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Semi-parametric Bayesian Inference for

Multi-Season Baseball Data

Fernando A. Quintana∗, Peter Müller†, Gary L. Rosner‡ and Mark Munsell§

Abstract. We analyze complete sequences of successes (hits, walks, and sacrifices)
for a group of players from the American and National Leagues, collected over
4 seasons. The goal is to describe how players’ performances vary from season
to season. In particular, we wish to assess and compare the effect of available
occasion-specific covariates over seasons. The data are binary sequences for each
player and each season. We model dependence in the binary sequence by an
autoregressive logistic model. The model includes lagged terms up to a fixed order.
For each player and season we introduce a different set of autologistic regression
coefficients, i.e., the regression coefficients are random effects that are specific to
each season and player. We use a nonparametric approach to define a random
effects distribution. The nonparametric model is defined as a mixture with a
Dirichlet process prior for the mixing measure. The described model is justified by
a representation theorem for order-k exchangeable sequences. Besides the repeated
measurements for each season and player, multiple seasons within a given player
define an additional level of repeated measurements. We introduce dependence at
this level of repeated measurements by relating the season-specific random effects
vectors in an autoregressive fashion. We ultimately conclude that while some
covariates like the ERA of the opposing pitcher are always relevant, others like an
indicator for the game being into the seventh inning may be significant only for
certain seasons, and some others, like the score of the game, can safely be ignored.

Keywords: Dirichlet Process, Partial Exchangeability, Semiparametric Random
Effects

1 Introduction

Albright (1993) discusses a data set of the entire sequences of successes for baseball
players from the American and National Leagues, over the 4 seasons spanning the years
from 1987 to 1990. Albright defines a success in terms of either getting on base or
moving players along the bases. Thus, hit, walk, or sacrifice constitute a success, and
we follow this definition. The data set contains for each player, season, and at-bat
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occasion, a binary outcome, defined as yijk = 1 if a success occurred and yijk = 0
otherwise. Here, k indexes at-bat occasions, j indexes seasons, and i denotes players,
where k = 1, . . . , nij ; j = 1, . . . , ni; and i = 1, . . . , n. The data set also includes 11
occasion-specific covariates for each binary outcome’s at-bat appearance that possibly
affect the success probability. For each at-bat appearance, the covariate I7 equals 1 if
the occasion occurs in the 7th inning or later and 0 otherwise; O2 is 1 if there are 2
outs and 0 otherwise; Score equals the number of runs that separate the batter’s team
and the opposing team (positive if the batter’s team is ahead and negative if behind);
R123 is 1 if any runners are on base when the player is at bat and 0 otherwise; R23
is 1 if any runners are on 2nd or 3rd base and 0 otherwise; Game, corresponding to a
chronological index of the game number; DN equals 1 for a night game and 0 for a day
game; HA is 1 if the game is played at home and 0 if it is an away game; T is defined as
1 if the opposing pitcher is right-handed and 0 if left-handed; ERA equals the opposing
pitcher’s earned run average for that season; and Turf equals 1 if the field is natural
grass and 0 if artificial turf.

Common sense suggests that the ERA, a measure of the opposing pitcher’s ability to
hold down the opposing team’s batters, should have substantial impact on the hitting
probability. Since ERA is likely to be an important covariate, we are careful about
modeling its effect. We use three dummy variables ERA1 through ERA3 to allow for
non-linear effects. Letting q1 < q2 < q3 denote the quartiles of the observed ERA values
in a given season, we define ERA1 = I{ERA ≤ q1}, ERA2 = I{q1 < ERA ≤ q2} and
ERA3 = I{q2 < ERA ≤ q3}. We denote the 13-dimensional vector of occasion-specific
covariates as xijk .

One of the key issues that motivated the analysis in Albright (1993) was the question
whether players exhibit streakiness in their hitting patterns. A related question is
whether this streakiness was permanent or just limited to a given season. The assessment
of streakiness for this dataset was previously discussed in a number of articles. In
particular, we build on Quintana and Müller (2004) who concluded, based on data from
the 1990 season only, that a first-order Markovian dependence was appropriate to model
streakiness.

In this paper, we focus on inference about the evolution of players over seasons. In
particular, we want to study how streakiness and covariate effects change over seasons.
This includes questions such as “Does the home field advantage effect on batting success
probabilities change over seasons?” Addressing such questions requires a model that
takes into account not only the longitudinal nature of the binary responses within a
season but also the dependence across seasons that arises from observing the same
player across multiple seasons.

