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Posterior Simulation via the Signed Root
Log-Likelihood Ratio

S. A. Kharroubi∗ and T. J. Sweeting†

Abstract. We explore the use of importance sampling based on signed root
log-likelihood ratios for Bayesian computation. Approximations based on signed
root log-likelihood ratios are used in two distinct ways; firstly, to define an impor-
tance function and, secondly, to define suitable control variates for variance reduc-
tion. These considerations give rise to alternative simulation-consistent schemes
to MCMC for Bayesian computation in moderately parameterized regular prob-
lems. The schemes based on control variates can also be viewed as usefully supple-
menting computations based on asymptotic approximations by supplying external
estimates of error. The methods are illustrated by a genetic linkage model and a
censored regression model.

Keywords: Bayesian computation; Control variates; Importance sampling; Signed
root log-likelihood ratio; Variance reduction

1 Introduction

Many authors have obtained useful asymptotic approximations in statistics based on
signed root log-likelihood ratios. Much of this work has concerned approximations for
sampling distributions of various quantities, but excellent approximations for Bayesian
inference can also be obtained in this way. For example, marginal posterior approxi-
mations are obtained in DiCiccio et al. (1990), DiCiccio and Martin (1991), DiCiccio
and Field (1991) and Sweeting (1992, 1995). One appealing feature of these approxi-
mations is that they generally require little more than standard likelihood or posterior
maximization computer output for their implementation and hence may be available at
little additional computational cost over simple first-order approximations.

Such approximations will eventually break down, however, when the dimension of
the parameter space becomes large, or when the data are not sufficiently informative.
In such cases the most widely used computational methods are based on Monte Carlo
simulation. A number of researchers have investigated the use of hybrid methods that
combine the best features of simulation, or numerical integration, and asymptotics;
see, for example, Sweeting (1996) and the ensuing discussion. Sweeting and Kharroubi
(2005) explored the application of a posterior predictive distribution formula based on
signed root log-likelihood ratios as a stable importance function for use within poor
man’s data augmentation schemes and as a proposal distribution within a Metropolis-
Hastings algorithm.
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A variety of Monte Carlo importance sampling strategies have been proposed in
the literature. These are sometimes based on the first-order normality of the posterior
distribution; see, for example, Van Dijk et al (1986) and Evans and Swartz (1995a,b,
2000). However, such importance samplers may have poor tail behaviour. As noted
in Sweeting (1996), distributional approximations based on signed root log-likelihood
ratios often have very good tail properties, which suggests investigating importance
sampling schemes based on these approximations.

In the present paper we develop signed root based importance sampling schemes for
moderately parameterized models that give rise to exact (that is, simulation-consistent)
computation of various posterior quantities of interest, including posterior distribution
functions, posterior moments and marginal posterior densities. A key property is that
the importance functions will often possess good tail behaviour. It is further shown that
by incorporating control variates we can achieve a substantial reduction in sampling vari-
ability as compared to straight importance sampling. The potential of the methodology
is explored throughout the paper using two examples. Although the methodology is
not universally applicable, in cases where it is applicable it has the obvious advantage
over MCMC methods that samples are drawn independently. Furthermore, relatively
short runs of the schemes based on control variates could be used to provide external
simulation-based validation of the accuracy of asymptotic approximation formulae.

We begin in §2 by introducing importance sampling based on the signed root log-
likelihood ratio. Following a brief review of some results in Sweeting (1995, 1996) and
Sweeting and Kharroubi (2003), we proceed in §3 to develop suitable control variates
based on asymptotic considerations. Some concluding remarks are given in §4 and
various technical details are included in Appendices A - D.

2 Importance sampling based on signed roots

In this section we develop the signed root based importance sampling scheme. We begin
in §2.1 by reviewing the construction of signed root log-likelihood ratios, which forms
the basis of the remainder of this section. The construction of the importance sampler
is described in §2.2 and the computation of marginal posterior densities discussed in
§2.3.

2.1 Signed root log-likelihood ratios

We begin by reviewing the construction of signed root log-likelihood ratios. Let L(θ) be
the likelihood function associated with data y from a parametric model with θ ∈ Ω ⊂ Rd,
where d ≥ 1, and let λ(θ) be the prior density of θ, which is assumed to be continuous
and positive throughout Ω. Then the posterior density of θ is

p(θ|y) = c−1L(θ)λ(θ) , (1)

where c =
∫

L(θ)λ(θ) dθ. The basic requirement for the methods in this paper is that
there exists a unique local maximum of the likelihood function, as occurs in many
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commonly used parametric models. This gives rise to a one-to-one transformation of
θ to a signed root log-likelihood ratio, which forms the basis for excellent asymptotic
approximations; see, for example, Sweeting (1996). In §4 we briefly discuss a possible
modification when a unique local maximum does not exist.

We employ the notation in Sweeting (1995, 1996) and Sweeting and Kharroubi (2003)
and use superscripts to donate the components of θ, so that θ = (θ1, . . . , θd). We further
let θi = (θ1, . . . , θi) be the vector of the first i components of θ and θ(i) = (θi, . . . , θd)
the vector of the last d− i + 1 components.

We assume that, for each 1 ≤ i ≤ d and fixed θi−1, there exists a unique local
maximizer θ̂(i)(θi−1) of L(θ). Here θ̂(1)(θ0) is understood to be the overall maximum
likelihood estimate θ̂ = (θ̂1, . . . , θ̂d). For j > i, θ̂j(θi) will denote the jth component
of (θi, θ̂

(i+1)(θi)). The following convention will prove useful: for any function g(θ) and
1 ≤ i < d, g(θi) will denote g(θi, θ̂

(i+1)(θi)), where g(θ0) is understood to be g(θ̂). With
this convention our assumption is that, for 1 ≤ i ≤ d, θ̂(i)(θi−1) is the unique solution of
the conditional likelihood equation li(θ) = 0, where l(θ) = log L(θ) is the log-likelihood
function and li(θ) = ∂l(θ)/∂θi.

We define l
′
(θ) = ∂l(θ)/∂θ = (l1(θ), . . . , ld(θ))T , j(θ) = −d2l(θ)/dθ2 and J = j(θ̂),

the observed information. Finally, we define the signed root log-likelihood ratio trans-
formation r(θ) = (r1(θ1), . . . , rd(θd)) by

ri(θi) = sign{θi − θ̂i(θi−1)}[2{l(θi−1)− l(θi)}]1/2 (2)

for i = 1, . . . , d. Notice that ri is a function of the first i components θi = (θ1, . . . , θi) of
θ. It then follows from the above assumption that r(θ) is a one-to-one data-dependent
transformation of θ. This transformation is invariant under smooth one-to-one trans-
formations of θ of the form φi = φi(θi), i = 1, . . . d. In the scalar case, of course, r(θ) is
invariant under all smooth one-to-one transformations.

2.2 Construction of the importance sampler

Consider the posterior expectation µ = Ep{v(θ)|y} of the smooth function v(θ), where
Ep denotes expectation under the posterior density p(θ|y). Let g(θ) be any density
function from which it is easy to sample and let Eg denote expectation under the
density g. Then since

µ = Eg

{
v(θ)

p(θ|y)
g(θ)

}
(3)

it follows that µ is consistently estimated via importance sampling by

µ̂ =
1
m

m∑

j=1

v(θ[j])wj ,

where θ[1], . . . , θ[m] are m independent draws from g(θ) and wj = p(θ[j]|y)/g(θ[j]) are
the importance weights. The usual strategy is to choose a suitable density g(θ) that is
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close to, but more dispersed than, p(θ) in order that importance sampling is stable. See
Hammersley and Handscomb (1964), for example, for a general discussion of importance
sampling in statistics and van Dijk et al (1986), Glynn and Iglehart (1989), Hesterberg
(1990) and Wolpert (1991) for applications in Bayesian statistics.

