
the segment boundaries. It thus behaves somewhat between local smoothing and rigid
PC-segmentation.

2 The General Model

Setup. We are given a sequence y=(y1,...,yn), e.g. times-series data or measurements of
some function at locations 1...n, where each yi∈IR resulted from a noisy “measurement”,
i.e. we assume that the yi are independently (e.g. Gaussian) distributed with means µ′

i

and3 variances σ′
i
2. The data likelihood is therefore4

likelihood: P (y|µ′, σ′) :=
n∏

i=1

P (yi|µ′
i, σ

′
i) (1)

The estimation of the true underlying function f = (f1,...,fn) is called regression. We
assume or model f as piecewise constant. Consider k segments with segment boundaries
0= t0 <t1 <...<tk−1 <tk =n, i.e. f is constant on {tq−1+1,...,tq} for each 0<q≤k. If
the noise within each segment is the same, we have

piecewise constant: µ′
i = µq and σ′

i = σq for tq−1 < i ≤ tq ∀q (2)

We first consider the case in which the variances of all segments coincide, i.e. σq = σ
∀q. The easier case of different variance is described in Section 12. Our goal is to
estimate the segment levels µ=(µ1,...,µk), boundaries t=(t0,...,tk), and their number
k. Bayesian regression proceeds in assuming a prior for these quantities of interest.
We model the segment levels by a broad (e.g. Gaussian) distribution with mean ν and
variance ρ2. For the segment boundaries we take some (e.g. uniform) distribution among
all segmentations into k segments. Finally we take some prior (e.g. uniform) over the
segment number k. So our prior P (µ,t,k) is the product of

prior: P (µq |ν, ρ) ∀q and P (t|k) and P (k) (3)
2Note that we are not claiming here that BPCR works better than the other mentioned approaches.

In a certain sense Bayes is optimal if the prior is ‘true’. Practical superiority likely depends on the
type of application. A comparison for micro-array data is in progress. The major aim of this paper is
to derive an efficient algorithm, and demonstrate the gains of BPCR beyond bare PC-regression, e.g.
the (predictive) regression curve (which is better than local smoothing which wiggles more and blurs
jumps).

3More generally, µ′
i and σ′

i are location and scale parameters of a symmetric distribution.
4For notational and verbal simplicity we will not distinguish between probabilities of discrete vari-

ables and densities of continuous variables.
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We regard the global variance ρ2 and mean ν of µ and the in-segment variance σ2 as
fixed hyper-parameters, and notationally suppress them in the following. We will return
to their determination in Section 8.

Evidence and posterior. Given the prior and likelihood we can compute the data
evidence and posterior P (y|µ,t,k) by Bayes’ rule:

evidence: P (y) =
∑

k,t

∫
P (y|µ, t, k)P (µ, t, k) dµ

posterior: P (µ, t, k|y) =
P (y|µ, t, k)P (µ, t, k)

P (y)

The posterior contains all information of interest, but is a complex object for practical
use. So we need summaries like the maximum (MAP) or mean and variances. MAP over
continuous parameters (µ) is problematic, since it is not reparametrization invariant.
This is particularly dangerous if MAP is across different dimensions (k), since then
even a linear transformation (µ ; αµ) scales the posterior (density) exponentially in
k (by αk). This severely influences the maximum over k, i.e. the estimated number of
segments. The mean of µ does not have this problem. On the other hand, the mean of
t makes only sense for fixed (e.g. MAP) k. The most natural solution is to proceed in
stages similar to as the prior (3) has been formed.

3 Quantities of Interest

We now define estimators for all quantities of interest in stages as suggested in Section 2.
Our first quantities are the posterior of the number of segments and the MAP segment
number:

# segments: P (k|y) and k̂ = arg max
k

P (k|y)

Second, for each boundary tq its posterior and MAP, given the MAP estimate of k:

boundaries: P (tq|y, k̂) and t̂q = argmax
tq

P (tq|y, k̂)

Different estimates of tq (e.g. the mean or MAP based on the joint t posterior) will be
discussed elsewhere. Finally we want the segment level means for the MAP segmenta-
tion:

segment level: P (µq|y, t̂, k̂) and µ̂q =

∫
P (µq |y, t̂, k̂)µqdµq

The estimate (µ̂,̂t,k̂) uniquely defines the piecewise constant (PC) function f̂ , which
is our estimate of f . A quite different quantity is to Bayes-average over all piecewise
constant functions and to ask for the mean at location i as an estimate for fi:

regression curve: P (µ′
i|y) and µ̂′

i =

∫
P (µ′

i|y)µ′
idµ′

i

We will see that µ′ behaves similar to a local smoothing of y, but without blurring true
jumps. Standard deviations of all estimates may also be reported.
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4 Specific Models

We now complete the specification by discussing some (purely exemplary) choices for
the data noise and prior.

Gaussian model. The standard assumption on the noise is independent Gauss:

Gaussian noise: P (yi|µ′
i, σ

′
i) =

1√
2πσ′

i

e
− (yi−µ′

i)
2

2σ′

i
2

(4)

The corresponding standard conjugate prior on the means µq for each segment q is also
Gauss:

Gaussian prior: P (µq|ν, ρ) =
1√
2πρ

e
− (µq−ν)2

2ρ2 (5)

Cauchy model. The standard problem with Gauss is that it does not handle outliers
well. If we do not want to or cannot remove outliers by hand, we have to properly model
them by a prior with heavier tails. This can be achieved by a mixture of Gaussians or
by a Cauchy distribution:

Cauchy noise: P (yi|µ′
i, σ

′
i) =

1

π

σ′
i

σ′
i
2 + (yi − µ′

i)
2

(6)

Note that µ′
i and σ′

i determine the location and scale of Cauchy but are not its mean
and variance (which do not exist). The prior on the levels µq may as well be modeled
as Cauchy:

Cauchy prior: P (µq |ν, ρ) =
1

π

ρ

ρ2 + (µq − ν)2
(7)

Actually, the Gaussian noise model may well be combined with a non-Gaussian prior
and vice versa if appropriate.

Segment boundaries. The most natural assumption is a uniform (non-informative)
prior over all segmentations into k segments. Since there are ( n−1

k−1 ) ways of placing the
k−1 inner boundaries (ordered and without repetition) on (1,...,n−1), we have:

uniform boundary prior: P (t|k) = (n−1
k−1 )−1 (8)

We discuss more general factorizable t-priors, including general renewal processes, later.

Number of segments. Finally, consider the number of segments k, which is an integer
between 1 and n. Sure, if we have prior knowledge on the [minimal,maximal] number
of segments [kmin,kmax] we could/should set P (k)=0 outside this interval. Otherwise,
any non-extreme choice of P (k) has little influence on the final results, since it gets
swamped by the (implicit) strong (exponential) dependence of the likelihood on k. So
we suggest a uniform prior

P (k) =
1

kmax
for 1 ≤ k ≤ kmax and 0 otherwise

with kmax =n as default (or kmax <n discussed later).
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5 The Core Recursion

We now derive expressions for all quantities of interest, which need time O(kmaxn2)
and space O(n2). The key fact we exploit is that, fixing a boundary tp, all probabilities
P (·|tp,k) factorize into a P depending only on quantities left of the boundary times
another P depending only on quantities right of the boundary. This leads to a recursion
that terminates with an evidence matrix and moments A for single segments. The
algorithm naturally breaks into two parts. (i) determination of A from data y for
specific noise distribution and segment level prior as described in Section 7, and (ii) the
core recursion for specific boundary prior described in this section. In the next section
we show how the core recursion can be used to compute all quantities of interest. The
dynamic program (ii) depends only on A, i.e. can be applied for any noise and level
model, as long as A can be computed.

