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Application of Girsanov Theorem to Particle

Filtering of Discretely Observed

Continuous-Time Non-Linear Systems

Simo Särkkä∗ and Tommi Sottinen†

Abstract. This article considers the application of particle filtering to continuous-
discrete optimal filtering problems, where the system model is a stochastic differ-
ential equation, and noisy measurements of the system are obtained at discrete
instances of time. It is shown how the Girsanov theorem can be used for evalu-
ating the likelihood ratios needed in importance sampling. It is also shown how
the methodology can be applied to a class of models, where the driving noise pro-
cess is lower in the dimensionality than the state and thus the laws of the state
and the noise are not absolutely continuous. Rao-Blackwellization of conditionally
Gaussian models and unknown static parameter models is also considered.

Keywords: Girsanov theorem, particle filtering, continuous-discrete filtering

1 Introduction

This article considers the application of sequential importance sampling based particle
filtering (see, e.g. Kitagawa 1996; Doucet et al. 2001) to continuous-discrete filtering
problems (Jazwinski 1970), where the dynamic model is a stochastic differential equation
of the form

dx(t) = f(x(t), t) dt + L(t) dβ(t), (1)

where x(t) ∈ Rn is the state, f : Rn×R+ 7→ Rn is the drift term, L(t) : Rn×R+ 7→ Rn×s

is the dispersion matrix, and β(t) ∈ Rs is an s-dimensional Brownian motion with
diffusion matrix Q(t). It is assumed that the required conditions (Karatzas and Shreve
1991; Øksendal 2003) for existence of a strong solution to the equation are satisfied. In
this article, we first consider the case where the dimensionality of the state is the same
as the dimensionality of the Brownian motion, that is, where s = n. We also extend
the results to the singular case where the dimensionality of the Brownian motion is less
than the dimensionality of the state, that is, where s < n.

The likelihood of a measurement yk is modeled by a probability density, which is a
function of the state at time tk:

yk ∼ p(yk |x(tk)). (2)

The purpose of the Bayesian optimal continuous-discrete filter is to compute the pos-
terior distribution (or at least the posterior mean) of the current state x(tk) given the
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measurements up to the current time, that is (Jazwinski 1966, 1970),

p(x(tk) |y1, . . . ,yk). (3)

These continuous-discrete filtering models are common in engineering applications, es-
pecially in the fields of navigation, communication and control (Bar-Shalom et al. 2001;
Grewal et al. 2001; Stengel 1994; Van Trees 1968, 1971). In these applications, the dy-
namic system or a physical phenomenon can be modeled as a stochastic differential
equation, which is observed at discrete instances of time with certain physical sensors.
The purpose of the filtering or recursive estimation is to infer the state of the system
from the observed noisy measurements.

In this article, novel measure transformation based methods for continuous-discrete
sequential importance resampling
(see, e.g. Gordon et al. 1993; Kitagawa 1996; Pitt and Shephard 1999; Doucet et al.
2001; Ristic et al. 2004) are presented. Some of the methods have already been pre-
sented in (Särkkä 2006b,a), but here the methods are significantly extended. The
methods are based on transformations of probability measures by the Girsanov the-
orem (Kallianpur 1980; Karatzas and Shreve 1991; Øksendal 2003), which is a theorem
from mathematical probability theory. The theorem can be used for computing likeli-
hood ratios of stochastic processes. It states that the likelihood ratio of a stochastic
process and a Brownian motion, that is, the Radon-Nikodym derivative of the measure
of the stochastic process with respect to the measure of the Brownian motion, can be
represented as an exponential martingale which is the solution to a certain stochastic
differential equation.

Measure transformation based approaches are particularly successful in continuous
time filtering (Kallianpur 1980), but are less common in continuous-discrete filtering.
The general idea of using the Girsanov theorem in importance sampling of SDEs has
been presented, for example, in Kloeden and Platen (1999). Similar ideas have also
been presented by several authors (Ionides 2004; Crisan and Lyons 1999; Crisan et al.
1998; Crisan 2003; Moral and Miclo 2000).

Beskos et al. (2006) consider exact Monte Carlo simulation of a restricted class of
diffusion models, which are observed at discrete instances of time without any obser-
vation error. As shown in the discussion of the article, the observation errors can be
included in the model. Fearnhead et al. (2008) introduce particles filters for a class of
multidimensional diffusion processes, and the used Monte Carlo sampling methodology
is based on the exact simulation framework of Beskos et al. (2006). The difference to
the present methodology is that the methods of Fearnhead et al. (2008) are not based
on time-discretization.

Durham and Gallant (2002) consider simulated maximum likelihood estimation of
parameters of discretely observed stochastic differential equations, where all or some
of the components are perfectly observed. The methods are based on approximating
the transition densities of the processes and modeling the unobserved sample paths as
latent data. Golightly and Wilkinson (2006) apply similar methodology to sequential
estimation of state and parameters of stochastic differential equation models. Chib et al.
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(2004) consider MCMC based simulation of diffusion driven state space models. In the
article, it is also shown how the methodology can be applied to particle filtering of such
models.

The advantages of the method proposed here over the previously proposed methods
are:

• Unlike many measure transformation based approaches the methodology presented
here is not restricted to one-dimensional or to SDE models with non-singular
dispersion or diffusion matrices. The state dimensionality can be higher than the
dimensionality of the driving Brownian motion, which is equivalent to the case
that the dispersion/diffusion matrix is singular.

• The SDE formulation of the likelihood ratio computation allows efficient nu-
merical solution to the problem. In particular, simulation based approaches
(Kloeden and Platen 1999) can be applied. Of course, any other numerical meth-
ods for SDEs could be applied as well.

• Dispersion (and diffusion) matrices may depend on time, that is, the driving
process can be time inhomogeneous.

• The observation errors can be easily modeled and the model flexibility is the same
as with discrete-time particle filtering.

• Efficient importance distributions and Rao-Blackwellization can be easily used for
improving the efficiency of the sampling.

2 Continuous-Discrete Sequential Importance Resampling

2.1 Filtering Models

We shall concentrate on the following four forms of dynamic models:

1. Non-singular models, where the dispersion matrices are invertible and thus the
dimensionality of the process is the same as that of the driving Brownian motion.
The advantage of these processes is that their likelihood ratios can be easily eval-
uated using the Girsanov theorem, but the problem is that they are too restricted
models for many applications.