We see from the definition (2) of r(θ) that exp{− 1
2‖r(θ)‖2} = L(θ)/L(θ̂), implying

that, when expressed in terms of r(θ), the likelihood function is of exactly multivariate
standard normal form. This suggests that the posterior distribution of r(θ) will be close
to multivariate standard normal. In fact the posterior distribution of r(θ) for inde-
pendent and identically distributed (i.i.d.) observations is asymptotically multivariate
standard normal to O(n−1/2), where n is the sample size (Sweeting, 1995). But asymp-
totics provide a stronger property than this first-order result. It turns out that the shape
of the posterior distribution of r(θ) is actually normal to O(n−3/2) (Sweeting, 1995),
only requiring a location-scale transformation to be multivariate standard normal to
that order. This provides strong asymptotic motivation for basing an importance sam-
pling scheme on r(θ). Additional motivation is provided by the non-asymptotic result
discussed later in this section.

We use r(θ) to construct our importance sampler as follows. Suppose that R is
randomly generated from the d-dimensional standard normal distribution. Then, for
i = 1, . . . , d, θi = θi(Ri) is defined by inversion of ri(θi) = Ri for fixed θi−1. Since
ri(θi) is a function of the first i components of θ, the Jacobian matrix dr/dθ is lower
triangular, so that

∣∣∣∣
dr

dθ

∣∣∣∣ =
d∏

i=1

∂ri(θ)
∂θi

=
d∏

i=1

−li(θi)
ri(θi)

.

It now follows from the usual multivariate transformation formula for densities that the
density of θ is

g(θ) = (2π)−d/2 L(θ)

L(θ̂)

d∏

i=1

−li(θi)
ri(θi)

. (4)

We remark that no difficulty arises here when θi = θ̂i(θi−1), since L’Hôpital’s rule gives
ri(θi)/li(θi) → {−ki(θi−1)}−1/2 as θi → θ̂i(θi−1), where ki(θ) = −∂2l(θ)/(∂θi)2.

Substituting (1) and (4) into (3), we see that the posterior expectation of v(θ) is

µ = Ep{v(θ)|y} = (2π)d/2c−1L(θ̂)Eg{v(θ)h(θ)} ,

where h(θ) = λ(θ)
∏d

i=1{−ri(θi)/li(θi)} is a weight function. In particular, taking
v(θ) = 1 we see that the constant of proportionality in (1) is

c = (2π)d/2L(θ̂)Eg{h(θ)} (5)

from which it follows that

µ =
Eg{v(θ)h(θ)}

Eg{h(θ)} . (6)
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Notice that, since the construction of r(θ) is invariant under reparameterization in
the scalar parameter case, we obtain an invariant form of importance sampling in that
case. This is an important propery as the performance of the scheme will not depend
on the particular form of parameterization chosen. In the multiparameter case the
partial invariance property described in §2.1 holds. An alternative strategy would be
to absorb the prior density λ(θ) into the likelihood before constructing the signed root
transformation (2). This construction might improve importance sampling performance,
especially if the prior knowledge is substantial, but such a scheme will suffer from a lack
of invariance.

It might seem at first sight that we need to use an importance function for r(θ) more
dispersed than the asymptotic standard normal form. However, this is not necessarily
the case, as indicated by Lemmas 1 and 2 in Appendix A, which give fairly weak
conditions under which the importance estimator of µ will converge at rate m−1/2.
They also provide measures of precision for this estimator via the observed Monte Carlo
standard error.

We now summarise the signed root based importance sampling algorithm for esti-
mating the expectations in (5) and (6).

1. Generate Ri ∼ N(0, 1), independently for i = 1, . . . , d.
2. Obtain θi = θi(Ri) sequentially for i = 1, . . . , d as the solutions of the equations

ri(θi) = Ri.
3. Repeat steps 1 and 2 m times to obtain R[1], . . . , R[m] and the corresponding

sample θ[1], . . . , θ[m] from the importance density (4).

Now approximate Eg{h(θ)} by h̄ = m−1
∑m

j=1 h(θ[j]). Then from (5) and (6) we obtain
the consistent estimators

ĉ = (2π)d/2L(θ̂)h̄ (7)

of c and and

µ̂ =
m∑

j=1

v(θ[j])wj (8)

of µ, where wj = (mh̄)−1h(θ[j]), j = 1, . . . , m are the importance weights, and
∑

j wj =
1.

In order to examine the precision of (7) and (8) we need approximations to their
Monte Carlo standard errors. Straightforward manipulations give the approximations

s.e.(ĉ) = ĉ{mv̂ar(wj)}1/2

and
s ≡ s.e.(µ̂) = {mv̂ar(v(θ[j])wj)}1/2 , (9)

where v̂ar denotes estimated Monte Carlo variance.

The main computational effort involved in the importance sampling scheme is the
solution of the equation r(θ) = r for each sampled value r of R. Since ri(θ) is a function
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of the first i coordinates of θ, the equations ri(θi) = ri can be solved sequentially for
i = 1, . . . , d using a univariate update formula at each stage. Provided that good initial
values are used, this is usually not too hard in moderately parameterized problems
using some version of Newton’s method. One such scheme based on results in Sweeting
(1996) is given in Appendix B. It is important to have an efficient method of solving
r(θ) = r in the multiparameter case, particularly as conditional maximization is involved
at each step of the iteration. The scheme in Appendix B has worked satisfactorily in
the moderately parameterized examples that we have tried, but alternative schemes can
be devised. Some further possibilities are discussed in Appendix B.

It is natural to seek to reduce the Monte Carlo variability in (8) so that accurate
results can be obtained with a smaller computational effort. There are a number of
variance reduction techniques that can be used in conjunction with importance sam-
pling, including antithetic variates and control variates; see, for example, Hammersley
and Handscomb (1964). We discuss the former here and the latter in §3. Discussion
of a wider class of techniques can be found in Ripley (1987). Antithetic variates are
a special case of the general technique of systematic sampling, as discussed in Evans
and Swartz (2000). The basic idea is to induce a symmetry in the integrand that is
possessed by the importance sampler. This technique is particularly useful when the
basic importance sampler provides a relatively poor approximation to the integrand.

Here there is a natural antithetic variate, namely R̃ = −R, which also has the
multivariate standard normal distribution. Since corr(Ri, R̃i) = −1 and θi(r) is a
monotone function of ri for fixed ri−1, we would expect θ(Ri) and θ(R̃i) to be highly
negatively correlated, as required for the method of antithetic variates to be effective.
Suppose then that θ[j] = θ(R[j]) and θ̃[j] = θ(R̃[j]) for j = 1, . . . , m. Then, from
(7) and (8), the Monte Carlo estimators of the normalizing constant (5) and posterior
expectation (6) under antithetic importance sampling are

ĉ = (2π)d/2L(θ̂)
1
2
(h̄ + h̃) (10)

and

µ̂ =
m∑

j=1

{
v(θ[j])wj + v(θ̃[j])w̃j

}
(11)

respectively, where h̃ = m−1
∑m

j=1 h(θ̃[j]), wj = {m(h̄ + h̃)}−1h(θ[j]) and w̃j = {m(h̄ +
h̃)}−1h(θ̃[j]). Standard manipulations give estimators of the standard errors of (10) and
(11) under antithetic importance sampling as

s.e.(ĉ) = ĉ{mv̂ar(wj + w̃j)}1/2

and
s ≡ s.e.(µ̂) = {mv̂ar(v(θ[j])wj + v(θ̃[j])w̃j)}1/2 .