Notation. Throughout this and the next two sections we use the following notation: k
is the total number of segments, t some data index, q some segment index, 0≤i<h<j≤n
are data item indices of segment boundaries t0≤tl <tp <tm≤tk, i.e. t0=0, tl =i, tp =h,
tm=j, tk =n. Further, yij =(yi+1,...,yj) is data with segment boundaries tlm=(tl,...,tm)
and segment levels µlm = (µl+1,...,µm). In particular y0n = y, t0k = t, and µ0k = µ.
All introduced matrices below (capital symbols with indices) will be important in our
algorithm.

General recursion. For m = l+1, yij is data from a single segment with mean µm

whose joint distribution (given segment boundaries and m= l+1) is

single segment: P (yij , µm|tm−1,m) = P (µm)

j∏

t=i+1

P (yt|µm) (9)

by the model assumptions (1) and (2). Here and in the following, if the last argument
of P is an integer, it denotes the number of segments in the considered data range
i...j. The probabilities for a general but fixed segmentation are independent, i.e. for
m−l segments from i to j with breaks at tlm the joint data yij and segment mean µlm

distribution factorizes as:

P (yij , µlm|tlm) =
m∏

p=l+1


P (µp)

tp∏

t=tp−1+1

P (yt|µp)


 (10)

= P (yih, µlp|tlp)P (yhj , µpm|tpm) (any p)

This is our key recursion. We now marginalize over the inner boundaries tl+1...tm−1.
If we first keep break tp fixed at h, then the probability of yijµlm factorizes into yihµlp

and yhjµpm. We can then average over location tp. It is more convenient to define the
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scaled quantity Q below and combine both steps:

Q(yij , µlm|m − l) := ( j−i−1
m−l−1 )P (yij , µlm|tl, tm) (11)

(a)
= ( j−i−1

m−l−1 )
∑

tlm : i=tl<...<tm=j

P (yij , µlm|tlm)P (tlm|tl, tm) (12)

(b)
=

∑

tlm : i=tl<...<tm=j

P (yij , µlm|tlm)

(c)
=

j+p−m∑

tp=i+p−l

∑

tlp : i=tl<...<tp=h

P (yih, µlp|tlp)
∑

tpm : h=tp<...<tm=j

P (yhj , µpm|tpm)

=

j+p−m∑

h=i+p−l

Q(yih, µlp|p − l)Q(yhj , µpm|m − p) (13)

(a) is just an instance of the law of total probability P (A|B)=
∑

iP (A|Hi,B)P (Hi|B)
for a partitioning (Hi) of the sample space, here Hi=̂tl+1...tm−1. In (b) we exploited
uniformity (8), which implies that P (tlm|tl,tm)= ( j−i−1

m−l−1 )−1 is also uniform, i.e. inde-
pendent from the concrete segmentation tl+1,m−1. In (c) we insert (10), fix segment
boundary tp, sum over the left and right segmentations, and finally over tp. The sum
starts at h=i+p−l, since yih must contain at least p−l points in order to allow for p−l
segments, and ends at h=j+p−m, since yhj must allow for m−p segments.

Left and right recursions. If we integrate (11) over µlm, the integral factorizes and
we get a recursion in (a quantity that is proportional to) the evidence of yij . Let us
define more generally rth “Q-moments” of µ′

t. Provided they exist, for i<t≤j we have

Qr
t (yij |m − l) :=

∫
Q(yij , µlm|m − l)µ′

t
rdµlm (14)

=
t−1∑

h=i+p−l

Q0(yih|p − l)Qr
t (yhj |m − p) +

j+p−m∑

h=t

Qr
t (yih|p − l)Q0(yhj |m − p)

Depending on whether h<t or h≥ t, the µ′
t
r term combines with the right or left Q in

recursion (13) to Qr
t , while the other Q simply gets integrated to Q0

t =Q0 independent
of t. The recursion terminates with

Ar
ij := Qr

t (yij |1) =

∫
P (µm)

j∏

t=i+1

P (yt|µm)µr
mdµm, (0 ≤ i < j ≤ n) (15)

Note A0
ij =P (yij |tm−1,m) is the evidence and Ar

ij/A
0
ij =E[µr

m|yij ,tm−1,m] the rth moment
of µ′

t = µm in case yij is modeled by a single segment. It is convenient to formally
start the recursion with Q0(yij |0)=δij ={ 1 if i=j

0 else } (consistent with the recursion) with
interpretation that only an empty data set (i=j) can have 0 segments. Since p was an
arbitrary split number, we can choose it conveniently. We need a left recursion for r=0,
i=0, p−l=k, and m−p=1:

Lk+1,j := Q0(y0j |k + 1) =

j−1∑

h=k

Q0(y0h|k)Q0(yhj |1) =

j−1∑

h=k

LkhA0
hj
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That is, (apart from binomial factors) the evidence of y0j with k+1 segments equals the
evidence of y0h with k segments times the single-segment evidence of yhj , summed over
all locations h of boundary k. The recursion starts with L1j =A0

0j , or more conveniently
with L0j = δj0. A related recursion has been derived in (Fea06). We also need a right
recursion for r=0, j =n, p−l=1, m−p=k:

Rk+1,i := Q0(yin|k + 1) =
n−k∑

h=i+1

Q0(yih|1)Q0(yhn|k) =
n−k∑

h=i+1

A0
ihRkh

The recursion starts with R1i =A0
in, or more conveniently with R0i =δin.

6 Efficient Solution for Quantities of Interest

We now use the core recursion of the last section to derive expressions for all quantities
of interest. We denote them by capital symbols (with indices).

Data evidence. Note that

Lkn = Rk0 = Q0(y|k) = (n−1
k−1 )P (y|k)

are proportional to the data evidence for fixed k. So the data evidence can be computed
as

E := P (y) =

n∑

k=1

P (y|k)P (k) =
1

kmax

kmax∑

k=1

Lkn

(n−1
k−1 )

(16)

Number of segments. The posterior of k and its MAP estimate are

Ck := P (k|y) =
P (y|k)P (k)

P (y)
=

Lkn

(n−1
k−1 )kmaxE

and k̂ = argmax
k=1..kmax

Ck (17)

Segment boundaries. We now determine the segment boundaries. Consider recursion
(11) for i= l=0, m=k, j =n, but keep tp =h fixed, i.e. do not sum over it. Then (12)
and (13) reduce to the l.h.s. and r.h.s. of

(n−1
k−1 )P (y, µ, tp|k) = Q(y0h, µ0p|p)Q(yhn, µpk|k − p) (18)

Integration over µ gives

(n−1
k−1 )P (y, tp|k) = Q0(y0h|p)Q0(yhn|k − p)

Hence the posterior probability that boundary p is located at tp =h, given k̂, is

Bph := P (tp = h|y, k̂) =
(n−1

k̂−1
)P (y, tp|k̂)

(n−1

k̂−1
)P (y|k̂)

=
LphRk̂−p,h

Lk̂n

(19)
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So our estimate for segment boundary p is

t̂p := argmax
h

P (tp = h|y, k̂) = argmax
h

{Bph} = argmax
h

{LphRk̂−p,h} (20)

Segment levels. Finally we need the segment levels, given the segment number k̂ and
boundaries t̂. The rth moment of segment m with boundaries i= t̂m−1 and j = t̂m is

µ̂r
m = E[µr

m|y, t̂, k̂] = E[µr
m|yij , t̂m−1,m] =

∫
P (yij , µm|t̂m−1,m)µr

mdµm∫
P (yij , µm|t̂m−1,m)dµm

=
Ar

ij

A0
ij

(21)

Note that this expression is independent of other segment boundaries and their number,
as it should.