2. Singular models, where there is a non-singular type of model, which is embedded
inside a deterministic differential equation model and thus the joint model is sin-
gular because the dimensionality of the process is higher than that of the driving
Brownian motion. These models are typical in navigation and stochastic control
applications, where the deterministic part is typically a plain integral operator.
Because the outer operator is deterministic, the likelihood ratios of processes are
determined by the inner stochastic processes alone and thus importance sampling
of this process is very similar to that for the processes of non-singular type above.
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3. Conditional Gaussian models, where a linear stochastic differential equation is
driven by a model of the non-singular or singular type above. These models
can be handled such that we only sample the inner process and integrate the
linear part using the Kalman filter. In this way we can form a Rao-Blackwellized
estimate, where the probability density is approximated by a mixture of Gaussian
distributions.

4. Conjugate static parameter models, where the model contains a static parameter
in such conjugate form that certain marginalizations can be analytically evaluated.
This results in a particle filter, where only the dynamic state is sampled and the
sufficient statistics of the static parameter are evaluated at each update stage.

2.2 Non-Singular and Singular Models

Assume that the filtering model is of the form

dx = f(x, t) dt + L(t) dβ

yk ∼ p(yk |x(tk)),
(4)

where β(t) is a Brownian motion with positive definite diffusion matrix Q(t), L(t) is
an invertible matrix for all t ≥ 0 and the initial conditions are x(0) ∼ p(x(0)). Further
assume that we have constructed an importance process s(t), which is defined by the
SDE

ds = g(s, t) dt + B(t) dβ, (5)

and which has a probability law that is a rough approximation to the filtering (or
smoothing) distribution of the model (4), at least at the measurement times. The
matrix B(t) is also assumed to be invertible for all t ≥ 0. Note that at this point we do
not want to restrict the matrix B(t) to be the same as L(t), because this allows usage
of greater class of importance processes as shown later in this article.

Now it is possible to generate a set of importance samples from the conditioned (i.e.,
filtered) process x(t), which is conditional on the measurements y1:k using s(t) as the
importance process. The motivation of this is that because the process s(t) already
is an approximation to the optimal result, using it as the importance process is likely
to produce a less degenerate particle set and thus more accurate presentation of the
filtering distribution.

Because the matrices L(t) and B(t) are invertible, the probability measures of x and
s are absolutely continuous with respect to the probability measure of the driving Brow-
nian motion β(t) and it is possible to compute the likelihood ratio between the target
and importance processes by applying the Girsanov theorem. The explicit expression
and derivation of this likelihood ratio is given in Theorem 3 of Appendix 1.

The SIR algorithm recursion starts by drawing samples {x(i)
0 } from the initial dis-

tribution and setting w
(i)
0 = 1/N , where N is the number of Monte Carlo samples. The

continuous-discrete SIR filter algorithm then proceeds as follows:
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Algorithm 2.1 (CD-SIR I). Given the importance process s(t), a weighted set of sam-

ples {x(i)
k−1, w

(i)
k−1} and the new measurement yk, a single step of continuous-discrete

sequential importance resampling can be performed as follows:

1. Simulate N realizations of the importance processes

ds(i) = g(s(i), t) dt + B(t) dβ(i)(t), s(i)(tk−1) = x
(i)
k−1

ds∗(i)(t) = L(t)B−1(t) ds(i)(t), s∗(i)(tk−1) = x
(i)
k−1,

from t = tk−1 to t = tk, where β(i)(t) are independent Brownian motions, and
i = 1, . . . , N .

2. At the same time, simulate the log-likelihood ratios

dΛ(i) =
{

f(s∗(i)(t), t) − L(t)B−1(t)g(s(i)(t), t)
}T

× L−T (t)Q−1(t) dβ(i)(t)

− 1

2

{

f(s∗(i)(t), t)− L(t)B−1(t)g(s(i)(t), t)
}T

×
{

L(t)Q(t)LT (t)
}−1

×
{

f(s∗(i)(t), t)− L(t)B−1(t)g(s(i)(t), t)
}

dt,

Λ(i)(tk−1) = 0,

from t = tk−1 to t = tk and set

x
(i)
k = s∗(i)(tk)

Z
(i)
k = exp

{

Λ(i)(tk)
}

.

Note that the realizations of the Brownian motions must be the same as in the
simulation of the importance processes.

3. For each i compute

w
(i)
k = w

(i)
k−1 Z

(i)
k p(yk |x(i)

k ),

and re-normalize the weights to sum to unity.

4. If the effective number of particles is too low, perform resampling.

Some practical points about the implementation:

• The importance process s(t) required by the algorithm can be obtained by using,
for example, the extended Kalman filter (EKF). An example of this approach is
given in Section 3.1 of this article.
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• The simulation of the importance processes and likelihood ratios above can be per-
formed using any of the well known numerical methods for simulation of stochastic
differential equations (Kloeden and Platen 1999). In this article we have used the
simple Euler-Maruyama method, which can be considered as a stochastic version
of the Euler integration for non-stochastic differential equations.

The class (4) is actually a very restricted class of dynamic models, where it is required
that the probability law of the state is absolutely continuous with respect to the law of
the driving Brownian motion. These models are common in mathematical treatment of
stochastic differential equations and such models can be found, for example, in mathe-
matical finance (see, e.g., Karatzas and Shreve 1991; Øksendal 2003). However, most
of the models used in navigation and telecommunications applications do not fit into
this class, and for this reason the results need to be extended.

It is also possible to construct a similar SIR algorithm for more general models, where
there is an absolutely continuous type of model, which is embedded inside a deterministic
differential equation model. These models are typical in navigation, communication
and stochastic control applications (Bar-Shalom et al. 2001; Grewal et al. 2001; Stengel
1994; Van Trees 1968, 1971), where the deterministic part is typically a plain integral
operator. Because the outer operator is deterministic, the likelihood ratios of processes
are determined by the inner stochastic processes alone and thus importance sampling
of this process is very similar to sampling of the processes considered above.

Assume that the model is of the form

dx1

dt
= f1(x1,x2, t),

dx2 = f2(x1,x2, t) dt + L(t) dβ

yk ∼ p(yk |x1(tk),x2(tk)),

(6)

where f1(·) and f2(·) are deterministic functions, β(t) is a Brownian motion, L(t) is
invertible matrix and the initial conditions are x1(0),x2(0) ∼ p(x1(0),x2(0)). Note
that because the dimensionality of the Brownian motion is less than that of the joint
state (x1 x2)

T it is not possible to compute the likelihood ratio between the process
and the Brownian motion by the Girsanov theorem directly.

