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Objective Bayesian Estimation for the Number
of Species

Kathryn Barger∗and John Bunge†

Abstract. Objective priors have been used in Bayesian models for estimating the
number of species in a population, but they have not been examined in depth. Here
we derive the form of two objective priors, using Bernardo’s reference method and
Jeffreys’ rule, based on the mixed-Poisson likelihood used in the single-abundance-
sample species problem. These derivations are based on asymptotic results for
estimates of integer-valued parameters. The factored form of these priors justifies
the use of independent prior distributions for the parameter of interest (the number
of species) and the nuisance parameters (of the stochastic abundance distribution).
We find that the reference prior is preferable overall to the prior resulting from
Jeffreys’ rule. Although a comprehensive objective Bayesian approach can become
analytically intractable for more complicated models, the essence of the approach
can be upheld in practice. We analyze several datasets to show that the method
can be implemented in practice and that it yields good results, comparable with
current competing methods.

Keywords: Jeffreys’ prior, mixed-Poisson, noninformative prior, reference prior,
species richness estimation

1 Introduction

Estimating the number of classes in a population arises in numerous applications. One
of the most important examples is the “species problem” in biology, where we estimate
the number of species or other taxa in a population. Other examples can be found in
areas such as linguistics, to estimate the number of words in an author’s vocabulary
(Efron and Thisted 1976); numismatics, to estimate the number of dies in an ancient
coinage (Esty 1986); software development, to estimate the number of faults in computer
software (Lloyd et al. 1999); and many more. In addition, methods used in the species
problem overlap to a large extent with methods used in capture-recapture estimation,
although we do not enter into that application here. In this paper members of the
population of interest will be referred to as individuals and the types of individuals in
the population will be called species. Methodology used in the species problem can
be applied to any population (not necessarily composed of animals), as long as it is
partitioned into a finite number of types. In this paper we consider estimation of the
total number of species based on a single sample of abundances from a closed population.

Generally speaking we prefer parametric to nonparametric approaches to this prob-
lem, since parametric models provide strong smoothing of the data that tends to stabilize
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the estimate (prediction) of the zero count or number of unobserved species. Model se-
lection is usually empirical, though, since the underlying biological models are debatable,
and we return to this issue in Section 5. In the parametric context, we prefer objec-
tive Bayesian methods. Apart from general principles, such procedures in this problem
offer greater numerical (computational) stability, and more intuitive results than their
frequentist counterparts – e.g., posterior estimates are always integers, and intervals for
the number of species are asymmetric and guaranteed to be above the observed number
of species. We now consider distinctions between the available approaches in a little
more detail.

1. Nonparametric, frequentist estimation. The most-used statistic in this area is the
Abundance-based Coverage Estimator (ACE) and its variants, due to Chao and
Lee (1992). This method has appeared in countless articles. The estimators are
intuitive and easy to compute, but are sensitive to the inclusion of outliers (high
frequency or abundance counts), and little diagnostic information is available.
More recently, nonparametric maximum likelihood (NPMLE) methods have been
developed by Mao and Lindsay (2007), Böhning and Schön (2005) and Wang and
Lindsay (2005). These methods do not specify a parametric form for the distribu-
tion of species’ abundances, but estimate the underlying abundance distribution
as a finite mixture of point masses. The number of point masses can be determined
by various methods, including the Bayesian Information Criterion or through the
use of a penalty parameter. Apart from the question of the number of point
masses, error estimation is done by resampling, which typically produces a certain
proportion of huge outliers which must be trimmed in some way; we discuss this
further in Section 5.

2. Parametric, frequentist estimation. This is the oldest and most broadly studied
approach (Bunge and Barger 2008). The method requires specifying a model for
the species’ abundance distribution and estimating the model parameters, usually
by maximum likelihood, and hence model selection and numerical optimization
(for parameter estimation) are two challenges of this approach. Fisher et al. (1943)
used a gamma mixed-Poisson model for the distribution of species obtained in a
sample, and work on this model has continued to the present day (Wang 2010).
Various other mixing distributions have been proposed, including the general-
ized inverse Gaussian distribution (Sichel 1997), as well as the inverse Gaussian,
Pareto, lognormal, and finite mixtures of exponential distributions (Bunge and
Barger 2008). Some recent examples of the use of these methods for microbial
communities appear in Hong et al. (2006) and Behnke et al. (2006).

3. Nonparametric, Bayesian estimation. Outside of the species problem, a stan-
dard nonparametric Bayesian solution requires specification of a Dirichlet process
prior (Ferguson 1973) assigning probability distributions to function spaces. In
a problem closely related to species richness estimation, namely capture-recapture,
Tardella and co-authors (see Farcomeni and Tardella (2010) and references therein)
have studied nonparametric (and parametric) Bayesian methods for estimating the
population size. Their methods appear to make structural use of the known, finite
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number of “trapping occasions” in the capture-recapture framework. In one setup,
for example, they use a binomial model, with the binomial probabilities follow-
ing some distribution F ; the likelihood is then reparameterised using canonical
moments up to the number of trapping occasions, yielding a finite dimensional
parameter space. The (mixed) Poisson model considered here can be regarded as
a limiting form of the binomial model, and hence it may be possible to extend
their approach to our setting, but this is a topic for future research. From an-
other perspective Lijoi et al. (2007) gave a nonparametric Bayesian solution for
estimating the probability of discovering a new species under further sampling,
and subsequently Favaro et al. (2009) provided a nonparametric Bayesian method
for estimating the number of new species to be observed in a new sample of size
m, conditional on an initial sample of size n.

