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The authors are to be congratulated for a well writing introduction to the analysis
of Small Angle Neutron Scattering (SANS) experiments datasets. These experiments
provide a powerful tool to explore the ferromagnetic properties of thin films and nano-
particles. The presented modeling framework for joint calibration data and experimental
data is timely. It represents a paradigm shift from current established analysis practices
and proposes a more principled approach to extract signal in SANS datasets. Better
analysis methods are needed by experimentalists vying to measure signals ever more
obscured by noise. As such, this papers answer Rutherford’s call for better experiments
to alleviate the need of statistics1 by offering better statistics to analyze an existing
experiment.

There are three aspects of SANS data analysis worth further comments: the need to
model the signal in the space of the observations, ongoing calibration of the instrument,
and a look at designing future SANS experiments.

Modeling. Raw SANS experimental data consist of pixel counts Nx,y in the xy-
plane, whose intensity is related to the scattering vector ~Q (see Figure 5 in Hogg et al.
(2010)). Standard analysis (see Kline (2006) for example), transforms the xy-plane into
~Q before fitting the model by minimum χ2. A better approach, advocated in this paper,
is to transform the model defined as a function of ~Q into an expectation counts λx,y in
each pixel in the xy-plane.

There are several advantages to bringing the model into the space of observable
data. First, it enables either a Bayesian or maximum likelihood type analysis that
take advantage of the Poisson assumption for the raw pixel counts. Second, it makes
possible to graphically explore the goodness-of-fit of the estimated model by displaying
the residuals

Rx,y =
√

Nx,y −
√

λ̂x,y.

Finally, bootstrap samples for the data at hand are easily generated by drawing, for
each pixel, the random variables

Mxy|Nxy ∼ Binomial(Nxy, p),

for some p ∈ (0, 1). Since marginally Mxy is Poisson distributed with attenuated in-
tensity pλxy, one can analyze that data in the same way as the original counts. And
since Nxy −Mxy is Poisson distributed with mean (1− p)λxy, independent of Mxy, this
opens the door to Bayesian model checking using the inferred predictive distribution for
Nxy −Mxy.
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Calibration. The calibration of measurement instruments is an integral part of
many modern experiments in the physical sciences. It involves characterizing the sys-
tematic effects arising from the measurement process, slowly varying effects, called drifts,
that occur over the course of the experiment, and sample to sample random effects.
The traditional approach to calibrate SANS experiments first estimates the baseline,
and then uses that estimate to correct subsequently the data from the sample. The
presented framework has many nice features, one of which I will elaborate on.

It is important to realize that calibration of an instrument is an ongoing process,
and hence estimation of the baseline should not be undertaken de novo each time an
experiment is performed. The Bayesian framework makes it possible to accumulate
knowledge about the baseline of an instrument from periodic calibration experiments
by viewing the posterior for the calibration parameters as the prior of these parameter
for the next experiment.

Such an approach requires one to divide the systematic effects into fixed effects (for
example the flux absorber, if it is fixed to the detector) and into random effects (for
example the sample holder, if its position is changed from one experiment to the next).
While the resulting analysis becomes more complex, it enables the accumulation over
time of information about the baseline that results in more informative priors.

Design. Magnetization of a sample can be explored using polarized SANS experi-
ments (Fitzsimmons et al. 2007). These experiments aim at measuring subtle differences
in the scattering of spin up and spin down polarized neutrons. The framework presented
in this paper is easily adapted to these experiments. However, since we seek to compare
the response of the same sample to different beams, we have the opportunity to design
experimental protocols that yield better paired comparisons. One such technique is
to alternate during the course of the experiment the polarization of the beam. The
second technique, still experimental (Fitzsimmons 2010) is to split the beam. These
two techniques are not the approaches to control known sources of experimental varia-
tions. But they point the way that it is possible to estimate very small signals in SANS
experiments. It is my hope that continued collaborations between statisticians and
experimentalists will not only improve the analysis of SANS datasets, but impact the
underlying experimental protocols, and to ultimately improve our ability to do science
using small angle neutron scattering experiments.

In conclusion, the authors of this paper are to be commended for introducing statis-
ticians to a fascinating topic in experimental physics, and physicists to modern data
analysis methods.
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