Regression curve. 5We reduce probabilities of µ′
t to probabilities of µm: We exploit

the fact that in every segmentation, µ′
t lies in some segment. Let this (unique) segment

be m with (unique) boundaries i= tm−1<t≤ tm=j. Then µ′
t =µm. Summing now over

all such segments we get

P (µ′
t|y, k) =

k∑

m=1

t−1∑

i=0

n∑

j=t

P (µm, tm−1 = i, tm = j|y, k) (22)

By fixing tp in (12) we arrived at (18). Similarly, dividing the data into three parts and
fixing tl and tm we can derive

(n−1
k−1 )P (y, µ, tl, tm|k) = Q(y0i, µ0l|l)Q(yijµlm|m − l)Q(yjnµmk|k − m)

Setting l=m−1, integrating over µ0l and µmk, dividing by (n−1
k−1 )P (y|k), and inserting

into (22), we get

P (µ′
t|y, k) =

1

Lkn

k∑

m=1

∑

i<t≤j

Lm−1,iQ(yij , µm|1)Rk−m,j

The posterior moments of µ′
t, given k̂, can hence be computed by

µ̂′
t
r =

∑

i<t≤j

F r
ij with F r

ij :=
1

Lk̂n

k̂∑

m=1

Lm−1,iA
r
ijRk̂−m,j (23)

While segment boundaries and values make sense only for fixed k (we chose k̂), the
regression curve µ̂′

t could actually be averaged over all k instead of fixing k= k̂.

Relative log-likelihood. Another quantity of interest is how likely it is that y is
sampled from f̂ . The log-likelihood of y is

ll := log P (y|f̂) = log P (y|µ̂, t̂, k̂) =

n∑

i=1

log P (yi|µ̂′
i, σ)

5Recursion (14) allows in principle to compute the regression curve E[µ′
t|y] by defining (Lr=1

t )kj

and (Rr=1
t )ki analogous to Lkj and Rki, but this procedure needs O(n3) space and O(kmaxn3) time,

one O(n) worse than our target performance.
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Like for the evidence, the number itself is hard to interpret. We need to know how many
standard deviations it is away from its mean(=entropy). Since noise (1) is i.i.d., mean
and variance of ll are just n times the mean and variance of the log-noise distribution
of a single data item. For Gaussian and Cauchy noise we get

Gauss: E[ll|f̂ ] = n
2 log(2πeσ2), Var[ll|f̂ ] = n

2

Cauchy: E[ll|f̂ ] = n log(4πσ), Var[ll|f̂ ] = n
3 π2

7 Computing the Single Segment Distribution

We now determine (at least in the Gaussian case efficient) expressions for the moments
(15) of the distribution (9) of a single segment.

Gaussian model. For Gaussian noise (4) and prior (5) we get

Ar
ij =

(
1√
2πσ

)d
1√
2πρ

∫ ∞

−∞

e
− 1

2σ2

∑j
t=i+1(yt−µm)2 − 1

2ρ2 (µm−ν)2
µr

m dµm

where d= j−i. This is an unnormalized Gaussian integral with the following normal-
ization, mean, and variance (Bol04, Sec.10.2):

P (yij |tm−1,m) = A0
ij =

exp
{

1
2σ2

[ (
∑

t(yt−ν))2

d+σ2/ρ2 −∑
t(yt−ν)2

]}

(2πσ2)d/2(1+dρ2/σ2)1/2
(24)

E[µm|yij , tm−1,m] =
A1

ij

A0
ij

=
ρ2(

∑
t yt) + σ2ν

dρ2 + σ2
≈ 1

d

j∑

t=i+1

yt (25)

Var[µm|yij , tm−1,m] =
A2

ij

A0
ij

−
(A1

ij

A0
ij

)2

=
[ d

σ2
+

1

ρ2

]−1

≈ σ2

d
(26)

where Σt runs from i+1 to j. The mean/variance is just the weighted average of
the mean/variance of yij and µm. One may prefer to use the segment prior only for
determining A0

ij , but use the unbiased estimators (≈) for the moments. Higher moments
Ar

ij can also be computed from the central moments

E[(µm − A1
ij/A

0
ij)

r|yij , tm−1,m] =
1·3· ... ·(r − 1)

[dσ−2 + ρ−2]r/2
≈ 1·3· ... ·(r − 1)·

(σ2

d

)r/2

for even r, and 0 for odd r.

Other models. Analytic expressions for Ar
ij are possible for all distributions in the

exponential family. For others like Cauchy we need to perform integral (15) numerically.
A very simple approximation is to replace the integral by a sum on a uniform grid: The
stepsize/range of the grid should be some fraction/multiple of the typical scale of the
integrand, and the center of the grid should be around the mean. A crude estimate of
the mean and scale can be obtained from the Gaussian model (25) and (26). Or even
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simpler, use the estimated global mean and variance (27), and in-segment variance (28)
for determining the range (e.g. [ν̂−25ρ̂,...,ν̂+25ρ̂]) and stepsize (e.g. σ̂/10) of one grid
used for all Ar

ij . Note that if yij really stem from one segment, the integrand is typically
unimodal and the above estimates for stepsize and range are reasonable, hence the
approximation will be good. If yij ranges over different segments, the discretization may
be crude, but since in this case, Ar

ij is (very) small, crude estimates are sufficient. Note
also that even for the heavy-tailed Cauchy distribution, the first and second moments
A1

ij and A2
ij exist, since the integrand is a product of at least two Cauchy distributions,

one prior and one noise for each yt. Preferably, standard numerical integration routines
(which are faster, more robust and more accurate) should be used.

8 Determination of the Hyper-Parameters

Hyper-Bayes and Hyper-ML. The developed regression model still contains three
(hyper)parameters, the global variance ρ2 and mean ν of µ, and the in-segment variance
σ2. If they are not known, a proper Bayesian treatment would be to assume a hyper-
prior over them and integrate them out. Since we do not expect a significant influence
of the hyper-prior (as long as chosen reasonable) on the quantities of interest, one could
more easy proceed in an empirical Bayesian way and choose the parameters such that
the evidence P (y|σ,ν,ρ) is maximized (“hyper-ML” or “ML-II”). (We restored the till
now omitted dependency on the hyper-parameters).

Exhaustive (grid) search for the hyper-ML parameters is expensive. For data which
is indeed noisy piecewise constant, P (y|σ,ν,ρ) is typically unimodal6 in (σ,ν,ρ) and the
global maximum can be found more efficiently by greed hill-climbing, but even this may
cost a factor of 10 to 1000 in efficiency. Below we present a very simple and excellent
heuristic for choosing (σ,ν,ρ).

Estimate of global mean and variance ν and ρ. A reasonable choice for the level
mean and variance ν and ρ are the empirical global mean and variance of the data y.

ν̂ ≈ 1

n

n∑

t=1

yt and ρ̂2 ≈ 1

n − 1

n∑

t=1

(yt − ν̂)2 (27)

This overestimates the variance ρ2 of the segment levels, since the expression also in-
cludes the in-segment variance σ2, which one may want to subtract from this expression.

