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Bayesian Nonparametrics for Heavy Tailed

Distribution. Application to Food Risk

Assessment

Jessica Tressou∗

Abstract. Based on the fact that any heavy tailed distribution can be approxi-
mated by a possibly infinite mixture of Pareto distributions, this paper proposes
two Bayesian methodologies tailored to infer on distribution tails belonging to the
Fréchet domain of attraction. Firstly, a Bayesian Pareto based clustering pro-
cedure is developed, where the mixing distribution is chosen to be the classical
conjugate prior of the Pareto distribution. This allows the grouping of n objects
into a certain number of clusters according to their extremal behavior and also
exhibits a new estimator for the tail index. Secondly, a nonparametric extension
of the model based clustering is proposed in which the parameter of interest is
the mixing distribution. Estimation of the tail probability is conducted using a
Dirichlet process prior for the unknown mixing distribution. To illustrate, both
methodologies are applied to simulated data sets and a real data set concerning
dietary exposure to a mycotoxin called Ochratoxin A.

Keywords: Dirichlet process, Model Based clustering, Ochratoxin A, Tail index
estimation.

1 Introduction

In the food risk analysis field, it is accepted that dietary exposure to a contaminant is
heavy tailed or at least assumed to be from a conservative perspective, see Tressou et al.
(2004). Indeed, dietary exposure to a given contaminant is defined as the quantity of
the contaminant one individual ingests when he consumes foods that are more or less
naturally contaminated. Different consumption behaviors yield different levels of ex-
posure which may present a health risk if those levels are too high. One particular
contaminant is generally present in more that one food so that different consumption
behaviors can yield a high exposure. In a given population, different risk levels exist
and clustering may be a powerful tool to describe that population. Yet, we do not know
a priori how many clusters there are and we would like to define the similarity between
individuals based on their extremal behavior. Food safety is now a crucial public health
concern in many countries (for example, it is one of the thematic top priorities of the
7th European Research Framework program, see http://ec.europa.eu/research/fp7/).
This topic naturally interfaces with various disciplines, such as biology, nutritional
medicine, toxicology, and of course applied mathematics with the aim of developing
rigorous methods for quantitative risk assessment. Scientific literature devoted to prob-

∗INRA-Mét@risk, UR1204 Food Risk Analysis Methodologies, F75005, France and HKUST-ISMT,

Hong Kong University of Science and Technology, Hong Kong, mailto:tressou@agroparistech.fr

c© 2008 International Society for Bayesian Analysis DOI:10.1214/08-BA314

mailto:tressou@agroparistech.fr


368 Bayesian Nonparametrics for Heavy Tailed Distribution

abilistic and statistical methods for the study of dietary exposure to food contaminants
is progressively carving out a place in applied probability and statistics journals (see
Bertail et al. 2008; van der Voet et al. 2007; Tressou 2006; Bertail and Tressou 2006;
Edler et al. 2002; Gibney and van der Voet 2003; Gauchi and Leblanc 2002).

The main idea of this paper is that heavy tailed distributions can be represented as
mixtures of Pareto distributions so that most, if not all, heavy tailed distributions can
be expressed as (possibly infinite) mixtures of Pareto distributions, where the mixing
occurs on both parameters of the Pareto distributions. Two Bayesian methodologies
are thus proposed to estimate the different components of this mixture: a Bayesian
model-based clustering approach (Fraley and Raftery 2002) and a Bayesian nonpara-
metric mixture approach (Petrone and Raftery 1997; Green and Richardson 2001), fol-
lowing ideas exposited in Lau and Lo (2007). For both approaches, the kernel is defined
to be a Pareto distribution while most applications are realized with a Gaussian kernel
(Lau and Green 2007; Lau and Lo 2007) since we are specifically interested in these mix-
tures to model heavy tailed distribution. In recent years, parametric and nonparametric
Bayesian approaches have been developped for extreme value analysis (Coles and Powell
1996; Frigessi et al. 2002; Bottolo et al. 2003; Stephenson and Tawn 2004; Diebolt et al.
2005; Kottas and Sansó 2007). In this paper, estimators of the tail index and tail prob-
ability are derived from the posterior distribution. The tail index estimator is compared
to a standard estimator (the Hill estimator).

The paper is organized as follows. Section 2 gives some background about Extreme
Value Theory and emphasizes that heavy tailed distributions can be approximated by
mixtures of Pareto distributions. Section 3 gives the general principle of Bayesian model-
based clustering as well as one MCMC algorithm to find the best partition (Gibbs WCR)
and presents the Pareto-based clustering. Section 4 introduces two key results for the
nonparametric extension of the model-based clustering and details the quantities one
may infer when extremes are at stake. The last section is dedicated to the implemen-
tation of both methodologies on simulated data first, with empirical validation and
understanding perspectives, and on data concerning the French population’s exposure
to Ochratoxin A (OTA) in a purely applied perspective.

2 Characterization of the maximum domain of attrac-

tion of the Fréchet distribution as a general mixture of

Pareto distributions

In Extreme Value Theory, one major breakthrough is the Fisher-Tippett theorem stating
that there are only three possible limiting distributions for the properly normalized
maximum: the Gumbel, the Weibull and the Fréchet distributions. These laws are called
extreme value distributions and each one corresponds to a special tail behavior: the
Gumbel distribution is related to light-tailed distributions such as normal, log-normal
or exponential distributions; the Weibull distribution to finite support distributions such
as the uniform distribution and the Fréchet distribution to heavy-tailed distributions
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such as Pareto, Cauchy or Student distributions. The latter one is of prime interest
in the food risk analysis context since the distribution of exposure to a contaminant is
often assumed to be heavy-tailed (Tressou et al. 2004).

The usual characterization of the Fréchet maximum domain of attraction (MDA)
is the following (Embrechts et al. 1999). For sufficiently large x, the tail probability,
P (X > x), is approximately equal to Cx−α∗

L(x), where C and α∗ are non negative
constants and L(.) is a slowly varying function, that is, a function satisfying the condi-
tion

∀t > 0, lim
x→∞

L(tx)

L(x)
= 1.

