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Inconsistent Bayesian Estimation

Ronald Christensen∗

Abstract. A simple example is presented using standard continuous distributions
with a real valued parameter in which the posterior mean is inconsistent on a dense
subset of the real line.
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1 Introduction

There has been extensive work on inconsistent Bayesian estimation. Early work was
done by Halpern (1974) , Stone (1976) , and Meeden and Ghosh (1981). An important
paper was Diaconis and Freedman (1986a), henceforth referred to as DFa, with extensive
references and discussion by Barron; Berger; Clayton; Dawid; Doksum and Lo; Doss;
Hartigan; Hjort; Krasker and Pratt; LeCam; and Lindley. Follow up work includes
Diaconis and Freedman (1986b, 1990, 1993), Datta (1991), Berliner and MacEachern
(1993), and Rukhin (1994).

DFa require consistency for every parameter value. They also point out that if their
definition of consistency holds, then the posterior mean is consistent (“minor technical
details apart”). The purpose of this note is to provide a particularly simple example
of an inconsistent Bayes estimate and to draw some conclusions from that example. In
particular, the example has a posterior mean that is inconsistent on a dense subset of
the real line.

Consider y1, . . . , yn a random sample from a density f(y|θ). The distribution of
f(y|θ) is Cauchy with median θ when θ is a rational number and Normal with mean θ
and variance 1 when θ is irrational. In other words,

f(y|θ) =

{
Cauchy(θ) θ rational
N(θ, 1) θ irrational.

For the prior density, we take g(θ) to be absolutely continuous. For the sake of simplicity,
take it to be N(µ0, 1).

We will show that the posterior distribution of θ given the data is the same as
if the entire conditional distribution of y were N(θ, 1). In other words, the posterior
distribution is

f(θ|y1, . . . , yn) ∼ N

(
µ0 + ny

n + 1
,

1
n + 1

)
.

The standard Bayes estimate is the posterior mean, (µ0 + ny)/(n + 1), which behaves
asymptotically like y. If the true value of θ is an irrational number, the true sampling
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distribution is normal and the Bayes estimate is consistent. However, if the true value
of θ is a rational number, the true sampling distribution is Cauchy(θ), for which it is
well known that y is an inconsistent estimate of θ. Thus we have the Bayes estimate
inconsistent on a dense set, but a set of prior probability zero.

As the editor has pointed out, except in neighborhoods of θ = 0, the example works
just as well with the Cauchy(θ) replaced by a N(−θ, 1). Then, the posterior mean is
consistent but for the wrong value of θ.

Obviously, the key to this example is that, by virtually any concept of proximity for
distributions, the conditional distributions f(y|θ) are discontinuous on a dense set of θs.
Not only is the mean function E(y|θ) discontinuous everywhere in θ but if F (y|θ) is the
cdf of f(y|θ), measures such as the Kolmogorov-Smirnov distance supy |F (y|θ)−F (y|θ′)|
are never uniformly small in any neighborhood of θs. An interesting aspect of DFa
is that, while generally it is possible to get discrete distributions arbitrarily close to
continuous ones, DFa illustrate that you cannot always get Ferguson distributions close
enough to a continuous target.

It seems quite clear from the calculus behind this example that the proper concern
for Bayesians is whether their procedures are consistent with prior probability one.
Doob’s theorem, see DFa’s Corollary A.2, establishes precisely this result. Moreover,
there seems to be little remedy for Bayesian inconsistency if one has postulated a prior
distribution for which all interesting parameters have collective prior probability zero.
We have done that here. Who ever reports numerical values to clients that are not
rational numbers? This also seems to be the argument of DFa, that Dirichlet priors
put zero prior probability on continuous distributions and therefore the inconsistency
of Dirichlet priors with respect to continuous distributions in some applications is a
problem. Others might argue that the distribution of any observable phenomenon must
be discrete and that continuous models are merely useful approximations, in which case
the issue being called in question for Dirichlet processes is the usefulness of continuous
approximations.

Nothing in the Bayesian machinery will ensure conditional consistency everywhere.
That requires assumptions on the conditional distributions over and above the Bayesian
paradigm. However, such assumptions may well be valid considerations when developing
models for data.

2 Technical Details

Let Y = (y1, . . . , yn)′ and consider the probability Pr[θ ∈ A and Y ∈ B] for arbitrary
Borel sets A and B. Let 1[A×B](θ, Y ) be the indicator function of the set A× B. The
conditional probability Pr[θ ∈ A|Y = w] can be defined as a Y measurable function
such that for any set B

∫

B

Pr[θ ∈ A|Y = w]dP (θ, Y ) =
∫

1[A×B](θ, Y )dP (θ, Y ), (1)

see Rao (1973, p. 91) or Berry and Christensen (1979).
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First of all, the joint distribution of (θ, Y ) exists. The joint density (θ, Y ) is h(θ, Y ) ≡
f(Y |θ)g(θ). This is clearly dominated by taking g(θ) the same and replacing f(Y |θ)
with a finite multiple of a Cauchy(θ) density. Since the integral exists, we can apply
Fubini’s theorem.

Let f∗(y|θ) be the density for a N(θ, 1) distribution. We show that

Pr[θ ∈ A|Y = w] =
∫

A

f(θ|Y )dθ

where

f(θ|Y ) =
f∗(y|θ)g(θ)∫
f∗(y|θ)g(θ)dθ

.

Thus, this version of the posterior probability behaves as if there were no Cauchy com-
ponents to the sampling distribution at all. The claims of the previous section follow
immediately from this result. To see the validity of the result, observe that

∫
1[A×B](θ, Y )dP (θ, Y ) =

∫

A

∫

B

f(Y |θ)g(θ)dY dθ.

However, f(Y |θ) and f∗(Y |θ) are equal almost everywhere, so
∫

B
f(Y |θ)dY =

∫
B

f∗(Y |θ)dY
almost everywhere and

∫

A

∫

B

f(Y |θ)g(θ)dY dθ =
∫

A

∫

B

f∗(Y |θ)g(θ)dY dθ.

The distribution associated with f∗(Y |θ) is perfectly well behaved, so Bayes theorem
can be applied to give

∫

A

∫

B

f∗(Y |θ)g(θ)dY dθ =
∫

B

∫

A

f(θ|Y )f(Y )dθdY.

It follows that equation (1) holds.
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