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Compressing Parameters in Bayesian High-order

Models with Application to Logistic Sequence

Models

Longhai Li∗ and Radford M. Neal†

Abstract. Bayesian classification and regression with high-order interactions is
largely infeasible because Markov chain Monte Carlo (MCMC) would need to be
applied with a great many parameters, whose number increases rapidly with the
order. In this paper we show how to make it feasible by effectively reducing the
number of parameters, exploiting the fact that many interactions have the same
values for all training cases. Our method uses a single “compressed” parameter
to represent the sum of all parameters associated with a set of patterns that
have the same value for all training cases. Using symmetric stable distributions
as the priors of the original parameters, we can easily find the priors of these
compressed parameters. We therefore need to deal only with a much smaller
number of compressed parameters when training the model with MCMC. After
training the model, we can split these compressed parameters into the original
ones as needed to make predictions for test cases. We show in detail how to
compress parameters for logistic sequence prediction models. Experiments on both
simulated and real data demonstrate that a huge number of parameters can indeed
be reduced by our compression method.

Keywords: compressing parameters, high-order models, Markov chain Monte Carlo,
logistic models, interaction

1 Introduction

In many classification and regression problems, the response variable y depends on
high-order interactions of “features” (also called “covariates”, “inputs”, “predictor vari-
ables”, or “explanatory variables”). For example, some complex human diseases are
found to be related to high-order interactions of susceptibility genes and environmental
exposures (Ritchie et al. 2001). The prediction of the next character in English text is
also improved by using a large number of preceding characters (Bell, Cleary, and Witten
1990). Many biological sequences (eg, genomes) have long-memory properties (see eg
Durbin et al. 1999, and references therein). Interaction among gene products (under the
name of epistasis) seems to be ubiquitous (see eg Cheverud and Routman 1995; Wright
1980, and references therein).

When the features are discrete, we can employ high-order interactions in classi-
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fication and regression models by introducing, as additional predictor variables, the
indicators for each possible interaction pattern, equal to 1 if the pattern occurs for a
subject and 0 otherwise. In this paper we will use “features” for the original discrete
measurements and “predictor variables” for these derived variables, to distinguish them.
The number of such predictor variables increases exponentially with the order of inter-
actions. The total number of order-k interaction patterns (ie, all possible combinations)
of k binary features is 2k; accordingly we will have 2k predictor variables. Models with
interactions of even a moderate order are infeasible in real applications, primarily for
computational reasons. People are often forced to use a model with very small order,
say only 1 or 2, even though this may omit useful higher-order predictor variables.

Besides the computational considerations, classification and regression with a great
many predictor variables may “overfit” the data. Unless the number of training cases
is much larger than the number of predictor variables the model may fit the noise
instead of the signal in the data, with the result that predictions for new test cases are
poor. This problem can be solved by using Bayesian modeling with appropriate prior
distributions. In a Bayesian model, we use a probability distribution over parameters to
express our prior belief about which configurations of parameters may be appropriate.
One such prior belief is that a parsimonious model can approximate the reality well.
In particular, we may believe that most high-order interactions are largely irrelevant to
predicting the response. We express such a prior by assigning each regression coefficient
a distribution with mode 0, such as a Gaussian or Cauchy distribution centred at 0.
Due to its heavy tail, a Cauchy distribution may be more appropriate than a Gaussian
distribution to express the prior belief that almost all coefficients of interactions of high
order are close to 0, with a very small number of exceptions. Additionally, the priors
used for the widths of these Gaussian or Cauchy distributions should favor small values
for higher order interactions. The resulting joint prior for all coefficients favors a model
with most coefficients close to 0, that is, a model emphasizing low order interactions.
By incorporating such prior information into our inference, we will not overfit the data
by inferring unnecessarily complex relationships.

However, the computational difficulty with a huge number of parameters is even
more pronounced for a Bayesian approach than other approaches. We will likely need
to use Markov chain Monte Carlo methods to sample from the posterior distribution,
which is computationally burdensome even for a moderate number of parameters. With
more parameters, a Markov chain sampler will take longer for each iteration and require
more memory, and may also need more iterations to converge, or get trapped more
easily in local modes. Applying Markov chain Monte Carlo methods to classification
and regression models with high-order interactions therefore seems infeasible.

In this paper, we show how these problems can be solved by effectively reducing the
number of parameters in a Bayesian model with high-order interactions. Our method
is based on the fact that in a model using all interaction patterns, from a low order to a
high order, there are many sets of predictor variables that have the same values for all
training cases. For example, if an interaction pattern occurs in only one training case,
that pattern and all interaction patterns of higher order contained in it will occur in only
that case, and hence have the same values for all training cases — 1 for that training
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case and 0 for all others. Consequently, only the sum of the coefficients associated with
these predictor variables matters in the likelihood function. This allows us to use a
single “compressed” parameter to represent the sum of the regression coefficients for a
group of predictor variables that have the same values in training cases. For models with
very high order of interactions, the number of such compressed parameters will be much
smaller than the number of original parameters. If the priors for the original parameters
are symmetric stable distributions, such as Gaussian or Cauchy, we can easily find the
prior distributions of these compressed parameters, as they are also symmetric stable
distributions of the same type. In training the model with Markov chain Monte Carlo
methods we need to deal only with these compressed parameters. After training the
model, the compressed parameters can be split into the original ones as needed to make
predictions for test cases. Using our method for compressing parameters, one can handle
Bayesian regression and classification problems with very high-order interactions in a
reasonable amount of time.

This paper will be organized as follows. In Section 2 we describe in general terms the
method of compressing parameters, and how to split them to make predictions for test
cases. We then apply the method to logistic sequence models in Section 3. There, we
will describe the specific schemes for compressing parameters for the sequence prediction
models, and use simulated data and real data to demonstrate our method. We draw
conclusions and discuss future work in Section 5.

A software package for the method described in this paper, which is written in R, is
available from http://math.usask.ca/~longhai.

2 Our Method for Compressing Parameters

In this section we describe in general terms how to use compressed parameters during
MCMC sampling and afterward recover the original parameters as needed for making
predictions. We also discuss why this procedure saves computation.

2.1 Compressing Parameters

Our method for compressing parameters is applicable when we can divide the regression
coefficients used in the likelihood function into a number of groups such that the likeli-
hood is a function only of the sums over these groups. The groups will depend on the
particular training data set. An example of such a group is the regression coefficients for
a set of predictor variables that have the same values for all training cases. It may not
be easy to find an efficient scheme for grouping the parameters of a specific model. We
will describe how to group the parameters for sequence prediction models in Section 3.
Suppose the number of such groups is G. The parameters in group g are denoted by
βg1, . . . , βg,ng

, and their sum is denoted by sg :

sg =

ng
∑

j=1

βgj , for g = 1, . . . , G, (1)

http://math.usask.ca/~longhai
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We assume that the likelihood function can be written as:

Lβ(β11, . . . , β1,n1 , . . . , βG1, . . . , βG,nG
)

= L





n1
∑

j=1

β1j , . . . ,

nG
∑

j=1

βGj





= L(s1, . . . , sG). (2)

Note that the above β’s are only the regression coefficients for the interaction patterns
occurring in training cases. The predictive distribution for a test case may use additional
regression coefficients. We will assign prior distributions for all the coefficients assuming
that they are mutually independent (possibly conditional on some hyperparameters).
The posterior distributions of these additional coefficients are therefore equal to their
priors (given the relavant hyperparameters if there are any).