EXAMPLE 1. Genetic linkage model
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We illustrate the above methods with the genetic linkage model given in Rao (1973), in
which n animals are distributed multinomially into four categories with cell probabilities(

1
2 + θ

4 , 1
4 (1− θ), 1

4 (1− θ), θ
4

)
. Wei and Tanner (1990) apply this model to data y =

(14, 0, 1, 5) on 20 animals. Under a uniform prior for θ, the posterior density of θ is

p(θ|y) ∝ (2 + θ)14(1− θ)θ5, θ ∈ (0, 1) .

For these data we find that θ̂ = 0.9034 and J = 115.042.

We begin by comparing the importance sampling weight function h(θ) based on r(θ)
with the weight function h1(θ) based on a straight (truncated) N(θ̂, J−1) approximation
to the posterior distribution of θ. Figure 1 exhibits the two weight functions, plotted
along with the likelihood function. As can be seen, the function h is stable over the
main range of the likelihood function, whereas the use of h1 would lead to a very poor
importance sampler with a huge variance. Of course the latter can be improved by a
judicious choice of parameterization, but the point is that such a choice is unnecessary
for the importance sampling scheme proposed here.
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Figure 1: Genetic linkage data: importance weight functions based on normality of
θ (dashed line) and normality of r(θ) (dotted line). The solid line is the likelihood
function.

In order to implement the importance sampling algorithm, the non-linear equation
r(θ) = r was solved using the method given in Appendix B in terms of the log-odds
parameterization φ = log{θ/(1− θ)} in order to avoid difficulties when |r| is large. The
algorithm was run three independent times, each with m = 100, yielding the values in
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column 2 of Table 1 for the normalizing constant, together with the exact value obtained
by numerical integration. For a more precise estimate, the algorithm may be run with a
larger value of m. As can be seen from Table 1, when m = 10000 the resulting estimate
of c−1 is extremely accurate.

m c−1 µ s 3s/σ
100 2.5386e− 05 0.8178 0.0154 0.4951
100 2.6254e− 05 0.8521 0.0116 0.3720
100 2.2332e− 05 0.8064 0.0164 0.5276

10000 2.4074e− 05 0.8313 0.0013 0.0420
Exact 2.4056e− 05 0.8311

Table 1: Exact and approximate posterior computations for the genetic linkage model

We next examine the accuracy of formula (8) with v(θ) = θ. Given the output
from the simulation algorithm, computation of (8) is straightforward and the resulting
posterior expectation estimates are listed in column 3 of Table 1, again with the exact
value obtained by numerical integration. Whilst these estimates exhibit some variability
when m = 100, the estimate when m = 10000 is accurate to three decimal places. The
entries in column 4 of Table 1 are the estimated Monte Carlo standard errors s of (8).
In column 5 we give the relative errors 3s/σ, where σ = 0.0932 is the exact posterior
standard deviation of v(θ). These relative errors measure the size of the possible Monte
Carlo error in relation to the spread of the posterior distribution. We observe that these
errors are quite high when m = 100 but acceptably small when m = 10000.

We now apply the method of antithetic variates to this example. Table 2 lists the
computations of interest based on three independent runs of the simulation algorithm,
each with m = 50. As can be seen from column 2 of Table 2, the estimates of c−1 show
a marked improvement over those in Table 1. The posterior expectation estimates show
a slight improvement. We return to these results in §3 when we use a control variate.

m c−1 µ s 3s/σ
50 2.4113e− 05 0.8493 0.0100 0.3215
50 2.3994e− 05 0.8135 0.0149 0.4796
50 2.4041e− 05 0.8329 0.0108 0.3489

Table 2: Approximate posterior computations for the genetic linkage model using anti-
thetic variates

It is not hard to check that the conditions of Lemma 1 apply in this example. We
do not anticipate that the user would actually check these conditions in more complex
examples, however, but rather that the algorithm would be run, any tail problem iden-
tified and the algorithm possibly modified (see §4).

EXAMPLE 2. Censored regression
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We next consider the censored failure data given by Crawford (1970). These data arise
from temperature accelerated life tests on electrical insulation in n = 40 motorettes.
Ten motorettes were tested at each of four temperatures in degrees Centigrade (150◦,
170◦, 190◦ and 220◦), resulting in a total of l = 17 failed units and n− l = 23 unfailed
(i.e. censored) units.

As in Schmee and Hahn (1979), we fit a model of the form

yi = β0 + β1vi + σεi, i = 1, . . . , n ,

where yi is log10(failure time), with time in hours, vi = 1000/(temperature + 273.2)
and εi are independent standard normal errors. Reordering the data so that the first l
observations are uncensored, with observed log-failure times yi, and the remaining n− l
are censored at times ci, the log-likelihood function is

−l log σ − 1
2

l∑

i=1

(
yi − β0 − β1vi

σ

)2

+
n∑

i=l+1

log
{

1− Φ
(

ci − β0 − β1vi

σ

)}
,

where Φ is the standard normal distribution function. Here we find that θ̂ = (β̂0, β̂1, σ̂) =
(−6.0193, 4.3112, 0.2592).

For the purpose of illustration, we examine the accuracy of (8) with λ(θ) ∝ σ−1 and
v(θ) = β0 + 2β1 + σ. The signed root based simulation algorithm was run three times,
each with m = 100, yielding the results in Table 3. The exact values were obtained using
the data augmentation scheme in Tanner and Wong (1987). To examine the precision
of the estimates of µ, the estimated standard errors (9) are given in column 4 along
with the relative error estimates 3s/σ in the final column, where the posterior standard
deviation σ = 0.1075. Even with m as low as 100, we obtain very reasonable estimates
of c−1 and µ. The values in the final column, however, indicate that the algorithm
should be run with a larger value of m.

m c−1 µ s 3s/σ
100 6.6451e− 10 2.8821 0.0118 0.3280
100 6.6442e− 10 2.9012 0.0141 0.3935
100 6.7416e− 10 2.9131 0.0139 0.3880

Exact 6.7187e− 10 2.9048 0.0007 0.0203

Table 3: Exact and approximate posterior computations for the motorette data

We next apply the method of antithetic variates. Based on three independent runs
of the simulation algorithm, each with m = 50, Table 4 lists the approximate posterior
quantities of interest. We observe that the posterior expectation estimates have greater
precision than those in Table 3. The method of antithetic variates here provides a small
but worthwhile reduction in variability.
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m c−1 µ s 3s/σ
50 6.7566e− 10 2.9103 0.0075 0.2106
50 6.7237e− 10 2.9005 0.0061 0.1703
50 6.8092e− 10 2.9044 0.0055 0.1542

Table 4: Approximate posterior computations for the motorette data using antithetic
variates

2.3 Marginal densities

In this section we further exploit the sample produced by the simulation algorithm to
obtain numerical estimates of marginal densities of one or more parameters in multipa-
rameter settings.

