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Inferring Climate System Properties Using a

Computer Model

Bruno Sansó∗, Chris E. Forest† and Daniel Zantedeschi‡

Abstract. A method is presented to estimate the probability distributions of
climate system properties based on a hierarchical Bayesian model. At the base
of the model, we use simulations of a climate model in which the outputs depend
on the climate system properties and can also be compared with observations.
The degree to which the model outputs are “consistent” with the observations is
used to obtain the likelihood for the climate system properties. We define the
climate system properties as those properties of the climate model that control
the large-scale response of the climate system to external forcings. In this paper,
we use the MIT 2D climate model (MIT2DCM) to provide simulations of ocean,
surface and upper atmospheric temperature behavior over zones defined by lati-
tude bands. In the MIT2DCM, the climate system properties can be set via three
parameters: Climate sensitivity (the equilibrium surface temperature change in
response to a doubling of CO2 concentrations), the rate of deep-ocean heat uptake
(as set by the diffusion of temperature anomalies into the deep-ocean below the
climatological mixed layer), and net strength of the anthropogenic aerosol forcings.
In this work, we use output from MIT2DCM coupled with historical temperature
records to make inference about these climate system properties. Even though the
MIT2DCM is far less computationally demanding than a full 3D climate model,
the task of running the model for each combination of the climate parameters and
processing its output is computationally demanding. Thus, a statistical model is
required to approximate the model output. We obtain results that are critical
for understanding uncertainty in future climate change and provide an indepen-
dent check that the information contained in recent climate change is robust to
statistical treatment.

Keywords: model calibration, climate change, climate sensitivity, Bayesian meth-
ods

1 Introduction

Two major points about our knowledge of the climate system were summarized in the
Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC
2007). First, the global average annual temperature of the Earth’s surface has in-
creased by as much as 0.7 degrees Celsius since the late 19th century. Second, most
of this observed warming is attributed to human influence on the climate system since
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2 Inferring Climate Properties

the beginning of the industrial revolution with anthropogenic factors (primarily increas-
ing greenhouse gas concentrations) being partly responsible for the warming. The first
point is based on evidence in the observational records of surface temperatures with
similar evidence from temperatures in both the upper-atmosphere and ocean tempera-
ture records beginning in the 1950s. The second point is supported by the literature on
climate model experiments in which the simulations of the historical period (∼1850 to
present) are compared against the observational record. In short, the historical record
cannot be explained by natural climate forcings or unforced climate variability. Thus,
only simulations with both anthropogenic and natural forcings can best replicate the
past changes in temperature. Furthermore, experiments with these same models pre-
dict even larger warming in the future if the concentrations of greenhouse gases are not
stabilized by reducing emissions.

The subject of this paper is to use climate change observations to explore the dis-
tributions for properties of the climate system that control the simulations of future
climate change in response to expected climate forcings. These simulations provide in-
formation on long-term climate predictions and are made by simulating the future state
of the global climate system using a climate model. A hierarchy of climate models exists
(Claussen et al. 2002) that classifies the range of model complexities according to the
simulated spatial scales and climate-relevant processes. As discussed in Section 10.5.1
of Chapter 10 in the IPCC AR4 (Meehl et al. 2007), these classes of models are listed
as Simple Climate Models (SCMs), Earth-system Models of Intermediate Complexity
(EMICs), and Atmosphere-Ocean General Circulation Models (AOGCMs). Depending
on the scale required or the key processes to be included, one can choose a model from
one of these classes for a given project. For example, to simulate the full spatial distribu-
tion of climate variables (e.g., temperature, precipitation, or winds), three-dimensional
AOGCMs are required. These models discretize the earth’s atmosphere, oceans, and
land into grid boxes that have a typical size of 250 km × 250 km. We note that
many climate relevant phenomena having spatial scales smaller than 250 km (in partic-
ular clouds) occur within those grid boxes and are accounted for by parameterizations.
Changing the parameterizations will change the sub-gridscale effects and can affect the
large-scale model output substantially. We will return to this issue later.

On the other extreme, if only the global or hemispheric mean temperatures are
required, a SCM can be an appropriate model for simulations provided details on smaller
scales can be disregarded. In this case, processes smaller than hemispheric scales are
parameterized (e.g., all mixing processes within and between the atmosphere or oceans)
such as is done for processes within an AOGCM grid-box. These models are extremely
computationally efficient and are well suited for testing climate policy scenarios when
a full AOGCM is not required. The disadvantage is that many processes are highly
parameterized and so key feedbacks between climate sub-systems may not be adequately
represented in simulations. For example, the solubility of carbon dioxide in sea-water
is highly temperature dependent and so hemispheric mean temperatures would not
distinguish between polar and tropical regions where temperatures determine the flux
of CO2 into the ocean. When the polar warming is 2-3 times stronger than the tropical
warming, this polar amplification would need to be parameterized in an SCM.



Sansó, Forest and Zantedeschi 3

This previous example highlights the need for the third class of climate models,
EMICs. EMICs have been developed to explore research questions where SCMs are
too simple and AOGCMs are too computationally inefficient. Typically, EMICs have
high latitude resolution to resolve the tropical to polar temperature changes but only
simplified longitude representation of the land and ocean distributions. This interme-
diate spatial resolution between SCMs and AOGCMs provides a more computationally
efficient numerical structure for simulating the climate system. In this paper, we use
an EMIC that includes parameterizations identical to those in AOGCMs while only
simulating the zonal-mean state of the climate on a latitude-height grid. More details
will be described in Section 2.

Common to all these climate models are properties that determine the large-scale
response to climate forcings (e.g., increasing concentrations of greenhouse gases). These
are typically characterized by two properties: Climate sensitivity and the rate of heat
uptake by the deep-ocean. Climate sensitivity is defined as the equilibrium global-mean
annual-mean surface temperature change in response to a doubling of CO2 concentration
and is denoted by S . This is the temperature response after all transient processes come
into balance, such as ocean and land surface. The rate of heat uptake by the deep-
ocean is the controlling process that limits the rate of surface warming as it approaches
equilibrium. This is determined by all processes that mix excess heat from the surface
ocean into the deeper layers and can be characterized by an effective diffusion coefficient
denoted by Kv . Together, these two properties determine the transient response of the
climate system to changes in large-scale radiative forcings.

Depending on the climate model being used, these two properties can either be
directly set via parameters in the model or be estimated from simulations using the
full system. In the latter case, the combination of different parameterizations (and
their internal parameter settings) ultimately determines these climate system properties
and so the dynamical response of the model cannot be estimated a priori. In this
case, there may be many combinations of parameters that lead to the same climate
system properties and so a thorough search of the parameter space would be required
for calibration purposes. In this paper we consider an EMIC climate model for which the
climate system properties can be adjusted via single parameters. This will be discussed
in Section 2.