We need to define priors for the βgj in a way that lets us easily find the priors
of the sg. For this purpose, we assign each βgj a symmetric stable distribution cen-
tred at 0 with width parameter σgj . Symmetric stable distributions (Feller 1966) have
the following additive property: If random variables X1, . . . , Xn are independent and
have symmetric stable distributions of index α, with location parameters 0 and width
parameters σ1, . . . , σn, then the sum of these random variables,

∑n
i=1 Xi, also has a

symmetric stable distribution of index α, with location parameter 0 and width param-
eter (

∑n
i=1 σα

i )1/α. Symmetric stable distributions exist and are unique (up to location
and width) for α ∈ (0, 2]. The symmetric stable distributions with α = 1 are Cauchy
distributions. The density function of a Cauchy distribution with location parameter
0 and width parameter σ is [πσ(1 + x2/σ2)]−1. The symmetric stable distributions
with α = 2 are Gaussian distributions, for which the width parameter is the standard
deviation. Since the symmetric stable distributions with α other than 1 or 2 do not
have closed form density functions, we will use only Gaussian or Cauchy priors. That
is, each parameter βgj has a Gaussian or Cauchy distribution with location parameter
0 and width parameter σgj , and they are independent given the σgj ’s:

βgj ∼ N(0, σ2
gj) or βgj ∼ Cauchy(0, σgj). (3)

Some σgj may be common for different βgj , but for the moment we denote them in-
dividually. We might also treat the σgj ’s as unknown hyperparameters, but again we
assume them fixed for the moment.

If the prior distributions for the βgj ’s are as in (3), the prior distribution of sg can
be found using the property of symmetric stable distributions:

sg ∼ N



0,

ng
∑

j=1

σ2
gj



 or sg ∼ Cauchy



0,

ng
∑

j=1

σgj



 . (4)

Let us denote the density of sg in (4) by P s
g (either a Gaussian or Cauchy), and
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denote s1, . . . , sG collectively by s. The posterior distribution can be written as follows:

P (s | D) =
1

c(D)
L(s1, . . . , sG) P s

1 (s1) · · · P s
G(sG), (5)

where D denotes the response variables in the training data, and c(D) is the marginal
probability or probability density of D.

Since the likelihood function L(s1, . . . , sG) typically depends on s1, . . . , sG in a
complicated way, we will need to use some Markov chain sampling method to sample
for s from distribution (5).

2.2 Splitting Compressed Parameters to Make Predictions

After we have obtained samples of sg, probably using some Markov chain sampling
method, we may need to split them into their original components βg1, . . . , βg,ng

to
make predictions for test cases. This “splitting” distribution depends only on the prior
distributions, and is independent of the training data. In other words, the splitting
distribution is just the conditional distribution of βg1, . . . , βg,ng

given
∑ng

j=1 βgj = sg ,
whose density function is:

P (βg1, . . . , βg,ng−1 | sg) =

[

∏ng−1
j=1 Pgj(βgj)

]

Pg,ng

(

sg −∑ng−1
j=1 βgj

)

P s
g (sg)

, (6)

where Pgj is the density function of the prior for βgj . Note that βg,ng
is omitted since

it is equal to sg −∑ng−1
j=1 βgj .

As will be discussed in the Section 2.4, sampling from (6) can be done efficiently by
a direct sampling method, which does not involve costly evaluations of the likelihood
function. We need to use Markov chain sampling methods and evaluate the likelihood
function only when sampling for s. The sampling procedure when using compressed
parameters can be diagrammed as follows:

direct sampling
splitting s1 by

s1

β2 β3

Markov chain transition Markov chain transition Markov chain transition
. . . . . .

β1

direct sampling
splitting s3 by

s2 s3

splitting s2 by
direct sampling

Here, β is a collective representation of βgj , for g = 1, . . . , G, j = 1, . . . , ng − 1, and
the superscripts indicate the index in Markov chain. When we consider high-order
interactions, the number of groups, G, will be much smaller than the number of βgj ’s.
This procedure is therefore much more efficient than applying Markov chain sampling
methods to all the original βgj parameters.

If we sampled for all the βgj ’s, storing them would require a huge amount of space
when the number of parameters in each group is huge. We therefore sample for β
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conditional on s1, . . . , sG only temporarily, for a particular test case. Furthermore,
when making predictions for a particular test case, we actually do not need to sample
from the distribution (6), of dimension ng − 1, but only from a derived 1-dimensional
distribution.

As will be seen in Section 3, a prediction for a particular test case, for example the
probability that this test case is in a certain class, depends only on the sums of subsets
of βgj ’s in groups. After re-indexing the βgj ’s in each group such that the βg1, . . . , βg,tg

are those needed by the test case, the variables needed for making a prediction for the
test case are:

st
g =

tg
∑

j=1

βgj , for g = 1, . . . , G, (7)

Note that when tg = 0, st
g = 0, and when tg = ng, st

g = sg. The predictive function
may also use some sums of extra regression coefficients associated with the interaction
patterns that occur in this test case but not in any training case. Suppose these extra
regression coefficients need to be divided into Z groups, as required by the form of the
predictive function, which we denote by β∗

11, . . . , β
∗
1,n∗

1
, . . . , β∗

Z,1, . . . , β
∗
Z,n∗

Z
. The sums

of these variables that are needed for making a prediction for the test case are:

s∗z =

n∗

z
∑

j=1

β∗
zj , for z = 1, . . . , Z. (8)

In terms of these, the prediction for a test case if the parameters were known can
be written as the following function:

a

(

t1
∑

j=1

β1j , . . . ,
tG
∑

j=1

βGj ,
n∗

1
∑

j=1

β∗
1j , . . . ,

n∗

Z
∑

j=1

β∗
Zj

)

= a(st
1, . . . , st

G, s∗1, . . . , s∗Z). (9)

Let us write st
1, . . . , s

t
G collectively as st, and write s∗1, . . . , s

∗
Z as s∗. The integral

required to make a prediction for this test case based on the posterior parameter distri-
bution is

∫

a(st, s∗) P (s∗) P (s | D)

G
∏

g=1

P (st
g | sg) ds dstds∗. (10)

The integral over s above is done by averaging over iterations from an MCMC
run. The integral over s∗ is also done by Monte Carlo, sampling from P (s∗), which is
the prior distribution of s∗. Typically, P (s∗) depends on hyperparameters, which are
integrated over by taking them from the same MCMC run. Finally, we need to sample
from P (st

g | sg), which from (6) is as follows:

P (st
g | sg) = P (1)

g (st
g) P (2)

g (sg − st
g) / P s

g (sg). (11)
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Here, P
(1)
g and P

(2)
g are the priors (either Gaussian or Cauchy) of

∑tg

1 βgj and
∑ng

tg+1 βgj ,
respectively.