In this setting, the estimation of α∗ is crucial and has been studied a lot as α∗−1 may
be interpreted as a risk indicator. Indeed the higher the α∗−1, the higher the probability
of exceeding a fixed level x. A well known estimator for α−1 is the Hill estimator based
on the k largest observations of a sample (Hill 1975). If X1,n ≤ . . . ≤ Xn,n denotes the
order statistic associated to a sample (X1, . . . , Xn) then the Hill estimator is defined for
k = 1, . . . , n − 1 as

Hk,n =
1

k

k∑

i=1

ln Xn−i+1,n − ln Xn−k,n.

The Hill estimator is obtained as the conditional maximum likelihood estimator in the
exact Pareto model (L(x) = 1), given the number k of extreme values. This is very
sensitive to the choice of k. Indeed, its bias increases with k while its variance decreases.
Several authors proposed bias correction using more or less explicit forms of the slowly
varying function L, see for example Beirlant et al. (1999); Feuerverger and Hall (1999).

These slowly varying functions naturally appear when considering mixtures of Pareto
distributions.

Let fα,τ and Fα,τ denote the density and cumulative distribution function of the
Pareto distribution with tail index parameter α and precision parameter τ , abbreviated
by P(α, τ), i.e.

1 − Fα,τ (x) = (τx)−α1(τx>1) + 1(τx≤1)

fα,τ (x) = ατ(τx)−(α+1)1(τx>1), (1)

where 1(A) is the indicator function, equal to 1 if A is true, 0 otherwise.

If G is an unknown mixing distribution over the two dimensional parameter space
Θ1 × Θ2⊆ R

2
+, then the tail probability is

P (X > x) =

∫

Θ1

∫

Θ2

P (X > x|α, τ) G(dα, dτ) =

∫

Θ1

∫

Θ2

[1 − Fα,τ (x)] G(dα, dτ). (2)

In the case of a discrete mixing distribution, if (α, τ) = (αj , τj) with probability wj ,
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j = 1, . . . , J , such that
∑J

j=1 wj = 1, and α1 ≤ . . . ≤ αJ , then

P (X > x) =

J∑

j=1

wj×(τjx)−αj 1(τjx>1)+1(τjx≤1) ∼x→∞ Cx−α∗


1 +

J∑

j=2

Dj−1x
−βj−1


 ,

(3)
where α∗ = minj=1,...J αj(= α1) and the (Dj , βj) and C are non negative constants such

that β1 ≤ . . . ≤ βJ−1. More precisely, C = w1τ
−α1

1 , and for j = 2, . . . , J, βj−1 = αj −α1

and Dj−1 = wjτ
−αj

j /w1τ
−α1

1 . The quantity L(x) = (1 +
∑J

j=2 Dj−1x
−βj−1) is a slowly

varying function, meaning that any discrete mixture of Pareto distributions is of the
Fréchet type. Moreover, a natural estimator of the tail index α is the minimum tail
index parameter of the Pareto components of the mixture.

This argument does not prove any relation between the Fréchet MDA and the set of
all possibly infinite mixtures of Pareto distributions but motivates the approximation
of the Fréchet MDA with such mixtures.

3 Bayesian model based clustering

3.1 General principle

For statistical clustering of n objects, it is assumed that the numerical measurements,
x = (x1, . . . , xn), of the n objects have a joint model density given a certain partition of
the n objects. Given a partition p = {C1, . . . , Cn(p)} of the indices {1, . . . , n} of the n
objects, the measurements of the objects are modeled by a classification likelihood that,
given p, has a product form

f(x|p) =

n(p)∏

j=1

k(xi, i ∈ Cj),

where k(xi, i ∈ Cj) is the joint density of the measurements for objects in cluster Cj ,
k(xi, i ∈ {1, . . . , n}) = k(x) being the joint density of the whole data x. Typically, in
a Bayesian framework, these joint densities result from a former parametric inference
in which, given an unknown parameter θ with prior distribution π0(θ)dθ, the xi are
assumed to be i.i.d. from a model density fθ. Then k(xi, i ∈ Cj) is just the normalization
constant of the posterior distribution of θ given the measurements of cluster Cj , given
by

k(xi, i ∈ Cj) =

∫ ∏

i∈Cj

fθ(xi)π0(θ)dθ.

Alternatively, they can be directly assigned to some chosen function of the xi, i ∈ Cj

that measures the homogeneity within the cluster, see Lau and Green (2007) for more
details. When the first option is retained, direct calculation of the k(xi, i ∈ Cj) is easily
achievable if the prior for θ is chosen to be the conjugate prior for the model density
fθ. Most applications of model-based clustering relate to the Normal model, where the
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conjugate prior is the Gamma-Normal distribution: this results in marginal t-densities
for the k(xi, i ∈ Cj), see Lau and Lo (2007) for a gene clustering application. In the
present paper, we focus on the Pareto kernel as detailed in Section 3.3.

As soon as the “classification likelihood” f(x|p) is chosen, the partition is the un-
known parameter for which a prior-posterior analysis is required. A conjugate prior for
p can be any distribution that has the product form, namely

π(p) ∝

n(p)∏

j=1

g(Cj). (4)

In this case, the posterior distribution of p given the data is also of the product form

π(p|x) ∝

n(p)∏

j=1

g∗(Cj),

where g∗(Cj) = g(Cj) × k(xi, i ∈ Cj).

Finally, an estimator of the optimal clustering is the one that maximizes the posterior
distribution, which can be approximated by MCMC techniques (the usual Gibbs sampler
is used in this paper and described in Section 3.2). Lau and Green (2007) also propose
other estimators based on the minimization of loss functions.

For the prior choice, the only requirement is the product form given in Eq. (4)
so that many prior distributions can be used. A very convenient one is the Chinese
Restaurant Process with parameter e0, CRP(e0), for which g(Cj) = e0 × (ej − 1)!,
where ej is the size of cluster Cj . The parameter e0 can be interpreted as the expected
number of clusters.