An additional requirement is to include the uncertainty in the external radiative
forcing. For the calibration of a climate model to the observed temperature record, we
must include the uncertainty in the forcing over the same time period. This forcing
uncertainty arises mainly from the poor knowledge of the historical record for aerosols.
Aerosols are the suspended particulate matter in the atmosphere that have a short life-
time (approx. days to months) and can reflect or absorb solar and infrared radiation (see
Forster et al. (2007).) A record of the concentrations for aerosols does not exist (unlike
greenhouse gases) and so we rely on the emissions record for the various species to esti-
mate the radiative forcing. As such we refer to the uncertainty in the net anthropogenic
aerosol forcing, written here as Faer . This primarily represents the uncertainty in all
aerosols but also can represent any unmodeled external forcings. Together with S and
Kv , these are three parameters that can be calibrated against the historical record of
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observed temperatures. As alluded to before, our goal is to provide a full quantifica-
tion of the probabilistic uncertainties for these three parameters using output from the
MIT 2D climate model (Sokolov and Stone (1998a); Forest et al. (2006)) (MIT2DCM),
historical records, GCM simulations and expert judgment.

The MIT2DCM provides simulations of ocean, surface and upper atmospheric tem-
perature behavior. The model uses a system of latitude and height coordinates to
simulate the average state of the climate over zones defined by latitude bands. Details
of the structure of the model are presented in Section 2. The MIT2DCM averages over
longitude, but its output matches climate observations and produces similar predictions
as those of full 3D atmosphere-ocean general circulation models (GCM). The computer
effort involved in running the MIT2DCM is a fraction of that of a full 3D model. So, it
is relatively easy to explore different values for the climate system properties, that are
represented by low dimensional parameters.

Typical output from a run of the MIT2DCM consists of temperatures at 46 different
latitudes, with 11 vertical layers for the 1860-1995 period, every 30 minutes. In this
paper we consider three summaries of such output that we refer to as “diagnostics”:
A vector of 288 components, consisting of the upper air temperature changes between
the 1986-1995 and 1961-1980 periods at 36 latitudes and 8 levels; Surface temperature
change, consisting of the difference between the decadal average temperatures for 1946-
1995 periods and the average temperature of 1906-1995 at 4 different equal-area zonal
bands, resulting in a 20 dimensional vector; and deep ocean temperature trend, calcu-
lated for the 1952-1995 period. Historical observations and GCM output are obtained
in correspondence to the three diagnostics. We notice that in all three cases we avoid
using absolute temperature values and consider some measure of temperature change.
This is a common practice among climatologists to account for systematic biases in the
model output. See Tebaldi and Sansó (2008) for an illustration of these facts.

Figure 1 shows summaries of the three diagnostics obtained from the MIT2DCM sim-
ulations performed on a three dimensional grid of 426 points for θ = (

√
Kv ,S ,Faer ).

For comparison purposes we superimpose each diagnostic, calculated from historical
records, to the model results. In essence our problem is to find the values of θ that
make the model output as similar to the historical records as possible. More precisely,
for a given diagnostic, denote by z the observation and by η(θ) the output of the model
for a given θ. A likelihood for θ is obtained by assuming that the difference is Gaus-
sian. Using prior information on the climate properties from the literature, we obtain
a posterior for θ. Unfortunately, output from the MIT2DCM is available only at a few
hundreds pre-specified points on an irregular grid. Also, running and post-processing
times needed to calculate η(θ) prevents us from embedding its evaluation within an
iterative method. So, to fully explore the posterior distribution of θ we create an aux-
iliary statistical model that provides an approximation to η. For this purpose we use
a Gaussian process. This is justified, from a Bayesian viewpoint, by the fact that for
a given θ the value of η is unknown, so we may consider it as a random process. The
setting of our problem is that of calibration of computer model parameters as described
in Kennedy and O’Hagan (2001). The focus is not on prediction or data assimilation,
but on inference for the parameters that control the computer model and that have a
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Figure 1: Top: Deep ocean temperature trends diagnostic. The index corresponds to the
output for the 426 different combinations of the climate parameters. The horizontal line corre-
sponds to the observation. Center: Surface temperature diagnostic. The boxplots correspond
to the model output for the five decades and four latitude bands. The crosses correspond to
the observations. Bottom: Upper air temperature diagnostics. The boxplots correspond to the
model output for the different latitudes and pressure bands. The observations are marked with
crosses.
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precise physical meaning. For two of the diagnostics the output is multivariate. So the
calibration procedure has to incorporate information about a covariance matrix. We
use GCM output to elicit a prior distribution for such matrices.

In the following section we provide the scientific background for the MIT2DCM
output that we use in this paper. Our statistical analysis builds on previous work
aimed at estimating the posterior distributions of climate system properties. This is
described in Section 2.4. The statistical model we consider in this work applies the
methods proposed in Sansó et al. (2007), which are described in Section 3. As for
most calibration problems, we expect the prior information on θ to be crucial for the
estimation of the climate system properties. In this paper we focus on estimating the
amount of information that is provided by the data. We do so by quantifying the
overlap between prior and posterior distributions using Bhattacharyya distances, which
are defined in Section 3.2. Our results for each of the three diagnostics are presented in
Section 4. Our conclusions are presented in the last section.

2 Scientific background

The description of the generation of the MIT2D data follows a series of papers. The
climate model was initially described in Sokolov and Stone (1998a) with an update to
the ocean model described in Forest et al. (2006). The description of the forcings ap-
plied for the 1860-1995 period is given in the supplemental material from Forest et al.
(2006). Here we provide a brief description of the model, the historical forcings, the ex-
perimental design, and a discussion of other methods used for estimating the probability
distributions for climate sensitivity.

2.1 Description of MIT 2D Climate Model

The MIT 2D climate model consists of a zonally-averaged atmospheric GCM coupled to
a mixed-layer Q-flux ocean model, with heat anomalies diffused below the mixed-layer.
The model details can be found in Sokolov and Stone (1998b). The atmospheric model
is a zonally averaged version of the Goddard Institute for Space Studies (GISS) Model
II general circulation model (Hansen et al. 1983) with parameterizations of the eddy
transports of momentum, heat, and moisture by baroclinic eddies (Stone and Yao 1987,
1990). The model version we use has 46 latitude bands, for a resolution of 4◦, and 11
vertical layers with 4 layers above the tropopause (above 200 hPa).

The model also employs the 2.5D Q-flux ocean mixed layer model with 4◦x 5◦latitude-
longitude grid cells and diffusion of heat anomalies into the deep-ocean below the cli-
matological mixed layer. Allowing for changing sea-ice in multiple grid cells, this pro-
vides smooth melting transitions as compared to a single zonal-mean ocean grid-cell.
This ocean component model is a Q-flux mixed layer model and is further described by
Hansen et al. (1984). Conceptually, this is similar to a “slab ocean” model used by many
atmospheric GCMs when a full 3D ocean model is not required. The ocean’s surface
mixed layer temperature profile is represented in the MIT model which distinguishes
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this from a typical slab-ocean model. Briefly, a Q-flux is defined as the additional heat
flux required to maintain the seasonal cycle of sea-surface temperatures (SST) at a given
latitude for the present-day climate. Physically, this primarily represents the horizontal
heat transport not explicitly included in the model. The atmospheric model uses the
GISS radiative transfer code which contains all radiatively important trace gases as well
as aerosols and their effect on radiative transfer. The surface area of each latitude band
is divided into a percentage of land, ocean, land-ice, and sea-ice with the surface fluxes
computed separately for each surface type. This allows for appropriate treatment of
radiative forcings dependent on underlying surface type such as anthropogenic aerosols.
The atmospheric component of the model, therefore, provides most important nonlinear
interactions between components of the atmospheric system.