Before discussing how to sample from (6) or (11), we first phrase this compressing-
splitting procedure more formally in the next section to show its correctness.

2.3 Correctness of the Compressing-Splitting Procedure

The above procedure of compressing and splitting parameters can be seen in terms of
a transformation of the original parameters βgj to a new set of parameters containing
sg ’s, as defined in (1), in light of the training data. The posterior distribution (5) of s

and the splitting distribution (6) can be derived from the joint posterior distribution of
the new parameters.

The invertible mappings from the original parameters to the new parameters are
shown as follows, for g = 1, . . . , G,

(βg1, . . . , βg,ng−1, βg,ng
) =⇒ (βg1, . . . , βg,ng−1,

∑ng

j=1 βgj)

‖
(βg1, . . . , βg,ng−1, sg)

(12)

In words, the first ng − 1 original parameters βgj ’s are mapped to themselves (we
might use other symbols to denote the new parameters, but we will use the same ones
for simplicity of presentation while making no confusion), and the sum of all βg,j ’s, is
mapped to sg. Let us denote the new parameters βgj , for g = 1, . . . , G, j = 1, . . . , ng−1,
collectively by β, and denote s1, . . . , sg by s. (Note that β does not include βg,ng

, for
g = 1, . . . , G. Once we have obtained the samples of s and β we can use βg,ng

=

sg −∑ng−1
j=1 βgj to obtain the samples of βg,ng

.)

The posterior distribution of the original parameters, βgj , is:

P (β11, . . . , βG,nG
| D) =

1

c(D)
L





n1
∑

j=1

β1j , . . . ,

nG
∑

j=1

βGj





G
∏

g=1

ng
∏

j=1

Pgj(βgj). (13)

By applying the standard formula for the density function of transformed random vari-
ables, we can obtain from (13) the posterior distribution of the s and β:

P (s, β | D)

=
1

c(D)
L (s1, . . . , sG)

G
∏

g=1





ng−1
∏

j=1

Pgj(βgj)



Pg,ng



sg −
ng−1
∑

j=1

βgj





/

| det(J)|, (14)

where | det(J)| is absolute value of the determinant of the Jacobian matrix, J , of the
mapping (12), which can be shown to be 1.

Using the additive property of symmetric stable distributions, which is stated in
section 2.1, we can analytically integrate out β in P (s, β | D), resulting in the marginal
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distribution P (s | D):

P (s | D) =

∫

P (s, β | D) dβ

=
1

c(D)
L (s1, . . . , sG) ×

G
∏

g=1

∫

· · ·
∫





ng−1
∏

j=1

Pgj(βgj)



Pg,ng



sg −
ng−1
∑

j=1

βgj



 dβg1 · · · dβg,ng−1 (15)

=
1

c(D)
L (s1, . . . , sG) P s

1 (s1) · · · P s
G(sG). (16)

The conditional distribution of β given D and s can then be obtained as follows:

P (β | s,D) = P (s, β | D) / P (s | D)

=
G
∏

g=1





ng−1
∏

j=1

Pgj(βgj)



Pg,ng



sg −
ng−1
∑

j=1

βgj





/

P s
g (sg). (17)

From the above expression, it is clear that P (β | s,D) is unrelated to D, i.e., P (β | s,D) =
P (β | s), and is independent for different groups. Note that equation (6) gives this dis-
tribution only for one group g. In other words, conditional on s, the data D and β

are independent. Some authors term this as that s are the sufficient parameters to the
distribution of data, and that β is unidentifiable from the data, also that the data is
uninformative for β given s (Barankin 1961; Dawid 1979; Poirier 1998). This transfor-
mation over parameters facilitates the separation of the sufficient parameters from the
unidentifiable parameters. Finally, we want to clarify that the sufficient parameters will
change for different data sets, ie, they are not fixed for a model.

In an analogous manner, we can obtain (11), which splits sg into two components,
from (6) — first mapping β and s to a set of new parameters containing s and st, then
integrating away other parameters, using the additive property of symmetric stable
distributions.

2.4 Sampling from the Splitting Distribution

In this section, we discuss how to sample from the splitting distribution (11) to make
predictions for test cases after we have obtained samples of s1, . . . , sG from a Markov
chain simulation.

When the priors for the βgj ’s are Gaussian distributions, the distribution (11) is also
a Gaussian distribution, given as follows:

st
g | sg ∼ N

(

sg
Σ2

1

Σ2
1 + Σ2

2

, Σ2
1

(

1 − Σ2
1

Σ2
1 + Σ2

2

))

, (18)
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where Σ2
1 =

∑tg

j=1 σ2
gj and Σ2

2 =
∑ng

tg+1 σ2
gj . We can sample from this Gaussian distri-

bution by standard methods.

When we use Cauchy distributions as the priors for the βgj ’s, the density function
of (11) is:

P (st
g | sg) =

1

C

1

Σ2
1 + (st

g)
2

1

Σ2
2 + (st

g − sg)2
, (19)

where Σ1 =
∑tg

j=1 σgj , Σ2 =
∑ng

tg+1 σgj , and C is the normalizing constant given below

by (21).

When sg = 0 and Σ1 = Σ2, the distribution (19) is a t distribution with 3 degrees of
freedom, mean 0 and width Σ1/

√
3, from which we can sample by standard methods.

Otherwise, the cumulative distribution function (CDF) of (19) can be shown to be:

F (st
g ; sg , Σ1, Σ2) =

1

C

[

r log

(

(st
g)

2 + Σ2
1

(st
g − sg)2 + Σ2

2

)

+ p0

(

arctan

(

st
g

Σ1

)

+
π

2

)

+ ps

(

arctan

(

st
g − sg

Σ2

)

+
π

2

)]

, (20)

where

C =
π (Σ1 + Σ2)

Σ1Σ2 (s2
g + (Σ1 + Σ2)2)

, (21)

r =
sg

s4
g + 2 (Σ2

1 + Σ2
2) s2

g + (Σ2
1 − Σ2

2)
2 , (22)

p0 =
1

Σ1

s2
g −

(

Σ2
1 − Σ2

2

)

s4
g + 2 (Σ2

1 + Σ2
2) s2

g + (Σ2
1 − Σ2

2)
2 , (23)

ps =
1

Σ2

s2
g +

(

Σ2
1 − Σ2

2

)

s4
g + 2 (Σ2

1 + Σ2
2) s2

g + (Σ2
1 − Σ2

2)
2 . (24)

When sg 6= 0, the derivation of (20) uses the equations below from (25) to (27) as
follows, where p = (a2 − c)/b, q = b + q, r = pc − a2q, and we assume 4c − b2 > 0,

1

x2 + a2

1

x2 + bx + c
=

1

r

(

x + p

x2 + a2
− x + q

x2 + bx + c

)

, (25)

∫ x

−∞

u + p

u2 + a2
du =

1

2
log(x2 + a2) +

p

a
arctan

(x

a

)

+
π

2
, (26)

∫ x

−∞

u + q

u2 + bu + c
du =

1

2
log(x2 + bx + c) +

2q − b√
4c − b2

arctan

(

2x + b√
4c− b2

)

+
π

2
.(27)
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When sg = 0, the derivation of (20) uses the following equations:

1

x2 + a2

1

x2 + b2
=

1

b2 − a2

(

1

x2 + a2
− 1

x2 + b2

)

, (28)

∫ x

−∞

1

u2 + a2
du =

1

a

(

arctan
(x

a

)

+
π

2

)

. (29)

Since we can compute the CDF of (19) with (20) explicitly, we can use the inver-
sion method to sample from (19), with the inverse CDF computed by some numerical
method. We chose the Illinois method (Thisted 1988, Page 171), which is robust and
fairly fast.