Because we are specifically interested in serial dependence across seasons, we focus
only on players with available data for consecutive seasons. We find n = 76 players with
data across consecutive seasons. Table 1 lists the specific players. Of these 76 players, 27
have data recorded for the first two seasons (ni = 2), 14 have data for seasons 1 through
3 (ni = 3), and for 35 players data are reported for all seasons (ni = 4). Finally, the
available data only includes “regular players”, i.e., those who were at least 500 times
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at-bat during a given year, so that nij ≥ 500.

The main features of the proposed model are an autologistic model for the bi-
nary outcomes across at-bat occasions, a non-parametric prior for the random effects
distribution of season-specific success probabilities, and an autoregressive dependence
structure across seasons. We use the term “nonparametric” to refer to models that
cannot be defined in terms of finite-dimensional parameters. Nonparametric random
effects models have been successfully applied in various contexts. Models with similar
nonparametric priors have been used, among others, in Bush and MacEachern (1996),
Müller and Rosner (1997), Mukhopadhyay and Gelfand (1997) and
Kleinman and Ibrahim (1998). Bush and MacEachern (1996) was the first paper to in-
troduce the now commonly used semiparametric modeling approach with parametric
priors for fixed effects and nonparametric model components for random effects. For
the particular case of binary data, related models appear in Liu (1996) and
Basu and Mukhopadhyay (2000), among many others. We chose a nonparametric ran-
dom effects distribution because we were concerned that a parametric model, such as a
traditional multivariate normal random effects model, would assume too much homo-
geneity for the population of players. Technically, the proposed nonparametric model
can be described as a mixture of normal models. The model preserves many of the
computational advantages of a parametric model. But by introducing a mixture the
model allows us to learn about heterogeneity in the population. Another important
motivation for the nonparametric model choice is a representation theorem for partially
exchangeable sequences. If we believe that the probability model for a binary sequence
should depend only on the number of order-` transitions, then it can be argued that the
model should include a nonparametric random effects distribution for season-specific
success probabilities. In this sense the nonparametric model allows us to report infer-
ence without the limitation of a specific assumed sampling model, beyond the general
notion of order-` exchangeability. We provide further details in Section 2.

In our application we base the nonparametric specification on the popular Dirichlet
process (DP) (Ferguson 1973). The choice of the DP prior is mainly driven by the
simplicity of the resulting posterior simulation schemes. Recent reviews of semi- and
non-parametric Bayesian models can be found in Walker et al. (1999) and in
Müller and Quintana (2004). Another key feature of the proposed model is the use
of an autoregression to define the dependence of random effects corresponding to the
same player across different seasons. An implication of this modelling choice is that
the marginal models for random effects within a season remain nonparametric, while
dependence across seasons is modeled parsimoniously by the autoregression. Another
feature is that the model implies increased prior uncertainty for random effects for later
seasons corresponding to a given player. This simply reflects the fact that many changes
usually take place from one season to other: players change teams, some retire and some
minor-leaguers enter the major leagues, some get injured, etc.

The rest of this article is organized as follows. In section 2, we describe the main
features of the proposed model, emphasizing the two levels of dependence. A Markov
chain Monte Carlo (MCMC) simulation approach for posterior inference is briefly de-
scribed in Section 3. Section 4 summarizes the findings when fitting the model to the
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baseball dataset described earlier. In particular, we answer the motivating and other
questions. Finally, Section 5 presents a discussion and extensions of our analysis.

2 A Model for Batting Performance

Recall that yijk denotes the binary outcome (hit, walk or sacrifice) recorded at the
kth time that player i was at bat during the j-th season, and that xijk corresponds
to the 13-dimensional vector of covariates, where k = 1, . . . , nij , j = 1, . . . , ni, and
i = 1, . . . , n = 76. Denote the entire binary sequence for player i during season j as
yij = (yijk , 1 ≤ k ≤ nij), and the complete collection of responses as y = (yij , 1 ≤
j ≤ ni, 1 ≤ i ≤ n). We model the longitudinal sequence yij by a Markov model.
The Markov chain has a binary state space yijk ∈ {0, 1}. The Markov chain is defined
by specifying the transition probabilities from yijk to yij,k+1. We use an autologistic
regression model to do this. The regression includes lagged responses and covariates
xijk , following the approach in Quintana and Müller (2004). They proposed to model
the yij sequences as mixtures of Markov chains of a certain order `. The mixture is
defined with respect to the transition probabilities and includes a nonparametric prior
on the mixing measure. The model is inspired by the notion of partial exchangeability
(Quintana and Newton 1998). A probability model for a binary sequence is partially
exchangeable of order ` if it is invariant under any permutation that leaves the initial
portion of the sequence and the transition counts up to order ` unaltered. It has
been shown (Freedman 1962a,b; Quintana and Newton 1998) that such invariance plus
some technical conditions imply that the joint distribution p(yij) can be written as a
mixture of Markov chains. For order-` models, the Markov chain is characterized by a
transition matrix of dimension 2`×2`, which can be parameterized by only 2` transition
probabilities.