As discussed previously, the MIT 2D model has two parameters that determine the
timescale and magnitude of the decadal to century timescale response to an external
forcing. These are the equilibrium climate sensitivity (S ) to a doubling of CO2 con-
centrations and the global-mean vertical thermal diffusivity (Kv ) for the mixing of
thermal anomalies into the deep ocean. We note that S is set by adjusting a cloud
feedback parameter, k, that adjusts the cloud fractions used in the radiative transfer
calculations. Specifically, we set the adjusted cloudiness, C ′, by multiplying the model
calculated cloudiness, Co, by a term proportional to the global mean surface temper-
ature, ∆T to obtain: C ′ = Co(1 + k∆T ). In this manner, we vary k to adjust S and
have a one-to-one mapping for specifying S . We also note that the vertical thermal
diffusivity for heat anomalies has a latitude-longitude dependence that is scaled by the
global-mean Kv value. This implies that adjustments for different relative rates of heat
uptake in different regions are not permitted with this design. In sensitivity tests to
changes in this pattern of deep-ocean heat uptake, we found the global mean changes
in ocean temperatures were insensitive to such changes.

2.2 Temperature Change Diagnostics

As mentioned in the introduction, we have elected to use three climate change diag-
nostics, which are the same as used in Forest et al. (2006). This allows us to isolate
the effect of the change in the calibration algorithm on the posterior distributions. The
climate change diagnostics used in Forest et al. (2006) were:

• Deep-ocean temperatures: trend in global-mean 0–3km deep layer of pentadal
averages from 1952–1995. Source of observational records: Levitus et al. (2005).
We will refer to this diagnostic as DO.

• Surface temperatures: 4 equal-area latitude averages for each of five decades
from 1946–1995 referenced to 1905-1995 climatology. Source of observational
records: Jones et al. (1999). We will refer to this diagnostic as ST.

• Upper-air temperatures: Difference between 1986–1995 and 1961–1980 aver-
ages at eight standard pressure levels from 850-50 hPa on 5 degree grid. Source of
observational records Parker et al. (1997). We will refer to this diagnostic as UA.
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Observations for the upper air diagnostic are missing for a number of latitude-height
coordinates, mostly in the Southern Hemisphere. This reduces the dimension of the
diagnostic from 288 to 220. Additionally, by looking at the bottom panel of Figure 1 we
observe that the distributions of modeled temperatures differ between the stratospheric
(50-200 hPa) and the tropospheric layers (300-850 hPa). In the stratospheric data, the
modeled temperatures are less sensitive to θ (primarily, S ) as shown by the smaller
range of temperature changes at these levels. The weak dependence on S is consistent
with the local cooling being driven by the decrease in stratospheric ozone concentra-
tions (not the changes in CO2 or other greenhouse gas concentrations). Recalling that
different values of S are mainly due to different cloud feedbacks in the troposphere,
stratospheric temperatures will not vary significantly as S is varied. But, we also see
that the stratospheric temperatures depend more on latitude as compared to the tropo-
spheric regions and so the information content of this data differs between regions. As
such, the modeled tropospheric temperatures provide less information for the likelihood
estimates. To address these differences, we restrict ourselves to using only the four
layers that correspond to 50–200 hPa pressure levels (or altitudes from about 11 to 20
km). This amounts to requiring that we get the stratospheric cooling correct (and its
latitude dependence) and neglect the weak tropospheric warming.

2.3 Summary of Applied Climate Forcings

The current set of simulations uses a set of historical climate forcings during the pe-
riod 1860-1995. The external forcings are changes in: greenhouse gas concentrations
et al. (2002), sulfate aerosol loadings scaled by SO2 emissions Smith et al. (2003), tropo-
spheric and stratospheric ozone concentrations (et al. 2002), land-use vegetation changes
(Ramankutty and Foley 1999), solar irradiance changes (Lean 2000), and stratospheric
aerosols from volcanic eruptions (Sato et al. 1993, updated to 2001). GSOLSV is the
shorthand notation for this set of forcings.

2.4 Previous Estimation Work

Section 9.6 in Chapter 9 of the IPCC AR4 (Hegerl et al. 2007) provides a summary
of estimates of probability distributions for climate sensitivity taken from the recent
literature. Section 10.5 in Chapter 10 of the IPCC AR4 (Meehl et al. 2007) further
discusses the uncertainties in quantifying climate change projections by accounting
for additional model uncertainties. In this paper, we are restricting the discussion
to those methods that use the 20th century instrumental record to estimate the dis-
tribution of climate sensitivity. Five groups have published results in this category
(Andronova and Schlesinger 2001; Gregory et al. 2002; Knutti et al. 2003; Forest et al.
2006; Frame et al. 2005). (Note we exclude Forster and Gregory (2006) because it does
not use the record back to beginning of 20th century.) The underlying methods in all
of these are very similar to the basic methodology used in this paper. Namely, a set of
climate simulations were made with a climate model with various settings for S . In
each case, the simulations were compared against the observed temperature record and
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assigned a likelihood that it is consistent with the observations. From the set of sim-
ulations, a distribution, p(S ), is estimated. Several choices are made in each method:
What climate model is used to perform the simulations? What observational diagnos-
tic is used? and What noise model is required to determine consistency between the
simulation and observations? In all cases except Forest et al. (2006) and Frame et al.
(2005), global mean temperature is used as the diagnostic variable and so only univariate
statistical methods are required. We summarize these methods in Table 1. 1

Reference (1) (2) (3)
EBM EMIC EBM

Model
24 zones Bern-2D global

global ∆Tsfc ∆TNH + ∆TSH , global ∆Tsfc, ∆TsfcDiagnostic
global ∆Tocean ∆TNH − ∆TSH (for Faer), ∆Tocean

Noise Bootstrap using observational uncertainty in:
Model deviations from EBM uncertainty ∆Tsfc, ∆F , ∆Qsfc

Properties S , Faer S , Faer S
Reference (4) (5)

EBM EMIC
Model

global MIT 2DLO
Attrib. Warming ∆Tsfc(lat., time),

Diagnostic ∆Tsfc, ∆Tsfc ∆Tupper−air

(for Faer), ∆Tocean (lat., height), ∆Tocean

Noise Bootstrap using observational
Model control data lontrol data
Properties S , Kv S , Kv , Faer

Table 1: Summary of Previous Approaches for Estimates of p(). The references corre-
spond to: (1) = Andronova and Schlesinger (2001); (2) = Knutti et al. (2002) ; (3) =
Gregory et al. (2002); (4) = Frame et al. (2005) ; (5) = Forest et al. (2002)

Forest et al. (2002) presented an estimate of the joint probability density function
(PDF) for uncertain climate system properties. Other groups
(Andronova and Schlesinger 2001; Gregory et al. 2002; Knutti et al. 2003; Forest et al.
2006; Frame et al. 2005; Forster and Gregory 2006) have estimated similar PDFs al-
though each uses different methods and data. However all are based on estimating the
degree to which a climate model can reproduce the historical climate record. Param-
eters within each model are perturbed to alter the response to climate forcings and a
statistical comparison is used to reject combinations of model parameters.

