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Bayesian Inference for Directional Conditionally
Autoregressive Models

Minjung Kyung∗ and Sujit K. Ghosh†

Abstract. Counts or averages over arbitrary regions are often analyzed using con-
ditionally autoregressive (CAR) models. The neighborhoods within CAR models
are generally determined using only the inter-distances or boundaries between the
sub-regions. To accommodate spatial variations that may depend on directions,
a new class of models is developed using different weights given to neighbors in
different directions. By accounting for such spatial anisotropy, the proposed model
generalizes the usual CAR model that assigns equal weight to all directions. Within
a fully hierarchical Bayesian framework, the posterior distributions of the param-
eters are derived using conjugate and non-informative priors. Efficient Markov
chain Monte Carlo (MCMC) sampling algorithms are provided to generate sam-
ples from the marginal posterior distribution of the parameters. Simulation studies
are presented to evaluate the performance of the estimators and are used to com-
pare results with traditional CAR models. Finally the method is illustrated using
data sets on local crime frequencies in Columbus, OH and on the elevated blood
lead levels of children under the age of 72 months observed in Virginia counties
for the year of 2000.

Keywords: Anisotropy; Bayesian estimation; Conditionally autoregressive models;
Lattice data; Spatial analysis.

1 Introduction

In many studies, counts or averages over arbitrary regions, known as lattice or area
data (Cressie 1993), are observed and spatial analysis is performed. Given a set of
geographical regions, observations collected over regions nearer to each other tend to
have similar characteristics, as compared to distant regions. In geography, this feature
is known as Tobler’s First Law (Miller 2004). From a statistical perspective, this feature
is attributed to the fact that the autocorrelation between pairs of regions tends to be
higher for regions near one another than for those farther apart. Thus, this spatial
process observed over a lattice or a set of irregular regions is usually modeled using
autoregressive models.

In general, given a set of sub-regions S1, . . . , Sn, we consider a generalized linear
model for the aggregated responses, Yi = Y (Si), as

E[Y|Z] = g(Z)
and Z = µ + η, (1)
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where Y = (Y1, . . . , Yn) = (Y (S1), . . . , Y (Sn)), Z = (Z1, . . . , Zn) = (Z(S1), . . . , Z(Sn)),
µ = (µ1, . . . , µn) = (µ(S1), . . . , µ(Sn)) and η = (η1, . . . , ηn) = (η(S1), . . . , η(Sn)). Here,
g(·) is a suitable link function, µ represents a vector of large-scale variations (or trends
over geographical regions) and η denotes a vector of small-scale variations (or spatial
random effects) with mean 0 and the variance-covariance matrix Σ.

Usually, the large scale variations, µi’s, are modeled as a deterministic function of
some explanatory variables (e.g., latitudes, longitudes and other area level covariates)
using a parametric or semiparametric regression model (see van der Linde et al. 1995)
involving a finite dimensional parameter β. However, a more difficult issue is to develop
suitable models for the spatial random effects ηi’s, as they are spatially correlated and
model specifications are required to satisfy the positive definiteness condition of the
induced covariance structure. Popular approaches to estimate such spatial covariances
are based on choosing suitable parametric forms so that the n × n covariance matrix
Σ = Σ(ω) is a deterministic function of a finite dimensional parameter ω and then
ω is estimated from data. It is essential that any such deterministic function should
lead to a positive definite matrix for any sample size n and for all allowable parameter
values ω. For example, several geostatistical models are available for point-reference
observations assuming that the spatial process is weakly stationary and isotropic (see
Cressie 1993). Several extensions to model nonstationary and anisotropic processes have
also been recently developed (see Higdon 1998; Higdon et al. 1999; Fuentes and Smith
2001; Fuentes 2002, 2005; Paciorek and Schervish 2006; Hughes-Oliver et al. 2009).
Once a valid model for µ and η is specified, parameter estimates can be obtained
using maximum likelihood methods, weighted least squares methods or the posterior
distribution of (β, ω) (see Schabenberger and Gotway 2005). Once the point-referenced
data are aggregated to the sub-regions (Si’s), the process representing the aggregated
data is modeled using integrals of a spatial continuous process (Journel and Huijbregts
1978). In this paper, the focus is on the estimation of ω with the model chosen for Σ.

In practice there are two distinct approaches to develop models for spatial covariance
based on areal data. A suitably aggregated geostatistical model directly specifies a
deterministic function of the elements of the Σ matrix. On the contrary, the conditional
autoregressive models involve specifying a deterministic function of elements of the
inverse of the covariance, Σ−1(ω) (e.g., see Besag 1974; Besag and Kooperberg 1995).
There have been several attempts to explore the possible connections between these
approaches of spatial modeling (e.g., see Griffith and Csillag 1993; Rue and Tjelmeland
2002; Hrafnkelsson and Cressie 2003). Recently, Song et al. (2008) proposed that these
Gaussian geostatistical models can be approximately represented by Gaussian Markov
Random fields (GMRFs) and vice versa by using spectral densities. However so far most
of the GMRFs that are available in literature do not specifically take into account the
anisotropic nature of areal data.

In practice, statistical practitioners are accustomed to the exploration of relation-
ships among variables, modeling these relationships with regression and classification
models, testing hypothesis about regression and treatment effects, developing meaning-
ful contrasts, and so forth (Schabenberger and Gotway 2005). For these spatial linear
models, we usually assume a correlated relationship among sub-regions and study how a
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particular region is influenced by its “neighboring regions” (Cliff and Ord 1981). There-
fore, we consider generalized linear mixed models for the area aggregate data. In these
models, the latent spatial process Zi’s can be treated as a random effect and to model it,
conditionally autoregressive (CAR) models (Besag 1974, 1975; Cressie and Chan 1989)
and simultaneously autoregressive (SAR) models (Ord 1975) have been used widely.

Gaussian CAR models have been used as random effects within generalized mixed
effects models (Breslow and Clayton 1993; Clayton and Kaldor 1987). Because the
Gaussian CAR process has the merit that under fairly general regularity conditions
(e.g., positivity conditions etc.) lower dimensional conditional Gaussian distributions
uniquely determine joint Gaussianity of the spatial CAR processes. Thus, the maximum
likelihood (ML) and the Bayesian estimates can be easily obtained. However, one of
the major limitations of the CAR model is that the neighbors are formed using some
form of a distance metric and the effect of direction is completely ignored. In recent
years, there have been some attempts to use different CAR models for different parts
of the region. For instance, Reich et al. (2007) presented a novel model for periodontal
disease and use separate CAR models for separate jaws. White and Ghosh (2008)
used a stochastic parameter within the CAR framework to determine effects of the
neighbors. Nevertheless, if the underlying spatial process is anisotropic, the magnitude
of autocorrelation between the neighbors might be different in different directions. This
limitation serves as our main motivation and an extension of the regular CAR process
is proposed that can capture such inherent anisotropy. In this article, we focus on
developing and exploring more flexible models for the spatial random effects ηi’s and
the newly proposed spatial process will be termed the directional CAR (DCAR) model.

In Section 2, we define the new spatial process and present statistical inferences
for the parameters based on samples obtained from the posterior distribution of the
parameters using suitable Markov chain Monte Carlo (MCMC) methods. In Section 3,
the finite sample performance of the Bayesian estimators are explored using simulated
data and the newly proposed DCAR models are compared to the regular CAR models
in terms of popular information theoretic criteria and various tests. In Section 4, the
proposed method is demonstrated and compared with regular CAR using data sets of
the crime frequencies in Columbus, OH and of the elevated blood lead levels of children
under the age of 72 months observed in Virginia in the year 2000. Finally, in Section 5,
some possible extensions of the DCAR model are discussed.