However, it turns out that if the importance process for (x1 x2)
T is formed as follows

ds1

dt
= f1(s1, s2, t)

ds2 = g2(s1, s2, t) dt + B(t) dβ,
(7)

then the importance weights can be computed in exactly the same way as when forming
importance samples of x2(t) using s2(t) as the importance process.

The likelihood ratio expression is given in Theorem 4 of Appendix 1. The SIR
algorithm is started by first drawing samples from the initial distribution and then for
each measurement, the following steps are performed:
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Algorithm 2.2 (CD-SIR II). Given the importance process s1(t), s2(t), a weighted set

of samples {x(i)
1,k−1,x

(i)
2,k−1, w

(i)
k−1} and the new measurement yk, a single step of contin-

uous-discrete sequential importance resampling can be performed as follows:

1. Simulate N realizations of the importance processes

ds
(i)
1

dt
= f1(s

(i)
1 , s

(i)
2 , t), s

(i)
1 (tk−1) = x

(i)
1,k−1

ds
(i)
2 = g2(s

(i)
1 , s

(i)
2 , t) dt + B(t) dβ(i)(t), s

(i)
2 (tk−1) = x

(i)
2,k−1

ds
∗(i)
1

dt
= f1(s

∗(i)
1 , s

∗(i)
2 , t), s

∗(i)
1 (tk−1) = x

(i)
1,k−1

ds
∗(i)
2 = L(t)B−1(t) ds2, s

∗(i)
2 (tk−1) = x

(i)
2,k−1,

2. Simulate the log-likelihood ratios (using the same Brownian motion realizations
as above)

dΛ(i) =
{

f2(s
∗(i)
1 (t), s

∗(i)
2 (t), t)− L(t)B−1(t)g2(s

(i)
1 (t), s

(i)
2 (t), t)

}T

× L−T (t)Q−1(t) dβ(i)(t)

− 1

2

{

f2(s
∗(i)
1 (t), s

∗(i)
2 (t), t)− L(t)B−1(t)g2(s

(i)
1 (t), s

(i)
2 (t), t)

}T

×
{

L(t)Q(t)LT (t)
}−1

×
{

f2(s
∗(i)
1 (t), s

∗(i)
2 (t), t)− L(t)B−1(t)g2(s

(i)
1 (t), s

(i)
2 (t), t)

}

dt,

Λ(i)(tk−1) = 0,

from t = tk−1 to t = tk and set

x
(i)
1,k = s

∗(i)
1 (tk)

x
(i)
2,k = s

∗(i)
2 (tk)

Z
(i)
k = exp

{

Λ(i)(tk)
}

.

(8)

3. For each i compute

w
(i)
k = w

(i)
k−1 Z

(i)
k p(yk |x(i)

1,k,x
(i)
2,k), (9)

and re-normalize the weights to sum to unity.

4. If the effective number of particles is too low, perform resampling.

The importance process s(t) required by the algorithm can be obtained by using, for
example, continuous-discrete EKF and then extracting the estimate of the inner process
s2(t) from the joint estimate.



562 Application of Girsanov Theorem to Particle Filtering

2.3 Rao-Blackwellization of Conditional Gaussian Models

Now we shall consider dynamic models, where a linear stochastic differential equation
is driven by a singular or non-singular model considered in the previous section. These
models can be handled such that only the inner process is sampled and the linear part is
integrated out using the continuous-discrete Kalman filter. Then it is possible to form a
Rao-Blackwellized estimate, where the probability density is approximated by a mixture
of Gaussian distributions. The measurement model is assumed to be of the same form
as in previous sections, but linear with respect to the state variables corresponding to
the linear part of the dynamic process.

Dynamic models with conditional Gaussian parts arise, for example, when the mea-
surement noise correlations are modeled with state augmentation (see, e.g., Gelb
1974). Actually, in this case, the direct application of particle filter without Rao-
Blackwellization would be impossible because the measurement model is formally sin-
gular. However, the Rao-Blackwellized filter can be easily applied to these models.

Assume that the dynamic model is of the form

dx1 = F(x2,x3, t)x1 dt + f1(x2,x3, t) dt + V(x2,x3, t) dη

dx2

dt
= f2(x2,x3, t)

dx3 = f3(x2,x3, t) dt + L(t) dβ,

(10)

where η and β are independent Brownian motions with diffusion matrices Qη(t) and
Qβ(t), respectively. Also assume that the initial conditions are given as:

x1(0) ∼ N (m0,P0)

x2(0),x3(0) ∼ p(x2(0),x3(0)),
(11)

and the initial conditions of x1(0) are independent from those of x2(0) and x3(0).

In this case an importance process can be formed as

ds1 = F(s2, s3, t) s1 dt + f1(s2, s3, t) dt + V(s2, s3, t) dη,

ds2

dt
= f2(s2, s3, t)

ds3 = g3(s2, s3, t) dt + B(t) dβ,

(12)

with the same initial conditions. In both the original and importance processes, condi-
tional on the filtration of the second Brownian motion Ft = σ(β(s), 0 ≤ s ≤ t) and to
initial conditions, the law of the first equation is determined by the mean and covariance
of the Gaussian process, which is driven by the process η(t). Thus, conditional on x2

and x3 the process x1(t) is Gaussian for all t. The same applies to the importance
process.

Now it is possible to integrate out the Gaussian parts of both processes. This



Särkkä and Sottinen 563

procedure results in the following marginalized equations for the original process:

dmx(t)

dt
= F(x2,x3, t)mx(t) + f1(x2,x3, t)

dPx(t)

dt
= F(x2,x3, t)Px(t) + Px(t)FT (x2,x3, t)

+ V(x2,x3, t)Qη(t)VT (x2,x3, t) (13)

dx2

dt
= f2(x2,x3, t)

dx3 = f3(x2,x3, t) dt + L(t) dβ,

where mx(t) and Px(t) are the mean and covariance of the Gaussian process. For the
importance process we get similarly:

dms(t)

dt
= F(s2, s3, t)ms(t) + f1(s2, s3, t)

dPs(t)

dt
= F(s2, s3, t)Ps(t) + Ps(t)F

T (s2, s3, t)

+ V(s2, s3, t)Qη(t)VT (s2, s3, t) (14)

ds2

dt
= f2(s2, s3, t)

ds3 = g3(s2, s3, t) dt + B(t) dβ,

The models (13) and (14) have now the form, where the Algorithm 2.2 can be used.
The importance sampling now results in the set of weighted samples

{w(i),m(i),P(i),x
(i)
2 ,x

(i)
3 }, (15)

such that the probability density of the state x(t) = (x1(t),x2(t),x3(t)) is approximately
given as

p(x1(t),x2(t),x3(t))