3.2 Implementation: Gibbs Weighed Chinese Restaurant Process

In this section, the Gibbs sampler used in the application is described for a CRP(e0)
prior distribution on partitions. This algorithm is precisely the computational strategy
described for normal kernels in MacEachern (1994) and more generally in MacEachern
(1998). The first work on Gibbs sampling for such models is Escobar (1994) (see also his
1988 dissertation). This is only one of several possible algorithms (see Lau and Lo 2007;
Lau and Green 2007; Heard et al. 2006; Quintana and Iglesias 2003, and the references
therein).

Algorithm 1. Choose an initial partition p0 (the one with n clusters p0 = {{1}, ..., {n}}
is the default choice).
Then, repeat L + M times (L times for burn in / warm up and M times for estimation
of any function h(p)) the following Gibbs cycle:

For i = 1, ...n, do

• Remove {i} from the current partition p of {1, ..., n} to get a partition p(−i) of
{1, ..., i− 1, i + 1, ..., n} (n − 1 elements)
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• {i} is then assigned to the cluster j, j = 1, ..., n(p(−i)) with probability propor-
tional to

g∗(Cj ∪ {i})

g∗(Cj)
= ej ×

k(xl, l ∈ Cj ∪ {i})

k(xl, l ∈ Cj)
= ej × k(xi|xl, l ∈ Cj) (5)

and to a new one with probability proportional to e0 × k(xi).

The assignment of {n} completes a Gibbs cycle and the last partition is stored and
used as the initial one in the next cycle.

The L + M + 1 partitions, p0,p1, ...,pL,pL+1, ...,pL+M , are then used to compute
estimators for quantities such as ξ =

∑
p

π(p|x)h(p) or p∗ = arg maxp π(p|x), namely

ξ̃M =
1

M

L+M∑

m=L+1

h(pm), p̃∗ = arg max
m=0,...,L+M

π(pm|x).

As suggested during the review of this paper, a “polishing” stage can be added to
this MCMC algorithm. This consists of adding extra deterministic cycles until a global
fixed point is hit. In these cycles, observation {i} is deterministically assigned to the
most likely cluster (including the new cluster) instead of being randomly assigned as it
was in the Gibbs cycle.

3.3 Pareto-based clustering

In the Pareto-based clustering, the model density is fα,τ given in Eq. (1) , and a
conjugate prior for (α, τ) is retained. The classical conjugate family for the Pareto
model is the Gamma-Pareto(a, b, c, d), such that α ∼ Γ(a, b), and τ |α ∼ P(cα, d) with
a, b, c, and d > 0, that is,

π0(α, τ) ∝ αa−1e−bααd(dτ)−(cα+1)1(dτ>1) (6)

Straightforward computations yield the following marginal densities

k(xi, i ∈ Cj) =

∫ ∫ ∏

i∈Cj

fα,τ (xi)π0(α, τ)dαdτ =


∏

i∈Cj

xi




−1

Γ
(
a∗

j

)

Γ (a)

cba

c∗j
(
b∗j
)a∗

j

(7)

with

a∗
j = a+ej , c∗j = c+ej , d∗j = min

{
d, min

i∈Cj

xi

}
, b∗j = b+

∑

i∈Cj

ln xi +c ln d−c∗j ln d∗j ,

(8)
where ej is the size of cluster Cj .
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Then, the model driven part of the seating probabilities of the Gibbs sampler (cf.
Eq. (5)) is such that

k(t|xi, i ∈ Cj) = (t−1) ×
c∗ja

∗
j

(
b∗j
)a∗

j

(c∗j + 1)
(
b∗j (t)

)a∗

j +1
, (9)

where b∗j (t) = b +
∑

i∈Cj
ln xi + ln t + c ln d −

(
c∗j + 1

)
ln
(
min

{
d∗j , t

})
.

For this Pareto-based model, the optimal clustering, p∗ = arg maxp π(p|x), allows
us to characterize the studied objects in terms of extreme behavior. For example, in
the food safety context, an analysis of the cluster composition would help food safety
authorities to target their consumption recommendation campaigns at those most at
risk. An interesting quantity to compute for the cluster description is the expected value
of the tail index within each cluster E(α | {xi, i ∈ Cj}). Since the posterior marginal of
α | {xi, i ∈ Cj} is a Gamma distribution with parameters (a∗

j , b
∗
j ), E(α | {xi, i ∈ Cj}) =

a∗
j/b∗j .

Using the relationship between discrete mixtures of Pareto distributions and tail
index estimation, given in Eq. (3) , an estimator of the “global” tail index α∗ can be
derived given a partition p based on the fact that

α(p) = min
j=1,...,n(p)

E(α | {xi, i ∈ Cj}) = min
j=1,...,n(p)

a∗
j

b∗j
, (10)

where a∗
j and b∗j are the quantities defined in Eq. (8) for the partition p.

From this, using the optimal partition p∗, we get a first estimator of α∗ given by

α(p∗) = min
j=1,...,n(p∗)

a∗∗
j

b∗∗j

(11)

if a∗∗
j and b∗∗j are the quantities defined in Eq. (8) for the optimal partition p∗.

Another estimator for α∗ is the one obtained by a Monte Carlo simulation in which
the function given in Eq. (10) is computed for the M partitions (pm)m=1,...,M sampled
from π(p|x), and averaged, that is

α̃M =
1

M

L+M∑

m=L+1

α(pm). (12)

Remark 1. The chosen conjugate prior family is the one defined as the modified Lwin
Priors in Arnold and Press (1989). A larger one is described in Arnold et al. (1998),
which also includes one prior such that α|τ ∼ Γ(a(τ), b(τ)), and the independent Gamma
and Pareto priors. It is a 6-parameter family which could also be used in this model-
based clustering. However the nonparametric methodology introduced in the next sec-
tion is even more general.
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Remark 2. From a practical point of view, the computation of the driven part of the
seating probability in Eq. (9) needs to be carefully checked since overflow problems
often occur in the presence of terms such as ba with large values of a. The solution
is therefore to use logarithm and exponential functions to avoid any undefined values
(NaN).