2 Directional CAR models

In this section, we develop a new model for the latent spatial process, Zi’s, described
in (1). For simpler illustration and notational simplicity, we assume that Si are sub-
regions in a two-dimensional space, i.e., Si ⊆ R2, ∀i. However, the proposed model and
associated statistical inference presented in this article can easily be extended to higher
dimensional data. First, we consider how to define a neighbor structure that depends
on the directions between centroids for any pair of sub-regions. Let si = (s1i, s2i) be a
centroid of the sub-region Si, where s1i corresponds to the horizontal coordinate (x-axis)
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Figure 1: The angle (in radian) αij

and s2i corresponds to the vertical coordinate (y-axis). The angle (in radians) between
Si and Sj is defined as

αij = α(Si, Sj) =

{ ∣∣ tan−1( s2j−s2i

s1j−s1i
)
∣∣ if s2j − s2i ≥ 0

−(
π − ∣∣ tan−1( s2j−s2i

s1j−s1i
)
∣∣) if s2j − s2i < 0

for all j 6= i. We consider directions of neighbors from the centroid of sub-region Si’s.
For example, in Figure 1, Sj is in the north-east (NE) region of Si and hence α(Si, Sj)
is in [0, π

2 ). Let Ni represent a set of indices (j’s) of neighborhoods for the ith region Si

that are based on some form of distance metric (say as in a regular CAR model). We
can now create new sub-regions, for each i, as follows:

Ni1 = {j : j ∈ Ni, 0 ≤ αij <
π

2
},

Ni2 = {j : j ∈ Ni,
π

2
≤ αij < π},

Ni3 = {j : j ∈ Ni, π ≤ αij <
3
2
π},

Ni4 = {j : j ∈ Ni,
3
2
π ≤ αij < 2π}.

These directional neighborhoods should be chosen carefully so that, for each i, they
form a clique. Recall that a clique is any set of sites which either consists of a single site
or else in which every site is a neighbor of every other site in the set (Besag 1974). This
would allow us to show the existence of the spatial process by using the Hammersley-
Clifford Theorem (Besag 1974, p.197-198) and to derive the finite dimensional joint
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distribution of the process using only a set of (lower dimensional) full conditional dis-
tributions. For instance, if j ∈ Ni1, then it should be ensured that i ∈ Nj3. For the
above four neighbor sets, we can combine each pair of the diagonally opposite neighbor
sets to form a new neighborhood. It means that we can create N ∗

i1 = Ni1

⋃Ni3, and
N ∗

i2 = Ni2

⋃Ni4 for i = 1, . . . , n. Now it is easy to check that if j ∈ N ∗
i1, then i ∈ N ∗

j1.
Thus, we redefine two subsets of Ni’s as follows:

N ∗
i1 = {j : j ∈ Ni and (0 ≤ αij <

π

2
or π ≤ αij <

3
2
π)}

N ∗
i2 = {j : j ∈ Ni and (

π

2
≤ αij < π or

3
2
π ≤ αij < 2π)}. (2)

Then, each of N ∗
i1 and N ∗

i2 forms a clique and it can be shown that Ni = N ∗
i1

⋃N ∗
i2.

A centroid of the sub-region Si might not be given or available in some situations,
for example, neighbor relationships are defined via adjacencies instead of distances be-
tween centroids. In this case, the directions of neighbors for each sub-region Si are not
clear. One suggestion in this situation is that we might define the directions of neigh-
bors intuitively based on the direction of adjacencies. For this topic, we need further
study. However, throughout this paper, we assume that we can define the directions of
neighbors for each sub-regions.

Before fitting a DCAR model, we would need to define these directional neighbor-
hood just as we need to define the CAR weights before fitting a CAR model. Note that
with defined directional adjacency, we can easily rotate the distance category boundaries
while maintaining the clique. For example, we can easily define the different weights to
the neighbors in the north-south region compared to those in the east-west.

The above scheme of creating new neighborhoods based on the inter-angles, αij ’s
can be extended beyond just two sub-neighborhoods so that each of the new sub-
neighborhood forms a clique. For example, we can extend the directional cliques with
4 sub-sets of neighborhoods as

N ∗
i1 = {j : j ∈ Ni and (0 ≤ αij <

π

4
or π ≤ αij <

5
4
π)}

N ∗
i2 = {j : j ∈ Ni and (

π

4
≤ αij <

π

2
or

5
4
π ≤ αij <

3
2
π)}

N ∗
i3 = {j : j ∈ Ni and (

π

2
≤ αij <

3
4
π or

3
2
π ≤ αij <

7
4
π)}

N ∗
i4 = {j : j ∈ Ni and (

3
4
π ≤ αij < π or

7
4
π ≤ αij < 2π)}.

However, it should be noted that anisotropic specifications for the geostatistical co-
variance functions are quite different from the directional specification of neighborhood
cliques used to define the inverse of the covariance. In this regard, the directional adjust-
ments within the CAR framework allow the anisotropy parameters to capture the local
(neighboring) directional effects whereas the anisotropy parameters of a geostatistical
model generally capture the overall global directional effects. Finally, it is possible to
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increase the number of sub-neighborhoods to more than 2 or 4 sub-neighborhoods. How-
ever, we cautiously note that if we keep increasing the number of sub-neighborhoods, the
number of parameter increases whereas the amount of observations available within a
sub-neighborhood decreases. Thus, we need to restrict the number of sub-neighborhoods
by introducing some form of a penalty term (e.g., via the prior distributions of anisotropy
parameters) and use some form of information criterion to choose the number of sub-
neighborhoods. This is an important but open issue within our DCAR framework.
Hence for the rest of the article, for simplicity, we restrict our attention to the case with
only two sub-neighborhoods as described in (2).

Based on subsets of the associated neighborhoods, N ∗
i1 and N ∗

i2, we can construct
directional weight matrices W(1) = ((w(1)

ij )) and W(2) = ((w(2)
ij )), respectively. For

instance, we define the directional proximity matrices as w
(1)
ij = 1 if j ∈ N ∗

i1 and

w
(2)
ij = 1 if j ∈ N ∗

i2. Notice that W = W(1) + W(2) reproduces the commonly used
proximity matrix as in a regular CAR model.

In order to model the large-scale variations, we assume a canonical generalized linear
model, µi = xT

i β, where xi’s are vectors of predictor variables specific to the sub-region
Si and β = (β1, . . . , βq)T is a vector of regression coefficients. Notice that nonlinear
regression functions, including smoothing splines and polynomials, can be re-written in
the above canonical form (e.g., see Wahba 1977; van der Linde et al. 1995). From model
(1) it follows that

E[Z] = Xβ and Var[Z] = Σ(ω), (3)

where ω denotes the vector of spatial autocorrelation parameters and other variance
components. Notice that along with (3), the model (1) can be used for discrete responses
using a generalized linear model framework (Schabenberger and Gotway 2005, p.353).
Now, we develop a model for Σ(ω) that accounts for anisotropy.

Let δ1 and δ2 denote the directional spatial effects corresponding to Ni1’s and Ni2’s,
respectively. We define the distribution of Zi conditional on the rest of Zj ’s for j 6= i
using only the first two moments:

E[Zi|Zj = zjj 6= i,xi] = xT
i β +

2∑

k=1

δk

n∑

j=1

w
(k)
ij

(
zj − xT

j β
)

Var[Zi|Zj = zjj 6= i,xi] =
σ2

mi
, (4)

where w
(k)
ij ≥ 0 and w

(k)
ii = 0 for k = 1, 2 and mi =

∑n
j=1 wij .

The joint distribution based on a given set of full conditional distributions can be
derived using Brook’s Lemma (Brook 1964) provided the positivity condition is satisfied
(e.g., see Besag 1974; Besag and Kooperberg 1995). For the DCAR model, by construc-
tion, it follows that each of N ∗

i1 and N ∗
i2 defined in (2) forms a clique for i = 1, . . . , n.

Thus, it follows from the Hammersley-Clifford Theorem that the latent spatial process
Zi of a DCAR model exists and is a Markov Random Field (MRF). Therefore, we can
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derive the exact joint distribution of the DCAR process, Zi’s, by assuming that each of
the full conditional distribution is a Gaussian distribution.