First note that we can always use the independently sampled values of θ to produce
an estimate of the posterior density of any parametric function by forming a weighted
kernel density estimate, using standard computer software. However, in cases where the
importance sample is not large the resulting density estimates may not be very smooth.
In Appendix C we show how to produce a simulation-consistent smooth estimator of
the marginal posterior density p(θi|y) of the first i components of θ from the sampled
values R[1], . . . , R[m] of R. This is given by

p̂(θi|y) =
(2π)(d−i)/2

ĉm

m∑

j=1

L(θ[j]i)L(θi, θ̄
(i+1)
[j] )λ(θi, θ̄

(i+1)
[j] )

L(θ[j])

d∏

k=i+1

−Rk
[j]

lk(θ[j]k)
, (12)

where, for j = 1, . . . , m,

θ̄
(i+1)
[j] = θ

(i+1)
[j] + θ̂(i+1)(θi)− θ̂(i+1)(θ[j]i) . (13)

In particular, formula (12) provides a smooth functional form for the marginal pos-
terior density of θ1. Thus, if a specific parameter is of interest then it would be useful
to include this as the first component of θ. Notice that if we set θi to be the observed
sample values obtained via the simulation algorithm, then formula (12) requires no ad-
ditional maximization procedure for its implementation.

EXAMPLE 2. Censored regression (continued)
Given the ordering of the parameters, it is straightforward to calculate the marginal
posterior density estimate for β0. Having applied the simulation algorithm three inde-
pendent times, each with m = 100, to this data set in §2.2, we have three independent
samples from g(β0, β1, σ). The resulting β0 marginal density estimates (dashed lines)
are shown in Figure 2. The irregularity in the tails here is due to there being few ob-
served sample values in the tails and it may be necessary to perform some additional
conditional maximization in order to produce an overall smooth curve. This has been
done in Figure 3. Finally, Figure 4 shows the normalized densities, revealing that the
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main source of variation here is associated with the normalizing constant. Antithetic
variates may also be applied in an obvious way, which results in a slight improvement
in this example.
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Figure 2: Censored regression data: marginal posterior density of β0. Importance
sampling with m = 100 (dashed lines) using sampled values; data augmentation (solid
line).

3 Control variates based on signed roots

In this section we show how to construct control variates based on signed roots in
order to achieve further variance reduction in a signed root based importance sampling
scheme. We begin in §3.1 by reviewing some asymptotic approximations based on signed
roots. These approximations will form the basis of the control variates constructed in
§3.2 and §3.3. Some of the more technical details are relegated to Appendices D and E.

3.1 Approximations based on signed roots

We begin by reviewing some results in Sweeting (1995, 1996) and Sweeting and Khar-
roubi (2003) associated with signed root log-likelihood ratios. The reader is referred to
these papers for detailed derivations.

Define νi(θ) = λ(θ)|j(i+1)(θ)|−1/2, where, for 1 < i ≤ d, j(i)(θ) is the submatrix of
j(θ) corresponding to θ(i), with |j(d+1)(θ)| set to one. For each i = 1, . . . , d define the
function

qi(ri) = {−ri/li(θi)}{νi(θi)/νi−1(θi−1)} ,
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Figure 3: Censored regression data: marginal posterior density of β0. Importance sam-
pling with m = 100 (dashed lines) with additional values in the tails; data augmentation
(solid line).
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Figure 4: Censored regression data: marginal posterior density of β0. normalized den-
sities from Figure 3 (dashed lines); data augmentation (solid line).
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where we set ν0(θ0) = λ(θ̂)|J |−1/2. It is shown in Sweeting (1996) that the exact
posterior density f(r) of r(θ) can be expressed as

f(r) = k−1

{
d∏

i=1

qi(ri)

}
φ(r) , (14)

where φ(r) is the d-dimensional standard normal density and k is a normalizing constant.

Notice that the νi(θ) terms for 1 < i < d in (14) cancel. However, it is necessary to
include these terms in order that each qi(ri) term has the asymptotic form

qi(ri) = 1 + ai(ri−1)ri + bi(ri−1)(ri)2 + ci(ri−1)(ri)3 + O(n−2) , (15)

where ai(ri−1) = O(n−1/2), bi(ri−1) = O(n−1) and ci(ri−1) = O(n−3/2) and n indexes
the amount of information in the data (the sample size when y comprises n i.i.d. ob-
servations); see Sweeting (1995). Here qi is considered as a function of ri for fixed
ri−1.

Now let v(θ) be a smooth function of θ and denote by k∗ the new normalizing
constant associated with

{∏d
i=1 q∗i(ri)

}
φ(r), where q∗i(ri) = {v(θi)/v(θi−1)}qi(ri).

Finally, for 1 ≤ i < d define the constants

ki =
∫ d∏

j=i+1

qj(rj)φ(r(i+1))dr(i+1) .

The following result gives expressions for the constant of proportionality, posterior
expectation of v(θ) and marginal posterior density of the first i components of θ. The
proof is given in Appendix D.

THEOREM 1.

c = (2π)d/2|J |−1/2L(θ̂)λ(θ̂)k (16)

µ = v(θ̂)k∗/k (17)
p(θi|y) = c−1(2π)(d−i)/2L(θi)νi(θi)ki (18)

Formulae (16), (17) and (18) in Theorem 1 are all exact. In order to obtain ap-
proximations amenable to the application of control variates in the next section we
need to obtain asymptotic approximations to the constants k, k∗ and ki appearing in
these formulae. Suitable approximations, t̄, t̄∗ and t̄i respectively, based on results in
Sweeting and Kharroubi (2003), are presented in Appendix E. These approximations
are asymptotically accurate to O(n−2) and lead to the approximations

casy = (2π)d/2|J |−1/2L(θ̂)λ(θ̂)t̄ (19)

µasy = v(θ̂)t̄∗/t̄ (20)

pasy(θi|y) = c−1
asy(2π)(d−i)/2L(θi)νi(θi)t̄i (21)
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Finally, for the case d = 1 consider the posterior distribution function F (r) of r(θ),
which may be written F (r) = k−1k(r), where k(r) =

∫ r

−∞ q(s)φ(s) ds. The usual
O(n−3/2) approximation to F (r) (see, for example, Sweeting, 1995) is

Φ(r)− φ(r)
{

q(r)− 1
r

}
.

It will turn out to be more convenient here, however, to use the O(n−3/2) equivalent
expression

Fasy(r) = Φ(r)− φ(r)(a + br) , (22)

where the constants a and b are defined in Appendix E.

3.2 Control variates

The use of control variates requires there to be a closely related integral whose value
is known. Evans and Swartz (1995a, 2000) used a first-order normal approximation
to the posterior density multiplied by a Laplace approximation as a control variate in
an importance sampling scheme. Here we base our control variates on formulas (19),
(20) and (22) for the constant of proportionality, posterior expectation of v(θ) and
distribution function of r(θ) respectively, with the definitions of t̄, t̄∗ and t̄i given in
Appendix E.

Consider first the constant of proportionality, c, given by formula (16). We break
the integral for the constant k in (14) into two terms, so that

k =
∫

u(r)φ(r) dr + C , (23)

where

C =
∫ {

d∏

i=1

qi(ri)− u(r)

}
φ(r) dr ,

integrate the first term analytically and estimate the second term by importance sam-
pling.