Estimate of in-segment variance σ2. At first there seems little hope of estimating
the in-segment variance σ2 from y without knowing the segmentation, but actually we
can use a simple trick. If y would belong to a single segment, i.e. the yt were i.i.d. with

6A little care is necessary with the in-segment variance σ2 . If we set it (extremely close) to zero, all
segments will consist of a single data point yi with (close to) infinite evidence (see e.g. (24)). Assuming
kmax <n eliminates this unwished maximum. Greedy hill-climbing with proper initialization will also
not be fooled.
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variance σ2, then the following expressions for σ2 would hold:

E

[
1

n

n∑

t=1

(yt − µ1)
2

]
= σ2 =

1

2(n − 1)
E

[ n−1∑

t=1

(yt+1 − yt)
2

]

i.e. instead of estimating σ2 by the squared deviation of the yt from their mean, we can
also estimate σ2 from the average squared difference of successive yt. This remains true
even for multiple segments if we exclude the segment boundaries in the sum. On the
other hand, if the number of segment boundaries is small, the error from including the
boundaries will be small, i.e. the second expression remains approximately valid. More
precisely, we have within a segment and at the boundaries

E

[ tm−1∑

t=tm−1+1

(yt+1 − yt)
2

]
= 2(tm − tm−1 − 1)σ2 and

E[(ytm+1 − ytm)2] = 2σ2 + (µm+1 − µm)2

Summing over all k segments and k−1 boundaries and solving w.r.t. σ2 we get

σ2 =
1

2(n − 1)

{
E

[ n−1∑

t=1

(yt+1 − yt)
2

]
−

k−1∑

m=1

(µm+1 − µm)2

}

=
1

2(n − 1)
E

[ n−1∑

t=1

(yt+1 − yt)
2

]
·
[
1 − O

( k

n

ρ2

σ2

)]

The last expression holds, since there are k boundaries in n data items, and the ratio
between the variance of µ to the in-segment variance is ρ2/σ2. Hence we may estimate
σ2 by the upper bound

σ̂2 ≈ 1

2(n − 1)

n−1∑

t=1

(yt+1 − yt)
2 (28)

If there are not too many segments (k�n) and the regression problem is hard (high
noise ρ<∼σ), this is a very good estimate. In case of low noise (ρ � σ), regression is
very easy, and a crude estimate of σ2 is sufficient. If there are many segments, σ̂2 tends
to overestimate σ2, resulting in a (marginal) bias towards estimating fewer segments
(which is then often welcome).

If the estimate is really not sufficient, one may use (28) as an initial estimate for
determining an initial segmentation t̂, which then can be used to compute an improved
estimate of σ̂2, and possibly iterate.

Hyper-ML estimates. Expressions (27) are the standard estimates of mean and
variance of a distribution. They are particularly suitable for (close to) Gaussian dis-
tributions, but also for others, as long as ν and ρ parameterize mean and variance. If
mean and variance do not exist or the distribution is quite heavy-tailed, we need other
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estimates. The “ideal” hyper-ML estimates may be approximated as follows. If we
assume that each data point lies in its own segment, we get

(ν̂, ρ̂) ≈ arg max
(ν,ρ)

n∏

t=1

P (yt|σ̂, ν, ρ) with

P (yt|σ, ν, ρ) =

∫
P (yt|µ, σ)P (µ|ν, ρ)dµ (29)

The in-segment variance σ̂2 can be estimated similarly to the last paragraph considering
data differences and ignoring segment boundaries:

σ̂ ≈ arg max
σ

n−1∏

t=1

P (yt+1 − yt|σ) with

P (yt+1 − yt = ∆|σ) ≈
∫ ∞

−∞

P (yt+1 = a + ∆|µ, σ)P (yt = a|µ, σ)da (30)

Note that the last expression is independent of the segment level (this was the whole
reason for considering data differences) and exact iff yt and yt+1 belong to the same
segment. In general (beyond the exponential family) (ν̂,ρ̂,σ̂) can only be determined
numerically.

Using median and quartile. We present some simpler estimates based on median
and quartiles. Let [y] be the data vector y, but sorted in ascending order. Then, item
[y]αn (where the index is assumed to be rounded up to the next integer) is the α-quantile
of empirical distribution y. In particular [y]n/2 is the median of y. It is a consistent
and robust-to-outliers estimator of the mean segment level

ν̂ ≈ [y]n/2 (31)

if noise and segment levels have symmetric distributions. Further, half of the data points
lie in the interval [a,b], where a := [y]n/4 is the first and b := [y]3n/4 is the last quartile
of y. So, using (29), ρ̂ should (!) be estimated such that

P (a ≤ yt ≤ b|σ, ν̂, ρ̂)
!≈ 1

2

Ignoring data noise (assuming σ≈0), we get

ρ̂ ≈ [y]3n/4 − [y]n/4

2α
with α = 1 for Cauchy and α

.
= 0.6744 for Gauss, (32)

where α is the quartile of the standard Cauchy/Gauss/other segment prior. For the
data noise σ we again consider the differences ∆t :=yt+1−yt. Using (30), σ̂ should be
estimated such that

P (a′ ≤ yt+1 − yt ≤ b′|σ̂)
!≈ 1

2

where a′=[∆]n/4 and b′=[∆]3n/4≈−a′. One can show that

σ̂ ≈ [∆]3n/4 − [∆]n/4

2β
with β = 2 for Cauchy and β

.
= 0.6744

√
2 for Gauss, (33)
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where β is the quartile of the one time with itself convolved standard
Cauchy/Gauss/other (noise) distribution. Use of quartiles for estimating σ is very ro-
bust to the “outliers” caused by the segment boundaries, so yields better estimates than
(28) if noise is low. Again, if the estimates are really not sufficient, one may iteratively
improve them.

9 The Algorithm

The computation of A, L, R, E, C, B, t̂p, µ̂r
m, F , and µ̂′

t
r by the formulas/recursions

derived in Sections 5–7, are straightforward. In (15) one should compute the product,

or in (24), (25), (26) the sum, incrementally from j ; j+1. Similarly µ̂′
t
r should be

computed incrementally by

µ̂′
t+1

r = µ̂′
t
r −

t−1∑

i=0

F r
it +

n∑

j=t+1

F r
tj

Typically r = 0,1,2. In this way, all quantities can be computed in time O(kmaxn2)
and space O(n2), as clear from Algorithm 1. Space can be reduced to O(kmaxn) by
computing A and F on-the-fly in the various expressions at the cost of a slowdown by
a constant factor. Table 1 contains the algorithm in pseudo-C code. The complete
code including examples and data is available at (Hut05a). Since A0, L, R, and E
can be exponentially large or small in n, i.e. huge or tiny, actually their logarithm
has to be computed and stored. In the expressions, the logarithm is pulled in by
log(x·y) = log(x)+log(y) and log(x+y) = log(x)+log(1+exp(log(y)−log(x)) for x > y
and similarly for x < y. Instead of Ar

ij we have to compute Ar
ij/A

0
ij by pulling the

denominator into the integral.

10 Synthetic Examples

Description. In order to test our algorithm we created various synthetic data sets.
We considered piecewise constant functions with noisy observations. The considered
function was defined −1 in its first quarter, +1 in its second quarter, and 0 in the
last half. So the function consists of two small and one large segments, with a large
jump at the first and a small jump at the second boundary. For n we chose 100,
i.e. f1...f25 =−1, f26...f50 = +1, and f51...f100 = 0. Data yt was obtained by adding
independent Gaussian/Cauchy noise of same scale σ for all t. We considered low σ=0.1,
medium σ=0.32, and high σ=1 noise, resulting in an easy, medium, and hard regression
problem (Figures 1-14). We applied our regression algorithm to these 6 data sets (named
GL,GM,GH,CL,CM,CH), where we modeled noise and prior as Gaussian or Cauchy with
hyper-parameters also estimated by the algorithms in Table 1. Table 2 contains these
and other scalar summaries, like the evidence, likelihood, MAP segment number k̂ and
their probability.

Three segment Gaussian with low noise. Regression for low Gaussian noise (σ =
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Table 1: Regression algorithm in pseudo C code

EstGauss(y,n) and EstGeneral(y,n,α,β) compute from data (y1,...,yn), estimates
for ν, ρ, σ (hat ‘ˆ’ omitted), and from that the evidence A0

ij of a single segment ranging

from i+1 to j, and corresponding first and second moments A1
ij and A2

ij . The expressions
(27), (28), (24), (25), (26) are used in EstGauss() for Gaussian noise and prior, and (31),
(32), (33) and numerical integration on a uniform Grid in EstGeneral() for arbitrary
noise and prior P , e.g. Cauchy. [y] denotes the sorted y array, Grid is the uniform
integration grid, += and ∗= are additive/multiplicative updates, and [] denotes arrays.