Remark 3. One can easily compute the tail probability of the Gamma-Pareto predictive
distribution as

P (X > x) =
cba

(1 + c)b0(x)a

where b0(x) = b + ln x + c ln d − (c + 1) ln (min {d, x}) . For large x (x > d), b0(x) =
b + ln x − ln d and

lim
x→∞

P (X > tx)

P (X > x)
= (1 + ln t)

−a
,

which belongs to the Fréchet MDA.

4 Bayesian nonparametric mixture methods

In this section, a general mixture of Pareto distributions is considered. The unknown
mixing distribution G is now an infinite dimensional parameter of the model and quan-
tities of the form E [h(G)|x] , such as the tail probability given in Eq. (2), are of interest.

4.1 Two key results

Let us first recall two key results of Bayesian nonparametric statistics (see Theorems 1
and 2 in Lo 1984, and the references therein) in a general framework before considering
the mixture of Pareto distributions.

The model assumption for a mixture model is f(x | G) =
∫

k(x | u)G(du), where G
is an unknown distribution (the parameter) and k is a known kernel density in x with
parameter u ∈ U ⊂ R

k, so that
∫

k(x | u)dx = 1.

The natural prior distribution for G is the Dirichlet process (Ferguson 1973) with a
nondecreasing shape function γ such that γ(U) < ∞. It is denoted G ∼ D(dG | γ).

Theorem 1. If G ∼ D(dG | γ) and x = (x1, ..., xn) | G are i.i.d. f(x | G), then for any
nonnegative function h

E [h(G)|x] =

∫
. . .

∫ [∫
h(G)D

(
dG | γ +

n∑

i=1

δui

)]
κn

(
d−→u
)

(13)

where −→u = (u1, ..., un), κn

(
d−→u
)

=
∏

n
i=1

k(xi|ui)χn(d−→u )∫
...
∫ ∏

n
i=1

k(xi|ui)χn(d−→u )
, with

χn

(
d−→u
)

=

n∏

i=1


γ +

i−1∑

j=1

δuj


 (dui), and

∫
. . .

∫

n

χ
(
d−→u
)

=
Γ(γ(U) + n)

Γ(γ(U))
.
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Remark 4. κn

(
d−→u
)

can be seen as a weighted Blackwell-MacQueen urn distribu-

tion since Bn

(
d−→u
)

=
χn(d−→u )∫

...
∫

n
χ(d−→u )

is called the Blackwell-MacQueen urn distribution

(Blackwell and MacQueen 1973).

This first theorem reduces an infinite dimensional integral (on G) to a n-folded one
(on u). The second result reduces the n-folded integral to a sum over partitions which
allows the use of the same MCMC technique as the one described in the previous section.

Theorem 2. Denoting
∫

h(G)D (dG | α +
∑n

i=1 δui
) = E(h(G) | −→u ) = h(−→u ), and

w(p) =

n(p)∏

j=1

(ej − 1)!

∫ ∏

i∈Cj

k(xi | u)γ(du), (14)

then E (h(G)|x) =
∫

. . .
∫

E(h(G) | −→u )κn

(
d−→u
)

=
∑

p
w (p) E

[
h(−→u ) | p

]
, where the

distribution of −→u | p is the product of the distribution of
(
−→u |

−→
u∗,p

)
and the distribu-

tion of
(−→
u∗ | p

)
if
−→
u∗ denotes the vector of distinct values in vector −→u , that is

• For j = 1, ..., n(p), u∗
j are i.i.d. π(du | Cj), with

π(du | Cj) ∝
∏

i∈Cj

k(xi | u)γ(du) =

∏
i∈Cj

k(xi | u)γ(du)
∫ ∏

i∈Cj
k(xi | u)γ(du)

, (15)

• For j = 1, ..., n(p), ui = u∗
j if i ∈ Cj .

This result is used in different manners to conduct Monte Carlo approximations of
the quantity E (h(G)|x) depending on the form of h(G). If the density h(G) = f(t|G) or
the mixing distribution h(G) = G(t) are to be estimated, further simplifications occur
since h(−→u ) has an explicit form, as we shall see in the Pareto kernel case in the next
section.

4.2 General mixture of Pareto distributions

Let us now turn back to the case of the mixture of Pareto distributions and the model
assumption given by

f(x | G) =

∫ ∫
fα,τ (x)G(dα, dτ),

where fα,τ is the pareto density given in Eq. (1) .

By analogy, u = (α, τ) ∈ R
2
+, k(. | u) = fα,τ (.), the prior distribution for G is

chosen to be a Dirichlet process with shape γ = Π0 such that γ(dα, dτ) = Π0(dα, dτ) =
π0(α, τ)dαdτ, where π0(α, τ) is the Gamma-Pareto density defined in Eq. (6) so that
expressions in Eq. (14) and Eq. (15) are easily computed from the prior-posterior
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analysis done in Section 3.3. Indeed, the expression in Eq. (14) exactly matches the
posterior distribution of partitions in the Pareto-based clustering. The expression in
Eq. (15) is the Gamma-Pareto distribution with parameters (a∗

j , b
∗
j , c

∗
j , d

∗
j ) since it is

the posterior distribution of (α, τ), when the {xi, i ∈ Cj} given (α, τ) are assumed to
be P(α, τ), with prior π0(α, τ).

When the quantity of interest is the tail probability, namely when

h(G) = P(X > x) =

∫ ∫
P (X > x|α, τ) G(dα, dτ),

simple Dirichlet calculation and integration yield

h(−→α ,−→τ ) = E(h(G) | −→α ,−→τ )

=

∫ [∫ ∫
P (X > x|α, τ) G(dα, dτ)

]
D

(
dG | Π0 +

n∑

i=1

δαi,τi

)

=
1

(1 + n)

cba

(1 + c) (b∗0(x))
a +

1x<d

(1 + n)

[
1 −

ba

(b + c ln (d/x))
a

]

+
1

(1 + n)

(
n∑

i=1

(τix)
−αi 1(τix>1) +

n∑

i=1

1(τix≤1)

)
, (16)

where −→α = (α1, . . . , αn)
′
, −→τ = (τ1, . . . , τn)

′
, and b∗0(x) = b + ln(x) + c ln(d) − (1 +

c) ln(min {d, x}).