The method is based on the optimal fingerprint detection technique for comparing
model and observational data. This technique consists of running a climate model under
a set of prescribed forcings and using climate change detection diagnostics (i.e., spatio-
temporal patterns of temperature changes) to determine whether the simulated climate

1Gregory et al. (2002) do make use of the optimal fingerprint detection results to estimate the net
aerosol forcing from temperature change patterns but then only consider global mean temperature
response to estimate S . It appears that this amounts to double use of the surface temperature record.
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change is observed in the climate record and is distinguishable from unforced variability
of the climate system (see Mitchell et al. (2001) or
International ad hoc Detection and Attribution Group (2005) and references therein).
In statistical terms, letting Tobs be the historical records, T (θ) the model output that
depends on parameters θ and CN the covariance matrix, a likelihood function is obtained
from the statistics (T (θ)−Tobs)

′C−1
N (T (θ)−Tobs). It is not possible to estimate the true

climate system variability, CN , on century time-scales from observations and therefore,
climate models are run with fixed boundary conditions for thousands of years to obtain
estimates of the climate variability.

The work presented here is based on obtaining a likelihood for the climate sen-
sitivity (S ), the rate of heat uptake by the deep ocean (Kv ), and the net aerosol
forcing (Faer ) and analyze the uncertainty in such parameters using a posterior distri-
bution, after the incorporation of expert prior knowledge. This is the same framework
of Forest et al. (2001, 2002). The uncertain parameters and the climate model data
from the MIT2DCM are identical to those in Forest et al. (2006). The method used in
Forest et al. (2006) is based on evaluating the likelihood only at a set of pre-specified
combinations of the climate system properties. Also, the estimation of C−1

N is done us-
ing an eigenvector decomposition of GCM runs, prior to forming the likelihood. As part
of ongoing investigations into this method, Curry et al. (2005) considered the impact of
using different truncation numbers in the estimate of the noise covariance inverse. This
truncation represents the number of eigenvectors retained in the inverse estimate and
various information criteria were used to determine an appropriate truncation value for
the multivariate diagnostics. The methods developed in Sansó et al. (2007) and used
in this paper interpolate over the space of climate parameters and account for most
estimation uncertainties, in particular those due to the covariance matrix. Additional
details are presented in Section 3.

3 Statistical model

We consider a statistical model along the lines of that developed in Sansó et al. (2007).
In what follows vectors will be denoted in bold face and matrices will correspond to
capital letters. Recalling the notation in the introduction, let z ∈ R

n correspond to a
summary of the historical data collected around the world over several decades. Thus
n = 1 for DO, n = 20 for ST and n = 109 for UA (although our initial UA analysis was
performed with n = 220). The model runs are denoted as yj ∈ R

n, j = 1, . . . , p. These
are a collection of p n-dimensional vectors, one for each combination of the climate
parameters. We denote this as Y ∈ R

n×p. For ST and UA, we consider additional
information provided by CMG control runs, consisting of k n-dimensional vectors wj ,
and let W ∈ R

n×k be the matrix of such control runs. Also, for ST and UA, each
component of the n dimensional data vectors is indexed by a two dimensional location
xi, i = 1, . . . , n. xi indicates latitude and decade for ST and latitude and altitude for
UA. The values of the climate parameters where the MIT2DCM is evaluated will be
denoted as t = (

√
Kv ,S ,Faer ) ∈ R

3 so that the model output at location x and
parameter values t is denoted as η(x, t). A summary of the notation is presented in
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Table 2.

Variable Notation Size Dimension
Locations x1, . . . , xn n = 1; 20; 109 xi ∈ R

2

Historical records z1, . . . , zn n = 1; 20; 109 zi,∈ R

Climate parameters t1, . . . , tp p = 426 tj ∈ R
3

Surface diagnostics y1, . . . , yp p = 426 yj ∈ R
n

Control runs w1, . . . , wk k = 91; 162; 40 wl ∈ R
n

Table 2: Summary of the available information.

We denote as ζ(x) the true, unobserved, diagnostic at location x. We note that the
three diagnostics refer to linear functionals, or filters, of the temperature. We denote
θ = (θ1, θ2, θ3) as the ‘true’ value of the climate system properties (

√
Kv ,S ,Faer ).

Then we assume that

zi = ζ(xi) + ξi = η(xi, θ) + δi + ξi i = 1, . . . , n . (1)

ξi represents observation errors, including errors on spatial and temporal scales that are
smaller than the grid cell size and that are introduced by the filter. δi is the inadecuacy
of the statistical emulator. We assume that ξ = (ξ1, . . . , ξn)′ ∼ Nn(0, τ2σ2Σ), where Σ is
a covariance matrix and σ2 is a scale parameter. We also assume that δi ∼ Nn(0, σ2Σ).
For the univariate diagnostic n = 1 and Σ is a scalar equal to one. Note that δi has mean
zero. Thus we do not consider possible systematic additive biases of the computer code,
since, as mentioned earlier, these should be accounted for by the fact that the diagnostics
measure temperature change. In practice we found it difficult to separate observational
and inadequacy errors without assuming τ 2 known. Thus we consider only one error
term.

The value of η(x, θ) is unknown for general (η, θ), so we treat it as a random
process. More specifically, we assume that η(x, ·) corresponds to a Gaussian process.
We model such process by specifying a mean and a stationary covariance function. This
is the statistical equivalent model that allows for fast approximations to the numerical
simulator. We assume that E(η(x, t)) = h(x, t)′β, where h and β are q-dimensional
vectors. They define a linear combination of effects due to locations and parameter
values. The covariance function is given by

cov(η(xi, t), η(xj , t
′)) = r(t, t′)σ2γ2Σij , (2)

for some correlation function r(·, ·). Thus, we are assuming separability between x

and t. Since there are 426 different points t the full covariance matrix for ST is of
dimension 8, 520 × 8, 520 and of dimension 46, 434× 46, 434 for UA, so, separability is
key to building a model that can be fitted with an iterative procedure. For ST and UA,
we assume that wj ∼ Nn(0, Σ). This yields the prior distribution for Σ,

p(Σ) ∝ exp

{

−k

2
tr(Σ−1S)

}

|Σ|−k/2 ,
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where S = 1/k
∑k

j=1 ωjω
′
j . Note that p(Σ) is proper for k ≥ 2n+1. For ST we will use

two control runs, one corresponds to k = 162 and the other to k = 91. So in both cases
the prior is proper. For UA we use a control run with k = 40, implying that p(Σ) is
not proper. Note that we are assuming that the covariances of the observations and the
climate models are proportional. Thus, the dependence structure in the temperature
diagnostics is captured by all three sources of information. Forest et al. (2006) implicitly
make the same assumption. This is usually referred to in the climate literature as
unforced or natural variability and cannot be estimated from the observational data
alone because the records are too short for the 50-100-year timescales of interest. An
important output of our model is an estimate of the unforced variability, based on all
three available types of data.

Define a matrix R ∈ R
p×p such that Rij = r(||ti − tj ||). Let r(θ) = (r(||t1 −

θ||, . . . , r(||tp−θ||))′. Let H(·) = [h(x1, ·), . . . , h(xn, ·)] ∈ R
q×n, and let H = [H(t1), . . . ,

H(tp)]
′ ∈ R

np×q , then using equations (1) and (2),

(

z

vec(Y )

)

∼ Nn(1+p)

((

H(θ)′

H

)

β, σ2

(

(1 + γ2)Σ γ2r(θ)′ ⊗ Σ
γ2r(θ)⊗ Σ γ2R ⊗ Σ

))

, (3)

where vec(·) denotes the operation of stacking the columns of a matrix into a vector
and ⊗ denotes the Kronecker product.