Sampling for st
1, . . . , s

t
G temporarily for each test case may not be desirable when

we need to make predictions for a huge number of test cases. Then we can apply the
above method splitting a Gaussian or Cauchy random variable into two parts ng − 1
times, to split sg into ng parts. Our method for compressing parameters is still useful
because sampling from the splitting distributions uses direct sampling methods, which
are much more efficient than applying Markov chain sampling method to the original
parameters. However, we will not save space if we take this approach of sampling for
all β’s.

3 Application to Sequence Prediction Models

In this section, we show how to group parameters of logistic sequence prediction models
in which states of a sequence are discrete. We will first define this class of models, then
present our scheme for grouping the parameters, and finally give details of a suitable
MCMC method for inference. Section 4 contains experimental demonstrations of these
models and methods.

3.1 Bayesian Logistic Sequence Prediction Models

We write a sequence of length O + 1 as x1, . . . , xO , xO+1, where xt takes values from 1
to Kt, for t = 1, . . . , O, and xO+1 takes values from 1 to K. We call x1, . . . , xO = x1:O

a historic sequence. For subject i we write its historic sequence and response as x
(i)
1:O

and x
(i)
O+1. We are interested in modelling the conditional distribution P (xO+1 | x1:O).

An interaction pattern P is written as [A1A2 . . . AO ], where At can be from 0 to Kt,
with At = 0 meaning that xt can be any value from 1 to Kt. For example, [0 . . . 01]
denotes the pattern that fixes xO = 1 and allows x1, . . . , xO−1 to be any values in their
ranges. When all nonzero elements of P are equal to the corresponding elements of a
historic sequence, x1:O, we say that pattern P occurs in x1:O , or pattern P is expressed
by x1:O, denoted by x1:O ∈ P . We will use the indicator I(x1:O ∈ P) as a predictor
variable, whose coefficient is denoted by βP . For example, β[0···0] is the intercept term.
A logistic model assigns to each possible value of the response a linear function of the
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predictor variables. We use β
(k)
P to denote the coefficient associated with pattern P and

used in the linear function for xO+1 = k.

For modeling sequences, we consider only the patterns where all zeros (if any) are at
the start. Let us denote all such patterns by S. We write all coefficients for xO+1 = k,

i.e., {β(k)
P | P ∈ S}, collectively as β(k). Figure 1 displays β(k) for a binary sequence of

length O = 3, for some k, placed in a tree-shape.

Conditional on β(1), . . . , β(K) and x1:O , the distribution of xO+1 is defined as

P (xO+1 = k | x1:O, β(1), . . . , β(K)) =
exp(l (x1:O , β(k)))

∑K
j=1 exp(l (x1:O, β(j)))

, (30)

where

l (x1:O , β(k)) =
∑

P∈S

β
(k)
P I(x1:O ∈ P) = β

(k)
[0···0] +

O
∑

t=1

β
(k)
[0···xt···xO ]. (31)

In Figure 1, the linear function is shown by the lines from β(x1,x2,x3) to β(0,0,0) linking
the terms of (31).

The prior for each β
(k)
P is a Gaussian or Cauchy distribution centred at 0, whose

width depends on the order, o(P), of P , which is the number of nonzero elements of P .
There are O + 1 such width parameters, denoted by σ0, . . . , σO . The σo’s are treated as
hyperparameters, allowing their values to be determined by the data. We set the prior
for log(σo) to be Gaussian, with mean wo and standard deviation so. In summary, the
hierarchy of the priors is:

β
(k)
P | σo(P) ∼ Cauchy(0, σo(P)) or N(0, σ2

o(P)), for P ∈ S, (32)

log(σo) ∼ N(wo, s
2
o), for o = 0, . . . , O. (33)

Cauchy distributions have heavy two-sided tails. The absolute value of a Cauchy
random variable has infinite mean. When a Cauchy distribution with centre 0 and a
small width is used as the prior for a group of parameters, such as the β’s for interaction
patterns with some order in (32), a few parameters may be much larger in absolute value
than others in this group. As priors for the coefficients of high-order interaction patterns,
Cauchy distributions can therefore express more accurately than Gaussian distributions
the prior belief that most high-order interaction patterns are useless in predicting the
response, but a small number may be important.

It seems redundant to use a β(k) for each k = 1, . . . , K, since only the differences
between β(k) matter in (30). A non-Bayesian model could fix one of them, say β(1), all
equal to 0, so as to make the parameters identifiable. However, when K 6= 2, forcing
β(1)=0 in a Bayesian model will result in a prior that is not symmetric for all k, which
we may not be able to justify. When K = 2, we do set β(1) to zero, as there is no
asymmetry problem.
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[012]β

[022]β

[000]β

[002]β
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x 1 x 3x 2,      ,

 

2,  1,  1

2,  2,  2

1,  1,  2

1,  2,  1

2,  2,  1

2,  1,  2

1,  2,  2

1,  1,  1

Figure 1: A picture of the coefficients, β, for all patterns in binary sequences of length
O = 3. β[A1A2A3] is associated with the pattern written as [A1A2A3], with At = 0
meaning that xt is allowed to be either 1 or 2, in other words, xt is ignored in defining
this pattern. For each combination of (x1, x2, x3) on the left column, l ((x1, x2, x3), β)
is equal to the sum of β’s along the path linked by the lines from β[x1x2x3] to β[000].

Inclusion of βP other than the highest order is also a redundancy, which facilitates
the expression of appropriate prior beliefs. For similar historic sequences x1:O , the
prior distributions of l (x1:O , β) are positively correlated, since they share some common
β’s. For example, in the model displayed by Figure 1, l ((1, 1, 1), β) and l ((2, 1, 1), β)
share β[011], β[001] and β[000]. Consequently, the predictive distributions of xO+1 are
similar given similar x1:O . By incorporating such a prior belief into our inference,
we borrow “statistical strength” for those historic sequences with few replications in
the training cases from other similar sequences with more replications, thereby avoiding
unreasonably extreme conclusions based on a small number of replications. We therefore
are not forced to use a model of very low order (i.e., truncating the sequence), since
the complexity of the relationship that is inferred will be automatically adjusted by the
data.