Since q has the asymptotic form (15), a sensible choice for u is

u(r) = 1 +
d∑

i=1

airi +
d∑

i=1

bi(ri)2 +
d−1∑

i=1

d∑

k=i+1

aiakrirk (24)

for a suitable choice of coefficients ai and bi. A particular choice based on an asymptotic
analysis is given in Appendix E. With this choice the first integral in (23) is simply t̄,
so that k = t̄ + C. Therefore, from (16) we see that

c = casy(1 + t̄−1C) . (25)

Thus 1 + t̄−1C may be regarded as a multiplicative correction term to the asymptotic
approximation (19).
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Consider next the posterior expectation µ = E{v(θ)|y}. In a similar way, we break
the integral defining k∗ into two terms to give

k∗ =
∫

u∗(r)φ(r) dr + C∗ ,

where now

C∗ =
∫ {

d∏

i=1

q∗i(ri)− u∗(r)

}
φ(r) dr

and

u∗(r) = 1 +
d∑

i=1

a∗iri +
d∑

i=1

b∗i(ri)2 +
d−1∑

i=1

d∑

k=i+1

a∗ia∗krirk . (26)

Again, a particular choice of constants based on asymptotic considerations is given in
Appendix E. With this choice the first integral is t∗, giving

µ = µasy

{
1 + (t̄∗)−1C∗

1 + t̄−1C

}
. (27)

Formula (27) exhibits the posterior expectation of v(θ) as approximation (20) multiplied
by a correction term.

Finally, we estimate C and C∗ by importance sampling. Transforming back to the
θ−parameterization and using the m values θ[1], . . . , θ[m] from g(θ) produced by the
simulation algorithm in §2.2, we find that C and C∗ are consistently estimated by

Ĉ =
1
m

m∑

j=1

{
−|J |1/2λ(θ[j])

λ(θ̂)

d∏

i=1

Ri
[j]

li(θ[j]i)
− u(R[j])

}
(28)

and

Ĉ∗ =
1
m

m∑

j=1

{
−|J |1/2v(θ[j])λ(θ[j])

v(θ̂)λ(θ̂)

d∏

i=1

Ri
[j]

li(θ[j]i)
− u∗(R[j])

}
(29)

respectively. Substituting (28) and (29) into (25) and (27) we finally obtain

ĉ = casy(1 + t̄−1Ĉ) (30)

and

µ̂ = µasy

{
1 + (t̄∗)−1Ĉ∗

1 + t̄−1Ĉ

}
(31)

as our Monte Carlo estimators of the normalizing constant and posterior expectation
respectively. By straightforward Taylor expansion, an approximation to the standard
error of (31) is found to be

s = µasy[v̂ar{(t̄∗)−1Ĉ∗ − t̄−1Ĉ}]1/2 . (32)
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We next derive an approximate expression for the distribution function F (r) in the
case d = 1. Again, we break the integral k(r) =

∫ r

−∞ q(s)φ(s) ds into two terms

∫ r

−∞
u(s)φ(s) ds + C(r) ,

where C(r) =
∫ r

−∞{q(s)− u(s)}φ(s) ds and u(r) = 1− ar − br2. Then we obtain

F (r) = k−1t̄{Fasy(r) + t̄−1C(r)} = (1 + t̄−1C)−1{Fasy(r) + t̄−1C(r)} ,

where Fasy(r) is given by (22). Finally, we estimate C(r) using the m sampled values
θ[1], . . . , θ[m] from g(θ) by

Ĉ(r) =
1
m

m∑

j=1

Ir(θ[j])

{
−J1/2λ(θ[j])R[j]

λ(θ̂)l′(θ[j])
− u(R[j])

}
, (33)

where

Ir(θ) =
{

1 θ ≤ θ(r)
0 θ > θ(r) .

Thus a simulation-consistent estimator of F (r) is given by

F̂ (r) = (1 + t̄−1Ĉ)−1{Fasy(r) + t̄−1Ĉ(r)} . (34)

We can further apply the method of antithetic variates in the same way as was done
in §2.2. Suppose that θ[1], . . . , θ[m] ∼ g(θ) based on R and θ̃[1], . . . , θ̃[m] ∼ g(θ̃) based on
R̃ = −R. Then, from (30), (31) and (32), the estimators of the normalizing constant,
posterior expectation and standard error using antithetic and control variates are

ĉ = casy(1 + (2t̄)−1(Ĉ + C̃)} (35)

µ̂ = µasy

{
1 + (2t̄∗)−1(Ĉ∗ + C̃∗)

1 + (2t̄)−1(Ĉ + C̃)

}
(36)

and
s = µasy[v̂ar{(2t∗)−1(Ĉ∗ + C̃∗)− (2t)−1(Ĉ + C̃)}]1/2 (37)

respectively, where C̃ and C̃∗ are (28) and (29) with θ and R replaced by θ̃ and R̃
respectively. Finally, it follows from (34) that an approximation to the distribution
function in the case d = 1 is

F̂ (r) = {1 + (2t̄)−1(Ĉ + C̃)}−1{Fasy(r) + (2t̄)−1(Ĉ(r) + C̃(r))} ,

where C̃(r) is (33) with θ and R replaced by θ̃ and R̃ respectively.

EXAMPLE 1. Genetic Linkage (continued)
The three independent runs of the simulation algorithm from §2.2 with m = 100 and
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m c−1 µ s 3s/σ
100 2.3825e− 05 0.8334 0.00476 0.1532
100 2.4006e− 05 0.8316 0.00405 0.1302
100 2.4226e− 05 0.8292 0.00445 0.1433

10000 2.4044e− 05 0.8312 0.00044 0.0142
Exact 2.4056e− 05 0.8311

Table 5: Approximate posterior computations for the genetic linkage model using control
variates

the one with m = 10000 produce the results in Table 5. In comparison with Table 1,
the reduction in sampling variability achieved by (30) is clearly apparent and we obtain
excellent estimates even with m as low as 100.

Figure 5 shows the posterior distribution estimates. The asymptotic approximation
(22) (short dash line) is plotted along with the true posterior distribution (solid line)
calculated via numerical integration and the estimated distribution (34) (long dash
line) when m = 100. The dotted line is the straight importance sampling estimator,
also when m = 100. The estimated distribution (34) is indistinguishable from the exact
distribution here.
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Figure 5: Genetic linkage data: posterior distribution function of θ. Control variates
(long dash) and importance sampling (dotted), both with m = 100; asymptotic formula
(short dash); exact (solid).
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Finally, we apply the method of antithetic variates to this example. Table 6 lists
the posterior results based on three independent runs of the simulation algorithm, each
with m = 50 pairs (R, R̃). The improvements using antithetic and control variates can
be seen from a comparison of the entries of Tables 1, 2, 5 and 6.

m c−1 µ s 3s/σ
50 2.4060e− 05 0.8318 0.00372 0.1196
50 2.4057e− 05 0.8334 0.00246 0.0793
50 2.4048e− 05 0.8306 0.00303 0.0973

Table 6: Approximate posterior computations for the genetic linkage model using control
and antithetic variates

EXAMPLE 2. Censored regression (continued)
The three independent samples (m = 100) obtained in §2.2 yield the results in Table 7.
The entries in column 3 are the posterior expectation estimates of v(θ) = β0 + 2β1 + σ
obtained by applying (31). These results, which should be compared with those in Table
3, show a marked reduction in sampling variability, which can also be seen from the
standard and relative error estimates.