EstGauss(y
[]
,n)

d ν = 1
n

∑n
t=1yt;

ρ2 = 1
n−1

∑n
t=1(yt−ν)2;

σ2 = 1
2(n−1)

∑n−1
t=1 (yt+1−yt)

2;

for(i=0..n)

d m=0; s=0;
for(j = i+1..n)

d d=j−i; m+=yj−ν; s+=(yj−ν)2;

A0
ij =

exp{ 1
2σ2 [ m2

d+σ2/ρ2 −s]}
(2πσ2)d/2(1+dρ2/σ2)1/2

;

A1
ij =A0

ij(ν+m/d);

b b A2
ij =A0

ij((A
1
ij/A

0
ij)

2+σ2/d);

b return (A[]

[][]
,ν,ρ,σ);

EstGeneral(y
[]
,n,α,β)

d ν =[y]n/2;
ρ=([y]3n/4−[y]n/4)/2α;
for(t=1..n−1) ∆t =yt+1−yt;
σ=([∆]3n/4−[∆]n/4)/2β;
Grid=( σ

10ZZ)∩[ν−25ρ,ν+25ρ];
for(i=0..n)

d for(µ∈Grid) Rµ =P (µ|ν,ρ);
for(j = i+1..n)

d for(µ∈Grid) Rµ∗=P (yj |µ,σ);

b b Ar
ij = σ

10

∑
µ∈GridRµ µr; (r=0,1,2)

b return (A[]

[][]
,ν,ρ,σ);

Regression(A,n,kmax) takes A, n,
and an upper bound on the number
of segments kmax, and computes the
evidence E =P (y) (16), the probabil-
ity Ck =P (k|y) of k segments and its

MAP estimate k̂ (17), the probability

Bi = P (∃p : tp = i|y,k̂) that a bound-
ary is at i (19) and the MAP location
t̂p of the pth boundary (20), the first
and second segment level moments µp

and µ2
p of all segments p (21), and the

Bayesian regression curve µ′
t and its

second moment µ′
t
2 (23).

Regression(A[]

[][]
,n,kmax)

d for(i=0..n) { L0i =δi0; R0i =δin; }
for(k=0..kmax−1)

d for(i=0..n) Lk+1,i =
∑i−1

h=kLkhA0
hi;

b for(i=0..n) Rk+1,i =
∑n−k

h=i+1A
0
ihRkh;

E =k−1
max

∑kmax

k=1 Lkn/(n−1
k−1 );

for(k=0..kmax) Ck =Lkn/[(n−1
k−1 )kmaxE];

k̂=argmaxk=1..kmax
{Ck};

for(i=0..n) Bi =
∑k̂

p=0LpiRk̂−p,i/Lk̂n;

for(p=0..k̂) t̂p =argmaxh{LphRk̂−p,h};
for(p=1..k̂) µ̂r

p =Ar
t̂p−1 t̂p

/A0
t̂p−1 t̂p

; (r=1,2)

for(i=0..n) for(j = i+1..n)

[ F r
ij =

∑k̂
m=1Lm−1,iA

r
ijRk̂−m,j/Lk̂n;

µ′
0
r =0; (r=1,2)

for(t=0..n−1)

[ µ̂′
t+1

r = µ̂′
t
r−∑t−1

i=0F
r
it+

∑n
j=t+1F

r
tj

b return (E,C[],k̂,B[],t̂[],µ̂r
[]
,µ̂′

[]
r);
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Figure 1: [GL: low Gaussian noise] data
(blue), PCR (black), BP (red), and
variance1/2 (green).
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Figure 2: [GM: medium Gaussian noise]
data (blue), PCR (black), BP (red), and
variance1/2 (green).
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Figure 3: [GM: medium Gaussian noise]
data with Bayesian regression ± 1 std.-
deviation.
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Figure 4: [GH: high Gaussian noise] data.
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Figure 5: [GH: high Gaussian noise]
data (blue), PCR (black), BP (red), and
variance1/2 (green).
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Figure 6: [GH: high Gaussian noise]
data with Bayesian regression ± 1 std.-
deviation.

0.1) is very easy. Figure 1 shows the data points (1,y1),...,(100,y100) together with the
estimated segment boundaries and levels, i.e. the Piecewise Constant Regression (PCR)
curve (black). The red BP curve (with the two spikes) is the posterior probability that

a boundary (break point BP) is at t. It is defined as Bt :=
∑k̂

p=1Bpt. Our Bayesian
regressor (BPCR) is virtually sure that the boundaries are at t1 = 25 (B25 = 100%)
and t2 = 50 (B25 = 99.9994%). The segment levels µ̂1 = −0.98 ≈ −1, µ̂2 = 0.97 ≈ 1,
µ̂3 =0.01≈0 are determined with high accuracy i.e. with low standard deviation (green
curve) σ/

√
25 = 2% for the first two and σ/

√
50

.
= 1.4% for the last segment. The

Bayesian regression curve µ̂t (not shown) is indistinguishable from the PCR.

Three segment Gaussian with medium noise. Little changes for medium Gaussian
noise (σ = 0.32). Figure 2 shows that the number and location of boundaries is still
correctly determined, but the posterior probability of the second boundary location (red
BP curve) starts to get a little broader (B50 =87%). The regression curve in Figure 3
is still essentially piecewise constant. At t=50 there is a small kink and the error band
gets a little wider, as can better be seen in the (kink of the) green

√
Var[µ′

t|...] curve in
Figure 2. In Figure 13 we study the sensitivity of our regression to the noise estimate
σ̂. Keeping everything else fixed, we varied σ from 0.1 to 1 and plotted the log-evidence
logP (y|σ) and the segment number estimate k̂(σ) as a function of σ. We see that our
estimate σ̂

.
=0.35 is close to the hyper-ML value σHML =argmaxσP (y|σ)

.
=0.33, which

itself is close to the true σ=0.32. The number of segments k̂ is correctly recovered for a
wide range of σ around σ̂. If σ is chosen too small (below the critical value 0.2), BPCR
cannot regard typical deviations from the segment level as noise anymore and has to
break segments into smaller pieces for a better fit (k̂ increases). For higher noise, the
critical value gets closer to σ̂, but also the estimate becomes (even) better. For lower
noise, σ̂ overestimates the true σ, but BPCR is at the same time even less sensitive to
it.
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Figure 7: Posterior segment number prob-
ability P (k|y) for medium Gaussian noise
(GM, black), high Cauchy noise (CH,
blue), medium Cauchy noise with Gaus-
sian regression (CMwG, green), aberrant
gene copy # of chromosome 1 (Gen(3,1),
red), normal gene copy # of chromosome 9
(Gen(5,9), pink).
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Figure 8: [CM: medium Cauchy noise]
data (blue), PCR (black), BP (red), and
variance1/2 (green).

Three segment Gaussian with high noise. Figure 4 shows the data with Gaussian
noise of the same order as the jump of levels (σ=1). One can imagine some up-trend in
the first quarter, but one can hardly see any segments. Nevertheless, BPCR still finds
the correct boundary number and location of the first boundary (Figure 5). The second
boundary is one off to the left, since y50 was accidentally close to zero, hence got assigned
to the last segment. The (red) boundary probability (BP) curve is significantly blurred,
in particular at the smaller second jump with quite small B49 = 12% and B50 = 10%.
The levels themselves are within expected accuracy σ/

√
25 = 20% and σ/

√
50

.
= 14%,

respectively, yielding still a PCR close to the true function. The Bayesian regression
(and error) curve (Figure 6), though, changed shape completely. It resembles more a
local data smoothing, following trends in the data (more on this in the next section).
The variance (green curve in Figure 5) has a visible bump at t=25, but only a broad
slight elevation around t=50.