4. Parametric, Bayesian estimation. Bayesian estimation for the species problem
involves placing a prior on the number of species and on the parameters of the
abundance distribution. Let the marginal priors for the number of species C and
the nuisance parameter vector η be denoted π(C) and π(η), respectively. The
joint prior will be denoted π(C, η). The Bayesian approach to this problem has
several advantages. Posterior interval estimates are restricted to be within the
parameter space, i.e., the estimate of C is guaranteed to be at least as large as
the observed number of species, and credible intervals are asymmetric, as intuition
suggests. As opposed to a maximum likelihood estimate of C, the Bayesian method
naturally produces a posterior distribution for C which is discrete, lending itself
easily to integer valued estimates. (It is possible to redefine the parameter space
so as to require integer valued maximum likelihood estimates, but the Bayesian
method of assigning all mass to the integers seems more natural.) Furthermore,
computation of Bayesian estimates is more straightforward than the often chancy
numerical optimization required for maximum likelihood, especially in higher-
dimensional parameter spaces. Still, model selection remains a hurdle and perhaps
more importantly, the use of specific priors needs to be justified. All of the priors
used to date in the species problem assume C and η are independent; i.e. π(C, η) =
π(C)π(η). A fundamental difference in this paper is that the priors are derived
jointly instead of being assumed a priori independent. The Jeffreys’ and reference
rules allow for this derivation. Nonetheless, due to the form of the likelihood, the
joint prior factors into a product of two independent priors for C and η.

In the literature there have been several suggestions and implementations of pri-
ors on C. Priors that have been used include the negative binomial (Hill (1979),
Lewins and Joanes (1984), Raftery (1987), Rodrigues et al. (2001), Wang et al.
(2007)), Poisson (Madigan and York (1997), Raftery (1988)), geometric (Zhang
and Stern 2009), bounded uniform(Zhang and Stern 2005), and improper uniform
(Boender and Rinnooy Kan (1987), Tardella (2002), Wang et al. (2007)). Jef-
freys’ proposed prior (Jeffreys (1939/1961), pp. 238-239), which takes the form
π(C) ∝ 1/C, has also been widely used (George and Robert (1992), Madigan and
York (1997), Smith (1991), Tardella (2002), Wang et al. (2007)). Priors of the
form π(C) ∝ 1/Cr, where r is a nonnegative constant, were discussed in Wang
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et al. (2007). This includes the improper uniform prior when r = 0 and Jeffreys’
proposed prior when r = 1. Rissanen (1983) additionally proposed an objective
prior based on coding theory and this has been used by Tardella (2002) and Madi-
gan and York (1997). Recently Quince et al. (2008) carried out an in-depth study
using the uniform improper prior for C, in conjunction with several different para-
metric species abundance distributions (see Section 2.1 for definitions), notably
the log t and generalized inverse Gaussian distributions (also using flat priors for
the nuisance parameters). Quince et al. (2008) fit their models to the entire ob-
served frequency dataset without truncating large outlying frequencies, and then
applied model-selection criteria to obtain a final analysis. We return to the issue
of truncation in Section 5 below.

Finally, Berger et al. (2008) study the general problem of objective Bayesian in-
ference for discrete parameters. They analyze the problem “by embedding the
original model into a model with a continuous parameter. [...] [W]e can then
apply the ordinary reference prior theory [...] and appropriately discretize the re-
sulting continuous reference prior (if necessary).” They describe four approaches
for this. Referring to our previous work (Barger and Bunge 2008), they find that
our approach (described and extended herein) will yield the same objective prior as
their Approach 3, which “proceeds by choosing a consistent linear (or some other
simple) estimate[...]; finding the asymptotic sampling distribution of [the estima-
tor]; pretending that [the parameter] is continuous in this asymptotic distribution
and finding the corresponding reference prior.” The interesting questions raised
by this connection are topics for future research.

Within the Bayesian framework, we choose to use parametric models with objective,
or noninformative priors. Objective priors are useful in many cases when prior informa-
tion is unavailable or controversial. Also, objective priors can be used in a sensitivity
analysis for comparison with other, subjective priors. One disadvantage of objective
priors is that they are often improper, and so we are required to show that the posterior
integrates to unity in order to allow valid inference. In this paper we present a prior
which is jointly derived for all model parameters based on a single notion of objectivity.
Methods due to Bernardo (1979) and to Jeffreys (1946) are used to derive objective
priors without assuming that the the priors for the number of species and the nuisance
parameter are independent. In Barger and Bunge (2008) we derived the Jeffreys’ and
reference priors for some specific, low-dimensional cases, and applied the results, but
here we derive these in full generality (Theorem 2.1 in particular) and study them in
more depth. We find the reference prior to be logical and usable, and we demonstrate
this with results from applied data analyses.