≈
∑

i

w(i)N (x1(t) |m(i),P(i)) δ(x2(t)− x
(i)
2 ) δ(x3(t)− x

(i)
3 ). (16)

where δ(·) is the Dirac delta function. If the measurement model is of the form

p(yk |x(tk)) = N (yk |Hk (x2(tk),x3(tk)) x1(tk),Rk (x2(tk),x3(tk))) , (17)

then conditional on x2(tk),x3(tk) also the measurement model is linear Gaussian and
the Kalman filter update equations can be applied. The resulting algorithm is the
following:

Algorithm 2.3 (CDRB-SIR I). Given the importance process, a set of importance sam-

ples {x(i)
2,k−1,x

(i)
3,k−1,m

(i)
k−1,P

(i)
k−1, w

(i)
k−1 : i = 1, . . . , N} and the measurement yk, a

single step of conditional Gaussian continuous-discrete Rao-Blackwellized SIR is the
following:
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1. Simulate N realizations of the importance process

dm
(i)
s

dt
= F(s

(i)
2 (t), s

(i)
3 , t)m(i)

s (t) + f1(s
(i)
2 , s

(i)
3 , t)

dP
(i)
s

dt
= F(s

(i)
2 , s

(i)
3 , t)P(i)

s (t) + P(i)
s (t)FT (s

(i)
2 , s

(i)
3 , t)

+ V(s
(i)
2 , s

(i)
3 , t)Qη(t)VT (s

(i)
2 , s

(i)
3 , t)

ds
(i)
2

dt
= f2(s

(i)
2 , s

(i)
3 , t)

ds
(i)
3 = g3(s

(i)
2 , s

(i)
3 , t) dt + B(t) dβ(i),

(18)

with initial conditions

m(i)
s (tk−1) = m

(i)
k−1

P(i)
s (tk−1) = P

(i)
k−1

s
(i)
2 (tk−1) = x

(i)
2,k−1

s
(i)
3 (tk−1) = x

(i)
3,k−1,

(19)

2. Simulate the scaled importance process

dm
∗(i)
s

dt
= F(s

∗(i)
2 (t), s

∗(i)
3 , t)m∗(i)

s (t) + f1(s
∗(i)
2 , s

∗(i)
3 , t)

dP
∗(i)
s

dt
= F(s

∗(i)
2 , s

∗(i)
3 , t)P∗(i)

s (t) + P∗(i)
s (t)FT (s

∗(i)
2 , s

∗(i)
3 , t)

+ V(s
∗(i)
2 , s

∗(i)
3 , t)Qη(t)VT (s

∗(i)
2 , s

∗(i)
3 , t)

ds
∗(i)
2

dt
= f2(s

∗(i)
2 , s

∗(i)
3 , t)

ds
∗(i)
3 = L(t)B−1(t) ds3,

(20)

with the same initial conditions from t = tk−1 to t = tk and set

m
−(i)
k = m∗(i)

s (tk)

P
−(i)
k = P∗(i)

s (tk)

x
(i)
2,k = s

∗(i)
2 (tk)

x
(i)
3,k = s

∗(i)
3 (tk).

(21)

3. Simulate the log-likelihood ratios (again, using the same Brownian motion real-
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izations as in importance process)

dΛ(i) =
{

f3(s
∗(i)
2 (t), s

∗(i)
3 (t), t)− L(t)B−1(t)g3(s

(i)
2 (t), s

(i)
3 (t), t)

}T

× L−T (t)Q−1
β (t) dβ(i)(t)

− 1

2

{

f3(s
∗(i)
2 (t), s

∗(i)
3 (t), t) − L(t)B−1(t)g3(s

(i)
2 (t), s

(i)
3 (t), t)

}T

×
{

L(t)Qβ(t)LT (t)
}−1

×
{

f3(s
∗(i)
2 (t), s

∗(i)
3 (t), t)− L(t)B−1(t)g3(s

(i)
2 (t), s

(i)
3 (t), t)

}

dt,

Λ(i)(tk−1) = 0,

(22)

and set
Z

(i)
k = exp

{

Λ(i)(tk)
}

(23)

4. For each i perform the Kalman filter update

µ
(i)
k = Hk(x

(i)
2,k ,x

(i)
3,k)m

−(i)
k

S
(i)
k = Hk(x

(i)
2,k ,x

(i)
3,k)P

−(i)
k HT

k (x
(i)
2,k ,x

(i)
3,k) + Rk(x

(i)
2,k,x

(i)
3,k)

K
(i)
k = P

−(i)
k HT

k (x
(i)
2,k ,x

(i)
3,k) {S(i)

k }−1

m
(i)
k = m

−(i)
k + K

(i)
k (yk − µ

(i)
k )

P
(i)
k = P

−(i)
k −K

(i)
k S

(i)
k {K

(i)
k }T ,

(24)

compute the importance weight

w
(i)
k = w

(i)
k−1 Z

(i)
k N (yk |µ(i)

k ,S
(i)
k ), (25)

and re-normalize the weights to sum to unity.

5. If the effective number of particles is too low, perform resampling.

The importance process can be formed, for example, by computing a joint Gaussian
approximation by EKF and then extracting only the estimates corresponding to the in-
nermost process. Note that the Rao-Blackwellization procedure can often be performed
approximately, even when the model is not completely Gaussian. The Kalman filter
steps can be replaced with the corresponding steps of EKF, when the model is slightly
non-linear. This approach has been successfully applied in the context of multiple target
tracking by Särkkä et al. (2007).

2.4 Rao-Blackwellization of Models with Static Parameters

Analogously to the discrete time case presented in Storvik (2002), the procedure of Rao-
Blackwellization can often be applied to models with unknown static parameters. If the
posterior distribution of the unknown static parameters θ depends only on a suitable set
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of sufficient statistics Tk = Tk(x(t1), . . . ,x(tk),y1:k), the parameter can be marginalized
out analytically and only the state needs to be sampled.

These models arise, for example, when the measurement noise variance or some other
other parameters of the measurement model are unknown. Two models of this kind are
presented in Section 3.1.

Assume that the model is of the form

dx = f(x, t, θ) dt + L(t, θ) dβ

yk ∼ p(yk |x(tk), θ),
(26)

where θ is an unknown static parameter. Also assume that f(·) and L(·) are of such
form that the model is either non-singular or a singular model of the type considered
in Section 2.2.