2.1 Gaussian DCAR models

The Gaussian CAR model has been used widely as a suitable model for the latent spatial
process Zi. In this section, to derive the joint distribution of the Zi’s from a set of given
full conditional distributions, we use Brook’s Lemma.

Assume that the full conditional distributions of Zi’s are given as

Zi|Zj = zj , j 6= i,xi ∼ N


xT

i β +
2∑

k=1

δk

n∑

j=1

w
(k)
ij

(
zj − xT

j β
)
,
σ2

mi


 , (5)

where w
(k)
ij for k = 1, 2 are the directional weights. It can be shown that this latent

spatial DCAR process Zi’s is a MRF. Thus, by Brook’s Lemma and the Hammersley-
Clifford Theorem, it follows that the finite dimensional joint distribution is a multivari-
ate Gaussian distribution given by

Z ∼ Nn

(
Xβ, σ2

(
I− δ1W(1) − δ2W(2)

)−1

D
)

,

where Z = (Z1, . . . , Zn)T and D = diag( 1
m1

, . . . , 1
mn

). For simplicity, we denote the
variance-covariance matrix of the DCAR process by ΣZ ≡ σ2(I−δ1W(1)−δ2W(2))−1D.

For a proper Gaussian model, the variance-covariance matrix ΣZ needs to be positive
definite. First, notice that if we use the standardized directional proximity matrices

W̃(k) = ((w̃(k)
ij =

w
(k)
ij

mi
)), k = 1, 2, it can be easily shown that ΣZ is symmetric. Thus,

the finite dimensional joint distribution is given by

Z ∼ Nn

(
Xβ, σ2

(
I− δ1W̃(1) − δ2W̃(2)

)−1

D
)

, (6)

Next, we derive a sufficient condition that ensures that the variance-covariance matrix
ΣZ is non-singular and hence making it a positive definite matrix. As D is a diagonal
matrix, we only require suitable conditions on W̃(k) and on δk for k = 1, 2. The following
results provides a sufficient condition:

Lemma 1. Let A =
(
aij

)
be a n × n symmetric matrix. If aii >

∑
j 6=i |aij | for all i,

then A is positive definite.

Proof: See Ortega 1987, P.226. 2

Lemma 2. Let A = I − ∑K
k=1 δkW̃(k) be an n × n matrix where

∑K
k=1 W̃(k) is a

symmetric matrix with non-negative entries, diagonal 0 and each row sum equal to
unity. If max1≤k≤K |δk| < 1, then the matrix A is positive definite.
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Proof: Let aij denote the (i, j)th element of A. Notice that for each i = 1, 2 . . . , n,
we have

∑

j 6=i

|aij | =
∑

j 6=i

|
K∑

k=1

δkw̃
(k)
ij | ≤

K∑

k=1

|δk|
∑

j 6=i

w̃
(k)
ij <

K∑

k=1

∑

j 6=i

w̃
(k)
ij = 1 = aii

Hence it follows from Lemma 1 that A is positive definite. 2

Notice that when δ1 = δ2 = ρ, DCAR(δ1, δ2, σ
2) reduces to CAR(ρ, σ2) and hence

the regular CAR model is nested within the DCAR model provided we use a prior that
puts positive mass on the line δ1 = δ2. The next step of our statistical analysis is to
estimate the unknown parameters of the DCAR model based on the observed responses
and the explanatory variables, so that it enables us to stabilize estimates within the
regions using the estimated spatial correlation. In the next section, we discuss Bayesian
methods for the spatial autoregressive models.

2.2 Parameter estimation using Bayesian methods

With the Gaussian DCAR model of the latent spatial process Zi’s, we describe how
to estimate parameters and associated measures of uncertainties based on Bayesian
methods.

Bayesian inference about the unknown parameters has been considered for statistical
models for which the likelihood functions are analytically intractable, because of possibly
high-dimensional parameters or due to the fact that the likelihood function involves
high-dimensional integrations (e.g., when Yi’s are discrete valued). In the Gaussian
DCAR model, because the likelihood function may involve high-dimensional integration,
posterior estimation is not easy to achieve analytically. In particular, the joint posterior
density of δ1 and δ2 does not have a closed form. Also, when a generalized mixed model
is used with the random spatial effects having a DCAR model, analytical exploration
of the posterior distribution becomes almost prohibitive. Thus, the Gaussian DCAR
model leads to an intractable posterior density and numerical methods are needed for
inference about unknown parameters.

Let θ = (βT , σ2, δT )T , where β = (β1, . . . , βp) and δ = (δ1, δ2). The posterior
density π(θ|z) is proportional to the product of the prior distribution π(θ) of unknown
parameters and the sampling density of data Z given θ. Therefore, by using Markov
chain Monte Carlo (MCMC) methods, we can obtain samples from the path of Markov
chains whose stationary density is the posterior density.

For the DCAR process Zi’s, under the joint multivariate Gaussian distribution, the
likelihood function is given by

L(θ|X,z) ∝ |σ2A∗(δ)−1D|−1/2

exp
{− 1

2σ2
(z −Xβ)T D−1A∗(δ)(z −Xβ)

}
, (7)

where A∗(δ) = I− δ1W̃(1)− δ2W̃(2) and D = diag( 1
m1

, . . . , 1
mn

). We consider a class of
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prior distributions that ensure that the posterior distribution is proper even when the
priors are improper. A class of such prior distribution is given by

π(β|σ2, δ) ≡ 1

π(σ2|δ) ∝
(

1
σ2

)a+1

e−
b

σ2 a, b > 0 and

π(δ) =
1
4
I[max(|δ1|, |δ2|) < 1].

As the prior distribution of β is not proper, we need to ensure that the posterior is
proper. Given prior distributions above, the joint posterior distribution of θ can be
shown to have the following form:

π(θ|X, z) ∝ L(θ|X, z)π(β|σ2, δ)π(σ2|δ)π(δ)

∝ (σ2)−n/2−a−1
∣∣A∗(δ)−1D

∣∣−1/2

exp
{
− 1

2σ2

[
(z −Xβ)T D−1A∗(δ)(z −Xβ) + 2b

]}

×I[max(|δ1|, |δ2|) < 1]. (8)

Here, if δ is known, like the regular posterior distribution in a regression model, the
posterior distribution of β given σ2 and δ is a Guassian distribution with complicated
form of the mean and variance, and the posterior of σ2 given δ is an inverse gamma
distribution. For the Gaussian DCAR model, assume that the design matrix X is full
rank and the variance-covariance matrix ΣZ is positive definite. Thus, based on the
sufficient conditions given by Sun et al. (1999), one can easily deduce that the posterior
distribution of θ|z is proper.

We can also consider the conditionally conjugate priors for β and σ2. Given the
values of δ, the likelihood function of the DCAR model (7) is like a regression model
with mean Xβ and variance-covariance σ2A∗(δ)−1D. Thus, a conditional conjugate
prior given δ can be considered in two stages according to

β|σ2, δ ∼ N
(
β0, σ

2A∗(δ)−1D
)

σ2|δ ∼ IG(a0, b0).

Given the conditionally conjugate prior distributions and a marginal prior for δ, the
joint posterior distribution of θ is given by

π(θ|X, z) ∝ L(θ|X, z)π(β|σ2, δ)π(σ2|δ)π(δ)
∝ (σ2)−(n/2+p/2+a0)−1 × I[max(|δ1|, |δ2|) < 1]

× exp
{
− 1

2σ2
[ s̃

+
(
β − β̃

)T (
XT D−1A∗(δ)X + (A∗(δ)−1 D)−1

)(
β − β̃

)]}
(9)
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where

β̃ =
(
XT D−1A∗(δ)X + (A∗(δ)−1D)−1

)−1
(
(A∗(δ)−1D)−1β0 + XT D−1A∗(δ)Xβ̂

)
,

s̃ = σ̂2(n− p) + 2b0 +
(
β0 − β̃

)T

(A∗(δ)−1D)−1β0 +
(
b̂− β̃

)
XT D−1A∗(δ)Xβ̂,

β̂ =
(
XT D−1A∗(δ)X

)−1
XT D−1A∗(δ)z

σ̂2 =
(z −Xb̂)T D−1A∗(δ)(z −Xb̂)

n− p

and p is the dimension of β. Then the conditional posterior distributions of the param-
eters are given by

β|σ2, δ,Z ∼ N
(
β̃,XT D−1A∗(δ)X + (A∗(δ)−1D)−1

)
and

σ2|δ,Z ∼ IG
(
(n/2 + p/2 + a10), s̃

)
.

