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Product partition models with correlated

parameters

João V. D. Monteiro∗, Renato M. Assunção† and Rosangela H. Loschi∗

Abstract. In sequentially observed data, Bayesian partition models aim at par-

titioning the entire observation period into disjoint clusters. Each cluster is an

aggregation of sequential observations and a simple model is adopted within each

cluster. The main inferential problem is the estimation of the number and loca-

tions of the clusters. We extend the well-known product partition model (PPM)

by assuming that observations within the same cluster have their distributions in-

dexed by correlated and different parameters. Such parameters are similar within

a cluster by means of a Gibbs prior distribution. We carried out several simula-

tions and real data set analyses showing that our model provides better estimates

for all parameters, including the number and position of the temporal clusters,

even for situations favoring the PPM. A free and open source code is available.

Keywords: Change point, Gibbs prior, MCMC, Temporal correlation

1 Introduction

Sequentially observed data can be analyzed by partitioning the observation period into
disjoint contiguous segments, called here temporal clusters. The moment when a cluster
ends and another one starts is called a change point. Within each one of these clusters,
it is usually assumed that the data are independent and identically distributed random
variables with a certain distribution such as the normal or Poisson distribution. As
soon as the number of disjoint clusters and their locations are established, the analysis
is quite simple since it is reduced to a univariate analysis within each cluster. The major
difficulty in this approach is to make inference about the unknown number of clusters
and their locations.

Some approaches consider that the number of change points is known and fixed
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(Chen and Lee 1995; Geweke and Terui 1993; Hawkins 2001). Bayesian approaches
for a single change point problem were developed in Menzefricke (1981), Hsu (1982),
Smith (1975), and Carlin et al. (1992). A major advance was the product partition
model (PPM) developed by Hartigan (1990) (see also Barry and Hartigan 1992) which
generalizes all these Bayesian approaches since it considers the number of change points
as unknown. Barry and Hartigan (1993) and Crowley (1997) applied the PPM to identify
multiple change points in normally distributed data. They did not fully explore the
posterior distribution, obtaining only the posterior means for the expected value at each
time point. Later, Loschi and Cruz (2005a) extended the PPM by providing a method to
obtain the posterior distributions for the positions and number of change points as well
as the posterior probability of each instant being a change point. Another approach
to obtain such posteriors was provided by Fearnhead (2006) and Fearnhead and Liu
(2007) which provide algorithms based on filtering for multiple change point problems.
As an important extension of the PPM, Quintana and Iglesias (2003) present a decision-
theoretic formulation to specific change point problems, such as outlier detection, using
the PPM. This approach is also used for Tarantola et al. (2008) for row effects models. A
similar approach in the context of market risk measuring is also presented in Bormetti et
al. (2010). Quintana and Iglesias (2003) also proved that PPM generalizes the Dirichlet
process, which has been intensively used for clustering analysis (Müller and Quintana
2010) and density estimation (Escobar and West 1995). Quintana (2006) establishes
connections between the PPM and other models that induce a partition structure. More
recently, the PPM was used in the spatial context by Hegarty and Barry (2008) for
Bayesian disease mapping, and in survival analysis by Demarqui et al. (2008) that
applied it to estimate the time grid in piecewise exponential models. Ruggeri and
Sivaganesan (2005) and Booth et al. (2008) suggest other approaches on multiple change
point identification. In the spatio-temporal setting, Majumdar et al. (2005) introduced
a change point model attempting to capture changes in both the temporal and spatial
associations.

The popularity of PPM is justified by its flexibility to analyze change point or
clustering problems. However, its formulation assumes a common parameter indexing
the distributions of the observations into the same temporal cluster. Furthermore,
it also assumes independence among the common parameters associated with different
temporal clusters. This approach may lead to an inaccurate identification of the number
of clusters if these assumptions are not closely followed by the data. For example,
whenever the time series has an underlying trend, the usual PPM overestimates the
number of clusters.
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In this paper, we extend the PPM to a hierarchical Bayesian model for clustering
analysis in the temporal context. We also assume independence among parameters in
different temporal clusters, but contrary to what is assumed in the PPM, we consider
that the observations in the same cluster have their distributions indexed by different
parameters. Although different, the parameters are similar for observations within a
given cluster. This is done by adopting a Gibbs distribution as the prior specification
for the canonical parameters. As a result, the parameters within the same temporal
cluster are correlated.

One important advantage in allowing similar parameters within a temporal cluster is
that, rather than having an unknown dimension, the dimension of the parameter vector
is fixed. This facilitates the numerical procedures used to sample from the posterior
distribution. As we show in our examples, it also makes the interpretation of the results
more straightforward and accurate.

We obtain several probabilistic results related to the prior specification for the ran-
dom partition that defines the position of the change points. We focus on normally and
Poisson distributed data but the method can be easily generalized to a larger class of
distributions such as the exponential family.

In Section 2, we introduce our clustering model for Poisson and normal data. We
also present some probabilistic results related to the prior specification for the random
partition and the connections between the proposed model and PPM. In Section 3, we
present examples using simulated data sets. In Section 4, we analyze some case studies
in order to illustrate the use of the proposed model. Finally, we close the paper with
some final comments and conclusions in Section 5. Technical proofs are presented in
the Appendix.

2 Model specification

In this section we review the PPM introduced by Barry and Hartigan (1992) and present
our approach for the partition model. We also present some results related to the prior
specifications for the partition and number of clusters.