This can even be further simplified in case of ties among the (αi, τi)i, that is,
given the fact that the distribution of −→α ,−→τ | p is the product of the distribution of(
−→α ,−→τ |

−→
α∗,

−→
τ∗,p

)
and the distribution of

(−→
α∗,

−→
τ∗ | p

)
. Taking the expectancy of Eq.

(16) with respect to this product distribution yields

E
[
h(−→α ,−→τ ) | p

]
=

1

(1 + n)

cba

(1 + c) (b∗0(x))
a +

1x<d

(1 + n)

[
1 −

ba

(b + c ln (d/x))
a

]

+
1

(1 + n)

n(p)∑

j=1

ej c∗j (b
∗
j )

a∗

j

(1 + c∗j )(b
∗
j (x))a∗

j

+
1

(1 + n)

n(p)∑

j=1

ej1x<d∗

j

[
1 −

(b∗j )
a∗

j

(b∗j + c∗j ln(d∗j /x))a∗

j

]
,

where b∗j (x) = b∗j + ln(x) + c∗j ln(d∗j ) − (1 + c∗j ) ln(min
{
d∗j , x

}
) and (a∗

j , b
∗
j , c

∗
j , d

∗
j ) are

given in Eq. (8) .

Algorithm 2. Estimation of the probability tail P(X > x)

1. Sample M partitions from the distribution w(p) (cf. using the Gibbs sampler
provided in Section 3.2).
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2. For each partition pm, given x > 0, compute the quantity

hm(x) =
1

(1 + n)

cba

(1 + c) (b∗0(x))
a +

n(pm)∑

j=1

ej

(1 + n)

c∗j (b
∗
j )

a∗

j

(1 + c∗j )(b
∗
j (x))a∗

j

+
1x<d

(1 + n)

[
1 −

ba

(b + c ln (d/x))
a

]

+
1

(1 + n)

n(p)∑

j=1

ej1x<d∗

j


1 −

(
b∗j
)a∗

j

(b∗j + c∗j ln(d∗j/x))a∗

j


 , (17)

where ej is the size of cluster Cj of pm, and all ∗
j quantities are computed with

respect to cluster Cj of pm as in Eq. (8).

3. Compute the tail probability estimator as the mean of the (hm(x))m=1,...M .

5 Application

In this section, the Pareto based clustering is first applied to simulated data and then
to a real data set related to dietary exposure to ochratoxin A (OTA).

In both applications, the Gibbs WCR was run from a Gauss routine (cf. the Gauss
software webpage, http://www.aptech.com, for information) such that

• a burn-in of L = 10000 iterations is used,

• M = 20000 Monte Carlo iterations are computed

• a diffuse prior choice for the Gamma-Pareto hyperparameters: a = b = c = 0 and
d = ∞, which is improper. In practice, the following setting is used: a = b = c =
0.001 and d = maxi xi × 1.1.

• the parameter of the Chinese Restaurant Process is fixed to e0 = 1.

5.1 Simulated data

5.1.1 Description

Four sets of data are generated based on discrete mixtures of four Pareto distributions:∑4
j=1 wjP(αj , τj) with the settings given in Table 1.

The size of each simulated data set is fixed at n = 200. For example, 100 values are
randomly selected from a P(3, 1) and 100 from a P(6, 1) to constitute data set 2. For
all of these simulated data sets, the true tail index is 3: the main goal of this simulation
study is to determine whether the proposed methodology provides a good estimation of
this tail index or not. Figure 1 gives examples of histograms obtained with the different
settings.
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w1 w2 w3 w4

Pareto Parameters (3,1) (6,1) (3,3) (6,3)
Data set 1 1 0 0 0
Data set 2 1/2 1/2 0 0
Data set 3 1/2 0 1/2 0
Data set 4 1/4 1/4 1/4 1/4

Table 1: Description of the simulated datasets.

5.1.2 Results

Table 2 gives a description of the resulting optimal partition as well as a few outputs
of the two proposed approaches. A bias corrected Hill estimator is also computed for
comparison’s sake. The methodology here is similar to the one used in Tressou et al.
(2004), adapted from Beirlant et al. (1999) and Feuerverger and Hall (1999). Compar-
ison to other estimators of the tail index, namely the one proposed by Beirlant et al.
(2005), is conducted in a forthcoming study.

Data set 1 2 3 4
maxi xi 4.8 3.9 3.4 2.8
n(p∗) 1 1 2 2
π(p∗|x) 800.1 880.8 803.3 836.7
α(p∗) 3.120 4.280 3.517 4.091
α̃M 3.130 4.280 3.507 4.082
Pr(X > maxi xi) 0.81% 0.32% 0.77% 0.85%
Bias Corrected Hill 2.896 4.300 3.564 4.911

Table 2: Results on simulated data.

The main findings of these simulations are the following:

1. Mixtures over the location parameter τ are easily detected (cf. data set 3) whereas
mixtures over the tail index parameter α are a lot more difficult to detect (cf. data
sets 2 and 4) even if one considers data sets involving two tail indexes with a huge
difference.

2. The tail index estimator referred to as α(p∗) in Table 2 is defined in Eq. (11) ,
and the one referred to as α̃M is defined in Eq. (12) . When both parameters
are mixed over, the two proposed Tail Index Estimators are less biased than, or
equivalent to, the Bias Corrected Hill estimator. However, our estimators tend to
overestimate α which is not desirable in risk analysis since one certainly does not
want to underestimate the risk.

3. The methodology also allows to compute any tail probability as exemplified by
the probability of exceeding the observed maximum, Pr(X > maxi xi), given in
Table 2. It is computed as the mean of the (hm(max xi))m=1,...,M as defined in
Eq. (17).
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Figure 1: Example histograms of the 4 simulated datasets (n = 200).

4. When computing the tail index estimator and posterior log likelihood associated
to the simulated partition (the original one generically denoted p0 in the sequel,
that is, the one with 4 clusters in the case of data set 4 as an example), we obtain
the following results:

• For data set 2, α(p0) = 3.400, π(p0|x) =730.4.