Now assume that the prior distribution of θ has some finite dimensional sufficient
statistics T0:

p(θ) = p(θ | T0). (27)

Also assume that conditional posterior distribution of θ has sufficient statistics Tk =
Tk(x(t1), . . . ,x(tk),y1:k) of the same dimensionality as T0

p(θ |x(t1), . . . ,x(tk),y1:k) = p(θ | Tk), (28)

such that there exists an algorithm Φ(·) that can be used for efficiently performing the
update

Tk = Φ (Tk−1,x(tk),yk) . (29)

Further assume that the marginal likelihood

p(yk |x(tk), Tk−1) =

∫

p(yk |x(tk), θ) p(θ | Tk−1) dθ, (30)

can be efficiently evaluated. The above conditions are met, for example, when for
fixed x(tk) the distribution p(θ | Tk−1) is conjugate to the likelihood p(yk |x(tk), θ)
with respect to θ.

The resulting algorithm is now the following:

Algorithm 2.4 (CDRB-SIR II). Given the importance process, a weighted set of samples

{x(i)
k−1, T

(i)
k−1, w

(i)
k−1} and the new measurement yk, a single step of continuous-discrete

Rao-Blackwellized SIR with static parameters can be performed as follows:

1. Simulate the importance process, scaled importance process and log-likelihood

ratio as in Algorithm 2.1 or 2.2. This results in the sample set {x(i)
k } and likelihood

ratios {Z(i)
k }.

2. For each i compute new sufficient statistics

T (i)
k = Φ

(

T (i)
k−1,x

(i)
k ,yk

)

, (31)
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evaluate the importance weights as

w
(i)
k = w

(i)
k−1 Z

(i)
k p(yk |x(i)

k , T (i)
k−1), (32)

and re-normalize the weights to sum to unity.

3. If the effective number of particles is too low, perform resampling.

Actually, the sufficient statistics could be functionals of the whole state trajectory,
in which case they could be simulated together with the state.

3 Numerical Simulations

In this section the continuous-discrete sequential importance sampling is applied to
estimation of a partially measured simple pendulum which is distorted by a random noise
term and to estimation of the spread of an infectious disease. Several other applications
and more details on the presented applications can be found in the doctoral dissertation
of Särkkä (2006b).

3.1 Simple Pendulum with Noise

The stochastic differential equation for the angular position of a simple pendulum
(Alonso and Finn 1980), which is distorted by random white noise accelerations w(t)
with spectral density q can be written as

d2x

dt2
+ a2 sin(x) = w(t), (33)

where a is the angular velocity of the (linearized) pendulum. If we define the state as
x = (x dx/dt)T and change to state space form and to the integral equation notation
in terms of Brownian motion, the model can be written as

dx1

dt
= x2

dx2 = −a2 sin(x1) dt + dβ,
(34)

where β(t) has the diffusion coefficient q, which is a model of the form (6). Assume that
the state of the pendulum is measured once per unit time and the measurements are
corrupted by Gaussian measurement noise with an unknown variance σ2. A suitable
model in this case is

yk ∼ N (x1(tk), σ2)

σ2 ∼ Inv-χ2(ν0, σ
2
0),

(35)

This is now a model with an unknown static parameter as discussed in Section 2.4.
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The importance process can now be formed by the continuous-discrete extended
Kalman filter (EKF) (see, e.g., Jazwinski 1970; Gelb 1974) and the result is a two-
dimensional Gaussian approximation for the joint distribution of the state x(tk) =
(x1(tk) x2(tk))T . Forming this approximation requires that the variance σ2 is assumed
to be known, but fortunately a very rough approximation based on the estimated σ2

k

is enough in practice. Therefore the EKF based approximation can be constructed as
follows:

1. Assume that the posterior distribution of a particle x(i)(t) is approximately Gauss-
ian

x(i)(t) |y1:k−1 ∼ N (m(t),P(t)). (36)

Note that immediately after a measurement, a single sampled particle actually
has a Dirac delta distribution, which also is a (degenerate) Gaussian distribution.

2. By forming a first order Taylor series expansion of the right hand side of the
equation (34) we get that after a sufficiently small time interval δt the state mean
and covariance can be approximated as

m(t + δt) = m(t) + f(m(t)) δt

P(t + δt) = P(t) +
[

F(m(t))P(t) + P(t)FT (m(t)) + Q
]

δt,
(37)

where f(x) = (x2 − a2 sin(x1))
T , F(x) is the Jacobian matrix of f(x) and Q =

diag(0 q).

3. We may now form Gaussian approximation to the state at time t + δt with the
mean and covariance above. If we continue this process recursively and take the
limit δt → 0, we may then approximate the process as Gaussian process with
mean and covariance

dm(t)

dt
= f(m(t))

dP(t)

dt
= F(m(t))P(t) + P(t)FT (m(t)) + Q,

(38)

The above result states that between the measurements we can approximate the mean
and covariance of the process (34) by integrating the deterministic differential equations
(38). The result is a Gaussian process, that is, a Gaussian approximation to the state
process at any instance of time.

The importance process can be now constructed as follows. For each particle i do
the following:

1. Solve the approximate predicted mean and covariance at time tk from the differen-

tial equations (38) by starting from initial conditions m(tk−1) = x
(i)
k−1, P(tk−1) =

0.
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2. Assuming that σ2 is known, the approximate joint distribution of the state and
measurement is Gaussian and thus we can compute the posterior distribution of
the state in closed form.

If the resulting approximate marginal posterior mean and covariance of x2(tk) are m2,k

and P22,k, then a suitable importance process is (assuming that sampling interval is ∆t)

ds1

dt
= s2

ds2 =

(

m2,k − x2,k−1

∆t

)

dt +

√

P22,k

q ∆t
dβ,

(39)

with initial conditions

s1(tk−1) = x1,k−1

s2(tk−1) = x2,k−1.
(40)

The equations for the scaled importance process can be now written as

ds∗1
dt

= s∗2

ds∗2 =

(
√

q

P22,k ∆t

)

(m2,k − x2,k−1) dt + dβ,
(41)

with initial conditions

s∗1(tk−1) = x1,k−1

s∗2(tk−1) = x2,k−1.
(42)

The full state of the algorithm at time step k − 1 consists of the set of particles

{w(i)
k−1, x

(i)
1,k−1, x

(i)
2,k−1, ν

(i)
k−1, σ

2,(i)
k−1 } (43)

where w
(i)
k−1 is the importance weight, x

(i)
1,k−1, x

(i)
2,k−1 is the state of the pendulum, and

ν
(i)
k−1, σ

2,(i)
k−1 are the sufficient statistics of the variance parameter.