We propose a more parsimonious and restricted version of the general representation
of a partially exchangeable model. We assume

logit [P (yijk = 1 | `,θij , yij,k−`, . . . , yij,k−1)] = θij0+θij1yij,k−1+· · ·+θij`yij,k−`+x
′
ijkβj ,

(1)
with θij = (θij0, . . . , θij`), for a fixed value of `. The θij parameters are the autologistic
regression coefficients, with θij0 being the intercept and θij1, . . . , θij` being the coeffi-
cients of the lagged responses yij,k−1, . . . , yij,k−`. This (` + 1)-dimensional Markovian
representation is equivalent to the full model with 2` parameters for the cases ` = 0
and ` = 1. Note also that the covariates enter model (1) linearly in the logit scale.
The 13-dimensional coefficient vectors β1, . . . ,β4 are season specific and represent the
global effect of occasion-specific covariates on the success probability, expressed on the
logit scale. Posterior inference on βj will allow us to formally address questions about
how the effect of covariates, such as home field advantage, changes over seasons. Infer-
ence about the change of streakiness across seasons is achieved by comparing θij across
seasons j.

A model similar to (1), with fully parametric priors and without reference to order-
` partial exchangeability was used in Erkanli et al. (2001). To define ` we recall the
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analysis that Quintana and Müller (2004) carried out using data from the 1990 season
only. They concluded that an order-1 model was appropriate. It is not clear that this
conclusion can be extrapolated to data over four seasons. Instead we make a conservative
choice and use ` = 5.

The next stage in our model building is the definition of a probability model for
the random effects θij . We proceed by defining a model for the first season and then
extend this to subsequent seasons. A conventional and technically convenient choice for
a random effects distribution in a model like (1) would be a multivariate normal random
effects distribution for θi1. However, as part of our substantial prior information we
believe that the player population is not homogeneous. We wish to explicitly allow for
different sub-populations being characterized by different levels and different kinds of
streakiness. Such heterogeneity is well represented by mixture models. Also recall the
earlier mentioned representation of partially exchangeable random binary sequences as
mixtures of Markov chains. These two considerations lead us to use a nonparametric
random effects distribution that takes the form of a mixture of normal models. Starting
with the 1987 season, we define a nonparametric random effects model as a mixture of
normal distributions. The mixture is with respect to the normal location parameter.
The model becomes nonparametric by assuming a nonparametric prior on the mixing
measure.

θi1
ind∼
∫
N(θi1; µi1,S) dF (µi1) and F ∼ D(M,F0), (2)

whereN(x; µ,S) denotes the multivariate normal distribution on x, with mean vector µ

and covariance matrix S, and D(M,F0) denotes the Dirichlet process (DP) with baseline
distribution F0 and total mass parameterM (Ferguson 1973). The DP defines a random
probability measure (RPM), that is, a distribution on the space of distributions.

We briefly summarize some key features of the DP model that are helpful for un-
derstanding the nature of the proposed model. Actual implementation, as described in
Section 3, will not make use of the nonparametric model itself. Technically, the imple-
mentation of posterior inference will be based on model (2) with the random probability
measure F integrated out, i.e., we will only have to manipulate the resulting finite di-
mensional probability model on (θi1, i = 1, . . . , n). Sethuraman (1994) shows that a
random probability F generated from a DP prior can be written as follows. Consider
any event B. Then F (B) =

∑∞
h=1whδUh

(B), where U1, U2, . . . are a random sample

from F0 and the weights wh are defined as w1 = V1 and wh =
∏h−1

j=1 (1 − Vj)Vh for
h ≥ 2, with V1, V2, . . . a random sample from the Beta(1,M) distribution. In summary,
the representation is in terms of an infinite mixture of point-masses with locations gen-
erated from F0 and the weights determined by M . An immediate consequence of this
representation is that the DP is almost surely discrete.

Model (2) defines a mixture of a normal kernels with respect to the normal location
parameter. The mixing measure has a DP prior. The resulting continuous distribution
is known as a DP mixture (Antoniak 1974). The introduction of latent variables µi

allows us to write (2) as a hierarchical model. Also, we introduce a modification to
the semi-parametric mixture model (2) to facilitate the inclusion of player-specific prior
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information.