There is no natural distance in the space of climate parameters that will help us
define a correlation function, so we consider each component separately and let

r(t, t′) = r1(t1 − t′1; φ1)r2(t2 − t′2; φ2)r3(t3 − t′3; φ3),

where ri(ti, t
′
i) = exp{−1/φi|ti − t′i|}. Here φi measures the correlation range in the

same units as ti. So, large values of φi imply that the correlation will be small only
for points that are very far apart. The separability assumption is very common in the
literature of statistical modeling of computer output, see, for example, Paulo (2005),
who discusses the choice of default priors for the parameters of a separable correlation
function in the Matèrn class.

3.1 Prior distributions

Calibration problems are known to be ill posed in the sense that often times different
configurations of parameter values produce similar results. Fortunately in this appli-
cation knowledge about likely values of the climate parameters is available. So we can
specify scientifically sound priors for such parameters.

The prior for θ1 =
√
Kv corresponds to a beta distribution with parameters (3.5, 6)

that is transformed to have a support on (0, 6) and . The prior for θ2 = S is specified as
a beta distribution with parameters (2.85, 14), transformed to have a support on (0, 15).
The prior for θ3 = Faer is a beta distribution with parameters (4, 4) transformed to
have a support on (−1.5, .5). With the exception of the prior on θ2 = S , we based
the distributions for

√
Kv and Faer partly on the previous work in Forest et al. (2002)
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and Forest et al. (2006). The widths were chosen to extend well outside the range
suggested by likelihoods from Forest et al. (2006) while the shapes were designed to be
rather diffuse in the interior (i.e., the cumulative density function approximately linear.)
These ranges are also supported by the locations of the state-of-the-art 3D GCMs well
within the parameter space (Sokolov et al. 2003). The likelihoods of a model outside
these regions are near zero. For the prior on S , we use the Webster and Sokolov (2000)
estimate as based on the expert elicitation study of Morgan and Keith (1995). These
results were based on the understanding of climate science experts in the early 1990’s
who would have considered model results as well as changes during the 20th century
and the glacial-interglacial records for about the past 500,000 years.

Regarding the other parameters in the model, we have already discussed the prior
we use for Σ, which is based on GCM simulations. For the regression parameters β
we assume a flat prior p(β) ∝ 1. For the scale parameters σ2 and γ2 we notice from
Equation (3) that the product γ2σ2 can be factorized from three of the four blocks in
the covariance matrix. This implies that the two parameters are nearly un-identifiable.
In practice, separate estimation of σ2 and γ2 is possible only by using very informative
priors. In this application we fix γ2 = 1 and let p(σ2) ∝ 1/σ2. The priors for the range
parameters φi are p(φi) ∝ 1/φi, i = 1, . . . , 3. Berger et al. (2001) showed that posterior
impropriety could result from the choice of an improper prior for the range parameter
of an isotropic Gaussian field. The results in Paulo (2005) show that impropriety of the
posterior is not a problem when separability of the correlation function is assumed.

3.2 Bhattacharyya distances

A typical feature of calibration problems for computer models is that prior information
on the parameters to be calibrated is usually fairly influential on the posterior results.
Quantifying the overlap between prior and posterior distributions for the calibration
parameters provides a measure of the information in the data and the model about
such parameters.

A measure of the overlap between two probability densities is given by the Bhat-
tacharyya distance. This is defined, for two densities f1(x) and f2(x) as

B(f1, f2) =

∫

√

f1(x)f2(x)dx =

∫

√

f1(x)

f2(x)
f2(x)dx =

∫

√

f2(x)

f1(x)
f1(x)dx.

Clearly B(f1, f2) = B(f2, f1), B(f1, f2) ≥ 0 and, by Jensen’s inequality, B(f1, f2) ≤ 1.
Moreover B(f1, f2) = 1 if and only if f1 = f2 and B(f1, f2) = 0 if and only if f1 and f2

have no overlap. So B(f1, f2) provides a bounded symmetric measure of the similarity
between two distributions. Zhou and Sansó (2008) use it two compare the outputs of
an atmospheric transport model run under two different boundary conditions. They
found that B(f1, f2) provides similar information to the percentage of overlap between
the highest density interval corresponding to f1 and that corresponding to f2 for a
given probability. For multivariate settings, B(f1, f2) is easier to calculate than interval
overlaps.
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In our application fi correspond to either prior or posterior distributions of the
climate parameters. The latter are known only up to a proportionality constant. Let
fi(x) = qi(x)/ci, i = 1, 2, then

B(f1, f2) =

(
∫

√

f1(x)f2(x)dx

∫

√

f1(x)f2(x)dx

)1/2

=

(

Ef2

√

q1(X)

q2(X)

c2

c1
Ef1

√

q2(X)

q1(X)

c1

c2

)1/2

=

(

Ef2

√

q1(X)

q2(X)
Ef1

√

q2(X)

q1(X)

)1/2

,

where Efi
denotes the expectation with respect to the density fi. So, it is possible to

obtain an approximation to B(f1, f2) from samples of f1 and f2, using the law of large
numbers. When X = (Z, W ), so that X consists of two block of random variables, the
marginals fi(z) can be can be calculated as

fi(z) =

∫

fi(z|w)fi(w)dw ≈ 1

J

J
∑

j=1

f(z|w(j))

where w(j) ∼ fi. Note that fi(z|w) will usually be the full conditional of z.

3.3 Implementation

The details of the implementation of the statistical model follow along the lines of
Sansó et al. (2007). We run a similar MCMC to sample from the posterior distribution of
all parameters in the model, for each one of the diagnostics separately. In order to obtain
the posterior distribution of θ based on the information on more than one diagnostic, we
assume conditional independence. Thus, using a super-index one or two to denote the
quantities that define the statistical model for two different diagnostics, we have that the
joint likelihood f(z1, Y 1, z2, Y 2|θ, Ξ1, Ξ2) is factorized as the product of f1(z

1, Y 1|θ, Ξ1)
and f2(z

2, Y 2|θ, Ξ2), where Ξi denotes all the parameters other than θ used in the
model for diagnostic i. Given a prior p(θ, Ξ1, Ξ2) = p(θ)p(Ξ1)p(Ξ2) it is possible to
run a MCMC to obtain samples from p(θ, Ξ1, Ξ2|z1, Y 1, z2, Y 2). This approach is
computationally demanding and likely slow to converge. Additionally, we are interested
in observing how the posterior distribution conditional on z1, Y 1 is changed by the use
of the diagnostic z2, Y 2.