2 Reference Prior

The reference prior (Bernardo 1979) is an objective prior which is based on maximizing
the expected entropy of an experiment. This can also be interpreted as maximizing
the missing information from the experiment, where information is defined in the same
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way as Shannon entropy (Lindley 1956). Under regularity conditions the reference prior
can be obtained via the Fisher information (Bernardo and Ramón 1998); here we use
a surrogate information matrix, due to Lindsay and Roeder (1987), that allows for
a combination of integer- and continuous-valued parameters under further regularity
conditions. The derivation of the reference prior takes into account the order of interest
of the parameters; in our problem C is the parameter of interest and η is a nuisance
parameter. In the case where η is a vector, a further ordering of the components in η
must be assigned; however, in specific cases it has been shown that this ordering is not
important even though there is no guarantee that different orderings will yield the same
reference prior (Irony and Singpurwalla 1997).

In general, for a model p(x|φ, λ) with interest parameter φ and nuisance parameter
λ, the joint prior π(φ, λ) is derived in steps. First, a conditional prior π(λ|φ) is derived
from the model. Then, the marginal model p(x|φ) is obtained after integrating out
the nuisance parameter, and this model is used to find the prior π(φ). This method is
outlined in Bernardo and Ramón (1998); we apply it to the species problem in Section
2.2.

2.1 Likelihood and information

In this section we define notation and specify the likelihood function. Let C be the
unknown number of species in the population, and assume C is finite. Let Xi be the
sample abundance of species i, that is, the number of individuals collected from the
ith species, i = 1, . . . , C. These abundances are assumed to arise independently from
an F -mixed Poisson distribution, where F is a parametric c.d.f. with m-dimensional
parameter vector η, so that the marginal distribution of Xi given η is

pη(x) =
∫

e−λλx

x!
dF (λ|η), x = 0, 1, 2, . . . .

Consider xi, i = 1, . . . , C, a realization of the Xis. We can only observe the number
of individuals contributed to the sample by a species when the contribution is greater
than zero. The observed data are therefore nj =

∑C
i=1 I(xi = j) for j ≥ 1, where

I(xi = j) is 1 if xi = j and 0 otherwise. Thus, nj represents the number of species that
contribute j individuals to the sample. The observed number of species is w =

∑
j≥1 nj ,

and the observed number of individuals is n =
∑

j≥1 jnj . Both w and n are random in
this model and we will retain this assumption throughout. Taking n to be fixed results
in a multinomial-based model (Sandland and Cormack 1984).

The F -mixed Poisson model assumes heterogeneity among the mean abundances
λi by using a distribution dependent on a vector parameter η. The likelihood can be
written as

L(C, η; data) =
C!

(C − w)!n1!n2! . . .

C∏

i=1

pη(xi).
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Sanathanan (1972) demonstrates that this likelihood can be written as

L(C, η; data) =
(

C

w

)
(1− pη(0))w(pη(0))C−w w!∏

j≥1 nj !

∏

j≥1

(
pη(j)

1− pη(0)

)nj

(1)

= A(w|C, η)B(n1, n2, . . . |η).

The derivation of the reference and Jeffreys’ priors depends on an asymptotic result
that can be satisfied by showing the maximum likelihood estimators have an asymp-
totically normal distribution. The variance of this limit distribution can be expressed
as the inverse of the information matrix for the parameters. The Fisher information is
typically defined for likelihoods which are differentiable with respect to the parameters.
The species likelihood is not differentiable in C since C is a discrete parameter taking
only positive integer values. However, information for discrete parameters can be de-
fined using the linear difference score which “mimics in the integer parameter setting the
role of the usual score function in a continuous parameter model” (Lindsay and Roeder
(1987), p. 758). The species likelihood can be shown to satisfy the linear difference
property.

Using the methods in Lindsay and Roeder (1987) to determine the information
matrix for multiparameter models with both integer-valued and continuous parameters,
we obtain the information for the parameters C and η (Barger and Bunge 2008),

R(C, η) =




C−1 1− pη(0)
pη(0)

(
− ∂

∂η
log pη(0)

)T

− ∂

∂η
log pη(0) C%(η)


 (2)

where ∂
∂η log pη(0) is the column vector of partial derivatives,

[(
∂

∂η1
log pη(0),

∂

∂η2
log pη(0), . . . ,

∂

∂ηm
log pη(0))]T ,

and

%(η) = EX

[( ∂

∂η
log pη(X)

)2
]

is (m × m) where expectation is taken with respect to pη. Notice that the diagonal
elements of this partitioned matrix contain elements which factor into a function of C
times a function of η, the nuisance parameter. This factorization in the elements of the
information matrix will become important in deriving the prior for C and η. Also, note
that the information is written as a function of the abundance distribution pη. This
also simplifies calculations since our derivations will involve pη instead of the entire
likelihood function.