The logistic intercept θij0 is special. It represents the marginal probability of a
success for player i in season j. We characterized the prior for each player’s marginal
“ability” for the 1987 season with a normal distribution based on the player’s own 1986
season averages. We inflate the prior variances by a factor 10 to allow for additional
prior uncertainty. The averages included walks and sacrifices as “successes” to agree
with the data we analyzed. One player, Ellis Burks, began his major league career in
1987. For Burks’s normal prior, we computed a predictive distribution for a rookie in
the 1986 season and used the first two moments from the predictive distribution. We
determined the predictive distribution based on a hierarchical model, analyzing the data
for all rookies whose major league careers started in 1986. Since several rookies in 1986
had no successes, we used empirical logits for each rookies’ data (that is, we added 0.5
to the number of successes and failures before taking the logarithm), with the variance
suggested by Gart (1966). All 1986 data came from version 5.4 of Sean Lahman’s
baseball database (www.baseball1.com/statistics/). The resulting player-specific prior
means and variances are shown in Table 1.

Let µi10 ∼ N(mi0, Vi0) denote the historical prior on the ability of player i based
on the 1986 season. Also, let µ

−
i1 = (µi11, . . . ,µi1q) denote µi1 with the intercept µi10

removed (recall that q = 5 in our case). Writing the modified mixture model (2) as a
hierarchical model we get:

θi1|µi1
ind∼ N(µi1,S), µ

−
i1|F,φ

ind∼ F, µi10 ∼ N(mi0, Vi0), F |φ ∼ D(M,F0(φ)),
(3)

where φ is an optional vector of hyperparameters for the baseline distribution F0.

Next we extend the model to seasons j = 2, . . . , ni. The sampling model is already
defined in (1). We still need to define a random effects distribution for θij . As in (3)
we introduce latent parameters µij and define a normal prior, θij ∼ N(θij ; µij ,S).
Completing the prior model for µij we have three goals in mind. (i) We want to
explicitly relate seasons for a given player. This is important to address the desired
inference about changes in streakiness across seasons. (ii) We want a flexible marginal
model for random effects from each season, similar to (2) or (3). And, (iii) we want
to reflect the increased prior uncertainty in the random effects for a given player as
seasons progress (recall the earlier discussion). We achieve these goals by considering
an autoregressive relationship among latent parameters:

µij = α0 +D(α1)µi,j−1 + εij , j > 1, (4)

where {εij} are independent normal residuals with covariance matrix R, D(a) is a diag-
onal matrix with the elements of a as diagonal entries, and F is a DP random measure,
as before. In words, the model specifies that the player and season-specific parameters
that characterize success probability and a hot hand are related across seasons by an
autoregressive structure. The autoregressive model is initialized in season j = 1 with
a nonparametric prior, i.e., without strict parametric assumptions. The autoregressive
coefficients α1k quantify the strength of the correlation across seasons.
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Random effects θij for j = 1, . . . , ni are thus related because the corresponding latent
µij parameters are stochastically dependent. Also, the nonparametric nature of the
model for the latent µi1’s and the autoregressive specification (4) imply a nonparametric
model for the marginal distribution of µij , j ≥ 2. As a consequence, random effects
θij have marginally an induced mixture model with a DP prior, as in (2). Only the
normal kernel N(µi1,S) in (2) is replaced by the normal distribution implied by the
convolution of the N(µi1,S) distribution with the normal autoregressive conditional
distributions p(µij | µi,j−1).

The final step in the model construction is a prior probability model for all the
remaining hyperparameters, including φ. For convenience we choose the baseline dis-
tribution F0 in (2) as F0(x; φ) = N(x; φ), where φ = (m,V ). Denote by a =
(α0,α1) a stacked version of the autoregression coefficients. We assume a normal
prior p(a | a0,A) = N(a; a0,A). For φ we choose another normal-inverse Wishart
prior p(m,V ) = N(m; m0,V ) × IW (V ; V 0, νV ). Finally, for S we assume p(S) =
IW (S; S0, νS). See Section 4 for specific choices of M , a0, A, νV , m0, V 0, νS and S0.
For later reference, we write the whole vector of hyperparameters as η = (φ,a,S).

The model is completed with a prior probability model for βj , the covariate effects
in season j. We use a similar AR prior as in (4):

β1 ∼ N(0,B) and p(βj | βj−1) ∼ N(βj−1, c
2
B), (5)

where c is a scalar factor that controls the amount of smoothing across seasons and B

is a hyperparameter that specifies the a priori correlation of the covariate effects.