3.2 Grouping Parameters of Sequence Prediction Models

To apply our method for compressing parameters, we need to divide the β’s into a num-
ber of groups, based on the training data, such that the likelihood function depends only
on the sums in groups, as shown by (2). The likelihood function is the product of prob-
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abilities in (30) applied to the training cases, x
(i)
1:O, x

(i)
O+1, for i = 1, . . . , N (collectively

denoted by D). It can be written as a function of the β(k) as follows:

Lβ(β(1), . . . , β(K) | D) =

N
∏

i=1

exp(l (x
(i)
1:O, β(x

(i)
O+1)))

∑K
j=1 exp(l (x

(i)
1:O , β(j)))

. (34)

Note that when K = 2, β(1) is fixed at 0, and therefore not included in the likelihood
function. But for simplicity, we do not write another expression for K = 2.

Since the linear functions with different k’s have the same form except the super-
script, the way we divide β(k) into groups is the same for all k. In the following
discussion, β(k) will therefore be written as β, omitting k.

As shown by (31), the function l (x1:O, β) is the sum of the β’s associated with
the interaction patterns expressed by x1:O . If the interaction patterns in a group are
expressed by the same training cases, the associated β’s will appear simultaneously in
the same factors of (34). The likelihood function (34) therefore depends only on the
sum of these β’s, rather than the individual ones. Our task is therefore to find the
groups of interaction patterns expressed by the same training cases.

Let us use EP to denote the “expression” of the pattern P — the indices of training
cases in which P is expressed, a subset of 1, . . . , N . For example, E[0···0] = {1, . . . , N}.
We can display EP in a tree-shape, as we displayed βP . The upper part of Figure 2
shows such expressions for each pattern in a binary sequence of length O = 3, based on
the N = 3 training cases shown. Note that the expression of a “stem” pattern is equal to
the union of the expressions of its “leaf” patterns, for example, E[000] = E[001]

⋃

E[002].

When a stem pattern has only one leaf pattern with non-empty expression, the stem
and leaf patterns have the same expression, and can therefore be grouped together. This
grouping procedure will continue by taking the leaf pattern as the new stem pattern,
until encountering a stem pattern that “splits”, i.e. has more than one leaf pattern with
non-empty expression. For example, E[001], E[021] and E[121] in Figure 2 can be grouped
together. All such patterns must be linked by lines, and can be represented collectively
with a “superpattern” SP , written as [0 · · · 0Ab · · ·AO ]f =

⋃f
t=b [0 · · · 0At · · ·AO], where

1 ≤ b ≤ f ≤ O + 1. (Note that when t = O + 1, [0 · · · 0At · · ·AO ] = [0 · · · 0].) One
can easily translate the above discussion into a computer algorithm. Figure 3 shows
an algorithm for grouping parameters of Bayesian logistic sequence prediction models,
using a recursive function.

3.3 Convergence of the Number of Compressed Parameters

With our method for compressing parameters of sequence prediction models, the num-
ber of superpatterns with unique expressions, and hence the number of compressed
parameters, will converge to a finite number as O increases, even when the past history
is infinite. This happens because as we keep splitting the expressions following the tree
shown in Figure 2, at a certain time, say t, the expression of every superpattern will
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1
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=
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1 2
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1

2 
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i

Ε

= {2,3}[002]E

= {1}[001]E

= φ[111]

= φ[211]E

= {1}[121]E

= φ[221]E

= {2}[212]E

= φ[222]E
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E {2,3}3[012]

[112]E {3}=1

E {2}=[212]1

= φE[011]

= {1}[021]E

E 1 2 3x xx

Figure 2: How the interaction patterns in a logistic sequence prediction model can be
grouped, illustrated with binary sequences of length O = 3, based on the 3 training cases
shown in the upper-right box. EP is the expression of the pattern (or superpattern) P
— the indices of training cases in which P is expressed, with φ being the empty set.
Patterns with the same expression are grouped together, re-represented collectively by
a “superpattern”, written as [0 · · · 0Ab · · ·AO ]f , meaning

⋃f
t=b [0 · · · 0At · · ·AO], where

1 ≤ b ≤ f ≤ O + 1. Patterns not expressed by any of the training cases are removed.
Only 5 superpatterns with unique expressions are left in the lower picture.
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[b]  = the unique value in X[E] [b]SP.P
LSP: list of superpatterns
LE:  list of expressions

SP: superpattern,  structure with members
−−− P: pattern, vector of length O
−−− f : index of  fixed state  in P

X: training data, N X O matrix

}
b = b − 1

{
if( b > 0 )

{

}
}

}

{
DIVERGE(E, SP)

b = SP.f − 1 

{

for(  x in unique values in X[E][b] ) 

O: length of sequences
N: number of training cases 

Add SP to LSP
Add E to LE

INPUTS:

OUTPUTS: 

E:  expression, subset of 1, ... ,N  
INPUTS of ‘DIVERGE’(shown on the right):

ALGORITHM:

SP.f = O + 1,  SP.P=(0 , ... ,0)
E = {1, ... ,N}

LSP = NULL
LE = NULL
DIVERGE(E,SP)
RETURN LE and LSP

Set NSP = SP

DIVERGE(SubE, NSP)

SubE = {i in E : X[i][b] = x}

NSP.f = b , NSP.P[b] = x

while ( b > 0  && # of unique values in  X[E][b] == 1)

Figure 3: Algorithm for grouping parameters of Bayesian logistic sequence prediction
models. The output is two lists: LSP contains a list of superpatterns, and LE contains
the expressions of these superpatterns. The recursive DIVERGE function does the work,
taking a subset of training cases (E) and a superpattern (SP) as inputs, and appending
new elements to LSP and LE. Note that the index of the first element in a array is
assumed to be 1, and that the X [E][b] means a 1-dimension subarray of X in which the
row indices are in E and the column index equals b.

consist of only a single training case, or a set of identical training cases. When consid-
ering times earlier than t, no more new superpatterns with different expressions will be
introduced, and the number of superpatterns will not grow. The number of compressed
parameters, the regression coefficients for the superpatterns, will therefore not grow as
O increases to include times before t.

In contrast, if no parameter compression is done, as O increases to include times
before this time t, each increase of O by one increases the number of patterns by the
number of distinct training cases. The number of regression coefficients associated with
these original interaction patterns, called the original parameters hereafter, therefore
grows linearly with the maximum order. Note that these original parameters do not in-
clude regression coefficients for those interaction patterns not expressed by any training
case. The total number of regression coefficients defined by the model grows exponen-
tially with the maximum order.



808 Compressing Parameters in Bayesian High-order Models

3.4 Markov Chain Sampling for the Sequence Prediction Models

Since logistic models are not analytically tractable, we use Markov chain Monte Carlo
(Neal 1993, and the references therein) to sample from the posterior distribution of
the compressed parameters. Many MCMC methods could be used for this problem.
We describe here a simple approach using slice sampling (Neal 2003). We use the
same approach to implement the model without parameter compression, for comparison
purposes.