However, as we discussed above, there is no closed form for the posterior distribution
of δ. Therefore, we need numerical methods to obtain the posterior summaries (e.g.,
suitable moments) of θ.

In order to obtain samples from the path of the Markov chains, we need to con-
sider the starting values of each parameters. In the DCAR model of the latent spatial
process Zi’s , the parameter space Θ of θ can be defined as Θ =

{
θ|β ∈ Rp, σ2 ∈

(0,∞), I[max(|δ1|, |δ2|) < 1]
}
. Within Θ, we can choose several starting points for

chains and run parallel chains. After burn-in, we obtain approximate samples from the
posterior density π(θ|z).

2.3 A simulation study

In order to study the finite sample performance of Bayesian estimators, we conduct a
simulation study. In this simulation study, we focus on the behavior of Gaussian DCAR
model of the latent spatial process Z = (Z1, . . . , Zn) in (6).

Mardia and Marshall (1984) conducted a simulation study with 10×10 unit spacing
lattice, based on samples generated from a normal distribution with mean zero and a
spherical covariance model. The sampling distribution of the MLE’s of the parameters
were studied based on 300 Monte Carlo samples. Following a similar setup, for our
simulation study, we selected a 15×15 unit spacing lattice and generated N = 100 data
sets each of size n = 225 from a multivariate normal distribution with mean Xβ and
the variance-covariance matrix σ2A∗(δ)−1D, where A∗(δ) = I−δ1W̃(1)−δ2W̃(2). The
X matrix was chosen to consist of the coordinates of latitude and longitude in addition
to a column of ones to represent an intercept. The true value of the parameters were
fixed at β = (1,−1, 2)T and σ2 = 2. For the above mentioned DCAR model, to study
the behavior of posterior distributions for δ1 and δ2, we consider four different test cases
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of δ’s:

Case 1: δ1 = −0.95 & δ2 = −0.97
Case 2: δ1 = −0.30 & δ2 = 0.95
Case 3: δ1 = −0.95 & δ2 = 0.97
Case 4: δ1 = 0.95 & δ2 = 0.93.

Following Lemma 2, we restrict our choice of δ1 and δ2 to satisfy the sufficient condition,
max1≤k≤K |δk| < 1. Thus, for the near boundary values of δ1 and/or δ2, like −0.95 and
0.93, there might be some unexpected behavior of the sampling distribution. Thus,
we generate data sets with two negative near boundary weights of δ (Case 1) and
two positive near boundary weights of δ (Case 4) in order to explore extreme cases,
respectively. In our applications we have found that such extreme values are quite
common within CAR or DCAR models (see Section 4). Besag and Kooperberg (1995)
also discussed similar situations in their paper. We also consider settings with one
positive near boundary weight assigned to one direction and one negative near boundary
weight assigned to the other direction for extremely different weighted situations (Case
3). Moreover, we give somewhat mild weight to one direction and positive boundary
weight to a different direction to study the behavior of a strong positive spatial effect
in one direction only (Case 2). Thus, with extreme boundary values of δ, we study the
sampling distributions of the directional spatial effect parameters.

As we discussed in Section 2.2, for the Bayesian estimates, we consider three sets of
initial values and run three parallel chains. We use a burn-in of B = 1000 for each of
the three chains followed by M = 2000 iterations. This scheme produces a sample of
6000 (correlated) values from the joint posterior distribution of the parameter vector.

As Bayesian estimation involves the use of computationally intensive MCMC meth-
ods, we studied the finite sample performance of Bayes estimates with only N = 100
repetitions. The (coordinatewise) posterior median of the parameter vector is used as a
Bayes estimate because of its robustness as compared to the posterior mean, especially
when the posterior distribution is skewed. Also, for each coordinate of the parameter
vector, we computed a 95% equal tail credible set (CS) using 2.5 and 97.5 percentiles as
an interval estimate. Then, we computed the 95% nominal coverage probability (CP)
by using the following rule: 95% CP = 1

N

∑N
i=1 I(θ0 ∈ 95%CS).

We summarize the sampling distribution of parameters numerically in Table 1. The
bias represents the empirical bias of posterior medians as compared to the true value,
the Monte Carlo Standard Error (MCSE) is the standard error of the posterior medians,
the p-value is based on testing the average of posterior medians against the true value
and 95% CP represents the percentage of times the true value was included within the
95% CS. All of these summaries are based on 100 replications. We observe that for all
the four choices of δ, there are no significant biases in these Bayesian estimates with
MC repetitions of size 100. (e.g., all p-values are bigger than 0.18). When the true δ1

or δ2 is positive, the bias of the Bayesian estimate tends to be slightly negative, except
for δ2 in Case 4. For Case 3, the nominal 95% coverage probabilities (CP’s) of δ1 and δ2

are away from 0.95 and the MCSE’s are not small. Also, from Figure 2, we observe that
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δ1 δ2 σ2 δ1 δ2 σ2

True -0.95 -0.97 2.00 -0.30 0.95 2.00
bias 0.23 0.27 0.17 0.15 -0.21 0.11

MCSE 0.22 0.20 0.20 0.32 0.18 0.21
P-value 0.29 0.19 0.40 0.64 0.24 0.60
95% CP 0.99 1.00 0.92 0.97 0.93 0.92

δ1 δ2 σ2 δ1 δ2 σ2

True -0.95 0.97 2.00 0.95 0.93 2.00
bias 0.20 -0.18 0.26 -0.01 0.03 -0.05

MCSE 0.15 0.17 0.21 0.03 0.03 0.37
P-value 0.18 0.28 0.21 0.74 0.28 0.89
95% CP 0.89 0.93 0.84 0.98 0.89 0.67

Table 1: Finite sample performance of posterior estimates of the parameters of DCAR models
(based on 100 replications).

for the extremely differently positively (δ1) and negatively (δ2) weighted situations, the
posterior estimates seem to estimate true values with somewhat less precision. However,
the distribution of δ is skewed when the true value is in the boundary. It might be the
reason why we get somewhat larger values of MCSEs. For Case 4, the nominal 95%
CP’s of δ1 and δ2 are 0.98 and 0.89, respectively, and biases and MCSE’s are smaller
than those for any other cases. Thus, Bayesian methods based on posterior medians
tend to estimate the true value quite well even when the true values of δ1 and δ2 are near
the positive boundary. The higher than nominal coverage probability of the Bayesian
interval estimates based on equal tail CS may be due to the skewness of the sampling
distribution that we have observed in our empirical studies. Alternatively, a 95% HPD
interval can be obtained using the algorithm of Hyndman (1996). It was observed that
the posterior distributions of δ1 or δ2 are skewed to the right and to the left for the
negative extreme value and the positive extreme value, respectively.

The bias of the posterior median of σ2 tends to be slightly negative for Case 4, but
for other cases, the biases are slightly positive. Again note that these biases are not
statistically significant (all four p-values are greater than 0.21). Thus, in these cases,
Bayesian estimation tends to estimate the true value quite well. However, for Case 4,
the MCSE of the Bayesian estimates of σ2 is bigger than those for other cases and the
nominal coverage is only 0.67 as compared to a targeted value of 0.95.