3 Posterior Simulation Algorithm

The proposed model includes conditional independence at several levels. As a conse-
quence many complete conditional distributions are easily recognized and allow efficient
random variate generation. This allows us to define an efficient Gibbs sampling algo-
rithm for posterior simulation.

Posterior simulation proceeds after analytically marginalizing model (3) with respect
to the random probability measure F . The resulting posterior distribution for θij al-
lows an efficient Gibbs sampling implementation. We describe the main steps, and refer
the interested reader to the cited references for a detailed description. The discrete
nature of the random probability measure F in (3) implies a positive probability for ties
among the µi1 parameters. Denote by k ≡ k(n) the number of distinct values among the
components of µ1 = (µ11, . . . ,µn1). Let the unique values (or locations) be denoted
as µ

∗
1 = (µ∗

11, . . . ,µ
∗
k1). Define membership indicators s = (s1, . . . , sn) as si = j if

µsi1 = µ
∗
j1. The sets of players sharing a common location can be interpreted as clusters,

describing groups of players with similar behavior. It is then convenient to represent µ1

as (µ∗
1, s). Updating µ1 is carried out by updating µ

∗
1 and s, conditional on all the other

quantities. This defines the perhaps simplest Gibbs sampling scheme for DP mixture
models (Bush and MacEachern 1996; MacEachern and Müller 1998). Our implementa-
tion is based on these algorithms. Alternative approaches based on Metropolis-Hastings
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moves are discussed in Neal (2000), Dahl (2003) and Jain and Neal (2004). The most
time-consuming step in the posterior simulation is the updating of membership indica-

tors s. Luckily, the normal distribution assumption θi1|µi1
ind∼ N(µi1,S) together with

the conjugate normal specification of F0 allows us to analytically integrate out µ
∗
j1. This

allows for an efficient implementation, as described in MacEachern and Müller (1998,
2000).

Once a new value for s is imputed, the µ
?
i1 are updated from the corresponding full

conditional given the new s and all other parameters. This reduces, for each imputed
cluster, to a simple parametric model with prior F0 and restricted to players sharing
that cluster. The remaining µij vectors for 2 ≤ j ≤ ni can be updated one by one
from their respective full conditional posterior distributions, all of normal type. By the
AR(1) assumption (4), these conditional posterior distributions depend on the latent
parameters (µi,j−1,µi,j+1) for the previous and next seasons, respectively (except for
the last season j = ni). The θij parameters are updated one at a time by drawing from
the corresponding logistic-normal distribution, as described in, e.g. Carlin and Louis
(1996).

Updating the autoregressive coefficients α is easily implemented by noting that
(4) is linear in α, so that the normal prior assumption implies a normal conditional
posterior distribution. The remaining parameters, namely m, V and S can be updated
straightforwardly, given the conjugate-style prior assumptions.

4 Results

Recall the assumption of an order of dependence ` = 5. Thus, each of the θij and µij

vectors is of dimension 6. The θij0 coefficients define the probability of success (in the
logit scale) when all covariates are 0 and the player suffered a streak of misses of length
(at least) 5. In turn, θijm for m = 1, . . . , 5 are the regression coefficients for the binary
lagged responses. The regression coefficients βj are season-specific and are the primary
focus of interest in our analysis.

For the fixed hyperparameters, we use m0 = 0, a0 = 0, νS = 8, νV = 8, A =
0.25I12, and V 0 and S0 such that the resulting prior means for V and S are both equal
to 0.25I6, where Im is the identity matrix of dimension m ×m. For the prior on the
covariate effects we choose B = I and c = 0.1. We also choose M = 1, which implies
a priori for the expected number of clusters, E(k(n)) ≈ M log ((M + n)/M) = 4.34,
and for the corresponding variance, Var(k(n)) ≈M {log ((M + n)/M) − 1} = 3.34 (Liu
1996).

Figure 1 summarizes the marginal posterior distributions for the autoregressive coef-
ficients α0 and α1 in (4). Most of the posterior mass for α0m is concentrated away from
0 for m = 0, . . . , 3. In each season a player is subject to the same overall probability
of streakiness, characterized by the positive values for (α01, α02, α03). The first three
lagged at-bats appear to be globally important.

The posterior distribution of α10 is bounded away from zero, unlike the posteriors of
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α1m, m ≥ 1. Thus, only the marginal probability of getting on base (i.e., a success) is
significantly correlated across seasons for a player. The strength of the autocorrelation
(i.e., the propensity to streaky behavior), however, is not. There is no evidence even
in this extensive data set that streakiness of a player persists across seasons. In other
words, based on the near-zero values of (α11, α12, α13) there is no evidence that a player’s
streakiness is correlated across seasons. A possible explanation is simply the fact that
approximately 6 months separate one season from the next one.