We now apply antithetic variates along with control variates. Clearly, versions of
formulae (35), (36) and (37) hold with the definitions for the multiparameter case.
Based on the three independent samples (m = 50 pairs (R, R̃)) obtained in §2.2, Table
8 lists the results of interest and shows a further useful decrease in sampling variability.

m c−1 µ s 3s/σ
100 6.7241e− 10 2.9024 0.00335 0.0934
100 6.7114e− 10 2.9079 0.00425 0.1185
100 6.6938e− 10 2.9047 0.00420 0.1170

Exact 6.7187e− 10 2.9048 0.0007 0.0203

Table 7: Approximate posterior computations for the motorette data using control
variates

m c−1 µ s 3s/σ
50 6.7306e− 10 2.9042 0.0023 0.0635
50 6.6896e− 10 2.9043 0.0029 0.0751
50 6.7555e− 10 2.9027 0.0011 0.0311

Table 8: Approximate posterior computations for the motorette data using control and
antithetic variates
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3.3 Marginal densities

In this section we consider estimation of the marginal density p(θi) of the first i compo-
nents of θ using control variates based on formula (21). As usual, we start by splitting
the integral ki in (18) into two parts,

ki =
∫

ui(r)φ(r(i+1)) dr(i+1) + Ci ,

where

Ci =
∫ {

d∏

k=i+1

qk(rk)− ui(r)

}
φ(r(i+1)) dr(i+1) (38)

and

ui(r) = 1 +
d∑

k=i+1

akrk +
d∑

k=i+1

bk(rk)2 +
d−1∑

k=i+1

d∑

s=k+1

akasrkrs

with ai and bi as defined in Appendix E. Then the first integral is equal to t̄i defined in
Appendix E, and it follows from (18) and (47) that

p(θi|y) = c−1(2π)(d−i)/2L(θi)νi(θi)(t̄i + Ci) . (39)

To estimate the first integral in (38), we use the device of §2.3, which gives

Ĉi =
1

L(θi)νi(θi)
1
m

m∑

j=1

L(θ[j]i)L(θi, θ̄
(i+1)
[j] )λ(θi, θ̄

(i+1)
[j] )

L(θ[j])

d∏

u=i+1

−Ru
[j]

lu(θ[j]u)
− 1

m

m∑

j=1

ui(R[j]) ,

where θ̄
(i+1)
[j] is given by (13). From (39) and (30) we finally obtain

p̂(θi|y) = pasy(θi|y){1 + (t̄i)−1Ĉi}{1 + t̄−1Ĉ}−1 (40)

as a simulation-consistent estimator of p(θi|y). Again, formula (39) exhibits the marginal
posterior density of θi as the asymptotic approximation (47) multiplied by a correction
term. As is the case with the marginal density formula in §2.3, by setting θi to be the
observed sample values obtained via the simulation algorithm, no additional compu-
tational effort is needed to obtain Ĉi and the implementation of formula (40) is quite
straightforward.

EXAMPLE 2. Censored regression (continued)
We first examine the β0 marginal. Setting β0 to be each of the observed sample values
(m = 100) obtained in §2.2, along with some additional values in the tails, an estimate of
p(β0|y) is obtained by applying (40) with i = 1. The resulting marginal estimates, rep-
resented by the dashed lines in Figure 6, are plotted along with the estimated marginal
(solid line) calculated via data augmentation. These graphs, which should be compared
with those of Figure 3, show a decrease in sampling variability. An additional small
decrease in sampling variability can also be achieved by applying antithetic variates.
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Figure 6: Censored regression data: marginal posterior density of β0. Control variates
with m = 100 (dashed lines); data augmentation (solid line).

As a further illustration, we include a power transformation in the model, indexed
by the unknown parameter ξ, and obtain the marginal posterior density of ξ. Let y be
a failure time and consider the family of Box-Cox transformations

y(ξ) =
{

(yξ − 1)/ξ ξ 6= 0,
log y ξ = 0 .

Suppose that, given ξ,
yi(ξ) = α + β(vi − v̄) + σεi ,

where vi, v̄ and εi are as before. It is convenient to rewrite this model as

yi(ξ) = ν(ξ) + νξφ(vi − v̄) + (νξγ)εi ,

where

ν =
{

(1 + ξα)1/ξ ξ 6= 0,
eα ξ = 0

,

φ = ν−ξβ and γ = ν−ξσ (Sweeting, 1984). The resulting parameterization also agrees
with the Cox and Reid (1987) approximate orthogonal parameterization for this prob-
lem. Finally define η = log ν, ψ = log γ.

Write ỹi = ν−1yi, c̃i = ν−1ci, g = (
∏m

i=1 yi)1/m and mi = φ(vi − v̄). Reordering the
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original data as before, the log-likelihood function of θ = (ξ, η, φ, ψ) is

l(θ) = lξ(log g − η)− lψ − 1
2

l∑

i=1

{
ỹ(ξ)−mi

eψ

}2

+
n∑

i=l+1

log
{

1− Φ
(

c̃(ξ)−mi

eψ

)}
,

from which θ̂ is found to be (−0.2519, 7.9017, 11.3760,−0.3411). We will use a relatively
diffuse prior for θ. Taking a uniform prior for θ would be equivalent to the local approx-
imation recommended in Sweeting (1984), using asymptotic approximations. However,
a uniform prior cannot be used for exact inference here since the posterior distribution
would be improper. This occurs because the likelihood function does not tend to zero
as ξη → −∞. To avoid this impropriety we use the prior proportional to exp(ξη).

The signed root importance sampler was run three times with m = 100 and the
resulting estimated ξ marginals (dashed lines) obtained by applying (40) are shown in
Figure 7 along with the exact marginal (solid line), which was obtained in this case by
taking a very large sample (m = 20, 000). Again, the method is seen to behave well and
gives excellent marginal approximations with very few Monte Carlo draws.
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Figure 7: Censored regression data: marginal posterior density of ξ. Control variates
with m = 100 (dashed lines) and m = 20, 000 (solid line).

4 Discussion

In this paper we have explored a hybrid method for Bayesian computation involving
importance sampling and asymptotic analysis and have provided some numerical il-
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lustrations. The proposed signed root based importance sampling algorithm has been
shown to be useful for Bayesian computation in moderately parameterized models in
which there is a unique maximum likelihood estimate. The results of §3 can be regarded
as providing external simulation-based error estimates for asymptotic approximations,
which have not been available before. The results could therefore provide the basis for
an extension to a computational Bayesian package based on asymptotic formulae, in-
cluding simulation-based checks on the accuracy of asymptotic approximations and/or
simulation-based tuning of these approximations. The curse of dimensionality remains
a stumbling block with the methods here. The theory and examples indicate that there
is good reason to believe that they will often perform extremely well in moderately-
dimensioned problems. More extensive investigation is required, however, to study the
full range of application and to make proper comparisons between various competing
methods.

The increase in precision reported for control variates is substantial in comparison
with the straight importance sampling methods. Although additional computer code
will be needed for the control variate methods, they will generally require less computing
time than straight importance sampling since we anticipate smaller Monte Carlo sample
sizes.