For the estimation of the β’s, the estimates had small MCSE, and did not have
any significant bias, except for β0 in Case 4. Also we observed that the posterior
distributions of the β’s are fairly symmetric (results not reported due to lack of space
but are available in Kyung 2006).
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Figure 2: Histogram of 100 posterior estimate of δ1 and δ2 based on the DCAR process data
with true δ1 = −0.95 and δ2 = 0.97 ( Posterior median of M = 6000 Gibbs samples with 100
replications).
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3 Comparing the performances of DCAR and CAR mod-
els using an information criterion

In Section 2.1 we have shown that the DCAR model is a generalization of the CAR model
and hence the DCAR model is expected to provide a reasonable fit to a given data set
possibly at the cost of loss of efficiency, especially when the data arise from a CAR model.
So it is of interest to explore the loss (gain) in efficiency of a DCAR model over the
regular CAR model when the data arises from a CAR (DCAR) model. There are several
criteria (e.g., information criteria, cross-validation measures, hypotheses tests, etc.) to
compare the performances across several competing models. Given the popularity of the
Deviance Information Criterion (DIC) originally proposed by Spiegelhalter et al. (2002)
we use DIC to compare the performance of fitting DCAR and CAR models to data
generated from a CAR model and then also from a DCAR model. Another advantage
of using DIC is that this criterion is already available within the WinBUGS software. To
calculate DIC, first we define the deviance as

D(θ) = −2 log L(θ|X, z) + 2 log h(z),

where h(z) is standardizing function of the data z only and remains the same across
all competing models. In general it is difficult to find the normalizing function h(z) for
models involving spatial random effects. However given that we are interested in the
differences of DIC between the models, we may use the following definition of deviance
by dropping the h(z) term:

D(θ) = −2 log L(θ|X, z),

as the normalizing term will cancel anyway when we take the difference between two
DIC’s with same h function. Based on the deviance, the definition of the effective
number of parameters, denoted by pD, is defined as:

pD = E[D(θ)|z]−D
(
E[θ|z]

)
= D̄ −D(θ̄),

where θ̄ = E[θ|y] is the posterior mean of θ. The DIC is then defined as

DIC = D(θ̄) + 2pD.

In theory, we select the model with the smaller DIC values. DIC and pD are easily
computed by MCMC methods. We consider two cases based on data generated from a
(i) CAR model and (ii) DCAR model.

3.1 Results based on data generated from CAR model

With samples from a Gaussian CAR process, we fit both CAR and DCAR models,
respectively. Notice that if there is no directional difference in the observed spatial data,
then the estimate of δ1 should be very similar to the estimate of δ2. Thus we might
expect very similar estimates for δ1 and δ2 based on a sample from a CAR process
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δ1 δ2 ρ δ1 δ2 ρ
True -0.95 -0.95 -0.95 -0.25 -0.25 -0.25
bias 0.01 0.01 0.02 0.14 0.15 0.08

MCSE 0.02 0.02 0.00 0.29 0.26 0.33
P-value 0.67 0.66 0.00 0.63 0.57 0.81
95% CP 1.00 1.00 1.00 1.00 1.00 0.99

δ1 δ2 ρ
True 0.00 0.00 0.00
bias -0.02 0.00 -0.01

MCSE 0.30 0.26 0.30
P-value 0.95 1.00 0.97
95% CP 1.00 1.00 1.00

δ1 δ2 ρ δ1 δ2 ρ
True 0.25 0.25 0.25 0.95 0.95 0.95
bias -0.10 -0.09 0.01 -0.15 -0.06 -0.06

MCSE 0.31 0.26 0.32 0.11 0.08 0.04
P-value 0.85 0.72 0.98 0.17 0.45 0.14
95% CP 0.99 1.00 0.98 1.00 1.00 1.00

Table 2: Performance of Bayesian estimates of δ1’s, δ2’s (DCAR) and ρ’s (CAR) based on
data generated from CAR model

because CAR(ρ, σ2) = DCAR(ρ, ρ, σ2). In fact, it might be a good idea to use a prior
on (δ1, δ2) which allows for a positive mass on the diagonal line δ1 = δ2 to capture a CAR
model with positive probability. To study the performance of the model as function of
the key parameter ρ of the CAR model, we consider five different values of ρ: Case
1:ρ = −0.95, Case 2:ρ = −0.25, Case 3:ρ = 0, Case 4:ρ = 0.25 and Case 5:ρ = 0.95. For
each case, we generate 100 sets of data each of sample size n = 225 from a CAR model
with ρ taking values as one of above five cases, while the other parameters (β and σ) are
fixed at their true values (see Section 2.3). First we compare the posterior estimates of
the ρ when we fitted a CAR model and that of δ1 and δ2 when we fitted a DCAR model
to data generated from one of the five CAR models. In Table 2 we compare the bias (of
the posterior median), Monte Carlo Standard Error (MCSE) of the posterior median,
the p-value for testing the null hypothesis that the (MC) average of the 100 posterior
medians is the same as the true value, and the 95% nominal coverage probability (CP)
of the 95% posterior intervals constructed by computing 2.5% and 97.5% percentiles of
the posterior distribution of the parameters.

From the results (presented under the columns ρ in Table 2) based on the posterior
estimates (median and 95% equal-tail intervals) obtained by fitting a CAR model, we
observe that for all cases, the biases of ρ are slightly positive except Case 5, but such
empirical biases are not statistically significant (all p-values being bigger than 0.06).
The nominal 95% CP’s of ρ’s are higher than their targeted value of 0.95 for all cases.
For all cases, the biases of posterior medians of σ2 tend to be slightly positive. However,
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DGP CAR(ρ = −0.95) CAR(ρ = −0.25) CAR(ρ = 0.00)
Fit CAR DCAR CAR DCAR CAR DCAR

PCD(DIC) 100% 0% 51% 49% 34% 66%
P-value 0.64 0.50 0.47
DGP CAR(ρ = 0.25) CAR(ρ = 0.95)
Fit CAR DCAR CAR DCAR

PCD(DIC) 55% 45% 100% 0%
P-value 0.50 0.68

Table 3: Comparison of DIC between CAR and DCAR models with data sets from CAR
process (PCD = Percentage of Correct Decision)

again we found that these empirical biases in all cases are not significant because all
calculated p-values are at least 0.5 (results not reported). Finally, with regard to the
performance of the posterior medians of β’s, we did not find any significant biases (all
p-values being bigger than 0.32). We have not presented the details of these results
(for σ2 and β’s) due to lack of space, but detailed results are available online in the
doctoral thesis of the first author (Kyung 2006). Next we compare the results obtained
by fitting a DCAR model to the same data sets generated from the five CAR models
(as described above).

Performance of DCAR model under mis-specification

In Table 2 we also present the bias of the posterior medians of δ1 and δ2, their MCSE’s,
p-values (for testing δ1 = δ2 = ρ), and the 95% CP’s of the 95% equal-tailed posterior
intervals, when a DCAR model is fitted to each of the same 100 data sets generated
from each of five CAR models (as described in the previous section). Although DCAR
is not the true model that generated the data in these cases, we observe that for all
five cases, the biases of posterior medians of δ1 and δ2 are marginally positive for Cases
1, 2 and 3, whereas, the biases are slightly negative for Cases 4 and 5. However,
these biases are not statistically significant (all p-values being greater than 0.09). This
indicates that even when the data arise from a CAR model, the posterior medians of
δ’s can well approximate the true ρ value of the CAR model. As expected, the MCSE’s
of the posterior medians of δ’s are slightly larger than that of the ρ’s, but such loss
in efficiency for fitting an incorrect model is not prominent either. Finally, in terms
of maintaining the nominal coverage of the posterior intervals, the results from both
model fits are comparable. Thus, in summary, when we fit a DCAR model to data sets
generated from a CAR model, the posterior estimates obtained from the DCAR model
are approximately unbiased and there is no big loss in efficiency.