Slice sampling uses the fact that one can sample from a one-dimensional distribution
with density f(x) by sampling uniformly over the set {(x, y) | 0 < y < f(x)}, i.e., the
region of the two-dimensional plane between the x-axis and the curve of f(x). Since
it is usually infeasible to sample directly from this region, slice sampling methods use
Gibbs sampling (Gelfand and Smith 1990) instead — given x, we draw y from the
uniform distribution over {y | 0 < y < f(x)}, then given y, we draw x from the uniform
distribution over the “slice”, S = {x | f(x) > y}. Directly drawing x uniformly from S
is usually infeasible, however, so a Markov chain update is used instead, which leaves
this uniform distribution over S invariant. For this problem, we use the “stepping out”
plus “shrinkage” procedures described in Neal (2003). The stepping out scheme first
steps out from the point in the previous iteration, say x0, which is in S, by expanding
an initial interval, I , of size w around x0 on both sides with steps of size w, until the
ends of I are outside S, or the number of steps has reached a pre-specified number, m.
To guarantee correctness, the initial interval I is positioned randomly around x0, and
m is randomly apportioned for the times of stepping right and stepping left. We then
keep drawing a point uniformly from I until we obtain an x in S. To facilitate obtaining
an x in S, we shrink the interval I when x is not in S by cutting off the left part or
right part of I (depending on whether x < x0 or x > x0). Suitable values for w and m
must be chosen, but performance is not highly sensitive to these choices.

We use this slice sampling procedure for each sg in turn (or for the βgj ’s, when
not compressing parameters), using the conditional distribution of that sg given all
other parameters and hyperparameters. We then perform some number of slice sam-
pling updates for each of the log(σ) hyperparameters, again based on their conditional
distributions given the other parameters.

3.5 Making Predictions for Test Cases

Given β(1), . . . , β(K), the predictive probability for the next state x∗
O+1 of a test case

for which we know the historic sequence x∗
1:O can be computed using equation (30),

applied to x∗
1:O. A Monte Carlo estimate of P (x∗

O+1 = k | x∗
1:O ,D) can be obtained by

averaging (30) over samples from the posterior distribution of β(1), . . . , β(K).

Each of the O+1 patterns expressed by the test case x∗
1:O is either expressed by some

training case (and therefore belongs to one of the superpatterns), or is a new pattern
(not expressed by any training case). The patterns in the test case that are also ex-
pressed in one or more training cases are on one path leftwards from the root in the tree
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of superpatterns shown in Figure 2. The patterns in a superpattern, [0 · · ·Ab · · ·AO ]f ,
that are expressed by x∗

1:O can be identified as follows. If (x∗
b , . . . , x

∗
O) = (Ab, . . . , AO),

all the patterns are expressed by x∗
1:O. This is true for some number of patterns proceed-

ing leftwards from the root. If (x∗
b′ , . . . , x

∗
O) = (Ab′ , . . . , AO) for some b′ with b < b′ < f ,

the patterns in [0 · · ·Ab′ · · ·AO]f are expressed by x∗
1:O . This will be true for one at

most one superpattern in the tree, and only for this superpattern will splitting (us-
ing (11)) be necessary. Finally, if (x∗

f , . . . , x∗
O) 6= (Af , . . . , AO), none of the patterns in

[0 · · ·Ab · · ·AO ]f are expressed by x∗
1:O.

All of the patterns in the test case of higher order than any contained in a super-
pattern from the training cases will form a single new superpattern expressed only by
the test case. If there are γ superpatterns in the training data, P (x∗

O+1 = k | x∗
1:O) can

be written in the form of (9), with G = γ K (though some groups may be empty) and
Z = K. For prediction in a test case x∗, the parameters for x∗

O+1 = k are shown below,
with dashed boxes standing for unused parameters:

β∗

k1 β∗

k3β∗

k2
. . .β

(k)
13 β

(k)
21β

(k)
11 β

(k)
12

. . . β
(k)
γ3β

(k)
13 β

(k)
22 β

(k)
γ2β

(k)
γ1β

(k)
21β

(k)
12

Parameters for patterns expressed by training cases

Parameters for patterns expressed
by test case and training cases expressed only by test case

Parameters for patterns expressed
by training cases but not test case

Parameters for patterns

β
(k)
11

Σ = s
(k)
1 Σ = s

(k)
2 Σ = s

(k)
γ

The sum of the β∗ parameters above can be drawn from the prior distribution, condi-
tional on the σo hyperparameters.

4 Experiments with Logistic Sequence Prediction Models

To demonstrate use of parameter compression with logistic sequence prediction models,
we apply them to an artificial binary data set generated using a hidden Markov model,
and to a data set created from English text, in which each state has 3 possibilities
(consonant, vowel, or other). These experiments will show that our compression method
produces a large reduction in the number of parameters needed for training a model of
higher order (for which the prediction for the next state of a sequence is based on a
long preceding sequence). We also show that good predictions on test cases result from
being able to use a high-order model.
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4.1 Prior Distributions and Settings of MCMC Parameters

For both sets of experiments, we used prior distributions for parameters and hyper-
parameters of the form given in (32) and (33). For o = 0, we fixed log(σo) to 5 in
Gaussian models, and to 0.5 in Cauchy models. For o > 0, in Gaussian models, we set
the Gaussian prior for log(σo) to have standard deviations so = 2, and the means wo

decreasing from 0 to −4 linearly as o increases from 1 to O, in Cauchy models, so = 0.5,
and wo decreasing from −2 to −6 linearly as o increases from 1 to O.

MCMC was done as described in Section 3.4, with slice sampling for sg or β, and
for log(σo). Slice sampling for sg or β was done with a stepsize of w = 5 and a limit on
stepping of m = 10. Slice sampling for updating log(σ) has w = 0.5 and m = 10. In all
cases, we ran the Markov chain for 4000 iterations (each iteration updating each sg or
βgj parameter once, and each σo hyperparameter 50 times). The first 1500 iterations
were discarded, and every 10th iteration afterward was used to make predictions for the
test cases.

Though these choices were adequate for these experiments, different choices might
be necessary for other problems.

4.2 Experiments Using Data from a Hidden Markov Model

In this section, we demonstrate our method for compressing parameters by applying
Bayesian logistic sequence prediction models, with or without our compression method,
to data sets generated using a Hidden Markov model.

Hidden Markov models (HMM) are applied widely in many areas, for example,
speech recognition (Baker 1975), image analysis (Romberg et al. 2001), and computa-
tional biology (Sun 2006). In hidden Markov models, the observed sequence, x1, x2, . . .,
is modeled as being stochastically related to a hidden sequence, h1, h2, . . ., that has the
Markov property (i.e., given the value of ht−1, ht is independent of states before ht−1).

Figure 4 displays the hidden Markov model used to generate our data sets, showing
the transitions of three successive states. The hidden sequence ht is a Markov chain
with state space {1, . . . , 8}, with uniform initial state distribution, and whose dominant
transition probabilities (of 0.95) are shown by the arrows in Figure 4. The hidden
Markov chain can move from any state to any other state as well, with small probability.
If ht is an even number, xt will be equal to 1 with probability 0.95 and 2 with probability
0.05; otherwise, xt will be equal to 2 with probability 0.95 and 1 with probability
0.05. The observed sequence, x1, x2, x3, . . ., generated by this model exhibits high-
order dependency, even though the hidden sequence is a Markov chain. For example,
observations of x1 = 1 (rectangle) and x2 = 2 (oval), are most likely to be generated
by h1 = 2 and h2 = 3, since this is the only strong connection from the rectangle to
the oval, consequently, h3 = 8 is most likely to be the next hidden state, and the next
observation, x3, is therefore most likely to be 1 (rectangle).