• For data set 3, α(p0) = 3.433, π(p0|x) =790.3.

• For data set 4, α(p0) = 3.223, π(p0|x) =659.0.

This illustrates the well known identifiability problem of mixture models (see for
example Marin et al. 2005) and the fact that maximizing the posterior likelihood
is not always the right approach. Indeed, the optimal partition described in Table
2 enjoys a higher posterior likelihood than the one generating the data for the
three data sets 2, 3 and 4. Furthermore, the tail index estimator associated with
this “generating” partition is still biased but (not shown) simulations empirically
show that it goes to zero for large values of n. For example for n = 3000 (OTA
data set size) in the setting of data set 2, we get α(p0) = 3.147 on one particular
simulation and 3.006 if averaging on 100 independent simulation results.
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5. The “polishing” stage described at the end of Section 3.2 was applied to these sim-
ulated data but does not change any of the results. Indeed, the optimal partition
p∗ already has a larger likelihood than the one that generated the data.

5.2 OTA data set

5.2.1 Food risk assessment context, description of the data

Ochratoxin A (OTA) is a mycotoxin produced by fungi Aspergillus Ochraceus and Peni-

cillium Viridicatum. This mycotoxin can be detected in several food items: cereals,
coffee, grapes, pork meat, wine, beer, and so on. Ochratoxin A is nephrotoxic, geno-
toxic, teratogenic, carcinogenic and immunosuppressive. The compound has been linked
to Balkan Endemic Nephropathy, a kidney disease frequently observed in the Balkan
countries (Boižić et al. 1995, for a review). Such a disease can appear after long and
excessive exposure to the contaminant. This exposure is not directly observed but is
assessed from food consumption surveys that record the quantity of different foods con-
sumed and contamination data mostly derived from national surveillance plans in which
foods are analyzed and contaminant levels are measured. This exposure assessment step
can be conducted in different ways which are not the concern here but are described in
Kroes et al. (2002) and the reference therein.

The motivating real data set is composed of the possible extreme OTA exposure
of n = 3003 French individuals. More precisely, for each of the 3003 individuals, food
consumption is observed in the INCA data (CREDOC-AFSSA-DGAL 1999) and indi-
vidual distribution of exposure is built by a Monte Carlo simulation using the individual
consumption and the empirical distribution of several independently available OTA con-
tamination data (cf. Bertail and Tressou 2006; Tressou 2006; Counil et al. 2005, 2006,
for a full description of the data and examples of OTA exposure assessments.). Then the
95th percentile of this simulated distribution is retained as evidence of possible extreme
exposure to OTA. This is expressed on a body weight basis (quantity of contaminant
divided by body weight). A histogram of the observations is given in Figure 2.

5.2.2 Results

Table 3 introduces and describes the resulting optimal partitions comprising 11 clusters
respectively before and after the polishing stage (that hit a fixed point after only 3
iterations, and detailed at the end of Section 3.2). The two resulting optimal partitions
do not differ much, but the polished log-likelihood (LL = 4629) is 2.5 times higher than
the non polished one (LL = 1850). We observe that the cluster sizes are heterogeneous
(Cluster 11 only comprises 2 or 3 individuals, respectively in the polished and non
polished cases). Analysis of the clusters is not obvious: a few socioeconomic variates
were considered here and a comparison of the lower (AP) and upper part (BP) of Table
3 shows the consistency of our findings before and after polishing. The proportion of
female adults and under-reporting individuals (who declare insufficient consumption in
relation to their nutritional needs) decreases with an average of the 95th percentile of
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Figure 2: Histogram of the 95th percentile of individual exposure (expressed in ng/kg
bw/w).

exposure whereas the proportion of children increases with this average. The body mass
index (BMI: body weight divided by squared height) also decreases with the average 95th

percentile of exposure, which is in accordance with the usual fish consumer typology.
Cluster 9 is mostly comprised of children and this cluster enjoys the highest average
95th percentile of exposure and the lowest BMI. These two features are consistent with
the child population in most food risk assessments.

The Cluster Tail Index (CTI), computed as the ratio a∗
j/b∗j for each cluster j (see

Eq. (11)) allows classification of the clusters according to risk levels, the larger the CTI,
the less serious the risk. The entire population tail index is 1.440 in the polished case,
and 0.622 in the non polished case, when the estimator based on the optimal partition
α(p∗) is used, see Eq. (11) . Indeed, this is the minimum tail index among all cluster
tail indices reached for Cluster 11 in both cases. This is not satisfactory because of the
very small size of this cluster. Indeed, we can question here whether the estimation of
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the α11 is consistent with only 2 or 3 observations in this cluster. If α̃M , defined in
Eq. (12) , is used instead, the tail index estimator is equal to 0.863 (see Figure 3) and
does not depend on the polishing stage. This last estimation is certainly much closer
to the actual general tail index for the extreme exposures to OTA. Note that the bias
corrected Hill Estimator would be 11.52, which totally misses the heaviest part of the
tail.

As in the simulation, the tail probability was computed using Eq. (17) and is plotted
in Figure 4. The proposed methodology provides a nonparametric estimator of the tail
probability on the half line so that any tail probability (even an extremely small one)
can be estimated.