The result in (2) coincides with the asymptotic results in Sanathanan (1972). Assum-
ing Sanathanan’s regularity conditions, the distribution of (C−1/2(Ĉ −C), C1/2(η̂− η))
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is asymptotically normal N(0,Σ), where Ĉ and η̂ are maximum likelihood estimates of
C and η, respectively. For η having dimension m, Σ−1 is the (m + 1) × (m + 1) matrix

Σ−1 =




1− pη(0)
pη(0)

(
− ∂

∂η
log pη(0)

)T

− ∂

∂η
log pη(0) %(η)


 (3)

The matrix in (3) coincides with (2) up to a multiplicative constant on the diagonal.

2.2 General reference case

Theorem 3 is the main result of this paper and shows the form of the joint reference
prior for a model with the nuisance parameter η having m components. This deriva-
tion is based on the general result for deriving a reference prior for continuous-valued
parameters (Bernardo and Ramón 1998), the information for integer-valued parameters
(Lindsay and Roeder 1987), and the likelihood from the species model described in
Section 2.1.

Theorem 3. Let L(C, η; x) be the species likelihood, where C is an integer-valued pa-
rameter representing the number of species in the population and η = (η1, . . . , ηm) is the
nuisance parameter vector from the stochastic abundance distribution. The quantity of
interest is C. Let S(C, η) be the inverse of the information matrix for the parameters.
Then

S(C, η) = R(C, η)−1 =
(

Cs(η)11 s(η)12
s(η)21 C−1s(η)22

)

where all of the s(η) depend on the abundance distribution; s(η)11 is a scalar, s(η)12 is
1×m, s(η)21 is m×1, and s(η)22 is m×m,. If Sj is the (j× j) upper matrix of S(C, η)
and Hj = S−1

j , then each Hj is a (j × j) matrix with the form

Hj =
(

C−1h(η)1 h(η)2
h(η)3 CH(η)

)

where h(η)1 is a scalar, h(η)2 is 1×(j−1), h(η)3 is (j−1)×1, and H(η) is (j−1)×(j−1).

A) The conditional reference priors are

π(ηm|C, η1, . . . , ηm−1) ∝ %(η)1/2
mm

and

π(ηk|C, η1, . . . , ηk−1) ∝ exp
[∫

· · ·
∫ (

log h
1/2
kk

)
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×




m∏

j=k+1

π(ηj |C, η1, . . . , ηj−1)



 dηk+1




where dηk+1 = dηk+1 × . . .× dηm if all of the π(ηk|C, η1, . . . , ηk−1), k = 1, . . . ,m
are proper. If any of the conditional reference priors are not proper, then a compact
approximation is required for the corresponding integrals.

B) The marginal reference prior for C is

π(C) ∝ C−1/2 (4)

where all of the conditional priors are proper or a compact approximation is used
for the corresponding integrals.

There are several immediate results from Theorem 3. The form of π(C) is the same
regardless of what abundance distribution pη is used. The conditional reference priors
are the reference priors for C independent and identically distributed replicates from
pη. Also, the joint prior, π(C, η) factors into two independent priors for C and η. One
drawback to this method is that finding a reference prior for a vector-valued η can be
difficult. If the nuisance parameter is a scalar, we can find precise forms for the joint
reference prior for some examples (Barger and Bunge 2008).

There is no guarantee that the resulting joint reference prior will be proportional
to a proper probability distribution. We can already see that π(C) is not integrable.
Consider any prior for C which has the form C

m−1
2 . With m = 0, this reduces to the

marginal reference prior for C. Using this more general form of the prior in (4), we can
show that the posterior distribution can be integrated with respect to C.

The posterior for the model is

π(C, η|data) ∝ π(C, η)L(C, η; data)

= C
m−1

2 π(η)
C!

(C − w)!
(pη(0))C−w 1∏

j≥1 nj !

∏

j≥1

(pη(j))nj

where C takes values w, w+1, w+2, . . . and η ∈ Rm. We need to show
∫

dπ(C, η|data) <
∞. For simplicity we show the calculation for one-dimensional η but the extension to
m dimensions is straightforward. We can choose the order of integration since the
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integrand is positive. We begin with the iterated integral
∫

R

∑

C≥w

π(C, η|x)dη

=
∫

R

∑

C≥w

π(C, η)
C!

(C − w)!
(pη(0))C−w 1∏

j≥1 nj !

∏

j≥1

(pη(j))nj dη

=
∫

R
π(η)

1∏
j≥1 nj !

∏

j≥1

(pη(j))nj

×
∑

C≥w

C
m−1

2
C!

(C − w)!
(pη(0))C−wdη (5)

=
∫

R
π(η)L(η; data)dη (6)

where
∑

C≥w C
m−1

2 C!
(C−w)! (pη(0))C−w in (5) are moments of the negative binomial dis-

tribution (without the normalizing constant). Since all of the moments of the negative
binomial exist, the sum is always finite. This is only a first step in showing the posterior
is proper. Additionally, the expression in (6) must be integrable with respect to η. Since
the integrand in (6) is reduced to a proper prior distribution π(η) times a likelihood
function L(η; data) (the marginal likelihood with respect to η), we know the posterior
is proper. Thus, as long as the prior for the nuisance parameter π(η) is proper, then
the posterior will be finite. Every model used in the examples in Section 5 has a proper
prior for the nuisance parameter except for the inverse Gaussian model, for which we use
the improper prior from Gutiérrez-Peña and Rueda (2003). This is the known reference
prior for jointly distributed observations from an inverse Gaussian distribution, and it
is known to yield a proper posterior in that setting (Liseo 1993). We have not shown
this analytically for the mixed-Poisson likelihood, but our numerical computations, at
least, presented no difficulties using this prior.

