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Comment on Article by Sancetta

Feng Liang∗

I will start my discussion with some clarification on the difference between prediction
consistency (in the Cesaro sense) and universality. Suppose we are given observations
Z1, Z2, . . . sequentially, which, without loss of generality, are assumed to be i.i.d. sam-
ples from some distribution Pθ with density pθ, where θ ∈ Θ. Of interest is to estimate
pθ sequentially based on previous observations. A natural Bayes estimator at time t,
based on Zt−1

1 = (Z1, . . . , Zt−1), is given by

pw(z | Zt−1
1 ) =

∫
pθ(z)w(θ | Zt−1

1 )dθ, (1)

where w(θ | zt−1
1 ) ∝ w(θ)

∏t−1
i=1 pθ(zi) is the posterior distribution of θ updated by data

(z1, . . . , zt−1) and w(θ) is the prior distribution. At time t, we measure the error/risk
of the Bayes estimator pw by its Kullback-Leibler divergence with respect to the true
density pθ, namely,

Dt(pθ||pw) = EZ1,...,Zt−1|θ

∫
pθ(z) log

pθ(z)
pw(z | Zt−1

1 )
dz. (2)

An interesting question is under what conditions pw is a consistent estimator of
pθ. That’s the question studied in Barron (1987). His answer relevant to this paper is
that if prior w is information dense at θ (see Section 1 of Sancetta’s paper), then pw is
consistent in the Cesaro sense, i.e., the Cesaro average of Dt goes to zero,

lim
T→∞

1
T

T∑
t=1

Dt(pθ||pw) = 0. (3)

Universality of prediction, studied in this paper, requires the supremum of the Cesaro
average go to zero,

lim
T→∞

sup
θ∈Θ

1
T

T∑
t=1

Dt(pθ||pw) = 0, (4)

and therefore is stronger than Cesaro consistency (3). For example, consider a simple
normal mean problem with Zt i.i.d. ∼ N(θ, 1). No Bayes procedures pw are universal,
unless θ is in a compact set; on the other hand, many priors that are information
dense lead to consistent Bayes prediction (in the Cesaro sense). Here no estimators
(not just Bayes) are universal because our maximum error at t = 1 is infinity: without
conditioning on any data, our estimate at t = 1 is just a fixed density, whose KL
divergence with respect to N(θ, 1) can be made arbitrarily large (unless the parameter
space Θ is bounded), therefore supθ D1 = ∞. However, in most real applications, what
happens at t = 1 is of little interest. So we could drop D1 (or the first couple of Di’s)
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from the Cesaro average and study universality of predictions that are based on some
initial observations. This is exactly the framework used in Liang and Barron (2004)
for a minimax study of density estimation and universal data compression. My first
question is whether some of the results in this paper, such as Theorems 1 and 3, can
be extended to the conditioning framework, and therefore can cover simple models like
the normal mean problem or regression with an unbounded parameter space.

Note that the Cesaro consistency (3) does not imply that Dt goes zero, although the
latter is more relevant in practice. For KL divergence, it turns out to be easy to modify
pw to achieve consistency in the sense that limt Dt = 0 (Barron, 1987). For example,
consider the following sample average of pw,

p̃w(z | Zt−1
1 ) =

1
t− 1

t−1∑

i=1

pw(z | Zi
1).

By Jensen’s inequality and the convexity of the KL divergence (with respect to the
second argument), we have

Dt(pθ||p̃w) ≤ 1
t− 1

t−1∑

i=1

Di+1(pθ||pw),

which goes to zero as a consequence of (3) when w is information dense at θ. My second
question is whether similar statements (on the limiting behavior of Dt) can be made for
universal prediction.

The result in Section 3 on universality of Bayesian model averaging is interesting. I
am wondering whether K, the number of models, has to be pre-fixed. In many modern
statistical applications, the model space may increase with the sample size. So it will
be nice if Theorem 4 can be extended to cover such scenario where K = K(T ).
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