Three segment Cauchy. The qualitative results for the Cauchy with low noise (σ=
0.1) are the same as for Gauss, perfect recovery of the underlying function, and is hence
not shown. Worth mentioning is that the estimate σ̂ based on quartiles is excellent(ly
close to hyper-ML) even for this low noise (and of course higher noise), i.e. is very robust
against the segment boundaries.

Also for medium Cauchy noise (σ =0.32, Figure 8) our BPCR does not get fooled
(even) by (clusters of) “outliers” at t = 16, t = 48,49, and t = 86,89,90. The second
boundary is one off to the right, since y51 is slightly too large. Break probability Bt
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Figure 9: [CH: high Cauchy noise] data.
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Figure 10: [CH: high Cauchy noise]
data (blue), PCR (black), BP (red), and
variance1/2 (green).
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Figure 11: [CH: high Cauchy noise]
data with Bayesian regression ± 1 std.-
deviation.
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Figure 12: [CMwG: medium Cauchy noise]
data (blue), but with Gaussian PCR
(black), BP (red), and variance1/2 (green).
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Figure 13: [GM: medium Gaussian noise]

logP (y) (blue) and k̂ (green) as function
of σ and our estimate σ̂ of (arg)maxσP (y)

and k̂(σ̂) (black triangles).
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Figure 14: [CMwG: medium Cauchy noise]
with Gaussian regression, logP (y) (blue)

and k̂ (green) as function of σ and our esti-

mate σ̂ of (arg)maxσP (y) and k̂(σ̂) (black
triangles).

(red) and variance Var[µ′
t|y,k̂] (green) are nicely peaked at t̂1 =25 and t̂2 =51.

For high Cauchy noise (σ =1, Figure 9) it is nearly impossible to see any segment
(levels) at all. Amazingly, BPCR still recovers three segments (Figure 10), but the first
boundary is significantly displaced (t̂1=14). Bt and Var[µ′

t|y,k̂] contain many peaks in-
dicating that BPCR was quite unsure where to break. The Bayesian regression in Figure
11 identifies an upward trend in the data y14:35, explaining the difficulty/impossibility
of recovering the correct location of the first boundary.

Cauchy analyzed with Gauss and vice versa. In order to test the robustness
of BPCR under misspecification, we analyzed the data with Cauchy noise by Gaussian
BPCR (and vice versa). Gaussian BPCR perfectly recovers the segments for low Cauchy
noise. For medium noise (CMwG, Figure 12) the outlier at t=49 is not tolerated and
placed in it own segment, and the last segment is broken in two parts, but overall the
distortion is less than possibly expected (e.g. not all outliers are in own segments). The
reason for this robustness can be attributed to the way we estimate σ. Figure 14 shows
that the outliers have increased σ̂ far beyond the peak of P (y|σ), which in turn leads
to lower (more reasonable) number of segments. This is a nice stabilizing property of σ̂.
The other way round, segmentation of data with medium Gaussian noise is essentially
insensitive to whether performed with Gaussian BPCR (Fig. 2 and 3) or Cauchy BPCR
(GMwC, not shown), which confirms (once again) the robustness of the Cauchy model.
But for high noise BPCR fails in both misspecification directions.

11 Real-World Example & More Discussion

Gene copy number data. We now turn to a real-world data set. All chromosomes
(except for the sex chromosomes in males) in a healthy human cell come in pairs, but
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Figure 15: [Gen31: Aberrant gene copy
# of chromosome 1] data (blue), PCR
(black), BP (red), and variance1/2 (green).
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Figure 16: [Gen31: Aberrant gene copy #
of chromosome 1] data with Bayesian re-
gression ± 1 std.-deviation.
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pieces or entire chromosomes can be lost or multiplied in tumor cells. With modern
micro-arrays one can measure the local copy number along a chromosome. It is impor-
tant to determine the breaks, where copy-number changes. The measurements are very
noisy (Pin98). Hence this is a natural application for piecewise constant regression of
noisy (one-dimensional) data. An analysis with BPCR of chromosomal aberrations of
real tumor samples, its biological interpretation, and comparison to other methods will
be given elsewhere. Here, we only show the regression results of one aberrant and one
healthy chromosome (without biological interpretation).

Most tumor samples are impure, so the copy number is unfortunately not an integer.
The “log-ratios” y of the copy numbers of a normal cell (and also the ∆ of any cell)
are very close to Gaussian distributed, so we chose Gaussian BPCR. The log-ratios y

of chromosome 1 of a sample known to have multiple myeloma are shown in Figure
15, together with the regression results. Visually, the segmentation is very reasonable.
Long segments (e.g. t = 89...408) as well as very short ones around t = 87 and 641 of
length 3 are detected. The Bayesian regression curve in Figure 16 also behaves nicely.
It is very flat i.e. smoothes the data in long and clear segments, wiggles in less clear
segments, and has jumps at the segment boundaries. Compare this to local smoothing
techniques (Rin06), which wiggle much more within a segment and severely smooth
boundaries. In this sense our Bayesian regression curve is somewhere in-between local
smoothing and hard segmentation. We also see that the regression curve has a broad
dip around t=535...565, although t=510...599 has been assigned to a single segment.
This shows that other contributions breaking the segment have been mixed into the
Bayesian regression curve. The PCR favor for a single segment is close to “tip over” as
can be seen from the spikes in the break probability (red curve) in this segment.

The dependence of evidence and segment number on σ is shown in Figure 17. Our
estimate σ̂ (black triangle) perfectly maximizes P (y|σ) (blue curve). It is at a deep
slope of P (k|y,σ) (green curve), which means that the segmentation is sensitive to a
good estimate of σ̂. There is no unique (statistically) correct segmentation (number).
Various segmentations within some range are supported by comparable evidence.

Figure 18 shows a healthy chromosome 9, correctly lumped into one big segment.

Posterior probability of the number of segments P (k|y). One of the most critical
steps for good segmentation is determining the right segment number, which we did by
maximizing P (k|y). The whole curves shown in Figure 7 give additional insight. A
representative selection is presented.

For truly piecewise constant functions with k0�n segments and low to medium noise,
logP (k|y) typically raises rapidly with k till k0 and thereafter decays approximately
linear (black GM curve). This shows that BPCR certainly does not underestimate k0

(P (k < k0|y) ≈ 0). Although it also does not overestimate k0, only P (k ≥ k0|y) ≈ 1,
but P (k0|y) 6≈1 due to the following reason: If a segment is broken into two (or more)
and assigned (approximately) equal levels, the curve and hence the likelihood does
not change. BPCR does not explicitly penalize this, only implicitly by the Bayesian
averaging (Bayes factor phenomenon (Goo83; Jay03; Mac03)). This gives very roughly
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Table 2: (Regression summary) The table summarizes the regression results
for the considered synthetic and real-world data sets described in the main text:
Data consisting of three segments with (low,medium,high) Gaussian/Cauchy noise
(GL,GM,GH)/(CL,CM,CH), cross regressed (GMwC,CMwG), and the (tumor,healthy)

DNA copy number data (Gen31,Gen59). The second last column contains k̂ with and

without counting multiple breaks at the same point. The last column contains P (k̂)

and in parentheses P (k̂−1) and P (k̂+1) in percent.
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Name σ n P ν̂ ρ̂ σ̂ logE ll−E

σll
k̂ Ck(−1,+1)

GL 0.10 100 G -0.01 0.69 0.18 39 4.9 3|3 74%(0|20)
GM 0.32 100 G -0.03 0.73 0.35 -48 1.2 3|3 44%(0|29)
GH 1.00 100 G -0.10 1.15 1.03 -156 0.3 3|4 13%(10|12)

CL 0.10 100 C -0.02 0.58 0.09 -17 1.0 3|3 69%(0|21)
CM 0.32 100 C -0.09 0.70 0.27 -127 0.8 3|3 38%(0|27)
CH 1.00 100 C -0.20 0.99 0.86 -234 0.9 3|4 12%(11|11)

GMwC 0.32 100 C 0.00 0.49 0.17 -70 1.5 3|3 27%(0|26)
CMwG 0.32 100 G 0.01 1.24 1.22 -160 2.9 5|8 8%(8|8)

Gen31 – 769 G 0.55 0.45 0.30 -283 -1.5 15|34 6%(6|6)
Gen59 – 483 G 1.05 0.47 0.44 -336 -2.3 1|1 8%(0|6)

an additive term in the log-likelihood of 1
2 logn for each additional degree of freedom

(segment level and boundary). This observation is the core of the Bayesian Information
Criterion (BIC) (Sch78; KW95; Wea99).