3 Jeffreys’ prior

The Jeffreys’ prior (Jeffreys 1946) is considered objective and is based on invariance
under one-to-one reparameterization. The principle behind Jeffreys’ rule is that any
prior for a parameter φ should yield an equivalent result if a model with a transformed
parameter is used. The Jeffreys’ prior for a scalar, continuous-valued parameter is
defined to be proportional to the square root of the Fisher information. For a parameter
φ and model p(x|φ), the Jeffreys’ prior is

π(φ) ∝ h(φ)1/2 (7)

where

h(φ) =
∫

X

p(x|φ)
(

∂

∂φ
log p(x|φ)

)2

dx. (8)
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For multidimensional models, the determinant of the Fisher information matrix can be
used in place of h(φ), which preserves the invariance property. However, the use of
Jeffreys’ prior in multivariate models is controversial. Use of independent priors, where
Jeffreys’ rule is applied to each parameter separately, has been recommended (Bernardo
and Smith 2000). The Jeffreys’ prior is often improper, so integrability of the posterior
must be shown when using this prior. Despite the difficulties in multivariate settings
and in showing the resulting posterior is proper, the Jeffreys’ prior is widely used when
implementing a noninformative Bayesian approach. In the following section we adapt
the Jeffreys’ prior to accommodate an integer parameter model.

3.1 General Jeffreys’ case

Using the multivariate Jeffreys’ rule we find that the Jeffreys’ prior (Barger and Bunge
2008) has a different form than the reference prior for the case of the integer-valued
parameter in the species problem. (Note that we distinguish Jeffreys’ prior as the prior
derived using the multivariate Jeffreys’ rule, not the prior that Jeffreys’ proposed in his
book Theory of Probability (1939/1961) discussed in Section 1.) The Jeffreys’ prior can
be derived by taking the square root of the determinant of the information matrix in
(2). This yields

π(C, η) ∝ π(C)π(η) = C
m−1

2 π(η)

where

π2(η) = |ρ(η)| ×
∣∣∣∣∣
1− pη(0)

pη(0)
−

(
∂

∂η
log pη(0)

)T

(ρ(η))−1

(
∂

∂η
log pη(0)

)∣∣∣∣∣ ,

so that π(η) is a function of η only and depends on the species’ abundance distribution.
Hence the Jeffreys’ prior can be written as a product of two independent priors. For
m ≥ 0 π(C) is improper; in fact it is an increasing function of C for m > 1, and
we discuss this in the next section. Finally, since the marginal Jeffreys’ prior is not
integrable in C, we must still show that the posterior is finite in each particular setting
(the posterior is at least integrable with respect to C in general, as shown in Section
2.2).

4 Comparison of priors

We look first at commonalities between the two approaches. The reference and Jef-
freys’ priors are equivalent for one-parameter problems. In the species problem, having
only one unknown parameter corresponds to assuming that all nuisance parameters are
known, i.e., m = 0, and in this case π(C) ∝ C−1/2 for both methods. More generally,
for any m, it is remarkable that both the reference and Jeffreys’ methods result in fac-
torization of the joint prior into independent priors for the parameter of interest and
the nuisance parameter, and that the factorization is not affected by the choice of abun-
dance distribution. Finding the exact form of π(η) can be a difficult problem, though,
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especially when working with a vector η. For the Jeffreys’ method, a vector η increases
the complexity of the determinant in computing the prior, and for the reference method,
each additional component in η requires additional integration. In cases where the prior
is difficult to calculate, one can use the marginal prior for the number of species π(C) in
combination with another, preferably objective, prior for the nuisance parameter. Still,
if proper priors are not used, the posterior must be checked for integrability.

From a global perspective we are inclined to prefer the reference approach. Ac-
cording to Bernardo and Ramón (1998), “The declared objective of reference Bayesian
analysis is to specify a prior distribution such that [...] the information provided by
the data should dominate the prior information, because of the ‘vague’ nature of the
prior knowledge”; furthermore reference analysis is “the only available method to de-
rive non-subjective posterior distributions which satisfy all [of the following] desiderata”:
invariance, consistent marginalization, consistent sampling properties, generality, and
admissibility. Such considerations are especially important in the species problem, be-
cause the ecological literature provides little substantive theory on which to base the
statistical analysis of species richness. The reference prior has been successful over the
Jeffreys’ prior in other multiparameter problems (Irony and Singpurwalla 1997). In
particular, in this problem the marginal reference prior for C does not depend on the
dimension of η, which seems reasonable (or at least simple), while the Jeffreys’ version
depends on m and (although flat for m = 1) is actually increasing in C for m > 1. If we
consider π(C) in this case as the limit of a proper prior on a bounded parameter space,
then the interpretation seems to be that larger (in fact arbitrarily large) values of C are
always more likely a priori, a stance which the investigator may not wish to adopt. The
increasing property also makes numerical computation of the posterior more challenging
(we return to this in Section 5).