We used the HMM in Figure 4 to generate 5500 sequences of length 21, and used
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Figure 4: The hidden Markov model used to generate sequences to demonstrate Bayesian
logistic sequence prediction models. Only the dominant transition probabilities of 0.95
are shown using arrows in the above graph. Rectangles enclose states that are likely to
produce the observation 1; ovals enclose states likely to produce the observation 2.

5000 sequences as test cases, and the remaining 500 as the training cases. We tested
the methods by predicting x21 based on O preceding states, with O set to 1, 2, 3, 4, 5,
7, 12, 15, 17, and 20.

Figure 5 compares the number of parameters and the computation time for training
with and without our compression method. It is clear that our method for compressing
parameters reduces greatly the number of parameters. The ratio of the number of
compressed parameters to the number of the original parameters decreases with the
number, O, of preceding states used, reaching 0.207 when O = 20. This ratio will go
to zero for even larger values of O, as discussed in Section 3.3. Computation time per
Markov chain iteration during training is also smaller with our compression method,
but it will not converge to a finite amount as O increases, since the time used to update
the hyperparameters log(σo)’s grows with O, even when the number of compressed
parameters has converged after a certain order. (However, if this were to become a
practical issue, it would probably be possible to compress the σo parameters as well.)

Figure 5 also shows the prediction times with and without compression for 5000
test cases. In order to save space, we re-split compressed parameters for each test case
if necessary, as described in Section 3.5. For each test case, we need to split at most
one compressed parameter, into two parts. Splitting is necessary for only a fraction
of test cases — for example when the order O = 20, this fraction is 0.6572. The
time for prediction with parameter compression is smaller than when using the original
parameters, partly because the time for splitting is small, and partly because more
summation is needed when parameters are not compressed. Even with compression,
predictions times grow with the order, O, because the time used to identify the patterns
in a superpattern expressed by a test case grows with O.
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Figure 5: Reduction in the number of parameters, and in training and prediction times
using our compression method applied to the HMM data. The upper-left plot shows
how the number of compressed (◦) and original (×) parameters based on 500 training
sequences varies with the order, O. The ratios of these numbers are shown in the
upper-right plot. The lower plots show computation times for training and prediction.
Dashed lines are with Cauchy priors; dotted lines are with Gaussian priors. Note that
the curves of prediction times with original parameters for Cauchy and Gaussian priors
almost overlap.

Compressing parameters also improves the quality of Markov chain sampling. Fig-
ure 7 shows autocorrelation plots of the σo hyperparameters, for o = 10, 12, 15, 17, 20,
when the length of the preceding sequence is O = 20. Autocorrelation decreases more
rapidly with lag when we compress the parameters. If we rescaled the lags in the au-
tocorrelation plots to take account of the lower computation time per iteration with
compression, the reduction of autocorrelation with the compressed parameters would
be much more pronounced.

Finally, Figure 6 shows predictive performance in terms of error rate (the fraction
of wrong predictions in test cases), and the average minus log probability (AMLP) of
the true response in a test case based on the predictive probability for different classes.
Predictive performance with and without compressing parameters is the same, as should
be the case in theory, and will be in practice when the Markov chains for the two methods
both converge and sample well. Performance using Cauchy and Gaussian priors is also
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Figure 6: Predictive performance on the HMM data, with parameter compression (◦)
and without compression (×). “AMLP” is the average of minus the log probability of
the test symbols.

similar for this example. The predictive performance is improved when O goes from
1 to 5. When O > 5 the predictions are slightly worse than with O = 5 in terms of
AMLP, though error rates for O > 5 are almost the same as for O = 5. This shows
that the Bayesian models can perform reasonably well even when we consider a very
high order, avoiding any overfitting problem from using a complex model. We therefore
do not need to restrict the order of the Bayesian sequence prediction models to a very
small number for statistical reasons, and with our method for compressing parameters,
restricting the order for computational reasons is also unnecessary.

4.3 Experiments with English Text

We also tested our method using a data set created from an online article from the
website of the Department of Statistics, University of Toronto. In creating the data set,
we encoded each character as 1 for vowel letters (a,e,i,o,u), 2 for consonant letters, and
3 for all other characters, such as space, numbers, and punctuation. For example, char-
acter sequence “with me. They” was encoded as “212232132212”. We then collapsed
multiple occurrences of 3 into only one occurrence. The length of the whole sequence
is 3930. From it, we created a data set with 3910 overlapped sequences (ie, the first
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Figure 7: The autocorrelation plots of σo’s for the experiments on a data set generated
by a HMM, when the length of the preceding sequence O = 20. We show the autocor-
relations of σo, for o = 10, 12, 14, 17, 20. In the above plots, “Gaussian” in the titles
indicates the methods with Gaussian priors, “Cauchy” indicates with Cauchy priors,
“comp” indicates with parameters compressed, “no comp” indicates without parame-
ters compressed.
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Figure 8: Reduction in the number of parameters, and in training and prediction times
using our compression method applied to the English text data. The upper-left plot
shows how the number of compressed (◦) and original (×) parameters based on 500
training sequences varies with the order, O. The ratios of these numbers are shown
in the upper-right plot. The lower plots show computation times for training and
prediction. Dashed lines are with Cauchy priors; dotted lines are with Gaussian priors.

charater of the second sequence is the second character of the first sequence) of length
21, and used the first 1000 as training data, and the remaining 2910 as test cases. The
priors and computational parameters used were as described in Section 4.1.

The results are shown in Figures 8 through 11. The conclusions drawn from the
experiments in Section 4.2 are confirmed in this example, with some differences in
details. As there, our compression method greatly reduces the number of parameters,
and therefore greatly reduces the computation time needed for training. The speed
of Markov chain sampling is improved by compressing parameters. Prediction is very
fast using our splitting methods. The predictions on the test cases are improved by
considering higher order interactions. There is reason to think that very high order
interactions are of significance with English text, and from Figure 9, it appears that at
least some interactions with order between 7 and 10 are indeed useful in predicting the
next character.

In terms of error rates and AMLPs, the Cauchy models and the Gaussian models
perform similarly for this example, as seen in Figure 9. But it is interesting to investigate
the difference of using Gaussian and Cauchy priors. We first plotted the medians of
Markov chains samples (in the last 2500 iterations) of all compressed parameters, s, for
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Figure 9: Predictive performance on the English text data, with parameter compression
(◦) and without compression (×). “AMLP” is the average of minus the log probability
of the test symbols.

the model with O = 10. These are shown in Figure 10, where the right plot shows in
a larger scale the rectangle (−2, 2) × (−2, 2). A few parameters with large medians in
the Cauchy model have very small medians in the Gaussian model, but on the other
hand, as shown by the right plot, most β close to 0 have smaller medians in the Cauchy
model, illustrating that posterior distributions based on Cauchy priors concentrate more
around 0 than those based on Gaussian priors.