With increasing noise, the acute maximum become more round (blue CH curve),
i.e. as expected, BPCR becomes less sure about the correct number of segments. This
uncertainty gets pronounced under misspecification (green CMwG curve), and in par-
ticular when the true number of segments is far from clear (or nonexistent) like in the
genome abberation example (red Gen(3,1) curve). The pink Gen(5,9) curve shows that
logP (k|y) is not necessarily unimodal.

Miscellaneous. Table 2 summarizes the most important quantities of the considered
examples.

While using the variance of ∆ as estimate for σ̂ tends to overestimate σ for low
noise, the quartile method does not suffer from this (non)problem.

The usefulness of quoting the evidence cannot be overestimated. While the absolute
number itself is hard to comprehend, comparisons (based on this absolute(!) number)
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are invaluable. Consider, for instance, the three segment medium Gaussian noise data
yGM from Figure 2. Table 2 shows that logE(GM)=−48, while logE(GMwC)=−70,
i.e. the odds that yGM has Cauchy rather than Gaussian noise is tiny e48−70<10−9, and
similarly the odds that yCM has Gaussian rather than Cauchy noise is e127−160<10−14.
This can be used to decide on the model to use. For instance it clearly indicates that
noise in Gene31 and Gen59 is not Cauchy for which log-evidences would be −398 and
−406, respectively. The smallness of the relative log-likelihoods does not indicate any
gross misspecification.

The indicated 4th segment for GH and CH is spurious, since it has length zero (two
breaks at the same position). In Gene31, only 15 out of the indicated 34 segments are
real. The spurious ones would be real had we estimated the breaks t̂ jointly, rather than
the marginals tp separately. They would often be single data segments at the current
boundaries, since it costs only a single extra break to cut off an “outlier” at a boundary
versus two breaks in the middle of a segment.

In the last column we indicated the confidence Ck̂ (Ck̂−1,Ck̂+1) of BPCR in the

estimate k̂. For clean data (GL,GM,CL,GM) it is certain that there are at least 3
segments. We already explained the general tendency to also believe in higher number
of segments.

12 Extensions & Outlook

The core Regression(A,n,kmax) algorithm does not care where the in-segment evidence
matrix and moments A come from. This allows for plenty of easy extensions of the
basic idea.

Instead of the scalar mean µq of segment q, we can consider any other scalar, vector,
or discrete segment property µq . The only relevant property is that, given the segment
boundaries, the µq of different segments are independent. Similarly, the global parame-
ters may differ from (σ,ν,ρ). Some of the generalizations described below, like segment
dependent variance σq , are of this type.

If the segment levels are known to belong to a discrete set (e.g. integer DNA copy
numbers (PRLD05)), this simply corresponds to a discrete prior on µ and leads naturally
(rather than by need) to a Grid sum as in EstGeneral().

If each segment can have its own (unknown) variance σ2
m, we can assume some prior

over σm and average (15) (which depends on σm, notationally suppressed) additionally
over σm. Possibly P (σm|...) depends on some hyper-parameter that now has to be
estimated instead of σ; all the better if not.

Our recursion can easily be generalized to more general factorizable boundary prior

P (t|k) = Tt0t1 · ... · Ttk−1tk
/T 0k

0n with norm T 0k
0n :=

∑

0<t1<...<tk−1<n

Tt0t1 · ... · Ttk−1tk
(34)
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for any Tij ≥ 0, e.g. Tij ≡ 1 and T 0k
0n = (n−1

k−1 ) for our uniform boundary prior (8), or
Tij =P (tl+1 = j|tl = i) for renewal processes discussed in Section 13. The only change
to the algorithm in Table 1 is to replace (n−1

k−1 ) everywhere by T 0k
0n (computable in time

O(kmaxn2)) and call Regression() with argument (Ar
ijTij) instead of (Ar

ij).

We assumed a constant regression function within a segment. Actually any other
function could be used. We simply choose likelihood and prior for a single segment and
compute its evidence A0

ij . This is all what Regression() needs to determine the segment
number and boundaries. Once we have the segment boundaries it is easy to compute
the in-segment quantities we are interested in, e.g. the MAP or mean regression curve.

For instance, if we consider all linear functions within a segment, we get a piecewise
linear regression curve. But note that this curve is not continuous. This model is,
for instance good, if the true function is essentially piecewise constant, but there is an
additional underlying trend (slope) in the segments. Using non-linear functions allows
to handle more complicated trends. See e.g. (Fea05).

Piecewise linear (or other) continuous regression is more complicated. Assume that
µp in (11) does not denote the level of the whole segment p, but its level at the right
boundary, which together with µp−1 determines the linear function in segment p. Only
after fixing µp, left and right side decouple. So the recursion analogous to (14) now in-
volves a quantity Q which in addition to (i,j) also depends on (µl,µm). This functional
recursion may approximately be solved by discretizing {(µl,µm)∈ IR2}, or by approxi-
mating Q by a 2-dimensional Gaussian in (µl,µm) and storing only the 2 means and the
2×2 covariance matrix for each (i,j). The following two simpler heuristic approaches
may work sufficiently well in practice: One could ignore the continuity constraint when
determining the boundaries, and only take them into account in the subsequent (much
simpler) regression problem with known boundaries. Another possibility is to consider
instead of the continuous piecewise linear function f its piecewise constant derivative
f ′, i.e. use BPCR on ∆t and finally integrate the result.

It is also not necessary to use a parametric model for the noise. If different segments
can have different noise distributions, we could compute the in-segment evidence, mean,
and variance Ar

ij based on some (fast) non-parametric model. If all segments have the
same distribution, we could non-parametrically estimate a single density for the differ-
ences ∆ and then deconvolve the density (e.g. by FT−1(

√
FT(density)), and henceforth

use this as prior for σ in EstGeneral(), where FT is the fourier transform. As non-
parametric density estimator we could use the fast (linear-time) exact Bayesian tree
model (Hut05b).

Finally, for (very) large n, say > 1000, the O(kmaxn2) algorithm is too slow. For-
tunately, there is nearly no interaction between distant segments; boundary tk is often
practically independent of where tk±2, tk±3, etc. are placed. This suggests to break the
whole data set into smaller overlapping pieces, where each piece should be long enough
to contain at least four segments. Then boundaries tpiece

2 ,...,tpiece
k−2 of each piece are

used, and appropriately merged. For the Bayesian regression curve one should use some
blending on the overlap. If single segments are very long, one could coarsen (locally
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lump together) the data and later refine around the boundaries. Alternatively one can,
of course, resort to simulation based (Monte-Carlo) methods (BH93; Fea06).