In all the examples we have studied importance sampling based on signed roots has
worked well due to the good tail behaviour of the importance function g. However, it is
possible to generalize Lemmas 1 and 2 by taking the variance of the normal importance
function to be greater than one. This provides a modified importance sampler that will
apply to a wider class of problems.

The main computational burden associated with the importance sampling scheme
described in this paper is the solution of the equation r(θ) = r at each sampled value r of
R. As already discussed, alternative methods of solution to those proposed in Appendix
B can be devised. Local linear approximations to conditional maxima can be used during
an iterative cycle, as discussed in Sweeting (1996). A judicious reparameterization of
the form φi = φi(θi), i = 1, . . . d, for which the parameter space is Rd, would help in
the Newton scheme described here. Note, however, that the partial invariance property
referred to in §2.1 implies that the performance of the importance sampler does not
depend on which parameterization is used. Another possibility would be to employ
exponential tilting in order to avoid conditional maximization altogether. In fact, even
in cases where the likelihood function does not possess a local maximum, a suitable
exponential tilt may be used to create one (Sweeting and Kharroubi, 2005). As discussed
in Appendix B, an alternative approach to determining initial values would be to carry
out an initial charting of the inverse of the function r(θ) at suitable values of (r1, . . . , rd).
Although the inversion of r(θ) requires some work, the effort should be worthwhile as
we anticipate good approximations from a relatively small number of sampled values,
especially when using control variates, as demonstrated in the paper. Furthermore,
of course, the algorithm produces an independent weighted sample from the posterior
distribution, dispensing with the need for convergence diagnostics as required for Markov
dependent simulations.
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Appendix A: Tail behaviour

The following lemma indicates that, under weak conditions, the tail behaviour of g
makes it suitable as an importance function. For the sake of simplicity we first state
the result for the scalar parameter case. Here varg denotes variance under the density
g(θ).

LEMMA 1. Let v be any continuous function of θ with v(θ̂) 6= 0. Let ε > 0 and define
the interval B ≡ B(ε) = {θ : |θ − θ̂| ≤ ε}. Suppose that there exist positive constants
c1 ≡ c1(ε) and c2 ≡ c2(ε) with c1 < 1/2 such that

{v(θ)λ(θ)}−1


d

dθ
{L(θ)}−c1

 > c2 (41)

in the complement Bc of B. Then varg {v(θ)h(θ)} < ∞.

Setting v(θ) = 1 gives a condition for the importance sampling estimator of c to converge
at rate m−1/2. Condition (41) is a fairly weak condition. For example, if L(θ) ∝ θ−s

for θ > K and λ(θ) = v(θ) = 1, then (41) holds for θ > K when s > 2. We note that
the criterion (41) is invariant, so it could be checked in any parameterization.

The corresponding multiparameter result is as follows.

LEMMA 2. Let v be any continuous function of θ with v(θ̂) 6= 0. Let ε > 0 and define
the region B ≡ B(ε) = {θ : ‖θi − θ̂i(θi−1)‖ ≤ ε, i = 1, . . . , d}. Suppose that there exist
positive constants c1 ≡ c1(ε) and c2 ≡ c2(ε) with c1 < 1/2 such that

∏d
i=1 |li(θi)|

v(θ)λ(θ){L(θ)}c1
> c2 (42)

in in the complement Bc of B. Then varg {v(θ)h(θ)} < ∞.

Proof of Lemmas 1 and 2.
We prove the more general result in Lemma 2. Since ri(θi)/li(θi) → {−ki(θi−1)}−1/2

as θi → θ̂i(θi−1), v(θ̂) 6= 0 and v is continuous, there exists ε > 0 such that v(θ)h(θ) is
bounded away from zero in the region 0 < ‖θi − θ̂i(θi−1)‖ ≤ ε, i = 1, . . . , d. It follows
that

∫
B
{v(θ)h(θ)}2g(θ)dθ is finite.

Condition (42) implies that, within Bc,

{v(θ)h(θ)}2 = {v(θ)λ(θ)}2
{

d∏

i=1

{ri(θi)}2
li(θi)

}2

< c−2
2

[
d∏

i=1

{ri(θi)}2
]
{L(θ)}−2c1 = c3

[
d∏

i=1

{ri(θi)}2
]

ec1‖r(θ)‖2

since L(θ) = L(θ̂)e−‖r‖
2/2. Therefore

∫

Bc

{v(θ)h(θ)}2g(θ)dθ < c4

∫ {
d∏

i=1

(ri)2
}

e−( 1
2−c1)‖r‖2dr ,
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which is finite since c1 < 1/2 and so Eg{v(θ)h(θ)}2 < ∞ as required.

Appendix B: Inversion of the signed root

We begin by discussing the scalar parameter case, for which we use the update
formula from Sweeting (1996) given by z′ = z − [r{r(θ) − r}]/z, where z ≡ z(θ) =
J1/2(θ − θ̂). Define z+ = z(θ+) and z− = z(θ−), where θ+, θ− are the solutions of the
equations r(θ+) = 1 and r(θ−) = −1 respectively; see also §3.1. Then the iteration
may be initialized at z = r + ar2 + br3 with a = (z+ + z−)/2 and b = (z+ − z−)/2− 1.
A little algebra shows that this choice of constants matches the initial values of z with
the exact values when r = −1, 0 and 1. The initialization suggested here is a sensible
one because in the i.i.d. case the asymptotic error in this cubic approximation to z is
O(n−3/2), where n is sample size (Sweeting, 1996).

In the multiparameter case, the equations ri(θi) = ri for each sampled value r of R
may be solved sequentially using the update formulae z′i = zi−[ri{ri(θi)−ri}]/zi, where
zi = zi(θi) =

{
ki(θi−1)

}1/2 {θi− θ̂i(θi−1)}; see Sweeting (1996). In a similar way to the
scalar parameter case, this process can be initialized at zi = ri + ai(ri)2 + bi(ri)3 for a
suitable choice of ai and bi. Define zi+ = zi(θ̂i−1, θ

i+) and zi− = zi(θ̂i−1, θ
i−), where θi+

and θi− are the solutions to the equations ri(θ̂i−1, θ
i+) =

√
d and ri(θ̂i−1, θ

i−) = −
√

d
respectively. We note that any constant could be used in place of

√
d here; this choice

is for consistency with §3.1. Now define ai = (zi+ + zi−)/(2d) and bi = {(zi+ −
zi−)/(2

√
d)− 1}/d. It may be verified that the initial values of zi are the exact values

when (i) ri = 0 and (ii) ri−1 = 0 and ri =
√

d or ri = −
√

d.

As previously noted, it is important to have an efficient method of solving r(θ) = r
in the multiparameter case, especially since conditional maximization is involved at
each step of the iteration. Some further possibilities are discussed here. An alternative
approach would be to create either an initial ‘cloud’ or a rectangular grid of θ values.
In the former case the points could be generated from a normal distribution for θ with
covariance matrix cJ−1, c > 1, and the corresponding values of r(θ) calculated. The
initial value of θ in the equation r(θ) = r would then be the nearest neighbour within
the cloud of r−values and a non-sequential Newton-Raphson scheme employed. In the
latter case, again the value of r(θ) would be calculated for each value in the grid, the
initial value for each θi, 1 ≤ i ≤ d, would be the closest value in the grid, and the
equation solved in a sequential manner.

