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P. G. Blackwell∗ and C. E. Buck†

We would like to thank all of the discussants for their comments which place our
work in context and help us to step back a little. This is an extremely timely moment to
do this, since we are about to embark on a NERC funded project that aims to develop
the models and methods to provide the next internationally-agreed estimates of the
calibration curves which are due to be released in 2010. We respond to the written
comments from the discussants under three broad headings as follows.

1 Improved modelling of the physical processes

One of the themes in the comments offered by the discussants is that we should seek
statistical models that have greater foundation in the processes observed in the physical
world. As noted in our discussion section, inclusion of further prior information about
µ(·) is something that we certainly intend to explore in the production of the next curve.

Millard cautions against circularity in the use of the data when modelling periodicity
in the curve. Certainly we had no intention of building in cycles of particular lengths;
however, allowing for the possibility of periodicity, and seeing what emerges, would
seem a natural (and valid) way forward. Alongside this, we will also explore the use
of heavier tailed distributions for our random walk prior in order to be sure that we
are not over-smoothing; this also helps ensure that we are not over-reacting to outliers,
an issue revisited below. For this purpose, the suggestion by Haslett and Parnell of an
infinitely-divisible model such as the Normal Inverse Gaussian is very helpful. Applying
this in practice will require some care, since we require a method that picks up features
supported by multiple data points and that does not too readily create ‘wiggles’ based
on single data points.

Closely allied to these suggestions about modelling the underlying processes is a
suggestion from Millard to use more realistic models for the uncertainties on the data,
in particular those on the calendar age scale. Exploration of such complexities was
not an option given the implementation restrictions for IntCal04, but Millard is quite
right that our assumption of normal errors everywhere is simplistic and needs further
investigation. When we come to do this, Millard’s own work to develop Bayesian models
for uranium series dating (Millard 2004, 2006) will be invaluable.

Arguably, the least satisfactory of all of our modelling for IntCal04 was that relating
to data derived from sedimentary sequences whose ordering is known and must be
incorporated in the analysis. The move to an MCMC implementation allows a great
deal more choice about how we handle this aspect of the problem, and we plan to
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investigate a range of options. Haslett and Parnell draw attention to their recent work
on modelling sequences of this type which clearly has its attractions. It becomes even
more attractive when we note that some of the potential data providers (particularly
those with long marine records) have to use some kind of deposition model in order to
provide calendar date estimates for all depths in their sequence, since only some depths
provide material that can be dated directly. At present, the most common approach
is to provide calendar date estimates via interpolation which typically implies linear
deposition rates throughout long periods of time. Haslett and Parnell’s method offers
many advantages over these existing ad hoc approaches and is fully Bayesian so could
be incorporated into our framework for curve estimation. This would, however, add
considerable complexity to the structures currently in use and increase computation
times. Again, we will investigate the range of options, but would not readily move to
more complex models unless they clearly provided considerable benefit for the inferences
we can make and were computationally feasible.

Something else that clearly seems unsatisfactory to some readers, since Millard and
one of our referees both raised it, is the apparent smoothness of the calibration curve
we produce. Although we have already added a little to the final paper in response to
the referee’s comment, it seems worth elaborating here. There is a crucial distinction to
be made between the smoothness of our posterior mean for µ(θ), viewed as a function
of θ, and our posterior beliefs about the smoothness of µ(·) itself, which are not shown
explicitly in the paper but are certainly implicit in, for example, our use of the curve
to produce Figure 4. In short, the smoothness of the estimate is not an estimate of the
smoothness. While there remains plenty of scope for refining our prior modelling of the
smoothness of the curve, perhaps along the lines suggested by Haslett and Parnell, the
absence of wiggles that were in earlier versions of the curve may simply mean that they
are not justified by the data.