13 Comparison to other work

As discussed in the introduction, there are many non-Bayesian approaches to change
point detection in general and PC regression in particular, e.g. (SS75; OVLW04; Jon03;
Pic05). There are also simulation (Monte-Carlo) approaches like (BH93). In this work
we developed an exact Bayesian solution. In the following we compare our model to
a different exact Bayesian model developed in (Yao84; BH92; Fea06). The authors
consider a renewal process: Given that there is a break at i, the prior probability pij

that the next break is at j > i is independent of where and how many change points
occurred before i, that is P (t1l)=p0t1pt1t2 ...ptl−1tl

. They develop recursions in n for the
quantities of interest, while our recursion is over k. Since the number of segments in
their model is variable without a recursion over k, their algorithm runs in time O(n2).

Yao (Yao84) considers identically geometrically distributed breaks with pij = q(1−
q)j−i−1, i.e. for all i, the probability of a break at i is q, independent of the breaks at
other j 6= i. In the following we compare Yao’s model (Pq) to our model with uniform
k-prior (Pu) and our model with fixed segment number (Pk). Table 3 summarizes the
most important quantities, derived from the segment prior P (t|k)P (k) by exploiting
various binomial identities.

The first observation is that, given k, the breaks in Yao’s model are uniformly
distributed as in ours (row 2). Hence his model can only differ from ours in the prior
of k. Indeed, his prior is strongly concentrated around k = qn for typical (large) n
(Pq(k) in row 1). It more resembles a model with fixed k. Note that in all three models,
probabilities involving tlm only depend on tl and tm and are independent of tl+1,...,tm−1.
Yao’s model suppresses long segments exponentially (Pq(row 4)= q(1−q)length-1) with
fixed expected length Eq [row 5] = 1

q −1, while our model has a wide polynomial tail

(Pu(row 4)∼ l·tll−1/tl+1
l ) with expected length Eu[row 5]∼ (tl−1+l)/(l−1) adapting to

the past average length and no prior bias (Eu[t1] is undefined). Similarly, the probability
that there is no break in the range from i to j (row 8) and the probability of a break
at j given the previous one is at i (row D) decay exponentially in Yao’s model but only
harmonically respectively inverse cubic in our model.

Barry and Hartigan (BH92) consider renewal processes with general transition prob-
abilities pij . We can also use our algorithm for renewal processes by setting Tij =pij in
(34). Interestingly, Barry and Hartigan’s favorite model (stated without derivation or
motivation) essentially coincides with the long-tail pij (row A-D) of our model. Nev-
ertheless, their model is completely different from ours, since our model with uniform
prior is not a renewal process. In our model pl

ij :=Pu(tl =j|tl−1=i) (row 4) depends on
l, i.e. Pu(t1l)=p1

0t1p
2
t1t2 ...p

l
tl−1tl

6=p0t1pt1t2 ...ptl−1tl
. This l-dependence also prevents us

from a recursion algorithm in n. This also explains why the high probability of a break
at i (P (row 9)=1/2) and of segments of length one (pi−1,i =

4
1·2·3 ) in both models, imply

a high bias towards short segments in Barry’s model, but not in ours. This explains
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Table 3: (Quantities of Interest for various models) Rows (1)–(9) contain various quantities of interest (first
column) for our model (Pu, fourth column), our model with fixed k (Pk, third column), and Yao’s model with geomet-
rically distributed segment lengths (Pq , third column). The second column contains the definition or a relation or way
to compute the quantity. Section 5 explains notation. Note that conditional on k all three models are the same, hence
Pk(·|k)=Pu(·|k)=Pq(·|k)=Pk(·) can be read off from the third column.

Model Fixed Markov or
Function definition or relation #segments k Uniform k geometric
P (··· ) or way to compute Pk(··· ) Pu(··· ) Pq(··· )

1) P (k)
∑

0<t1<...<tk−1<n,tk≥nP (t1k) “δkk” 1/n
(
n−1
k−1

)
qk−1(1−q)n−k

2) P (t1,k−1|k) P (t1,k−1∧tk≥n)/P (k)
(
n−1
k−1

)−1 (
n−1
k−1

)−1 (
n−1
k−1

)−1

3) P (tlm)
∑n−tm+1

k=m+1 P (tlm|k)P (k)
(tl−1

l−1 )(n−tm−1
k−m−1 )

(n−1
k−1)

(tl−1

l−1 )
(tm+1)(tm

m )

(
tl−1
l−1

)
qm(1−q)tm−m

4) P (tl|t1,l−1)
P (t1l)

P (t1,l−1)

(n−tl−1

k−l−1 )
(n−tl−1−1

k−l )
tl−1+1
tl+1

(tl−1
l−1 )
(tl

l )
q(1−q)tl−tl−1−1

5) E[tl−tl−1|t1,l−1]
∑n−1

tl=l(tl−tl−1)P (tl|t1,l−1)
n−tl−1

k−l+1
tl−1+l

l−1 (n=∞) 1
q −1

6) P (tl) P (tll) ↑P (tll)
l

(tl+1)tl
↑P (tll)

7) P (tl−1 <i∧tl≥j)
∑i−1

tl−1=l−1

∑n−1
tl=j+1P (tl−1,l)

(i−1
l−1)(

n−j
k−l)

(n−1
k−1)

1
l

(i−1
l−1)
(j

l)
(n=∞)

(
i−1
l−1

)
ql−1(1−q)j−l

8) P (∀l : i 6≤ tl 6<j)
∑i

l=1P (tl−1 <i∧tl≥j)
(n−j+i−1

k−1 )
(n−1

k−1)
1

j−i+1 (n=∞) (1−q)j−i

9) P (∃l : tl = i)
∑i

l=1P (tl = i) k−1
n−1

1/2 q

A) p0n P (k=1) δk1
1/n (1−q)n−1

B) p0j P (t1 =j)
(
n−j−1

k−2

)
/
(
n−1
k−1

)
1

j(j+1) q(1−q)j−1

C) pin

∑i+1
k=2P (tk−1=i|k)P (k)∑i+1

l=2P (tl−1=i)

(
i−1
k−2

)
/
(
n−2
k−2

)
2

(n−i)(n−i+1) (1−q)n−i−1

D) pij

∑i+1
l=2P (tl−1=i∧tl=j)∑i+1

l=2P (tl−1=i)

(
n+i−j−2

k−3

)
/
(
n−2
k−2

)
4

(j−i)(j−i+1)(j−i+2) q(1−q)j−i−1
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why their method overestimates the number of segments.

In general, any renewal process pij has some expected or median segment length,
which leads to a strongly peaked k-prior, in contrast to our uniform prior. If we would
perform a Bayesian average over q∈ [0,1] with uniform prior, Yao’s model would reduce
to ours. Both algorithms are O(n2) with a factor kmax in our case and the grid size
for integrating over q in Yao’s case. Actually Yao (Yao84) and Fearnhead (Fea06) use
a maximum likelihood estimate for q.

So the major difference of our work from (Yao84; BH92; Fea06) is that we start
with a non-informative uniform prior over k, while they start with a renewal process
necessarily corresponding to a highly informed prior for k. In contrast to their recursion
over n, our recursion over k allows for arbitrary (in particular uniform) prior over k.
This also naturally allows us to find the MAP k̂.

14 Summary

We considered Bayesian regression of piecewise constant functions with unknown seg-
ment number, location and level. We derived an efficient algorithm that works for
any noise and segment level prior, e.g. Cauchy which can handle outliers. We derived
simple but good estimates for the in-segment variance. We also proposed a Bayesian
regression curve as a better way of smoothing data without blurring boundaries. The
Bayesian approach also allowed us to straightforwardly determine the global evidence,
break probabilities and error estimates, useful for model selection and significance and
robustness studies. We discussed the performance on synthetic and real-world examples.
Many possible extensions have been discussed.

Acknowledgements. Thanks to IOSI for providing the gene copy # data and to Ivo
Kwee for discussions.
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