Figure 1 shows the result of applying the continuous-discrete particle filter with EKF
proposal and 1000 particles to simulated data. The data was generated from the noisy
pendulum model with process noise spectral density q = 0.01, angular velocity a = 1
and the sampling step size was ∆t = 0.1. The estimate can be seen to be quite close to
the true signal.

In the simulation, the true measurement variance was σ2 = 0.25. The prior distri-
bution used for the unknown variance parameter was σ2 ∼ Inv-χ2(2, 0.2).

The evolution of the posterior distribution of the variance parameter is shown in
the Figure 2. In the beginning the uncertainty about the variance is higher, but the
distribution quickly concentrates on the neighborhood of the true value.
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Figure 1: The result of applying a continuous-discrete particle filter with EKF proposal
to simulated noisy pendulum data.

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time

 

 
True Variance
Estimate
95% Quantiles

Figure 2: The evolution of the (posterior) variance distribution in the noisy pendulum
problem.
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3.2 Spread of Infectious Diseases

The classic model for the dynamics of infectious diseases is the SIR model (The model is
called the SIR model, because the variables X(t), Y (t), and Z(t) denote the susceptible,
infective and removed compartments and for this reason are often denoted as S(t),
I(t), and R(t), respectively) (Kermack and McKendrick 1927; Anderson and May 1991;
Murray 1993; Hethcote 2000), which is valid for sufficiently large N :

dX/dt = −b Y X/N, X(0) = X0, (44)

dY/dt = b Y X/N − g Y, Y (0) = Y0, (45)

dZ/dt = g Y, Z(0) = Z0, (46)

where X(t) is the number of susceptibles at time t, X0 ≥ 0 is the initial number
of susceptibles, Y (t) is the number of infectives who are capable of transmitting the
infection, Y0 ≥ 0 is the initial number of infectives, Z(t) is the number of recovered
or dead individuals which cannot be infected anymore, Z0 ≥ 0 is the initial number
of individuals in this class, N = X(t) + Y (t) + Z(t) is the (constant) total number of
individuals, b is the contact rate which determines the rate of individuals moving from
susceptible class to infectious class, and g is the waiting time parameter such that 1/g
is the average length of the infectious period.

If we model the contact number σ = b/g as exponential of a Brownian motion, then
the stochastic equations for the proportions of individuals in each class can be written
as (Särkkä 2006b):

dx/dt = −g exp(λ) y x

dy/dt = g exp(λ) y x− g y

dλ = q1/2 dβ,

(47)

where β(t) is a standard Brownian motion and λ = ln σ.

A suitable initial distribution for x(0) and y(0) is

y(0) ∼ Beta(αy, βy), (48)

x(0) = 1− y(0), (49)

where βy � αy. The initial conditions z(0) can be assumed to be zero without loss of
generality.

In the classical SIR model the values X(t), Y (t) and Z(t) are not restricted to
integer values, and as such they cannot be interpreted as counts. A sensible stochastic
interpretation of these values is that they are the average numbers of individuals in each
class and the actual numbers of individuals are Poisson distributed with these means.

Assume that the number of dead individuals is recorded. Then the number of the
dead individuals dk in time period [tk−1, tk] has the distribution

p(dk | {x(τ), y(τ) : 0 ≤ τ ≤ tk}, N) = Poisson(dk |N θk), (50)
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where
θk = x(tk−1)− x(tk) + y(tk−1)− y(tk). (51)

The population size N is unknown and it can be modeled as having a Gamma prior
distribution

p(N) = Gamma(N |α0, β0), (52)

with some suitably chosen α0 and β0. As shown in (Särkkä 2006b) this model is now of
such a form that it is possible to integrate out the population size N from the equations
and the Algorithm 2.4 can be applied.

The continuous-discrete SIR filter was applied to the classical Bombay plague data
presented in (Kermack and McKendrick 1927). An EKF based Gaussian process ap-
proximation was used as the importance process (see, Särkkä 2006b, for details) and
10000 particles were used. The prior distribution for the proportion of initial infectives
was Beta(1, 100). The population size prior was Gamma(10, 0.001). The waiting time
parameter was assumed to be g = 1. The prior distribution for λ(0) was N (ln(5), 4).
The diffusion coefficient of the Brownian motion was q = 0.001.
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Figure 3: Filtered estimates of values of x(t), y(t), and z(t) from the Bombay data.

The final filtered estimates of the histories of x(t), y(t), and z(t) are shown in Figure
3. These estimates are filtered estimates, that is, they are conditional on the previously
observed measurements only. That is, the estimate for week t is the estimate that could
be actually computed on week t without any knowledge of the future observations.
The estimates look like what would be expected: the proportion of susceptibles x(t)
decreases in time and the number of infectives y(t) increases up to a maximum and
then decreases to zero. However, these estimated values are not very useful themselves.
The reason for this is that, for example, the value x∞ which is the remaining value of
susceptibles in the end depends on the choice of g and other prior parameters. That is,
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these estimated values are not absolute in the sense that their values depend heavily on
the prior assumptions.
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Figure 4: Filtered estimate of dZ/dt from the Bombay data. The estimate of
(Kermack and McKendrick 1927) is also shown for comparison.

A much more informative quantity is the value dZ/dt, whose filtered estimate is
shown in Figure 4. The classical estimate presented in (Kermack and McKendrick 1927)
is also shown. The SIR filter estimate can be seen to differ a bit from the classical
estimate, but still both the estimates look like what would be expected. Note that the
classical estimate is based on all measurements, whereas the filtered estimate is based
on observations made up to that time only. That is, the filter estimate could be actually
computed in week t, but the classical estimate could not.

The filtered estimates of values σ(t) are shown in Figure 5. The values can be seen to
vary a bit on time, but the estimated expected value remains within the range [1.4, 1.8]
all the time. As can be seen from the figure, according to the data, the value of σ(t) is
not constant. This is not surprising, because the spatial and other unknown effects are
not accounted for at all in the classical SIR model and these effects typically affect the
number of contacts.

A very useful indicator value is σ(t) x(t), whose filtered estimate is shown in Figure
6. In the deterministic SIR model with constant σ this indicator defines the asymptotic
behavior of the epidemic (see, e.g., Hethcote 2000): If σx(t) ≤ 1 then the number of
infectives will decrease to zero as t → ∞. If σx(t) > 1 then the number of infectives
will first increase up to a maximum and then decrease to zero. As can be seen from the
Figure 6 the filtered estimate of the indicator value goes below 1 just after the maximum
somewhere between weeks 15–16, which can be seen in Figure 4. That is, the estimated
value of σ(t) x(t) could be used as an indicator, which tells if the epidemic is over or
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Figure 5: Bombay plague: Filtered estimate of values σ(t).
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Figure 6: Bombay plague: Filtered estimate of values x(t) σ(t).

not.