At the suggestion of an anonymous referee, we carried out a small simulation com-
parison of the behavior of the two approaches. We used the one-parameter exponential-
mixed Poisson (geometric) model with f(λ|θ) = exp (−λ/θ)/θ and hence pθ(j) =
(1/(1 + θ))(θ/(1 + θ))j , θ > 0, j = 0, 1, . . . (see Barger and Bunge (2008) for a de-
tailed treatment of this model). The Jeffreys’ prior is proportional to θ1/2/(1 + θ),
and the reference prior is proportional to C−1/2(θ(1 + θ))−1/2; in both cases the pos-
terior is proper. We simulated datasets from this model at C = 100 and C = 1000,
for θ = 0.5, 1, 5, 10 (pθ(0) = 2/3, 1/2, 1/6, 1/11). At each design point we generated
200 replicate datasets. We analyzed the full dataset in each case rather than setting a
maximum frequency (upper truncation point) τ ; see Section 5 regarding this issue. We
considered frequentist coverage rates for nominal 95% highest posterior density regions,
along with the width of the regions. Essentially we found that the HPD regions for both
the reference and Jeffreys’ approaches achieved nearly exact 95% (frequentist) coverage,
and that HPD widths in the two cases were virtually identical, at every design point
of the simulation. We attribute this similar behavior mainly to the simplicity of the
geometric model. To obtain better resolution regarding potential divergence of these
procedures (in terms of frequentist criteria) it will be necessary to consider more com-
plex models and a more extensive simulation design, which is a topic for future research.
However, we note that certain empirical data analyses (using more complex models) do
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Table 1: Priors for nuisance parameters in Bayesian procedures. The reference prior is
used for C in all models, π(C) ∝ C−1/2.

Abundance distribution prior for nuisance parameters
gamma π(θ1) ∝ 1/π(1 + θ2

1), θ1 > 0
f(λ|θ1, θ2) = exp{−λ/θ2}λθ1−1

Γ(θ1)θ
θ1
2

π(θ2) ∝ 1/π(1 + θ2
2), θ2 > 0

inverse Gaussian π(θ1) ∝ θ−1
1 , θ1 > 0

f(λ|θ1, θ2) =
(

θ1
2πλ3

)1/2
exp

{
− θ1(λ−θ2)

2

2θ2
2λ

}
π(θ2) ∝ θ

−3/2
2 , θ2 > 0

two-mixed exponential π(θ1) ∝ θ
−1/2
1 (1 + θ1)−1, θ1 > 0

f(λ|θ1, θ2, α) = α exp{−λ/θ1}
θ1

+ (1− α) exp{−λ/θ2}
θ2

π(θ2) ∝ θ
−1/2
2 (1 + θ2)−1, θ2 > 0

π(α) ∝ 1, 0 < α < 1

display such divergence, and we return to this in Section 5 below.

5 Examples

We consider three examples to demonstrate the use of the reference prior, and to com-
pare it with the parametric models from Bunge and Barger (2008), the nonparametric
mixture model from Böhning and Schön (2005), and the nonparametric coverage-based
estimators from Chao and Lee (1992). This is the first comparison of parametric objec-
tive Bayesian, parametric frequentist, and nonparametric frequentist methods, to the
best of our knowledge. We give complete results only for the reference prior, for the
reasons discussed above, but we also describe the Jeffreys’ result in one case.

For the parametric procedures, models are selected using the method described in
Bunge and Barger (2008) (see below for details). The same abundance distribution is
used in both the parametric frequentist and parametric Bayesian methods. (Alterna-
tively, model selection could have been performed separately for the Bayesian analysis
using a criterion such as DIC, but keeping the model consistent within each example
allows direct comparison of the results.) The priors used for the nuisance parameters
are shown in Table 1. For all models, we assume that the prior distributions for each of
the components of the nuisance parameter are independent. Note that for the inverse
Gaussian model, the prior used for the nuisance parameter is the multivariate refer-
ence prior for the two components (Gutiérrez-Peña and Rueda 2003), and independence
among components of the nuisance parameter prior is implied.

The three data sets we analyze have previously appeared in the literature. The
Christmas Bird Count data from Chao and Bunge (2002) reports observed bird sightings
in Fort Meyers, Florida in 1989. This data set contains 20,042 observed individuals, 126
observed species, and a maximum frequency of 3,877. The Lepidoptera data were used in
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Fisher et al. (1943) to determine the number of species of Lepidoptera in Rothamsted,
England from 1922 to 1936. This data set contains 15,609 observed individuals, 240
observed species, and a maximum frequency of 2,349. The final dataset is a microbial
sample from the waters near Disco Island (Stoeck et al. 2007) in which interest lies in
determining the number of different protistan species. The sample was taken in July
2003. This data set contains 2,294 observed individuals, 149 observed species, and a
maximum frequency of 65.