In addition to comparing the parameter estimates based on fitting both CAR and
DCAR models to data generated from a CAR model we have also used DIC (as defined
earlier in this section) to compare the overall performance of these models. By a data
generating process (DGP) we mean the true model that generates data for our simulation
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DGP CAR(ρ = −0.95) CAR(ρ = −0.25) CAR(ρ = 0.00)

E
(

Var(DCAR)
VarCAR

)
1.009(0.000) 0.999(0.003) 0.998(0.003)

DGP CAR(ρ = 0.25) CAR(ρ = 0.95)

E
(

Var(DCAR)
VarCAR

)
0.999(0.004) 1.009(0.001)

Table 4: The average ratio of posterior variances for DCAR and CAR models: Aver-
age(Var(DCAR)/Var(CAR)) based on Gibbs sampler from data sets of CAR process

study and we use the notation FIT to denote the model that was fitted to a simulated
data set. So in this case CAR is the DGP while FIT can be either a CAR or a DCAR
model. We measure the performance of the FIT by computing the percentage of correct
decisions (PCD) made by DIC in selecting one of the two models. In other words, PCD
represents the percentage of the times the DIC value, based on fitting a CAR model,
is lower than that of fitting a DCAR model to the same sets of data obtained from
a CAR model. We also report the p-values based on performing a two sample test
that compares the average values of the DICs (over 100 replications) between CAR and
DCAR models when the true data is generated from a CAR model.

From Table 3, we observe that when the DGP is a CAR with ρ = −0.95 (negative
boundary) and ρ = 0.95 (positive boundary), the PCD based on DIC is 100% which
means that the DIC correctly identifies a CAR model all the times when data are
generated from a CAR model with ρ = ±0.95. However for other cases, the PCD’s are
not that strongly in favor of a CAR model (when compared against a DCAR model)
even when the data arise from a CAR model. Thus, when the spatial dependence in a
CAR model is weak, DIC will not be able to distinguish between the CAR and DCAR
models. Again such a phenomenon is expected as DCAR nests CAR when δ1 = δ2 = ρ
and this is further evidenced by looking the p-values, which suggest that we can not
reject the null hypotheses that the DIC values are the same for both models.

For the measure of relative efficiency, the average ratio of posterior variances for
DCAR and CAR models based on data sets of the CAR processes are reported in
Table 4. From Table 4, we observe that there are no differences between the posterior
variance for DCAR and for the CAR models based on the Gibbs sampler from data
sets of each CAR process. Again such a phenomenon is expected, as DCAR nests CAR
when δ1 = δ2 = ρ.

3.2 Results based on data generated from DCAR model

In this section, our DGP (data generating process, as defined in earlier sections) is a
DCAR model while the FIT is again either a CAR or a DCAR model. Here again we
use the data sets generated from four DCAR models (as defined in Section 2.3) but fit
a CAR model in addition to the DCAR models that we fitted earlier (see Section 2.3
for details). In this case it is of interest to find out how the posterior estimates of ρ of a
CAR model behave, especially when the data arise from a DCAR model with δ values
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ρ0 = δ1+δ2
2

DGP: δ1 = −0.95, δ1 = −0.30, δ1 = −0.95, δ1 = 0.95,
DCAR δ2 = −0.97 δ2 = 0.95 δ2 = 0.97 δ2 = 0.93
True -0.96 0.33 0.01 0.94
bias 0.25 0.07 0.03 0.03

MCSE 0.13 0.31 0.38 0.02
P-value 0.09 0.83 0.94 0.13
95% CS 1.00 0.99 0.98 0.85

Table 5: Fitting a CAR model to data generated from the DCAR process

well separated (e.g., for the cases 2 and 3 of Section 2.3).

Performance of CAR model under mis-specification

Based on generating 100 data sets from different DCAR models, we observed that the
posterior median of ρ seems to estimate the average of the true values of δ1 and δ2 of
the DCAR models. Therefore, we define a pseudo-true value of ρ as ρ0 = δ1+δ2

2 and
compare the performance of the posterior median of ρ to this so-called “pseudo-true”
value of ρ0. In Table 5 we list the empirical bias of posterior median of ρ, the MCSE
of these posterior medians, the p-value for testing the null hypothesis ρ = ρ0 and the
95% nominal CP based on the 95% equal-tail posterior intervals of ρ when a CAR
model is fitted to four DCAR models (as described in Section 2.3). It is clear from
the results reported in this table that the ρ parameter of the CAR model attempts to
estimate (δ1 + δ2)/2 of the DCAR model and thus will lead to a misleading conclusion,
especially when δ’s are of opposite signs but with large absolute values (e.g., cases 2 and
3 of Section 2.3). In other words, when there are strong spatial dependencies possibly
in orthogonal directions, the CAR model would fail to capture such dependencies as
opposed to a DCAR model. On the other hand, when the DGP is a CAR model,
the DCAR model still provides a very reasonable approximation to that DGP (see the
results on Section 3.1). This is one of the main advantages of fitting a DCAR model
over a regular CAR model.

In Table 6, we compare the performance of DIC in choosing the correct model (which
is a DCAR model in this case) when we fitted both CAR and DCAR models. The
numbers reported in this table have similar interpretations as in Table 3. As expected,
for the cases 1 and 4 (where δ1 ≈ δ2), the DIC more often chooses the CAR model as the
best parsimonious model even when the data arise from a DCAR model. However, the
p-values (for testing the null hypothesis of no difference in average DIC values indicate
that such DIC values are not statistically significantly different. On the other hand
when the DCAR model is sharply different from a CAR model (e.g., in cases 2 and 3,
where δ1δ2 < 0), the DIC correctly picks DCAR as the better model more frequently
(e.g. 99% of the times in case 3) as compared to a CAR model. Moreover, the p-values
suggest that in these two cases the DIC values obtained by fitting CAR and DCAR
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DGP DCAR(δ1 = −0.95, δ2 = −0.97) DCAR(δ1 = −0.30, δ2 = 0.95)
Fit CAR DCAR CAR DCAR

PCD(DIC) 91% 9% 30% 70%
P-value 0.59 0.03
DGP DCAR(δ1 = −0.95, δ2 = 0.97) DCAR(δ1 = 0.95, δ2 = 0.93)
Fit CAR DCAR CAR DCAR

PCD(DIC) 1% 99% 56% 44%
P-value 0.01 0.73

Table 6: Comparison of DIC between CAR and DCAR models with data sets from DCAR
process (PCD = percentage of correct decisions)

DGP DCAR(δ1 = −0.95, δ2 = −0.97) DCAR(δ1 = −0.30, δ2 = 0.95 )

E
(

Var(DCAR)
VarCAR

)
1.002(0.003) 0.994(0.007)

DGP DCAR(δ1 = −0.95, δ2 = 0.97) DCAR(δ1 = 0.95, δ2 = 0.93)

E
(

Var(DCAR)
VarCAR

)
0.983(0.010) 1.041(0.247)

Table 7: The average ratio of posterior variances for DCAR and CAR models: Aver-
age(Var(DCAR)/Var(CAR)) based on Gibbs sampler from data sets of DCAR process

models are significantly different in favor of the DCAR model when the DGP is indeed
a DCAR model.

The average ratio of posterior variances for DCAR and CAR models based on data
sets of the DCAR process are reported in Table 7 for the measure of relative efficiency.
From Table 7, we observe that there are no differences in the posterior variances for
DCAR and for CAR models based on the Gibbs sampler For Cases 1 and 4 (where
δ1 ≈ δ2). Also, for Case 2, the posterior variances are not different for DCAR and CAR
models. However, for the extreme case (Case 3), the posterior variances of the DCAR
model are smaller than that of the CAR model. Thus, when there are strong spatial
dependencies, possibly in orthogonal directions, the DCAR model would capture such
dependencies more precisely than a CAR model.