Using the particles it is also possible to predict ahead to the future and estimate
the time when the maximum of the epidemic will be reached. The estimate computed
from the filtering result is shown in the Figure 7. Again, the estimates are filtered
estimates and the estimate for week t could be actually computed in week t, because
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Figure 7: Bombay plague: Estimate of the time of the maximum of epidemic.

it depends only on the counts observed up to that time. The filtered estimate can be
seen to quickly converge to the values near the correct maximum on weeks 15–16. It is
interesting to see that the prediction is quite accurate already in week 10, which is far
before reaching the actual maximum. If this kind of prediction had been done in, for
example, week 10 of the disease, it would have predicted the time of actual epidemic
maximum quite accurately. After the maximum has been reached, the estimate quickly
converges to a constant value, which according to the Figure 4 is likely to be near the
true maximum.

A very useful estimate is also the expected total number of deaths caused by the
epidemic. This can be computed from the filtered estimates and the result is shown
in Figure 8. In the beginning the estimate is very diffuse, but after the maximum has
been reached the estimate converges to nearly the correct value. The estimate is a bit
less than the observed value long before reaching the maximum, which might be due
to existence of two maxima in the observed data (see, Figure 4). Because the second
maximum is not predicted by the model, the extra number of deaths caused by it cannot
be seen in the predictions.

4 Discussion

The importance processes used in the continuous-discrete particle filtering examples are
very simple and better alternatives definitely exists. In principle, the optimal impor-
tance process in the continuous-discrete particle filtering case would have the same law
as the smoothing solution. Thus, constructing the importance process based on the
smoothing solution instead of linearly interpolated filtering solutions, as in this arti-
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Figure 8: Bombay plague: Estimate of the number of deaths.

cle, could lead to more efficient particle filtering methods. In some cases it could be
possible to construct a process, which would have exactly the same law as the optimal
importance process.

A weakness in the continuous-discrete particle filtering framework is that the impor-
tance process has to be scaled before sampling. In practice, this restricts the possible
forms of importance processes to those having the same dispersion matrix as the original
process. However, we have not explicitly required that L(t) = B(t), as this provides
potential for the equation to be modified such that the scaling of the importance process
would not be required.

Another weakness of the framework is that the time-discretization introduces bias
to the estimation. The time-discretization is due to the usage of numerical integration
methods for SDEs, which use discretization in time. However, there exists a method for
simulating SDEs without time-discretization (Beskos et al. 2006) and maybe by using
these methods this bias could be eliminated.

The continuous-discrete sequential importance resampling framework could be ex-
tended to the case of stochastic differential equations driven by more general mar-
tingales, for example, general Lévy processes such as compound Poisson processes
(Applebaum 2004). This would allow modeling of sudden changes in signals. This
extension could be possible by simply replacing the Brownian motion in the Girsanov
theorem by a more general martingale.

It could be possible to generalize the continuous-discrete sequential importance sam-
pling framework to continuous-time filtering problems. Then the extended Kalman-
Bucy filter or the unscented Kalman-Bucy filter (Särkkä 2006b, 2007) could be used
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for forming the importance process and the actual filtering result would be formed by
weighting the importance process samples properly.

The likelihood ratio expressions in Theorems 3 and 4 have an interesting connection
to the variational method considered by Archambeau et al. (2007). If we select the
processes as

dx(t) = f(x(t), t) dt +
√

Σ dβ(t) (53)

ds(t) = fL(s(t), t) dt +
√

Σ dβ(t), (54)

where x(t) is a process with density p(·) and s(t) is a process with density q(·), then
by taking the expectation of negative logarithm of (63) we get the expression for the
KL-divergence between q and p:

KL[q | p] = E
[1

2

∫ t

0

{

f(s(t), t)− fL(s(t), t)
}T

Σ−1
{

f(s(t), t)− fL(s(t), t)
}

dt
]

, (55)

which is exactly the expression obtained heuristically in Archambeau et al. (2007). Thus
the extensions to singular models would also apply to that method.

5 Conclusions

In this article, a new class of methods for continuous-discrete sequential importance
sampling (particle filtering) has been presented. These methods are based on trans-
formations of probability measures using the Girsanov theorem. The new methods are
applicable to a general class of models. In particular, they can be applied to many
models with singular dispersion matrices, unlike many previously proposed measure
transformation based sampling methods. The new methods have been illustrated in a
simulated problem, where both the implementation details of the algorithms and the
simulation results have been reported. The methods have also been applied to estima-
tion of the spread of an infectious disease based on counts of dead individuals.

The classical continuous-discrete extended Kalman filter as well as the recently de-
veloped continuous-discrete unscented Kalman filter can be used for forming importance
processes for the new continuous-discrete particle filters. This way the efficiency of the
Gaussian approximation based filters can be combined with the accuracy of the particle
approximations. Closed form marginalization or Rao-Blackwellization can be applied
if the model is conditional Gaussian or if the model contains unknown static parame-
ters and has a suitable conjugate form. In most cases Rao-Blackwellization leads to a
significant improvement in the efficiency of the particle filtering algorithm.
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Appendices

1 Likelihood Ratios of SDEs

In the computation of the likelihood ratios of stochastic differential equations we need a
slightly generalized version of the Girsanov theorem (Kallianpur 1980; Karatzas and Shreve
1991; Øksendal 2003). The generalized theorem can be obtained, for example, as a spe-
cial case from the theorems presented in Delyon and Hu (2006).

Theorem 2 (Girsanov). Let β = (β1, . . . , βd) be a Brownian motion with diffusion
matrix Q(t) under the probability measure P. Let θ : Ω × R+ 7→ Rd be an adapted
process such that the process Z defined as

Z(t) = exp

{∫ t

0

θT (t)dβ(t)− 1

2

∫ t

0

θT (t)Q(t) θ(t)dt

}

, (56)

satisfies E[Z(t)] = 1. Then the process

dβ̃(t) = dβ(t)−Q(t) θ(t)dt (57)

is a Brownian motion with diffusion matrix Q(t) under the probability measure P̃ defined
via the relation

E

[

dP̃

dP

∣

∣

∣

∣

Ft

]

= Z(t), (58)

where Ft is the natural filtration of the Brownian motion β(t).

Proof. See, for example, Delyon and Hu (2006).