We start by running a MCMC to get samples of p(θ|z1, Y 1). We then run a sec-
ond MCMC for p(θ|z1, Y 1, z2, Y 2). In this case the full conditional for θ is propor-
tional to p(θ|Ξ1, z

1, Y 1)f2(z
2, Y 2|θ, Ξ2). So, to obtain a sample of θ we can perform a

Metropolis-Hasting step and draw a proposed sample, say θ∗, from p(θ|Ξ1, z
1, Y 1). The

acceptance ratio will be given by the likelihood ratio f2(z
2, Y 2|θ∗, Ξ2)/f2(z

2, Y 2|θ, Ξ2).
We use the approximation p(θ|Ξ1, z

1, Y 1) ≈ p(θ|z1, Y 1) and use the samples from the
first MCMC as proposals for the second one.
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√
Kv S Faer

5% 0.84 0.73 -1.05
Informative Prior 50% 2.15 2.33 -0.5

95% 3.78 5.03 0.05
5% 0.3 0.75 -1.4

Uniform Prior 50% 3.0 7.59 -0.5
95% 5.7 14.25 0.4

Table 3: Summary of the prior distributions of the climate system properties.
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Figure 2: Bivariate prior distributions for the three combinations of climate system properties.

4 Results

We considered two distributions for the climate system properties. One, that will be
referred to as the uniform prior, consist of the product of three densities uniform over
the ranges (0, 6), (0, 15) and (−1.5, .5). The second is the one described in Section
3.1, and will be referred to as the informative prior. Notice that, in both cases, we
are a priori assuming that the three parameters are independent. Some quantiles that
describe the characteristics of both distributions are reported in Table 3. The contours
of the bivariate prior densities are presented in Figure 2.

4.1 Deep ocean temperature trend (DO)

We started by considering the DO diagnostic, the trend in deep-ocean temperatures.
Here x is irrelevant (the diagnostic is a scalar), so we let h(x, t) = h(t) = (1, t1, t2, t3)

′,
with q = 4. A posteriori we observe that the 2.5% and the 97.5% quantiles of the
distributions of βi, i = 1, . . . , 4 are all positive for the informative prior. This is also
the case for the 2.5% and the 97.5% posterior quantiles in the uniform prior case, with
exception of the 2.5% quantile of β1, which is equal to −4 ∗ 10−5. We note that this
implies that β1 is almost significantly positive, but not quite and that this is the only
diagnostic where Kv has a positive coefficient. So, for both priors, the posterior carries
substantial evidence that the baseline for DO is positive and increasing any of the three
climate system properties increases DO.
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Figure 3: Predictive distribution for DO at 43 randomly selected combinations of the climate
system parameters. The intervals are given by the 2.5% and 97.5% quantiles. Right hand
(black) and left hand (red) intervals for informative and uniform priors respectively. The small
dots correspond to the predictive mean and the larger dots to the MIT2DCM output.

To check the ability of the model to predict the values of DO we chose 43 combi-
nations of climate parameters at random. We excluded those data from the estimation
procedure and then obtained samples from their joint posterior prediction distributions.
The results are shown in Figure 3. They are based on 100 samples from the predic-
tive distribution taken from 10,000 iterations of the MCMC with a lag of 100, using as
starting value the last iterates of a chain of 100,000 iterations. We observe that in all
but two cases (nos. 8 and 42) the predictive interval contains the observation and that
the widths of most intervals are small compared to the variability in the data.

A summary of the posterior distribution of the climate system properties for DO is
presented in the first three columns of Table 4. We see substantial differences between
the posteriors obtained under the informative and the uniform priors, especially for
S and Faer . In these two cases the marginal posterior densities corresponding to the
informative prior are concentrated around smaller values than the ones obtained for the
uniform prior. When the values in Table 4 are compared to those in Table 3 we observe
that the posterior densities follow the behavior of the priors. A better picture of this
situation is provided by the plots in Figure 4. Here the posterior densities corresponding
to DO are plotted with dotted cyan lines. For the informative prior we observe that
the posterior densities of

√
Kv and S are very close to the priors. This is not the case

for Faer , where the posterior shows substantially larger tails. For the uniform prior,
all three posterior densities are pretty flat. Overall we find that the likelihood obtained
from DO carries little information about the climate system properties. We observe
that, for S the posterior density shows some irregularities, this is a consequence of the
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Deep ocean Surface temperature Upper air√
Kv S Faer

√
Kv S Faer

√
Kv S Faer

5% 0.88 0.92 -0.99 0.82 1.75 -0.71 1.33 2.27 -0.79
Inf. 50% 2.13 2.31 -0.53 1.99 3.21 -0.39 2.59 3.79 -0.27

95% 3.71 4.83 -0.005 3.08 5.68 -0.051 4.15 6.08 0.17
5% 0.24 0.73 -1.37 0.19 2.26 -0.82 1.58 2.91 -1.33

Unfm. 50% 2.65 6.71 -0.80 2.03 7.23 -0.49 4.18 6.52 -0.32
95% 5.61 14.11 0.21 5.07 14.05 -0.05 5.88 13.06 0.37

Table 4: Summary of the posterior distributions of the climate system properties.

DO DO Uni. ST ST Uni. DO + ST UA UA Uni.

Prior 0.97 0.89 0.70 0.59 0.72 0.49 0.43

DO 1 0.48 0.67 0.34 0.76 0.30 0.10
DO Uni. 1 0.30 0.54 0.44 0.26 0.32
ST 1 0.55 0.99 0.63 0.11
ST Uni 1 0.54 0.38 0.20
DO + ST 1 0.78 0.10
UA 1 0.50

Table 5: First row in bold face: Bhattacharyya distances between the prior and the
posterior distributions corresponding to the different diagnostics. All other rows: Bhat-
tacharyya distances between the posterior distributions for different diagnostics and
priors.

fact that the samples of θ2 tended to fluctuate around the values of S used in the design
for the runs of the MIT2DCM.

The bivariate posterior distributions for the informative prior are presented in the
first row of Figure 5. These can be compared with the plots in Figure 2. We observe
some elongation of the contours of the posterior density of θ2 and θ3, reflecting the
fact that the tails of the posterior of θ3 are larger than those of the prior. Figure
6 shows the contours of the bivariate posterior densities under the uniform prior. A
quantitative measure of the similarity between the joint priors and posteriors is given
by the Bhattacharyya distances reported in the first two entries of the first row of Table
5. We observe that the two numbers are close to 1, so that, especially in the case of the
informative prior, the data are not changing the prior information substantially.

4.2 Surface temperature change

In order to define h for the analysis of ST, we considered h(t, x) = (1, t1, t2, t3, x1, x2),
where x1 is latitude and x2 is the decade. We used k = 162 control runs obtained from
the GCM developed at the Hadley Centre, Bracknell, UK, code-named HadCM2. The
posterior distributions of β show that the baseline for the surface temperature change
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Figure 4: Marginal posterior distributions of the climate parameters for each of the three
diagnostics. The left column corresponds to informative priors, the right column corresponds
to uniform prior. The histograms in dashed lines correspond to the points in the experimental
design.
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Figure 5: Marginal bivariate posterior distributions of the climate parameters using each of
the three diagnostics with an informative prior. The priors and posteriors are shown by the
thin and thick lines, respectively. First row: Deep ocean; Second row: Surface temperature;
Third row: Upper air.
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Figure 6: Marginal bivariate posterior distributions of the climate parameters using each
of the three diagnostics with a uniform prior. First row: Deep ocean; Second row: Surface
temperature; Third row: Upper air.