Looking at individual players, we find substantial variability. This variability is
illustrated in Figures 2 through 4, which summarize the entire collection of marginal
posterior distributions for the θij parameters. We observe some substantial variability
in the evolution of those coefficients over seasons. Take, for instance, players 7 (Barry
Bonds) and 76 (Robin Yount). Comparing the evolution of the respective intercept
coefficients θij0, we see quite the opposite behavior for these two players. For Bonds,
we see mostly increasing values over the 1987 to 1990 period, while for Yount there is a
decreasing pattern. It is interesting to note that the history of official batting averages
(defined as the ratio of hits to official at bats) for 1987-1990 was .312, .306, .318, and .247
for Yount, and .261, .283, .248 and .301 for Bonds (available from www.espn.com). The
posterior means of the θij0 coefficients mostly follow the same trends, although batting
averages are not a one-to-one function of θij0, because we use a broader definition of
success and include more appearances (walks and sacrifices) in the denominator than
official “at bats.” Considering Barry Bonds’ record, we note that he had increasingly
more intentional walks over seasons. This helps to explain the increasing pattern. For
Robin Yount, the 1990 season was already his 17th season; He ended his career in
1993. We find increasingly fewer at-bats across the four seasons (635 through 587).
Other, more zigzagging patterns are also found, e.g., for player 5, George Bell. Also,
the posterior variances for all coefficients tend to increase over seasons, in agreement
with the notion of increased prior uncertainty for random effects over seasons. Another
cause for the increasing posterior variances is the fact that not all players have data on
all seasons, as noted earlier. The number of effective data points for season 4 is less
than half of what is available for season 1.

Figures 5, 6 and 7 show marginal posterior summaries of the regression coefficients
for all thirteen covariates. The variation in regression coefficients βj across seasons is
natural. Players change teams, retire, have injuries, etc. All seasons are different. The
importance of these covariates is uneven. The results suggest that knowing the score of
the game (Score) when the player gets up to bat seems to make little difference on the
success probability. The handedness of the pitcher (T) did not appear to matter. This
lack of an effect may reflect the need to know the handedness of the pitcher relative
to how the batter is batting. Conventional wisdom is that right-handed batters hit
better against left-handed pitchers and vice versa. The data set does not contain this
information, though.

In contrast, knowing whether there are already two outs (O2), runners on base (R23
and R123), whether the game is played in the batter’s home field (home-field advantage
HA), and the magnitude of the earned run average (ERAj, j = 1, 2, 3) of the opposing
pitcher are always relevant. O2 is a stress covariate in the sense that the hitter is in
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a limit situation; thus the posterior mass for the corresponding coefficient is mostly
concentrated on negative numbers. Also, with two outs, a hitter can not try for a
sacrifice or may hit into a fielder’s choice situation, which may contribute to the lower
success probability when batting with two outs.

Having a runner already on base has a positive effect on the probability of success,
as shown by the positive effects for R23 and R123. The larger positive effect of R23
may have a twofold explanation: first, it reflects the possibility of intentional walks,
which count as successes; and second, getting a hit when there is a player on second or
third base almost always gets a runner home. Having players on base may also lead to
sacrifices on the part of the batter in the attempt to move the player already on base
closer to home. Additionally, a pitcher may be distracted trying to keep a runner from
stealing and allow a batter to hit or, perhaps, walk.

The home-field advantage (HA) is also an important psychological stimulus for the
player, who might be trying to please the usually eager fans. Also, a player plays half
their games at home. Therefore, they are much more familiar with their home field
than any opposing field. Opposing fielders are less familiar with the field as well. These
2 factors may also help explain HA. The ERA is a measure of the pitcher’s quality,
with higher values indicating a less skilled player. Our parameterization has the highest
quartile pitchers as the baseline group, so better pitchers (i.e., those with lower ERAs)
should have a negative effect on the batter’s log-odds of success. Indeed, most of the
posterior mass for the coefficients of all three ERA variables is concentrated on negative
numbers, which is natural since ERA1 = ERA2 = ERA3 = 0 represents the weakest
pitchers. The reported posterior means for the dummy variables ERA1, ERA2 and
ERA3 show a trend (success probabilities associated with ERA1 being lower than those
when facing pitchers in the second quartile, which are lower than associated with ERA3).
Additionally, the posterior means suggest the presence of a nonlinear effect of ERA on
the hitting probabilities, with the greatest between-ERA-quartile effect on the batter’s
success appearing when facing a pitcher in the third quartile, relative to the fourth.