This difference is demonstrated further by the Markov chain traces of some particular
compressed parameters that are shown in Figure 11. The three compressed parameters
shown there all contain only a single β. The plots on the top are for the β for “CC:V”,
used for predicting whether the next character is a vowel, given that the preceding two
characters are consonants. The plots in the middle are for “ CC:V”, where “ ” denotes
a space or special symbol. The plots on the bottom are for “CCVCVCC:V”, which had
the largest median among all compressed parameters in the Cauchy model, as displayed
in Figure 10.

The regression coefficient for “CC:V” should not be far from zero by our common
sense, since two consonants are often followed by any of the three types of characters.
We can very commonly see “CCV”, such as “the”, and “CC ”, such as “with ”, and
not uncommonly see “CCC”, such as “technique” or “world”. The Markov chain trace of
this β with a Cauchy prior moves in a smaller region around zero than with a Gaussian
prior. But if we look back one more character, things are different. The regression
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Figure 10: Scatterplots of medians of all compressed parameters, s, of Markov chain
samples in the last 1250 iterations, for the models with Cauchy and Gaussian priors,
fitted with English text data, with the length of preceding sequence O = 10, and
with the parameters compressed. The right plot shows the left plot in the rectangle
(−2, 2) × (−2, 2) in a larger scale.

coefficient for “ CC:V” is fairly large, which is not surprising. The two consonants
in “ CC:V” suggest two letters in the beginning of a word. Words starting with three
consonants are fairly uncommon (though they exist, e.g. “strong”), and words consisting
only of just two consonants are very uncommon. The posterior distribution of this β
for both Cauchy and Gaussian models favor positive values, but the Markov chain trace
for the Cauchy model can move to much larger values than for the Gaussian model.
As for the high-order pattern “CCVCVCC”, it matches the first seven letters of words
like “statistics” and “statistical”, which appear repeatedly in an article introducing a
statistics department. Again, the Markov chain trace of this β for the Cauchy model
can move to much larger values than for the Gaussian model, but sometimes it is close
to zero, indicating that there might be two modes for its posterior distribution.

The above investigation reveals that a Cauchy model allows some useful regression
coefficients to be much larger in magnitude than others while keeping the useless coeffi-
cients in a smaller region around zero than a Gaussian model. In other words, Cauchy
models are more powerful than Gaussian models in finding the few useful interactions
from the many possible in a high-order model, due to the heavy two-sided tails of Cauchy
distributions. However, this difference may make little effect on the predictive perfor-
mance in logistic classification models, presumably because the predictive performance
of a logistic classification model is not very sensitive to the magnitude of coefficients
provided that they are moderately large (e.g. models with β = 100, β = 20, and
β = 5 for a binary covariate and the same other coefficients would predict similarly).
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Figure 11: Markov chain traces of three compressed parameters (each containing only
one β) from the experiments on English text. Traces from three independent Markov
chains are shown, for models with Cauchy priors and with Gaussian priors. The pa-
rameters are annotated by their original meanings in the English text. For example,
‘ CC:V’ stands for the parameter for predicting that the next character is a “vowel”
given preceding three characters are “space, consonant, consonant”.
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We anticipate that the Cauchy models will more often perform better than Gaussian
models for regression problems with continuous responses, though such problems are
not illustrated here.

It is worthy of mentioning distributions other than the Cauchy that have heavy tails,
such as the Laplace distribution and the Student’s t distributions with small degrees of
freedom. Unfortunately, Laplace and general t distributions (other than those with 1 de-
gree of freedom, which is Cauchy) are not symmetric stable distributions. We therefore
cannot compress the parameters for Laplace and general t models as we do for Gaussian
and Cauchy models. But if time is not an issue, they are also appropriate as priors for
high-order models. In fact, after examining our data set, we have found that sequences
“ CC” and “CCVCVCC” are all followed by vowel letters, so their likelihood functions
actually favour infinite parameter values, with consequence of that their Markov chain
traces sometimes visit some very large (and a little bit undesirable) values in Cauchy
models, as allowed by the heavy tails of Cauchy distributions. If the Cauchy models
were fit with a larger data set, where sequences “ CC” and “CCVCVCC” are not all be
followed by vowel letters, these undesirable large values would not be possible, but prior
distributions with lighter tails than the Cauchy (but heavier than the Gaussian) would
still be interesting. Symmetric stable distributions with index between 1 (Cauchy) and
2 (Gaussian) are an attractive possibility, which would fit with our compression scheme,
except that we have not found a way of dealing with the difficulty of evaluating their
probability density functions.

5 Conclusion and Discussion

In this paper, we have proposed a method to effectively reduce the number of parame-
ters of Bayesian classification and regression models with high-order interactions, using
a compressed parameter to represent the sum of all the regression coefficients for pre-
dictor variables that have the same values for all the training cases. Working with these
compressed parameters, we greatly shorten the training time with MCMC. These com-
pressed parameters can later be efficiently split into the original parameters, using direct
sampling methods. We have demonstrated that, for a data set with a fixed number of
cases, the number of compressed parameters will converge to a limiting value regardless
of how large the maximum order of the model is. Applying Bayesian methods to regres-
sion and classification models with high-order interactions therefore become much easier
after compressing the parameters, as shown by our experiments with simulated and real
data. Predictive performance will be improved by considering high-order interactions,
if some high-order interactions do exist, which there is often good reason to suspect.

We have devised an efficient scheme for implementing this idea for Bayesian logis-
tic sequence prediction models. A similar, but more complex, scheme for grouping
parameters of general Bayesian logistic classification models is presented in Li (2007).

We have also illustrated here that Cauchy distributions with location parameter zero,
which have heavy two-sided tails, are more appropriate than Gaussian distributions in
capturing the prior belief that most of the parameters in a large group are very close
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to zero, but a few may be much larger in absolute value. This prior will often be
appropriate for the regression coefficients in high-order models. In light of the fact
that Cauchy distributions allow some very large values, which may be inappropriate as
parameter values of regression and classification models, symmetric stable distributions
with index between 1 (Cauchy) and 2 (Gaussian) may be more appropriate as priors
for high-order models. These distributions would fit with our compression scheme if we
can find a way of evaluating their probability density functions efficiently and a way of
splitting the sum of random variables with such distributions.

We have implemented the compression method only for classification models in which
the response and the features are both discrete. Without any difficulty, the compression
method can be used in regression models in which the response is continuous but the
features are discrete, for which we need only model the conditional distribution of the
continuous response variable given the predictor variables with, for example, a Gaussian
or t distribution. Unless one converts the continuous features into discrete values, it
is not clear how to apply the method described in this paper to continuous features.
However it seems possible to apply the more general idea that we need to work only
with those parameters that matter in the likelihood function when training models with
MCMC, probably by transforming the original parameters.
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