Datasets of this type usually exhibit a large number of rare species and a small
number of abundant ones, leading to a long right tail in the data (high frequency counts).
All existing estimation methods (including those used here) are affected by this right
tail, so typically a right truncation point, called τ , is selected, and only frequency counts
up to τ are used in the analysis. (The number of species with sample abundances greater
than τ is added to the final estimate.) This is an unresolved issue akin to the treatment
of outliers in linear models; we discuss it in detail in Bunge and Barger (2008). Here
we used values of τ selected by the criteria described therein (essentially goodness-of-
fit); this yielded τ = 221, 112, and 58 for the Christmas Bird Count, Lepidoptera and
Disco Island data respectively. We also used τ = 10 in all cases since this is the value
recommended by Chao and used in her SPADE program for nonparametric analysis
(Chao and Shen 2003)

The goodness-of-fit procedure described in Bunge and Barger (2008) also yields a
best-fitting parametric abundance distribution in each case. For these datasets the
selected distributions were as follows: at τ = 10, gamma (Christmas Bird Count and
Lepidoptera) or inverse Gaussian (Disco Island ); at higher τs, finite mixture of two
exponentials (all three datasets). Finally, we selected between the two versions of the
nonparametric Abundance-Based Coverage Estimator, ACE and ACE1, according to
criteria from Chao and Lee (1992); essentially ACE1 is selected if the coefficient of
variation of the data exceeds 0.8.

For Bayesian estimation we use MCMC to simulate from the posterior distributions.
Expressions for the full conditionals for some of the models are given in Barger and
Bunge (2008). The posterior samples are taken to have an approximate effective sample
size (Kass et al. 1998) of 2,500. Acceptance rates for parameters are kept below 40%. We
use Bayesian posterior modes as point estimates and highest posterior density regions
as the corresponding interval estimates.

For the parametric maximum likelihood and nonparametric coverage-based methods,
the reported interval estimates are log-transformed (Chao 1987). Profile likelihood
methods could be used in the former case to obtain intervals that more accurately reflect
the skewed distribution of the estimates, but we have not yet implemented these in our
software. The reported estimates for the NPMLE are accompanied by trimmed interval
estimates (Dankmar Böhning, personal communication, April 2009), where outliers in
the bootstrap resampling have been removed. These estimates were computed using
software provided by Böhning and Kuhnert (personal communication).

Figure 1 shows the analysis of each of the three data sets. Our first observation is
that for higher τ , the Bayesian and parametric maximum-likelihood point estimates and
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Figure 1: Comparison of methods on three datasets.
Square = estimate at τ = 10; dot = estimate at optimal τ . Dotted line segment =
confidence interval (frequentist) or HPD interval (Bayesian).

intervals agree quite well for all three datasets. The Bayesian intervals can be sensitive
(Christmas Bird Count, Disco Island) to the loss of information incurred by arbitrarily
truncating the data at τ = 10.

The coverage-based nonparametric estimates are reasonable at τ = 10 but tend to
be unstable at higher τ (Disco Island). Indeed it is known (Bunge and Barger 2008)
that ACE and its variants are sensitive to outliers and diverge to infinity as higher
frequencies are included in the data; this is the reason for the default cutoff τ = 10 for
these procedures. Finally, the NPMLE performs reasonably well in some cases but not
in others (Lepidoptera); this is mainly due to the heuristic nature of the procedures for
selecting the number of components in the final NPMLE model (Böhning and Schön
2005), and for trimming large outlying values of the estimates produced during bootstrap
error estimation.

For comparison, we also carried out the Jeffreys’ prior-based analysis of the Lepi-
doptera data, again using the gamma mixed-Poisson or negative binomial model. The
sampler required hand-tuning and did not converge at all at τ = 10, but at τ = 112 we
obtained a posterior mode of 342 with SE = 666.9, and 95% HPD interval (272,910).
As noted above, we believe that these results reflect the increasing (as well as improper)
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nature of the Jeffreys’ prior for C: here m = 2 so the prior is
√

C.

6 Conclusion

We have presented a fully Bayesian method using two kinds of objective priors for the
problem of estimating the number of classes in a population. The priors are derived
based on different notions of objectivity as elaborated by Jeffreys (1946) and Bernardo
(1979). Our results are based on asymptotic theory due to Lindsay and Roeder (1987),
which provides an information matrix when both integer- and continuous-valued param-
eters are present. We show that both kinds of objective priors have independent compo-
nents for parameter of interest and the nuisance parameters.; i.e., π(C, η) = π(C)π(η),
although the method we use to derive the priors does not assume this restriction. In-
dependent priors have been used in all of the previous Bayesian research on the species
problem, and we now can provide some justification for this practice.

Although the Bayesian approach is currently one of the less-used methods in ap-
plied species estimation, we show that it is practical and yields point estimates that are
comparable to frequentist results. Bayesian and frequentist interval estimates are also
similar, after using a log transformation (or profile likelihood methods) for the frequen-
tist procedures to account for asymmetric sampling distributions of the estimates.