The other covariates do not appear to be important, as the corresponding posterior
means are at most one standard deviation away from zero. In other words, in all these
cases there is at least 15% to 20% probability to each side of zero.

The list of covariates that are reported in the data from Albright (1993) excludes
some potentially important explanatory variables. These include handedness of the
hitter, the ball park, batting average against the pitcher rather than the pitcher’s ERA,
characterization of the ball park as a hitter’s park versus pitcher’s park, team affiliation,
and career stage. In principle an interested reader may attempt the difficult task of
collecting additional occasion-specific information. For simplicity in this article, we
restricted inference to the data set reported in Albright (1993). Besides the choice of
covariates, the data set covers a relatively short time span of the seasons 1987–1990.
However, we note that four years is reasonable, considering the length of time a player
stays with a team. Rather than changing the data set, which we fear could compromise
the pre-processing and selection chosen by Albright, we opted to incorporate some
additional information on each player by means of informative priors.



Quintana, Müller, Rosner and Munsell 327

Finally, we also explored sensitivity of our results to some modeling and hyperpa-
rameter choices. Specifically, we considered increasing hyperparameter M in the DP
prior to something very large, practically ∞. In addition, given that the lagged terms
of order 4 and 5 did not seem to have much impact on the inferences, we considered
the same model but decreasing ` from 5 to 3. Figure 1 contains the posterior means of
the α coefficients for the proposed and the two alternative models. Similar results were
obtained for the regression coefficients (not shown). No significant changes are found in
these plots, which suggests robustness of the results to our particular choices.

5 Conclusion

We have analyzed the performance of batters over the course of 4 seasons, using a
semiparametric Bayesian random effects model. The distinctive feature of the model
is the incorporation of two levels of dependence, reflecting the nature of the data as
nested repeated measurements. While one level of repetition (at bats within a season)
was modelled using a Markovian-style autologistic regression, for the other (seasons) we
used an AR(1) model linking latent parameters specific to each season and player.

From the analysis we ultimately concluded that the model captured well some of
the main aspects of the problem. Also, by looking at the entire collection of posterior
distributions p(θijk | y) (not shown) we can conclude that there is substantial variability
among players in terms of streakiness and also for players across seasons. For instance,
for player 17 (Alvin Davis) a number of lags from various seasons appear to be important
(i.e. the corresponding posterior has significant portion of probability mass to one side
of zero), while for Bobby Bonilla (player 8), only the second lag from season 2 stands
out. This suggests that streakiness may also be related to seasons.

A somewhat similar conclusion is reached regarding the available occasion-specific
covariates. Some are important in all seasons, some are important only for specific
seasons, and some are never relevant so that they may be safely discarded from the
analysis. Among the latter, it is somewhat surprising to observe that the handedness of
the pitcher does not give significant information, a fact that may appear to contradict
conventional wisdom. This was partly explained by the fact that the data set did not
include information on the batter’s handedness relative to the pitcher.
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Name # Seasons Mean Variance Name # Seasons Mean Variance
(×10) (×10)