From our extensive simulation studies we can make the following fairly general con-
clusions: (i) DCAR models provide a reasonably good fit and approximately unbiased
parameter estimates even when the data arise from a CAR model, (ii) CAR models
cannot provide an adequate fit for data sets arising from a DCAR model, especially
when there are strong spatial dependencies in opposite directions, (iii) DIC performs
reasonably well in choosing a parsimonious model when CAR and DCAR models are
compared.
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4 Data analysis

We illustrate the fitting of DCAR and CAR models using real data sets. For each
data set, we consider a linear regression model with iid errors and correlated errors
(modeled by CAR and DCAR processes). We obtain the Gibbs sampler of ρ, σ2,
β = (β0, β1, β2)T and δ = (δ1, δ2) under different modeling assumptions. We consider
the following models:

Zi = Xiβ + εi i = 1, . . . , n

Model 1. εi ∼ N(0, σ2): iid errors

Model 2. ε ∼ N
(
0, σ2(I − ρW̃ )−1D

)
: CAR errors

Model 3. ε ∼ N
(
0, σ2(I − δ1W

(1) − δ2W
(2))−1D

)
: DCAR errors ,

where Zi = f(Yi) and f(·) is a transformation function of the response Yi.

In addition to using DIC to compare the models with CAR and DCAR error struc-
tures, we also computed a cross-validation measure (leave-one-out mean square predic-
tive error (MSPE)). This is defined as follows:

MSPE =
1
n

n∑

i=1

(yi − ŷ−i)2,

where ŷ−i = E(Yi|y−i) is the posterior predictive mean of Yi obtained by fitting a
model based on a reduced data set consisting of all (n-1) observations leaving out the
ith observation yi.

4.1 Crime distribution in Columbus, Ohio

We illustrate the performance of fitting CAR and DCAR models to a real data set for
estimating the crime distribution in Columbus, Ohio collected during the year of 1980.
The original data set can be found in Table 12.1 of Anselin (1988, p.189). Using this
interesting data set, Anselin (1988) illustrated the presence of separate levels of spatial
dependencies by fitting two separate regression curves with simultaneous autoregressive
(SAR) error models for the east and west sides of Columbus city. As a result, the author
concluded that when a SAR error model is used, there exists structural instability in
terms of the regression models. In this paper, we fit proposed models to this data set.
Each of the models is a single regression curve but allow spatial anisotropy in the errors
by modeling the errors as a CAR or DCAR model.

The data set consists of the observations collected in 49 contiguous Planning Neigh-
borhoods of Columbus, Ohio. Neighborhoods correspond to census tracts, or aggregates
of a small number of census tracts. In this data set, the crime variable represents the
total number of residential burglaries and vehicle thefts per thousand households (hence-
forth denoted by Yi for the ith neighborhood). As possible predictors for crime variable,
we use the income level and housing values for each one of these 49 neighborhoods. The
income and housing values are measured in thousands of dollars.



M. Kyung and S. K. Ghosh 695

6 7 8 9 10 11

11
12

13
14

15

[14.3,19.3]
(19.3,30.6]
(30.6,39.7]
(39.7,53.5]
(53.5,68.9]

Columbus OH: residential burglaries and vehicle 
 thefts per thousand households, 1980

5

1
62

7
8

4 3

18 10383739
40 936 114241

17
43

19
1235 32 20

21
31333445 1322

44 2346 30 24
47 16 14

49
29 25

2848
15

27
26

0 1 2 3 4

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

distance
se

m
iv

ar
ia

nc
e

0°
45°
90°
135°

Directional variogram of GLM residuals

Figure 3: The crime distribution of 49 neighborhoods in Columbus, OH, and the correlogram
of the deviance residuals after fitting a Poisson regression model.

As a part of our preliminary exploratory data analysis, in Figure 3, we plot the the
crime counts divided into 5 intervals, based on 20% quantiles. During our initial analysis
we observed that Y4 and Y17 have extremely small values and hence could possibly be
eliminated as outliers or incorrectly recorded values (as these two values were less than
2.5% percentile of the Yi’s). For rest of the analysis, we use the remaining n = 47
neighborhoods for our analysis. From the map in Figure 3 we observe that there seems
to be a relatively higher crime frequencies in NW/SE direction than those frequencies in
its orthogonal direction, though such differences in crime distribution are not strikingly
evident from this plot.

From the estimated directional spatial correlogram in Figure 3, it appears that
spatial correlations are not as strong. However, as the distance between neighbors
increases, the estimated directional spatial correlation is different from those in different
directions. There might be hidden effects of the different directional spatial correlation,
thus, we assume a Gaussian DCAR spatial structure.

As our response variable (the crime variable) is a count variable, we assume that
Yi ∼ Poisson(λi) for i = 1, . . . , n. Also, let x1i and x2i represent the housing value and
the income both in thousand dollars, respectively. Thus xi = (1, x1i, x2i)T represents the
intercept and predictors for neighborhood i. We consider three over-dispersed Poisson
regression models using the latent variables Zi’s as follows:

Yi ∼ Poisson(λi)
log(λi) = Zi = xT

i β + εi, β = (β0, β1, β2)T , i = 1, . . . , n

Posterior estimates consisting of the posterior median (denoted by Est. in the table)



696 Bayesian inference for DCAR

iid CAR DCAR
Parameter Est. Std.Err. Est. Std.Err. Est. Std.Err.

ρ - - 0.974 0.021 - -
δ1 - - - - 0.962 0.031
δ2 - - - - 0.960 0.032
σ2 2.576 - 0.358 0.250 0.230 0.183
β0 4.568 0.074 4.197 0.264 4.147 0.243
β1 -0.003 0.001 -0.004 0.003 -0.004 0.003
β2 -0.064 0.006 -0.056 0.012 -0.055 0.011

DIC - 335.76 336.79

Table 8: Posterior estimates based on fitting different models to the crime frequency data.

MSPE
Model 1 (iid error) 0.084
Model 2 (CAR error) 0.053
Model 3 (DCAR error) 0.050

Table 9: Mean Squared Predicted Error of Leave-one-out method (MSPE)

and the posterior standard deviation (denoted by Std.Err in the table) of the parameters
under these models are displayed in Table 8. In this table, we observe that for all models,
the posterior estimates of the regression coefficients (β’s) are very similar across all
three models. As expected, the negative posterior medians of the β1 and β2 indicate
that crime frequencies are expected to be lower in neighborhoods with higher income
level and housing values. Next we turn our attention to the error part of the three
models. First, significantly lower values of the posterior medians of σ2 under both the
CAR and DCAR models indicate that greater variability is explained by the models
with spatially correlated errors (i.e., by the CAR and DCAR models in this case) than
the corresponding model with independent errors. This is further evidenced from the
“deviance residual” (as defined by McCullagh and Nelder 1989) plot in Figure 4 which
also suggests that these residuals are not randomly scattered around the horizontal
line at the origin. Among the spatially correlated error models, the difference between
the DCAR model and the CAR model is negligible. Also, from the scatterplot of the
predicted values from DCAR spatial structure versus those from CAR in Figure 4, we
observe that there are many points which are far from the straight line. The straight
line has slope 1, so if the predicted values are similar to the original data, the points
are close to the straight line. However, the predicted values from DCAR and CAR are
not different from each other, which is also evident by comparing their corresponding
DIC values.

In addition to using DIC to compare the models with CAR and DCAR error struc-
tures, we also computed cross-validation measures like leave-one-out mean square pre-
dictive error (MSPE). Here ẑ−i = E(Zi|z−i) is the ML predictive mean of Zi obtained
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Figure 4: Scatterplot of regional estimated frequencies from DCAR versus those from CAR
for the log-transformed crime frequencies. The straight line has slope 1. Thus, if the predicted
values are similar to the original data, points are close to the straight line.

by fitting a model based on a reduced data set consisting of all (n-1) observations leav-
ing out the ith observation yi. In Table 9 we present the MSPEs for three models.
Again it is evident that the spatially correlated error models perform much better than
the independent error model. Among the two spatial models, DCAR performs slightly
better than the CAR model in terms of having lower MSPE. Thus, we conclude that
although there is possibly no separate directional spatial correlations, there is a strong
spatial correlation on either side of the neighborhoods.