Theorem 3 (Transformation of SDE Solutions I). Let

dx(t) = f(x(t), t) dt + L(t) dβ(t), x(0) = x0 (59)

ds(t) = g(s(t), t) dt + B(t) dβ(t), s(0) = x0, (60)

where β(t) is a Brownian motion with diffusion matrix Q(t) with respect to measure P.
Let Ft be its natural filtration. The matrices L(t) and B(t) are assumed to be invertible
for all t. Now the process s∗(t) defined as

ds∗ = L(t)B−1(t) ds, s(0) = x0 (61)
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is a weak solution to the Equation (59) under the measure P̃ defined by the relation

E

[

dP̃

dP

∣

∣

∣

∣

Ft

]

= Z(t), (62)

where

Z(t) = exp
[

∫ t

0

{

f(s∗(t), t)− L(t)B−1(t)g(s(t), t)
}T

L−T (t)Q−1(t) dβ(t)

− 1

2

∫ t

0

{

f(s∗(t), t)− L(t)B−1(t)g(s(t), t)
}T

×
{

L(t)Q(t)LT (t)
}−1{

f(s∗(t), t) − L(t)B−1(t)g(s(t), t)
}

dt
]

(63)

Proof. By substituting the expression (60) into Equation (61), solving for dβ(t), we get

dβ(t) = L−1(t) ds∗ −B−1(t)g(s(t), t) dt. (64)

If we now define

θ(t) = Q−1(t)L−1(t) f(s∗(t), t)−Q−1(t)B−1(t)g(s(t), t), (65)

then under the measure P̃ defined by (62) and (63) with the process θ(t) defined as
above, the following process is a Brownian motion with diffusion matrix Q(t):

dβ̃(t) = dβ(t)−Q(t) θ(t)dt

= L−1(t) ds∗ −B−1(t)g(s(t), t) dt

−Q(t)Q−1(t)L−1(t) f(s∗(t), t) dt + Q(t)Q−1(t)B−1(t)g(s(t), t) dt

= L−1(t) ds∗ − L−1(t) f(s∗(t), t) dt

(66)

By rearranging we get that

ds∗ = f(s∗(t), t) dt + L(t) dβ̃(t) (67)

and thus the result follows. The explicit expression for the likelihood ratio is given as
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follows:

Z(t) = exp
[

∫ t

0

{

Q−1(t)L−1(t) f(s∗(t), t)−Q−1(t)B−1(t)g(s(t), t)
}T

dβ(t)

− 1

2

∫ t

0

{

Q−1(t)L−1(t) f(s∗(t), t)−Q−1(t)B−1(t)g(s(t), t)
}T

×Q(t)
{

Q−1(t)L−1(t) f(s∗(t), t) −Q−1(t)B−1(t)g(s(t), t)
}

dt
]

= exp
[

∫ t

0

{

f(s∗(t), t)− L(t)B−1(t)g(s(t), t)
}T

L−T (t)Q−1(t) dβ(t)

− 1

2

∫ t

0

{

L−1(t) f(s∗(t), t) − L(t)B−1(t)g(s(t), t)
}T

×
{

L−T (t)Q−1(t)Q(t)Q(t)−1 L−1(t)
}

×
{

f(s∗(t), t)− L(t)B−1(t)g(s(t), t)
}

dt
]

= exp
[

∫ t

0

{

f(s∗(t), t)− L(t)B−1(t)g(s(t), t)
}T

L−T (t)Q−1(t) dβ(t)

− 1

2

∫ t

0

{

f(s∗(t), t) − L(t)B−1(t)g(s(t), t)
}T

×
{

L(t)Q(t)LT (t)
}−1{

f(s∗(t), t)− L(t)B−1(t)g(s(t), t)
}

dt
]

(68)

Theorem 4 (Transformation of SDE Solutions II). Assume that processes x1(t), x2(t),
s1(t) and s2(t) are generated by the stochastic differential equations

dx1

dt
= f1(x1,x2, t), x1(0) = x1,0 (69)

dx2 = f2(x1,x2, t) dt + L(t) dβ, x2(0) = x2,0 (70)

ds1

dt
= f1(s1, s2, t), s1(0) = x1,0 (71)

ds2 = g2(s1, s2, t) dt + B(t) dβ, s2(0) = x2,0, (72)

where L(t) and B(t) are invertible matrices for all t ≥ 0 and under the measure P, β(t)
is a Brownian motion with diffusion matrix Q(t). Then the processes s1 and s2 defined
as

ds∗1
dt

= f1(s
∗
1, s

∗
2, t), s∗1(0) = x1,0 (73)

ds∗2 = L(t)B−1(t) ds2, s∗2(0) = x2,0 (74)

are weak solutions to the Equations (69) and (70) under the measure P̃ defined by the
relation

E

[

dP̃

dP

∣

∣

∣

∣

Ft

]

= Z(t). (75)
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where

Z(t) = exp
[

∫ t

0

{

f2(s
∗
1(t), s

∗
2(t), t)− L(t)B−1(t)g2(s1(t), s2(t), t)

}T

× L−T (t)Q−1(t) dβ(t)

− 1

2

∫ t

0

{

f2(s
∗
1(t), s

∗
2(t), t)− L(t)B−1(t)g2(s1(t), s2(t), t)

}T

×
{

LT (t)Q(t)L(t)
}−1

×
{

f2(s
∗
1(t), s

∗
2(t), t)− L(t)B−1(t)g2(s1(t), s2(t), t)

}

dt
]

(76)

Proof. From equations (71), (72), (73) and (74) we get that

dβ(t) = L−1(t) ds∗2 −B−1(t)g2(s1(t), s2(t), t) dt. (77)

If we now define

θ(t) = Q−1(t)L−1(t) f2(s
∗
1(t), s

∗
2(t), t)−Q−1(t)B−1(t)g2(s1(t), s2(t), t), (78)

then similarly as in proof of Theorem 3, we get that the process β̃(t) defined as

dβ̃(t) = dβ(t)−Q(t) θ(t)dt

= L−1(t) ds∗2 −B−1(t)g2(s1(t), s2(t), t) dt

−Q(t)Q−1(t)L−1(t) f2(s
∗
1(t), s

∗
2(t), t) dt

+ Q(t)Q−1(t)B−1(t)g2(s1(t), s2(t), t) dt

= L−1(t) ds∗2 − L−1(t) f2(s
∗
1(t), s

∗
2(t), t) dt

(79)

is a Brownian motion with respect to measure P̃ and thus s∗1 and s∗2 are the weak
solutions to the equations (69) and (70).
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