We recommend the reference prior over the Jeffreys’ method for this multiparameter
problem. The Jeffreys’ estimates tend to be numerically unstable, and the priors for
both the parameter of interest and the nuisance parameter are more complicated and
difficult to interpret. The reference approach gives a more elegant solution here; in
particular the marginal reference prior for C does not depend on the dimension of the
nuisance parameter.

We hope to see more use of Bayesian models in the future in this area. Full joint
priors can be derived analytically for models with one nuisance parameter, but more
complex models are usually needed when dealing with larger data sets. Our suggestion
for assigning a prior π(η), when η is a vector, is at this point somewhat arbitrary and
requires more investigation.

Appendix: Proof of Theorem 2.1

We will need the inverse of the information matrix in (2). Denote this inverse by
S(C, η) = R(C, η)−1. Taking the inverse of this partitioned matrix, we have

S(C, η) =
(

F−1
11 + F−1

11 F12E
−1F21F

−1
11 −F−1

11 F12E
−1

−E−1F21F
−1
11 E−1

)
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where E = F22 − F21F
−1
11 F12, and Fij , i, j = 1, 2 are the elements of the partitioned

information matrix. Now,

E = C%(η)−
(
− ∂

∂η
log pη(0)

)(
1
C

1− pη(0)
pη(0)

)−1 (
− ∂

∂η
log pη(0)

)T

= C

(
%(η)− pη(0)

1− pη(0)

(
∂

∂η
log pη(0)

)(
∂

∂η
log pη(0)

)T
)

.

The elements of this matrix are

S(C, η)11 = C
pη(0)

1− pη(0)
+

(
C

pη(0)
1− pη(0)

)(
− ∂

∂η
log pη(0)

)T

E−1

×
(
− ∂

∂η
log pη(0)

)(
C

pη(0)
1− pη(0)

)

= Cs(η)11,

S(C, η)12 = −
(

C
pη(0)

1− pη(0)

) (
− ∂

∂η
log pη(0)

)T

E−1

= s(η)12,

S(C, η)21 = −E−1

(
− ∂

∂η
log pη(0)

)(
C

pη(0)
1− pη(0)

)

= s(η)21,

and

S(C, η)22 = E−1 =
1
C

s(η)22.

Thus, the information matrix has the form

S(C, η) =
(

Cs(η)11 s(η)12
s(η)21 1

C s(η)22

)
.

The next result follows from proposition 3 in Bernardo and Ramón (1998). If Sj is
the (j × j) upper matrix of S(C, η) and Hj = S−1

j , then each Hj is a (j × j) matrix
with the form

Hj =
(

1
C h(η)1 h(η)2
h(η)3 CH(η)

)

where h(η)1 is a scalar, h(η)2 is 1×(j−1), h(η)3 is (j−1)×1, and H(η) is (j−1)×(j−1).

The conditional reference priors are

π(ηm|C, η1, . . . , ηm−1) ∝ %(η)1/2
mm
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and

π(ηk|C, η1, . . . , ηk−1)

∝ exp




∫
· · ·

∫
log

(
Ch

1/2
kk

)




m∏

j=k+1

π(ηj |C, η1, . . . , ηj−1)



 dηk+1




= exp




∫
· · ·

∫ (
log C + log h

1/2
kk

)




m∏

j=k+1

π(ηj |C, η1, . . . , ηj−1)



 dηk+1




= exp


log C

∫
· · ·

∫ 



m∏

j=k+1

π(ηj |C, η1, . . . , ηj−1)



 dηk+1




× exp




∫
· · ·

∫ (
log h

1/2
kk

)




m∏

j=k+1

π(ηj |C, η1, . . . , ηj−1)



 dηk+1


 (9)

∝ exp




∫
· · ·

∫ (
log h

1/2
kk

)




m∏

j=k+1

π(ηj |C, η1, . . . , ηj−1)



 dηk+1




where %(η) = EX

[(
∂
∂η log pη(X)

)2
]

and ηk+1 = dηk+1 × . . . × dηm if all of the

π(ηk|C, η1, . . . , ηk−1), k = 1, . . . , m are proper. If any of the conditional reference priors
are not proper, than a compact approximation is required for the corresponding inte-
grals. In (9) we are able to consider the first exponential as a constant with respect to
ηk since

{∏m
j=k+1 π(ηj |C, η1, . . . , ηj−1)

}
= 1 if all of these conditional priors are proper

or if a compact approximation is used. This means all of the conditional priors for η are
functions of η only. In fact, the conditional priors are the reference priors for C i.i.d.
replicates from pη.

The marginal reference prior for C is

π(C) ∝ exp




∫
· · ·

∫
log

(
C−1/2s(η)−1/2

11

)


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 dη1




= exp


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log C−1/2 + log s(η)−1/2

11

)




m∏

j=1

π(ηj |C, η1, . . . , ηj−1



 dη1




= exp


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× exp
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11
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where all of the conditional priors are proper or a compact approximation is used for
the corresponding integrals.
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