4.2 Elevated Blood Lead Levels in Virginia

We also illustrate the fitting of the CAR and DCAR models using a second data set,
estimating the rate, per thousand, of children under the age of 72 months with elevated
blood lead levels observed in Virginia in the year 2000. As predictors for the rate
of children with elevated blood lead levels, we consider the median housing value in
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$100, 000 and the number of children under 17 years of age living in poverty in 2000, per
100, 000 children at risk. These observations were collected in 133 counties in Virginia
in the year 2000, with coordinates being the centroids of each county. The aggregated
data for each county are counts: The number of children under 6 years of age with
elevated blood levels in county i and the number of children under 6 years of age tested.
In Schabenberger and Gotway (2005), the original data set was used to illustrate the
percentage of children under the age of 6 years with elevated blood lead levels by using
a Poisson-based generalized linear model (GLM) and a Poisson-based generalized linear
mixed model (GLMM) in the analysis of spatial data. Schabenberger and Gotway
(2005) illustrated spatial dependence by comparing predictions from a marginal spatial
GLM, a conditional spatial GLMM, a marginal spatial GLM using geostatistical variance
structure, and a marginal GLM using a CAR variance structure. For the CAR variance
structure, they used binary sets of neighbors which share a common border. They
mentioned that because of this choice of adjacency weights, the model with the CAR
variance smoothes the data much more than the model with the geostatistical variance.

Instead of using a generalized linear model for count data, we consider the Freeman-
Tukey (FT) square-root transformation for the Yi’s. There are zero values in some
counties, and the FT square-root transformation shows more stability than the usual
square-root transformation (Freeman and Tukey 1950; Cressie and Chan 1989). With
the FT square-root transformed elevated blood lead level rate, we assume a Gaussian
distribution with CAR and DCAR spatial structure. For the neighbor structure, we
compute distances among the centroids of each geographical group as measured in lati-
tude and longitude. So as not to have any counties reporting zero neighbors, we include
counties whose distance is within a 54.69 radius of another county.

For this data set, we denote Zi =
√

1000 ∗ Yi/Ti +
√

1000 ∗ (Yi + 1)/Ti for i =
1, 2, . . . , n, where Yi is the number of children under the age of 72 months with elevated
blood lead levels observed and Ti is the number of children under the age of 72 months
who have been tested in Virginia in the year 2000.. Thus, Zi is a FT square-root trans-
formed elevated blood lead level rate of sub-area Si. There exists significant correlation
between the median housing value in $100, 000 and the number of children under 17
years of age living in poverty in 2000, per 100, 000 children at risk. Thus, we only
include the centered housing value in $100, 000 (X).

We plot the the FT square-root transformed elevated blood lead level rate that
are divided into 5 intervals of the 20% quantiles in Figure 5. In Figure 5, it appears
that spatial correlations in the northeast (NE) direction seems strong. However, from
the estimated correlogram in Figure 5, we observe that the spatial correlations in four
different directions do not seem to be very different from each other. But, there seems
to be different amounts of correlation for the 450 and 1350 compared to no directional
correlation. Thus, we assume a DCAR process as a hidden spatial structure.

The posterior estimates, with standard deviations under iid error, CAR error, and
DCAR error models are displayed in Table 10. In this table, we observe that for all
models, the posterior mode of the intercept (β0) are very similar across all three models.
However, the estimate of the regression coefficient of median housing value under iid
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Figure 5: The elevated blood lead levels rate per thousand of children under the age of 72
months observed in Virginia in the year 2000 the correlogram of the deviance residuals after
fitting linear model.

iid CAR DCAR
Parameter Est. Std.Err. Est. Std.Err. Est. Std.Err.

ρ - - 0.792 0.120 - -
δ1 - - - - 0.450 0.236
δ2 - - - - 0.896 0.105
σ2 88.52 11.15 574.1 72.170 564.0 74.2
β0 17.46 0.822 18.78 2.822 17.42 2.315
β1 -0.624 2.103 -3.295 3.017 -3.072 2.756

DIC - 940.532 938.854

Table 10: Bayesian estimates based on fitting different models to the elevated blood lead
level data.
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Figure 6: Predicted elevated blood lead levels rate of children in Virginia (Model 2 and
Model 3)

errors are different from the posterior estimates of CAR errors and DCAR errors. As
expected, the negative posterior medians of the β1 indicate that the rates per thousand
of children under the age of 72 months with elevated blood lead levels are expected
to be lower at neighborhoods with higher housing values. The estimate of the error
term (σ2) with independent errors is significantly lower than the corresponding esti-
mates under spatially correlated errors. However, the posterior mode of β1 (-0.624)
is not significant under iid errors, having a large standard error (2.103). As we dis-
cussed in Section 3.2, the posterior mode of ρ (0.792) seems to estimate the average
of the true values of δ1 and δ2 (0.450 and 0.896) of the DCAR models. There exists a
positive spatial relationship for elevated blood lead levels among counties in Virginia.
However, there exist different amounts of positive spatial correlation among neighbors
in the northeast-southwest and the northwest-southeast directions. The spatial corre-
lation among neighbors in northeast-southwest direction (δ̂2 = 0.896) is stronger that
in northwest-southeast direction (δ̂1 = 0.450). Among the spatially correlated error
models, DCAR explains slightly more variability than the CAR, though the difference
between these models is negligible, which is also evident by comparing their correspond-
ing DIC values. This is further evidenced from the residual plots in Figure 6 which also
suggest that the residuals based on the DCAR error model appears not to have a trend
over the study region. Also in Figure 7, we observe that most of predicted values from
the DCAR spatial structure are bigger than those from CAR. This means that for the
FT-transformed elevated blood lead levels, the DCAR model captures more variability
than the CAR model in stabilizing estimates within the regions using the estimated
spatial correlation.

To compare the models with CAR and DCAR error structures, we also computed
leave-one-out mean square predictive error (MSPE). In Table 11 we present the MSPEs
for three models. Again it is evident that the spatially correlated error models perform



M. Kyung and S. K. Ghosh 701

10 15 20 25 30 35

15
20

25
30

35

Scatter Plot of Predicted Values
from CAR VS DCAR

Predicted Values from CAR

P
re

di
ct

ed
 V

al
ue

s 
fr

om
 D

C
A

R

Figure 7: Scatterplot of regional estimated rates from DCAR versus those from CAR for the
FT-transformed original elevated blood lead level rates. The straight has slope 1. Thus, if the
predicted values from DCAR are similar to the predicted values of CAR, points are close to
the straight line.
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MSPE
Model 1 88.155
Model 2 66.822
Model 3 64.269

Table 11: Mean Squared Predicted Error (Elevated blood lead level data)

much better than the independent error model. Among the two spatial models, DCAR
(64.269) performs slightly better than the CAR model (66.822) in terms of having
lower MSPE, but the difference is negligible. Thus, we conclude that there are strong
spatial correlations with some evidence of differing strengths of correlation in different
directions.

5 Extensions and future work

DCAR models capture the directional spatial dependence in addition to distance specific
correlation, thus they are an extension of regular CAR models, which can often fail to
capture strong but directionally orthogonal spatial correlations. The DCAR model is
also found to be nearly as efficient as the CAR model even when data are generated
from the CAR model. However, CAR models usually fail to capture the directional
effects when data are generated from DCAR or other anisotropic models, particularly
when the anisotropy is pronounced.

Our model proposed in (6) can be extended to M (M ≥ 2) directions, and can be
expressed as

Z ∼ Nn

(
Xβ, σ2(I−

M∑

k=1

δkW̃(k))−1D
)
,

where W̃(k) denotes the matrices of weights specific to kth directional effect. In this
paper we used only M = 2 sub-neighborhoods for a simpler illustration. However, we
note that if we keep increasing the number of sub-neighborhoods, the number of pa-
rameters increases, and the amount of observations available within a sub-neighborhood
decreases. Thus, we need to restrict the number of sub-neighborhoods by introducing
a penalty term (or prior) and use some form of information criterion to choose the
number of sub-neighborhoods. This is an important but open issue within our DCAR
framework and we leave its further exploration as a part of our future research.
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