Figure 3: Empirical distribution of the Monte Carlo simulation for the tail index α,
resulting in the α̃M estimator.
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Cluster Observations (P95 of exposure) Covariates
j Size MLL CTI Avg StD Min Max Avg.Age Avg.BMI P.Ch P.AdF P.UR
1 549 -2652.61 2.582 122.4 53.9 77.7 467.5 24.0 19.5 51.7% 6.6% 2.2%
2 259 -1121.28 1.542 50.5 50.4 20.7 369.4 39.2 24.1 17.0% 22.0% 44.0%
3 104 -427.31 1.243 32.6 45.0 10.3 366.5 42.6 25.3 14.4% 24.0% 64.4%
4 237 -863.487 4.538 59.9 16.1 46.8 161.7 36.5 23.0 18.6% 19.8% 17.7%
5 205 -622.761 9.201 64.1 7.1 57.2 101.4 34.9 22.4 26.3% 11.7% 11.2%

BP 6 515 -2184.36 2.458 66.3 39.3 40.1 346.6 36.2 22.9 20.8% 16.7% 21.0%
7 569 -2505.73 3.127 95.0 36.2 65.7 429.0 28.9 21.0 37.3% 7.6% 4.4%
8 272 -1017.33 2.826 43.6 23.2 28.4 249.3 37.5 24.2 16.5% 19.5% 39.0%
9 278 -1390.29 2.987 157.8 51.3 108.2 364.4 15.1 17.6 76.6% 2.2% 0.4%

10 12 -42.5631 2.338 7.9 3.3 4.9 17.1 54.7 25.2 0.0% 25.0% 91.7%
11 3 -22.5831 0.622 8.1 11.2 0.7 21.0 41.7 24.8 0.0% 0.0% 66.7%
1 633 -2303.4501 6.689 90.8 8.6 77.8 108.1 31.0 21.0 33.5% 8.8% 2.7%
2 118 -307.33299 5.856 24.7 2.2 20.7 28.3 46.2 25.9 5.1% 21.2% 63.6%
3 67 -208.77301 2.474 15.7 3.0 10.3 20.6 43.4 25.8 10.4% 25.4% 76.1%
4 337 -906.07401 10.173 51.7 3.0 46.8 57.2 38.0 23.7 14.2% 18.4% 22.6%
5 293 -714.13941 15.589 61.0 2.4 57.2 65.6 37.1 22.8 21.2% 17.4% 16.0%

AP 6 206 -483.343 12.503 43.5 2.0 40.1 46.8 39.5 23.9 12.6% 19.4% 35.4%
7 375 -1052.3487 12.391 71.3 3.5 65.7 77.7 33.1 22.3 24.5% 10.9% 8.8%
8 251 -713.35581 5.804 33.8 3.4 28.3 39.9 40.6 24.9 11.6% 23.9% 49.8%
9 710 -3559.2548 2.863 160.7 55.7 108.2 467.5 15.2 17.7 75.5% 3.5% 0.3%

10 11 -37.305571 2.838 7.1 1.6 4.9 9.7 54.6 25.1 0.0% 27.3% 90.9%
11 2 -15.761918 1.440 1.7 1.4 0.7 2.7 28.0 23.8 0.0% 0.0% 100.0%

Table 3: Description of the resulting partition for the OTA dataset (BP: before polishing; AP: after polishing).
Note: MLL=Marginal log-likelihood of the cluster; CTI=Cluster Tail Index; Avg.= Average; StD.=Standard Deviation;
Min=Minimum; Max=Maximum; BMI=Body Mass Index (body weight divided by squared height); P.Ch= proportion of
Children; P.AF=proportion of Female Adults; P.UR=proportion of under-reporting individuals.
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Figure 4: Tail estimation in the OTA dataset.

6 Discussion

The implementation of the two proposed methodologies together with classical extreme
value approaches illustrates the difficulty of estimating the tail index if the data is
generated from a mixture. Yet, in many applications, this assumption holds. The two
proposed tail index estimators are actually at least as good as the Hill estimator even
though the Monte Carlo approximation is preferable above all when cluster sizes are
small. The proposed estimator for the tail probability is a good alternative to the basic
empirical estimator: still nonparametric, it does not require any specific parametric
assumption except the heavy tailed one, and has the advantage of being defined on
the whole half line. The resulting clusters are not easy to describe and, surprisingly
for univariate data, they do not correspond to a partition of the real line into disjoint
intervals.

Several extensions or changes in the framework may be considered. First, in the
parametric approach, other distributions may be considered for the Pareto parameters
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α and τ as mentionned in Remark 1. In the nonparametric extension, a basic Dirichlet
process was considered as the prior for the mixing distribution using Ferguson’s original
definition as in Lo (1984): G ∼ D(dG | γ). One could also use the (θ, H) parametrization
such that G ∼ D(dG | θ, H), where θ is the total mass of the base-line measure H, that
is θ corresponds to γ(U) in our setting. Going further in this direction the recent paper
of Lijoi et al. (2007) provides interesting extensions. Furthermore, other processes, such
as the Poisson-Dirichlet process, may be considered, see Lau and Green (2007) and the
references therein.

From the applied perspective, it would be interesting to work on the individual
exposure curves instead of only considering the 95th percentile of exposure for each
individual. This could be conducted using a Hierarchical Dirichlet process, also called
“Chinese Restaurant Franchise”, see Teh et al. (2006). This way, there would be a
double clustering of exposure values and individual exposure distributions. This would
require some computational adaptation since the data set would be huge (from the OTA
data set, we can actually get n = 3003 exposure distribution curves, described by n×M
points if M exposure levels are simulated for each individual). The use of the Gibbs
sampling methods for stick-breaking priors proposed in Ishwaran and James (2001) will
be investigated in future work.

7 Appendix: Technical details

The notations from Eq. (8) are again used in this appendix and recalled here: a∗
j =

a+ ej , b∗j = b+
∑

i∈Cj
ln xi + c ln d− c∗j ln d∗j , c∗j = c+ ej , and d∗j = min

{
d, mini∈Cj

xi

}
.