2 Improvements in data modelling and data quality issues

Haslett and Parnell are correct that our mention of covariance in Section 6.6 is too
narrowly focused; it would have been better simply to refer to dependence throughout,
as we did in our Discussion. Our point is, of course, that all the information on the
joint distribution of all points on the curve can be used in the calibration of single
or multiple samples. That is exactly what was done in producing the first posterior
distribution in Figure 4. Millard points out that allowing for dependence does not
always make a large difference to the calibration of single samples, but we should expect
that the impact will depend, as he speculates, on the density of the data—actually, on
the density of the data relative to the uncertainty in the uncalibrated observation—
as well as on the steepness of the curve, the dependence between observations, and
many other details. His fourth example and our Figure 4 suffice to show that allowance
should be made for dependence, unless there is a clear argument that an approximation
based on assuming independence will be adequate. In general the effect is hard to
predict, although increased uncertainty about individual dates and wiggle-matching,
and decreased uncertainty about differences or ranges, seem likely.
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In the final paragraph of their Section 2, Haslett and Parnell raise issues of data
quality and ask for our thoughts on the detection and handling of outliers. As the
discussants hint, there are several types of unquantified error (outlier) that we need to
be aware of in radiocarbon dating:

1. relatively small and ubiquitous ‘outliers’ that arise from errors in the internal
radiocarbon laboratory procedures, but that are not accounted for in the the
laboratory’s estimates of its internal error;

2. large and fairly common outliers (Scott, 2003, estimates roughly 1 in 20) that
arise for a range of reasons, including contamination of samples either in the field
or inside the laboratory;

3. extremely large outliers, that occur due to contamination and/or misattribution
of samples in the field (e.g. via the dating of collections of unidentified organic
material from lake sediments);

4. outliers caused when whole sequences of related dates (e.g. from lake or ocean
sediments) have, together, been misunderstood or misinterpreted, for example
due to inaccurate assessment of the amount of local upwelling of old carbon or to
an error in wiggle matching.

Statisticians have advocated a range of approaches to identifying and handling each
of these problems. Marian Scott has worked with the radiocarbon laboratories for many
years, helping them systematically to assess the quality of their laboratory practices
and to quantify any extra uncertainty not accounted for in the standard deviation
(sj for determination j, in our notation) that they supply to their customers. Her
work has shown that very few laboratories have problems with systematic offsets in
their radiocarbon determinations but that many laboratories do under-estimate their
uncertainties.

One output from Scott (2003) is something that she calls a laboratory error mul-
tiplier. This is an indication of the amount by which individual laboratories need to
inflate their error estimates if they are to capture the extra sources of uncertainty not
accounted for in sj . In our paper we denote the error multiplier for laboratory l by
kl, and thus define the total variance on a radiocarbon determination as σ2

j = s2jk
2
lj

if
determination j comes from laboratory lj . Scott found that kl is close to 1 for quite
a number of laboratories, but that the median value is around 2, “suggesting that the
quoted uncertainties are, in general, too small” (Scott, 2003, p. 326). Although Scott’s
work is published in such a way that individual laboratories cannot be identified by
name, all of the laboratories are provided with an estimate of their own laboratory
error multiplier and the laboratories that supply data to the IntCal database have been
happy to report their kl value along with their other data.