Sansó, Forest and Zantedeschi 21

is not significantly different from zero. Increasing
√
Kv has a decreasing effect on ST,

while for S and Faer the effect is positive. Latitude does not seem to have a significant
effect on ST. In contrast, the decades have a significant positive effect.

We performed a predictive assessment similar to the one presented for DO. In Figure
7 we present the predictive intervals for six combinations of the climate parameters of
the 43 left out of the inference. We observe that most of the MIT2CM output are within
the predictive intervals. These have a typical width of .2 degrees. Also the latitudinal
and decadal patterns of the model simulations are well captured by the predictions.

Some quantiles of posterior distributions of the climate parameters are reported in
the fourth, fifth and sixth columns of Table 4. When compared to the prior quantiles
in Table 3 we see important differences both for the informative and the uniform prior.
The marginal posterior densities in the first columns of Figure 4 show that the posterior
for

√
Kv is slightly shifted to the right with respect to the prior. The posterior for S is

shifted to the left, while the posterior for Faer is much more concentrated around the
median than the prior. This is in sharp contrast to the behavior of the posterior based
on DO, which has much larger tails than the prior. In the second column of Figure 4 we
present the posterior densities based on a uniform prior. As for the DO diagnostic we
observe that the distributions tend to be diffuse and strongly influenced by the location
of the design points. The posterior density of Faer is a notorious exception. In fact this
looks similar to the posterior obtained using the informative prior. The values of the
posterior quantiles indicate that the uniform prior based posterior is shifted to the left
with respect to the informative prior based posterior. These results indicate that the
ST diagnostic contains useful information regarding Faer .

From the plots of the bivariate densities in Figures 5 and 6, we observe some dif-
ferences between the densities from DO and those from ST. In the informative case we
observe that the joint of

√
Kv and S for DO has a lower center of mass than that for

ST. The joint of S and Faer for ST is tilted downward and is less concentrated when
compared to the one for DO. Far more dramatic differences are observed in the uni-
form prior case. Here it is clear that the densities obtained using ST have a range of
Faer far more concentrated around the median and a range of S higher than those of
the densities obtained using DO. The values of the Bhattacharyya distance between the
priors and the posteriors for the ST diagnostic, reported in Table 5, are smaller than
those computed for the ST diagnostic. This confirms the analysis of the quantiles and
the graphics of the univariate and bivariate posterior densities.
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Figure 8: Marginal posterior distributions of the climate parameters using the deep ocean
and the surface temperature diagnostics jointly and comparison with the results using the
diagnostics separately.

We considered two more posterior distributions obtained using ST. One is the result
of resampling the posterior distribution from DO, following the method described in
Section 3.3. The resulting univariate posterior densities are presented in Figure 8. For√
Kv and S the posterior follows very closely the one obtained using only ST. The

posterior density for Faer is somewhat influenced by the DO results. For a numerical
comparison we report some of the quantiles of these densities in Table 6. Additionally
we notice that the Bhattacharyya distance between the joint posterior distribution and
the informative prior is almost the same as the distance between the ST posterior and
the informative prior. Furthermore, the distances between the those two posteriors is
very close to one. The above discussion provides evidence that the posterior distribution
is dominated by the ST diagnostic.

Finally, we consider the issue of using a different prior for Σ based on a different
GCM. We use k = 91 replicates of wj based on GFDL with the informative prior for θ.
The plots of the univariate posterior distributions of

√
Kv , S and Faer show minimal

differences to the posteriors obtained using the control runs from HadCM2. On the other
hand we expect the posterior of Σ to be affected by the use of different control runs. In
Figure 10 we present the posterior densities of the log-eigenvalues of Σ as well as boxplots
for the posterior samples of the eigenvector corresponding to the largest eigenvalues. We
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√
Kv S Faer

5% 0.84 1.45 -0.79
50% 1.97 2.86 -0.46
95% 3.15 5.04 -0.05

Table 6: Posterior quantiles of the climate system properties using DO and ST.

observe that in both cases the first eigenvalue has large variability, slightly larger in the
HDCM case. For the eigenvector we observe a more regular pattern in the GFDL
case than in the HDCM one. In particular it is noticeable that, for the GFDL case,
the coefficients are increasing as a function of latitude for the first two decades, and
decreasing for the last two ones. Although the overall patterns show warming for each
latitude, the relative warming rates differ for the leading eigenmodes.

4.3 Upper air temperature change

As mentioned in Section 2.2, we restrict our analysis to the first four layers of the
atmosphere. In Figure 1 we observe that, for the first four layers, the MIT2DCM
simulations can have significant departures from the observations. In contrast to the
ST, for which most simulated values differ one or two tenths of a degree Celsius from
the observations, the UA simulations can be more than one degree away from the
observations, especially at latitudes away from the poles. This implies that UA is
likely to provide only weak information about the most likely values of θ. As in the
previous two cases we considered h as a linear function of θ1, θ2 and θ3. For UA the
position variable x is two dimensional and corresponds to latitude, x1, and altitude,
x2. So we fitted our model with h(x, t) equal to (1, t1, t2, t3, cos(2x2π/180), log10 x2).
The posterior distribution of β shows that the baseline for the upper air temperature
change is negative. As for the ST, increasing

√
Kv has a decreasing effect on ST,

while for S and Faer the effect is positive. The coefficient for the term cos(2x2π/180) is
significantly positive, implying a positive effect at the equator and negative effects at the
poles. The coefficient for altitude is also positive, implying an increasing temperature
change with increasing altitude.

To assess the predictive capability of the model we did an analysis similar to the
one presented for DO and ST. In this case, we observed that the predictive intervals
calculated from samples of the predictive distributions were extremely wide. In Figure
11 we present the predictive means for six combinations of the climate parameters. We
observe that the predictive means track the simulations very well. We also observe that
there are large differences between the simulations and the observations. Clearly these
differences have no effect on the predictive mean but they produce very large predictive
variances.

The last three columns of Table 4 report some of the quantiles of the posterior
distributions for UA obtained with the informative and the uniform prior. For the
informative prior, the quantiles as well as the plots of the univariate posterior density
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Figure 9: Marginal posterior distributions of the climate parameters using the deep ocean
diagnostic with two different prior specifications for the covariance matrices based on different
GCM model outputs.
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Figure 10: Posterior density of the log-eigenvalues for the Σ under the Surface Temperature
diagnostic using two different control runs to obtain the prior (top two panels). The densities
have been rescaled so that all have the same height. Distributions for the components of the
first eigenvectors (bottom panels).
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Figure 11: Predictive means for UA at six combinations of the climate system properties. ◦

correspond to the MIT2DCM simulations. ‘+’ correspond to the predictive means. 2 corre-
spond to the observations.
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in Figure 4 show a tendency to concentrate more values around large values of
√
Kv

than the prior. A similar, but much less pronounced phenomenon is observed for S and
Faer . In spite of this, the bivariate distributions in Figure 5 show that the joint density
of S and

√
Kv , obtained from UA, has the smallest model values for S , when compared

to the corresponding densities obtained from DO and ST.