1 Harold Baines 3 −0.614 0.0710 39 Wally Joyner 3 −0.509 0.0633
2 Jesse Barfield 4 −0.508 0.0635 40 Carney Lansford 4 −0.667 0.0697
3 Marty Barrett 2 −0.513 0.0599 41 Chet Lemon 2 −0.667 0.0976
4 Kevin Bass 2 −0.558 0.0675 42 Don Mattingly 3 −0.371 0.0558
5 George Bell 4 −0.584 0.0631 43 Willie McGee 2 −0.784 0.0862
6 Wade Boggs 4 −0.153 0.0581 44 Mark McGwire 4 −1.053 0.8992
7 Barry Bonds 4 −0.678 0.0925 45 Kevin McReynolds 4 −0.500 0.0664
8 Bobby Bonilla 4 −0.572 0.0874 46 Paul Molitor 3 −0.625 0.0914
9 Sid Bream 2 −0.603 0.0740 47 Keith Moreland 2 −0.641 0.0679
10 Ellis Burks 4 −0.799 4.4320 48 Lloyd Moseby 3 −0.657 0.0666
11 George Brett 2 −0.371 0.0782 49 Dale Murphy 3 −0.627 0.0637
12 Jose Canseco 2 −0.702 0.0662 50 Eddie Murray 2 −0.385 0.0718
13 Gary Carter 2 −0.562 0.0755 51 Pete O’Brien 3 −0.447 0.0656
14 Joe Carter 3 −0.632 0.0622 52 Gerald Perry 2 −0.565 0.5409
15 Will Clark 4 −0.555 0.0942 53 Jim Presley 2 −0.783 0.0704
16 Vince Coleman 4 −0.791 0.0695 54 Kirby Puckett 4 −0.541 0.0595
17 Alvin Davis 4 −0.494 0.0756 55 Harold Reynolds 4 −0.905 0.1003
18 Eric Davis 4 −0.473 0.0868 56 Cal Ripken Jr. 4 −0.560 0.0611
19 Glenn Davis 3 −0.598 0.0668 57 Juan Samuel 2 −0.780 0.0733
20 Andre Dawson 2 −0.620 0.0805 58 Ryne Sandberg 4 −0.656 0.0652
21 Rob Deer 4 −0.644 0.0811 59 Benito Santiago 2 −0.740 0.7035
22 Bill Doran 3 −0.489 0.0661 60 Steve Sax 2 −0.409 0.0592
23 Brian Downing 3 −0.388 0.0658 61 Dick Schofield 2 −0.620 0.0831
24 Darrell Evans 2 −0.578 0.0723 62 Kevin Seitzer 4 −0.243 0.3499
25 Dwight Evans 4 −0.458 0.0658 63 John Shelby 2 −0.989 0.1183
26 Tony Fernandez 4 −0.628 0.0606 64 Ruben Sierra 4 −0.771 0.1125
27 Scott Fletcher 4 −0.509 0.0718 65 Ozzie Smith 4 −0.437 0.0689
28 Julio Franco 4 −0.637 0.0695 66 Cory Snyder 3 −0.846 0.1099
29 Gary Gaetti 4 −0.588 0.0659 67 Darryl Strawberry 4 −0.517 0.0760
30 Andres Galarraga 4 −0.651 0.1247 68 Danny Tartabull 3 −0.599 0.0756
31 Ozzie Guillen 4 −0.898 0.0843 69 Alan Trammell 2 −0.556 0.0661
32 Tony Gwynn 4 −0.468 0.0602 70 Willie Upshaw 2 −0.615 0.0664
33 Mel Hall 2 −0.610 0.0913 71 Andy Van Slyke 4 −0.614 0.0934
34 Billy Hatcher 2 −0.784 0.1026 72 Tim Wallach 4 −0.766 0.0857
35 Jack Howell 3 −0.526 0.2448 73 Frank White 2 −0.683 0.0723
36 Kent Hrbek 2 −0.557 0.0681 74 Willie Wilson 2 −0.767 0.0684
37 Brook Jacoby 4 −0.608 0.0683 75 Dave Winfield 2 −0.574 0.0665
38 Howard Johnson 4 −0.646 0.1752 76 Robin Yount 4 −0.419 0.0702

Table 1: Player numbers, names, number of seasons available for the analysis and means and variances used in the construction
of informative prior distributions for logistic intercepts θij0 as described in Section 2.
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Figure 1: Marginal posterior means and standard deviations for α0 and α1 coefficients
for the proposed model (solid lines), for the model that results when changing ` to 3
(dashed lines) and when letting M → ∞ in the original model (dotted lines). The
horizontal bars in panel (a) show the marginal posterior mean E(α0m | Y ) (marked by
“ | ”) plus/minus one posterior standard deviation SD(α0m | Y ). Panel (b) shows the
same for α1m.
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Figure 2: Posterior marginal boxplots of posterior draws for coordinates of θij for players
1 through 25. Row panels are ordered by component proceeding from the top (k = 0)
down to the bottom (k = 5). Sectors in each plot correspond to player with index i
indicated in the top panel, and within a sector, coordinates are sorted by season, from
left to right.
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Figure 3: Posterior marginal boxplots of posterior draws for coordinates of θij for players
26 through 50. Row panels are ordered by component proceeding from the top (k = 0)
down to the bottom (k = 5). Sectors in each plot correspond to player with index i
indicated in the top panel, and within a sector, coordinates are sorted by season, from
left to right.
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Figure 4: Posterior marginal boxplots of posterior draws for coordinates of θij for players
51 through 76. Row panels are ordered by component proceeding from the top (k = 0)
down to the bottom (k = 5). Sectors in each plot correspond to player with index i
indicated in the top panel, and within a sector, coordinates are sorted by season, from
left to right.
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Figure 5: Posterior marginal means plus and minus one standard deviation for the first
four covariate coefficients across seasons. See the text for an explanation.
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Figure 6: Posterior marginal means plus and minus one standard deviation for the
following four covariate coefficients across seasons. See the text for an explanation.
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Figure 7: Posterior marginal means plus and minus one standard deviation for the
remaining five covariate coefficients across seasons. See the text for an explanation.