For detecting and handling both types of more substantial outliers that arise from
contamination or misattribution of samples, there are natural Bayesian techniques that
are well established—there are too many references to list, but see Box and Tiao (1968)
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and citations thereof—but their uptake in the calibration literature has been very lim-
ited. Christen (1994) provided a fully Bayesian solution to the problem of moderate
sized errors which occur due to relatively minor contamination or to mobility of organic
material in the ground. Christen’s approach defines a radiocarbon determination as an
outlier if it needs a shift in its radiocarbon determination in order to make it consistent
with the rest of the samples being interpreted alongside it (typically those arising from
a well-stratified sequence or a single archaeological phase). Christen’s method is now
widely used and implemented in packages such as OxCal and BCal. In an extension to
Christen’s method, Haslett and Parnell (2008) suggest that some radiocarbon determi-
nations are so outlying that they cannot be brought into line with neighbouring ones
and should simply be left out of the analysis altogether. Rather than rejecting such
determinations in an ad hoc fashion as has been done in the past, Haslett and Par-
nell (2008) recommend a fully Bayesian extension to the method provided by Christen.
They label determinations that simply need a shift to bring them in-line with others
as Type 1 outliers and define Type 2 outliers as determinations for which none of the
calendar age probability distribution satisfies the conditions of the model in use (in their
case study monotonicity between depth in a sequence and calendar age). Although not
yet widely adopted, Haslett and Parnell’s extension is coded into their new R package
for the construction of age-depth models (known as Bchron, available via CRAN) and
seems likely to become popular with the user communities for which it was designed
(i.e. those seeking to construct chronologies for past environmental sequences from peat
and lake sediments).

A greater difficulty is caused when whole sequences of related dates have, together,
been misunderstood or misinterpreted, as arose in another part of our calibration work,
relating to the time period before about 26,000 years BP. We chose not to discuss this as-
pect of our work at the Case Study meeting because it did not lead to an internationally-
agreed curve estimate. Nonetheless, it was an important part of the project. For that
time period, the IntCal group had several long sequences of data; the problem was
that these sequences did not all meet the quality control criteria for inclusion in the
IntCal database and had obvious offsets one to another. Our initial response to this
was to talk with the data providers and to seek obvious explanations for the offsets we
observed. However, no such explanations could be found and so we devised a random
effects extension to the models used for estimating IntCal04, which allowed us to take
account of systematic offsets in sequences of data at the same time as estimating the
underlying curve (Buck and Blackwell 2004). By applying this method, we were able to
demonstrate that some of the sequences of data in the NotCal database required offsets
as large as 2000 years to bring them in-line with the other data and, hence, with our
estimate of the underlying curve (van der Plicht et al. 2004). Although by doing this,
we were able to provide an estimate of the curve and a predictive distribution for future
observations, when the other members of the IWG saw the scale of the random effects
required they felt that we should not attempt to release this as an internationally-agreed
curve and so the label NotCal was applied.

More generally, while complex models do present challenges for the wider issues of
the checking and criticism of both data and models, there are some techniques avail-
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able, taking advantage of the coherence of the Bayesian approach and the flexibility of
modern computational tools. An example of this is illustrated in Figures 2 and 3 in the
main paper. These figures show how prior and posterior distributions match up for the
calibration data, and give a natural starting point for thinking about both the influence
of individual observations and the possibility of gross errors. Of course, this approach
exploits the fact that uncertainty on individual observations is already considered in
this analysis. Another powerful technique that is more widely applicable is to compare
individual observations with their posterior predictive distributions (e.g. Gelman et al.
2004), as implemented for a rather more complex model in Blackwell (2003). Finally,
a simple technique that nevertheless has great potential for model criticism and inter-
pretation is to display a small sample of realisations from the prior and/or posterior for
a model, or an appropriate part of a model; an example of this, showing the effects of
different model structures, is given by Blackwell and Møller (2003).

3 Suggestions for implementational improvements

Haslett and Parnell suggest an alternative implementation to the one we describe, al-
ternating block updates of M = µ(Θ) with block updates of Θ. It is certainly true that
the full conditional for µ(Θ) has a simple form, and block updating in that case may
be profitable. However, the full conditional for Θ does not have such a simple form,
because of the dependence on θj of both the mean and variance on the right hand side
of equations (5) and (6) in our paper. An actual Gibbs update here does not seem pos-
sible; a Metropolis-within-Gibbs algorithm that updates Θ as a block, separately from
µ(Θ), would be possible, but it does not seem clear that it would be more efficient than
the current approach. One advantage of the current approach is that µj and θj , which
are strongly dependent, are updated together; separating them may impede mixing. Of
course, adding the suggested updates to our approach may improve mixing.
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