The posterior distributions from UA using a uniform prior are shown in the second
column of Figure 4 and Figure 6. These, together with the posterior quantiles indi-
cate that UA produces a very strong shift of probability towards large values of the
parameters, especially for

√
Kv and Faer . The values of the Bhattacharyya distances

corresponding to the last two columns of Table 5 are the smallest of all the distances
reported. This indicates that the posterior distributions obtained from UA have the
least amount of overlap with either the priors or any of the posteriors produced with
the other two diagnostics. Interestingly, there seems to be substantial overlap between
the posterior based on UA with the informative prior and the posterior obtained from
DO plus ST.

5 Discussion and Conclusions

This paper provides a successful implementation of a Bayesian model for the calibration
of the parameters in the MIT2DCM. We have explored the posterior distribution of the
climate system properties based on different summaries of climate data and climate
simulation. Our model is able to blend information from different sources, including
historical records, GCM output, MIT2DCM output and expert knowledge based on the
scientific literature. All the variability from parameter estimation is accounted for in the
results. So the present analysis provides an assessment of how posterior distributions
differ from those in Forest et al. (2006) when such variability is considered. Results
for the point estimates of the climate system properties are similar to the analysis in
Forest et al. (2006), in particular for S and Faer . Nevertheless, we observe substantial
differences in the shapes of the posterior distributions. Consistent with Forest et al.
(2006), we find that ST is the most informative of the three diagnostics, which is where
tightening of the distributions occurs most. Similarly, the least information is in the
UA diagnostic where we see a widening of the distributions. The most robust feature in
the results are the strong constraints on Faer where the posterior is independent of the
the priors. We observed very small differences in the posterior distributions obtained
using different GCM runs.

Our graphical results as well as the numerical values of the Bhattachryya distances
for the posterior distributions obtained with informative priors show a substantial over-
lap with the prior. To asses the significance of the differences between prior and posterior
for Kv and S we consider the distributions of two quantities, related to these climate
properties, used to characterize climate models predictions. These are the Transient Cli-
mate Response (TCR) and Sea Level Rise (SLR) due to thermal expansion. They are
estimated by calculating the climate system response to a standardized forcing scenario
(F (t) = 1%/year increase in CO2 concentrations) and taking the change in tempera-
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Prior ST ST + DO
Pr(TCR> 3 C◦) 0.67 0.94 0.88
Pr(SRL> 10 cm) 0.40 0.63 0.51

Table 7: Probabilities of TCR and SLR being above specific thresholds using different
pdfs for S and Kv .

ture (TCR) and sea-level (SLR) at the time of CO2 doubling (year 70). We use samples
from different distributions of Kv and S to estimate the distribution of TCR and SLR.
The results for the informative prior, the ST and the ST+DO based posteriors are
shown in Figure 12. As an illustration of how the survival functions change when the
prior of θ is updated wih either ST or ST + DO we calculated Pr(TCR> 3 C◦) and
Pr(SRL> 10 cm). Table 7 shows a substantial increase in those probabilities when the
information in ST and DO is included in the estimation of S and Kv .

Regarding the UA diagnostic, we found that it is the most complex and difficult one
to use. In fact we performed three separate analyses involving upper air temperature
change. Our first attempt consisted of using the full 220 dimensional diagnostic, corre-
sponding to the eight pressure layers. We then analyzed the first four and the last four
layers separately. Of all three cases considered, the one that corresponds to the 50 to
200 hPa layers, is the one providing the most information. As mentioned in Section 4.3,
the predictive variance in this case is very large. For the full UA diagnostic it is even
larger. For the UA diagnostic based on the 300 to 850 hPa the mixing of the MCMC
was very poor, with most of the samples corresponding to design points and a very low
acceptance ratio.

For the UA, we have already commented on the discrepancies between the MIT2DCM
simulations and the historical values, which tend to produce large predictive variances.
As a consequence the statistical emulator performs poorly for points not in the original
design grid. An additional problem of the UA is that it carries little information about
the climate system properties in most of the layers. We have excluded any observa-
tional errors in our model. We justify this on the grounds that data sources are very
heterogeneous and it is impractical to keep track of all possible sources of observational
error. On the other hand the observations we use are the results of averaging large
numbers of data, so the observational variability should be very small. In the atmo-
sphere observations are both scarce and noisy, especially in comparison to the data used
for ST. (n.b., The ocean data are similarly scarce and noisy although we have used a
trend in the global-mean quantity to reduce these concerns.) So including an additional
source of error for the analysis of the UA is an extension to be considered. To further
complicate this picture, we know that the UA data have a known cold bias in the lower
stratospheric region (50-200 hPa) in the Parker et al. (1997) data set (see Mears et al.
(2006)). Taking this into account by using more recent data sets such as HadAT2
(Thorne et al. 2005) may eliminate this bias but perhaps not simplify the issues.

The current form of the emulator is purely statistical, and no physical considera-
tions have been incorporated into it. One approach to incorporating a more realistic
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Figure 12: Survival functions for TCR (top) and SLR (bottom) using 5,000 from the prior
distribution of Kv and S (thin line), the posterior distribution obtained using ST (thick) and
the posterior distribution using ST + DO (dashed).
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structure would be to use a simple energy balance model (EBM). For the surface and
deep ocean temperatures, an EBM can be constructed with several latitude zones and
an ocean model similar to the Q-flux mixed layer model used in the MIT 2D climate
model. We can consider the energy balance equation for a given latitude zone as:
cp

dT
dt = F − λT − Φv − Φh where cp is the heat capacity per unit mass, dT

dt is the time
rate of change of the temperature anomaly, F is the local radiative forcing, related to
Faer , λ is related to S , and Φv,h are the vertical and horizontal heat fluxes out of
the latitude zone, related to Kv . The details of such a model are beyond the scope
of this paper although Schneider (1992) provides a good introduction to the design of
such models. For the upper-air temperature diagnostics, as already discussed, we need
to consider simplifying the diagnostic to capture the large-scale behavior. Typically, an
EBM does not include the vertical temperature structure in the atmosphere and so the
relation between surface and upper-air temperature changes needs additional considera-
tion. Fixed vertical temperature dependence is not desired in a standard EBM because
the interactions between clouds, water vapor, temperature and winds lead to different
feedbacks. It may be possible to address these vertical temperature dependence issues
by allowing coefficients in the EBM to vary accordingly. MIT 2D climate model can
provide sufficient quantities of data to explore alternative EBM structures such as these.

In this paper we have tackled a calibration problem with a multidimensional response
variable. This involves the estimation of Σ, which is an important by-product of the
analysis, since it provides information about the second order properties of the climate
variability. For example, we have estimates of the eigen-decomposition which show a
clear distinction between eigenspectrum from GFDL and HadCM2 models. Looking
at the first two eigenvectors in each case we find that they differ in their patterns of
latitude dependence, but not in those of decadal dependence. The task of estimating
Σ is complicated when the diagnostic is of large dimensionality and there is weak prior
information available, like in the case of UA. An alternative would be to consider a
parametric structure for Σ, based on a valid space and time covariance function. In
addition to providing less flexibility, this approach could run into the known problem
that covariance parameters can be difficult to estimate. A different dimension reduction
approach is that of truncating the number of eigenvalues of Σ. In fact, the posterior
distribution of Σ indicates that only the first few eigenvalues are significantly large, so
eliminating those modes of variability with very small amplitudes in the data is likely
to be effective. We are currently working in a fully Bayesian implementation of this
approach.
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