7.1 Derivation of Eq. (7)

Eq. (7) is obtained by:

k(xi, i ∈ Cj) =

∫ ∫ ∏

i∈Cj

fα,τ (xi)π0(α, τ)dαdτ

=

∫ ∫ ∏

i∈Cj

ατ (τxi)
−(α+1)

1(τxi>1) ×
ba

Γ(a)
αa−1e−bαcαd(dτ)−(cα+1)1(dτ>1)dαdτ

=
cba

Γ(a)


∏

i∈Cj

xi




−1 ∫
αa+ej exp

−α
(

b+
∑

i∈Cj
ln xi+c ln d

)

dα

×

∫ ∞

τ=1/ min{d,mini∈Cj
xi}

τ−α(ej+c)−1dτ

=
cba

Γ(a)c∗j


∏

i∈Cj

xi




−1 ∫
αa∗

j −1 exp
[
−αb∗j

]
dα =


∏

i∈Cj

xi




−1

Γ(a∗
j )

Γ(a)

cba

c∗j
(
b∗j
)a∗

j

.
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7.2 Derivation of Eq. (9)

Eq. (9) is the model driven part of the seating probability, used to reassign a measure-
ment t in one of the clusters Cj and denoted k(t | {xi, i ∈ Cj}). It can be obtained in
two ways:

1. First, the ratio of the marginal densities of the clusters {xi, i ∈ Cj} ∪ {t} and
{xi, i ∈ Cj} , namely

k(t | {xi, i ∈ Cj}) =
k({xi, i ∈ Cj} ∪ {t})

k({xi, i ∈ Cj})

=

t−1
(∏

i∈Cj
xi

)−1 Γ(a∗

j +1)

Γ(a)
cba

(c∗
j
+1)(b∗

j
(t))

a∗
j
+1

(∏
i∈Cj

xi

)−1 Γ(a∗

j
)

Γ(a)
cba

c∗
j (b∗

j )
a∗

j

= (t−1) ×
c∗ja

∗
j

(
b∗j
)a∗

j

(c∗j + 1)
(
b∗j (t)

)a∗

j
+1

,

where b∗j (t) = b +
∑

i∈Cj
ln xi + ln t + c ln d − c∗j ln

(
min{d∗j , t}

)
.

2. The predictive density of a new data t given observations {xi, i ∈ Cj} can also be
directly computed by first computing the predictive density for no observation,
namely k(t) =

∫ ∫
fα,τ (t)π0(α, τ)dαdτ, and then replacing all hyperparameters by

their updated version (∗j ) given in Eq. (8) since

k(t | {xi, i ∈ Cj}) =

∫ ∫
fα,τ (t)π(α, τ | {xi, i ∈ Cj})dαdτ,

where π(α, τ | {xi, i ∈ Cj}) is the posterior density in a Pareto model with Gamma
Pareto prior, i.e. a Gamma Pareto (a∗

j , b
∗
j , c

∗
j , d

∗
j ).

k(t) =

∫ ∫
fα,τ (t)π0(α, τ)dαdτ

=
cabat−1

(1 + c)(b + ln t + c ln d − (1 + c) ln (min {d, t}))a+1

=⇒ k(t|xi, i ∈ Cj) = (t−1) ×
c∗ja

∗
j

(
b∗j
)a∗

j

(c∗j + 1)
(
b∗j (t)

)a∗

j
+1

,

with b∗j (t) = b∗j + ln t + c∗j ln d∗j −
(
c∗j + 1

)
ln
(
min{d∗j , t}

)
which is the same as the

one obtained using the ratio method in [Way 1].

In the Pareto case, both calculations are straightforward and may be used to check
on the exactitude of the result, while for other kernel densities, the second approach
may be simpler since calculations are exactly the same as the ones for the marginal
densities.

From a computational point of view, remark that ej , mini∈Cj
xi and

∑
i∈Cj

ln xi

are the only quantities needed to compute the marginal of cluster Cj and the seating
probability to cluster Cj so that there is no need to store and manipulate all the {xi, i ∈
Cj} for j = 1, ..., n(p) in the Gibbs cycle.
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7.3 Derivation of Eq. (16)

Eq. (16) is obtained by first applying the Fubini result for Dirichlet processes (see
Lemma 1 of Lo (1984)). Then, given −→α = (α1, . . . , αn)

′
, −→τ = (τ1, . . . , τn)

′
and consid-

ering h(G) = P (X > x) =
∫ ∫

P (X > x|α, τ) G(dα, dτ), we have

E(h(G) | −→α ,−→τ ) =

∫ [∫ ∫
P (X > x|α, τ) G(dα, dτ)

]
D

(
dG | Π0 +

n∑

i=1

δαi,τi

)

=
1

(Π0 +
∑n

i=1 δαi,τi
) (R2+)

[ ∫ ∫
P (X > x|α, τ) Π0(dα, dτ)

+
∑n

i=1

∫ ∫
P (X > x|α, τ) δαi,τi

(dα, dτ)

]

=
1

(1 + n)

[ ∫ ∫ [
(τx)

−α
1(τx>1) + 1(τx≤1)

]
π0(α, τ)dαdτ

+
∑n

i=1 (τix)−αi 1(τix>1) + 1(τix≤1)

]

=
1

(1 + n)

cba

(1 + c) (b∗0(x))
a +

1

(1 + n)

∫ ∫
1(τx≤1)π0(α, τ)dαdτ

+
1

(1 + n)

(
n∑

i=1

(τix)
−αi 1(τix>1) +

n∑

i=1

1(τix≤1)

)
,

where b∗0(x) = b + ln(x) + c ln(d) − (1 + c) ln(min {d, x}) and

∫ ∫
1(τx≤1)π0(α, τ)dαdτ =

∫ ∫
1(τx≤1)

[
ba

Γ(a)
αa−1e−bα

] [
cαd(dτ)−(cα+1)1(dτ>1)

]
dαdτ

= 1x<d
cba

Γ(a)

∫
αae−(b+c lnd)α

[∫ 1/x

τ=1/d

τ−(cα+1)dτ

]
dα

= 1x<d
cba

Γ(a)

∫
αae−(b+c lnd)α

[
τ−cα

−cα

]1/x

τ=1/d

dα

= 1x<d
ba

Γ(a)

∫
αa−1e−(b+c lnd)α [dcα − xcα] dα

= 1x<d

[∫
ba

Γ(a)
αa−1e−bαdα −

ba

Γ(a)

∫
αa−1e−(b+c ln d−lnx)αdα

]

= 1x<d

[
1 −

ba

(b + c ln d − ln x)a

]
,

so that finally,

E(h(G) | −→α ,−→τ ) =
1

(1 + n)

cba

(1 + c) (b∗0(x))
a +

1x<d

(1 + n)

[
1 −

ba

(b + c ln d − ln x)
a

]

+
1

(1 + n)

(
n∑

i=1

(τix)
−αi 1(τix>1) +

n∑

i=1

1(τix≤1)

)
.
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