In any approach to the solution of r(θ) = r it is a good idea to use a two-stage
procedure, where at the first stage the conditional maximizations are replaced by first-
order linear approximations, with full conditional maximization only used at the second
pass. This idea was discussed in the author’s reply to the discussion in Sweeting (1996)
and has been successfully implemented. Additional stability may be achieved by an
initial reparameterization of the form φ = J1/2(θ− θ̂), where J1/2 is any square root of
J .



S. A. Kharroubi and T. J. Sweeting 811

Appendix C: Proof of equation (12)

In order to ease the notation we write α = θi, β = θ(i+1) and drop the conditioning
on y. Consider the one-to-one transformation (α, γ) of (α, β), where γ = β − β̂(α).
Then the densities of (α, γ) corresponding to the densities p and g of (α, β) are p̄(α, γ) =
p(α, γ + β̂(α)) and ḡ(α, γ) = g(α, γ + β̂(α)) respectively. Therefore

p(α) =
∫

p̄(α, γ) dγ =
∫ ∫

p̄(α, γ)ḡ(α′) dα′dγ

=
∫

p̄(α, γ)
ḡ(γ|α′) ḡ(α′, γ) dα′dγ

=
∫

p(α, β′ + β̂(α)− β̂(α′))
g(β′|α′) g(α′, β′) dα′dβ′

on applying the change of variables γ = β′ − β̂(α′). A consistent estimator of p(α) is
therefore

p̂(α) =
1
m

m∑

j=1

p(α, β∗[j])

g(β[j]|α[j])
, (43)

where β∗[j] = β[j] + β̂(α) − β̂(α[j]). But, transforming from the normal distribution of
Ri, we find that the density of the first i components of θ is

g(θi) = (2π)−i/2 L(θi)

L(θ̂)

i∏

k=1

−lk(θk)
rk(θk)

so that, from (4), the conditional density of θ(i+1) given θi is

g(θ(i+1)|θi) = (2π)−(d−i)/2 L(θ)
L(θi)

d∏

k=i+1

−lk(θk)
rk(θk)

.

Substituting this expression and (1) into (43) gives formula (12).

Appendix D: Proof of Theorem 1

From (14) and the usual multivariate transformation formula, the exact posterior
density of θ can be expressed as

p(θ|y) = (2π)−d/2|J |1/2{L(θ̂)λ(θ̂)k}−1L(θ)

from which formula (16) for the constant of proportionality c follows, since
c =

∫
L(θ)λ(θ) dθ.

Now let v(θ) be a smooth function of θ. By applying formula (16) with λ(θ) set to
v(θ)λ(θ) we obtain

∫
v(θ)L(θ)λ(θ) dθ = (2π)d/2|J |−1/2v(θ̂)L(θ̂)λ(θ̂)k∗ .
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Formula (17) for the posterior expectation of v(θ) now follows on dividing by the formula
(16) for c.

Finally, from (14) we see that the exact marginal posterior density of the first i
components of r(θ) is

f(ri|y) = k−1(2π)−i/2





i∏

j=1

−rj

lj(θj)





{
νi(θi)L(θi)

λ(θ̂)L(θ̂)

}
|J |1/2ki .

Formula (18) for the marginal posterior density p(θi|y) of θi follows on transforming
this density to that of θi and using formula (16).

Appendix E: Asymptotic formulae for control variates

We start by obtaining asymptotic approximations t̄, t̄∗ and t̄i respectively to the
constants k, k∗ and ki appearing in expressions (16), ( 17) and (18) in §3.1.

Suppose that ti is any O(n−2) approximation to 1+ dbi(0), where bi(0) is the coeffi-
cient of (ri)2 in equation (15) when ri−1 = 0, and define t̄ = d−1

∑
i ti. Then it is shown

in Sweeting and Kharroubi (2003) that k = t̄ + O(n−2). An O(n−2) approximation to
c is therefore given by

(2π)d/2|J |−1/2L(θ̂)λ(θ̂)t̄ . (44)

Similarly, suppose that t∗i is any O(n−2) approximation to 1 + db∗i(0), where b∗i(0)
is the coefficient of (ri)2 in the expansion of q∗i(ri) when ri−1 = 0 , and define t̄∗ =
d−1

∑
i t∗i. Then k∗ = t̄ + O(n−2) to O(n−2), and an O(n−2) approximation to µ is

therefore

v(θ̂)
t̄∗

t̄
. (45)

We now use a result from Sweeting and Kharroubi (2003) to choose suitable values for
ti and ti∗ in equations (44) and (45). As in Appendix B, θi+ and θi− are chosen to satisfy
the equations ri(θ̂i−1, θ

i+) =
√

d and ri(θ̂i−1, θ
i−) = −

√
d respectively. Further write

θ+
i = (θ̂i−1, θ

i+) and θ−i = (θ̂i−1, θ
i−). Define τ i = {νi(θ−i )/li(θ−i )}+{−νi(θ+

i )/li(θ+
i )},

let ei be the i-dimensional vector (0, · · · , 0, 1) and define J (i) = j(i)(θ̂). Then it is shown
in Sweeting and Kharroubi (2003) that

ti ≡ 1
2
{qi(

√
dei) + qi(−

√
dei)} =

1
2
d1/2|J (i)|1/2{λ(θ̂)}−1τ i (46)

is an O(n−2) approximation to 1 + dbi(0). Substitution of (46) into (44) now gives

casy =
1
2
d−1/2(2π)d/2|J |−1/2L(θ̂)

d∑

j=1

|J (j)|1/2τ j

as an O(n−2) approximation to c.
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Similarly, t∗i, the expression corresponding to (46) with λ(θ) set to v(θ)λ(θ), is
an O(n−2) approximation to 1 + dbi∗(0). Now define α−i = (τ i)−1{νi(θ−i )/li(θ−i )},
α+

i = (τ i)−1{−νi(θ+
i )/li(θ+

i )} and γi = |J (i)|1/2τ i/
∑d

k=1 |J (k)|1/2τk. Then, after some
algebra, it follows from (45) that

µasy =
d∑

i=1

γi{α−i v(θ−i ) + α+
i v(θ+

i )}

is an O(n−2) approximation to µ. This formula, which is a variant of a formula given
by Sweeting (1996), was derived by Sweeting and Kharroubi (2003).

Now define t̄i = (i +
∑d

k=i+1 tk)/d, where ti is given by equation (46). Then an
O(n−3/2) form of Laplace approximation of p(θi|y) that is amenable to the application
of control variates is given by

pasy(θi|y) = c−1
asy(2π)(d−i)/2L(θi)νi(θi)t̄i . (47)

Next the constants a and b for equation (22) may be taken as a = 1
2{q(1)−q(−1)} =

(α+ − α−)t, b = t− 1, where t is given by equation (46) in the case d = 1.

Finally, we consider the choice of coefficients in expressions (24) and (26). In ex-
pression (24) we choose ai = 1

2d−1/2{qi(d1/2ei)− qi(−d1/2ei)} = d−1/2(α+
i −α−i )ti and

bi = d−1(ti−1), where ti is given by (46). Note that in the case of n i.i.d. observations,
from (15) u(r) is an O(n−3/2) approximation to q(r). Similarly, in expression (26) we
choose a∗i = 1

2d−1/2{q∗i(d1/2ei) − q∗i(−d1/2ei)} = {dv(θ̂)}−1{α+
i v(θ+

i ) − α−i v(θ−i )}ti
and b∗i = d−1(t∗i − 1), where t∗ = {v(θ̂)}−1µasyt.
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