Throughout this paper we assume the following notation. Consider an observation
y = (y1, . . . , yn) of the vector Y = (Y1, . . . , Yn) composed of sequentially observed
random variables. Let I = {1, . . . , n} be the index set. A temporal cluster Cj is the
subset Cj = {ij−1 + 1, . . . , ij} of I, ik ∈ I, k = 1, . . . , c, such that 0 = i0 < i1 <
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. . . < ic = n. Let π = {C1, . . . , Cc} be a random partition of the set I into C = c

contiguous temporal clusters inducing the partition yC1 = (yi0+1, . . . , yi1), . . . ,yCc
=

(yic−1+1, . . . , yn) in Y.

2.1 The Product Partition Model

We review briefly the PPM introduced by Hartigan (1990) (see also Barry and Hartigan
1992). Assume that, given µ1, · · · , µn, µi ∈ R, the random variables Y1, . . . , Yn are
independent and Yi|µi ∼ f(yi | µi), ∀ i ∈ I. In the PPM it is assumed that, given a
partition π = {C1, . . . , Cc} and c ∈ I, there are common parameters µCj , j = 1, . . . , c,
that is, µCj

= µij−1+1 = · · · = µj , which indexes the conditional density of YCj
.

Additionally, it is assumed that µC1 , . . . , µCc are independent, with µCj having (block)
prior density π(µCj

).

Denote by GCj , j ∈ I the prior cohesion associated with the block Cj . The prior
cohesions are non-negative numbers, not all equal to zero. In the contiguous clusters
case, the set of GCj values can be interpreted as the transition probabilities in a Markov
chain with state space defined by the possible endpoints of the clusters in π. Thus, GCj

denotes the probability of having a change at instant ij , given that a change takes place
at ij−1. Barry and Hartigan (1992) establish that the joint distribution of (Y1, . . . , Yn, π)
follows the PPM if

(i) the prior distribution of π is the following product distribution

P (π = {C1, . . . , Cc}) =

∏c
j=1 GCj∑

C
∏l

j=1 GCj

, (1)

in which C is the set of all possible partitions of the set I.

(ii) conditional on π = {C1, . . . , Cc}, the sequence Y1, . . . , Yn has the joint density
given by

f(y|π = {C1, . . . , Cc}) =
c∏

j=1

f(yCj ),

where f(yCj ) =
∫

f(yCj |µCj )π(µCj )dµCj denotes the data factor of the cluster Cj .
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Under the PPM, the posteriors of µk, C and π are given, respectively, by

P (π = {C1, . . . , Cc}|y) ∝
c∏

j=1

GCj f(yCj),

P (C = c|y) ∝
∑

Cc

c∏

j=1

GCj f(yCj ),

f(µk|y) =
k−1∑

i=0

n∑

j=k

r∗[ij]f(µk|yi+1, . . . , yj),

where Cc is the set of all possible partitions of I in C = c clusters. The posterior for
µk, k = 1, . . . , n, is a mixture of posterior-by-block distributions of µk where the mixing
measure is the posterior probability r∗[ij] of block [ij] being into the partition π. The
probability r∗[ij] is known as the block [ij] posterior relevance.

2.2 Proposed model

As in the PPM model, assume that, given µ1, · · · , µn, µi ∈ R, the random variables
Y1, . . . , Yn are independently distributed and such that Yi|µi ∼ f(yi | µi), ∀ i ∈ I. The
likelihood function when the data set is partitioned into C = c temporal clusters is
given by:

f(y|µ, π = {C1, . . . , Cc}) =
c∏

j=1

ij∏

k=ij−1+1

f(yk | µk). (2)

Since we expect temporal correlation among data, we connected the µi’s by means of
the prior specification for µ conditioned on the partition π. Rather than fixing a constant
value for all µi’s within a cluster, we assume that they vary smoothly within the cluster.
We believe this is a more realistic assumption. Many latent and unobserved factors vary
in time implying differences, even if small, between the observations’ distributions. As
a consequence, we expect differences between the yi’s distribution parameters, even if
they are close in time and share many characteristics. If similarity between a pair of
instants is high, this difference may be so small as to make it undetectable statistically
or irrelevant in practice. Conceptually it seems reasonable to allow for prior differences
between any two moments in time and let the data determine the inference.

A prior that incorporates smooth variation between items is the intrinsic conditional
autoregressive (ICAR) model, a Markov model introduced by Besag et al. (1991) to esti-
mate relative risks in spatially located small areas or to evaluate the effects of covariates
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acting as exposure measurements surrogates. In the ICAR model, spatial dependence
is expressed conditionally by requiring that the random effect in a given area, given
the values in all other areas, depends only on a small set of neighboring values. This
spatial prior distribution is improper and it has been extremely successful in the spatial
statistics literature. It has been extended into several directions to include space-time
generalized linear models, spatial survival models, spatially-varying parameters models,
and generalized additive models. A thorough review of applications in spatial problems
can be found in Banerjee et al. (2004) and Rue and Held (2005).

Our prior distribution is a one-dimensional version of the ICAR model. Given π =
{C1, . . . , Cc} and the hyperparameter τµ, we assume that µ has the following Gibbs
distribution:

f(µ|π = {C1, . . . , Cc} , τµ) ∝ τ (n−c)/2
µ exp

{
−τµ

2

n−1∑

i=1

δi(µi − µi+1)2
}

n∏

i=1

1S(µi), (3)

where 1S(µi) is the indicator function assuming 1 if µi ∈ S and 0 otherwise, the indicator
function δi is equal to 0 if the observations i and i + 1 do not belong to the same
temporal cluster, and equal to 1, otherwise. The set S ⊆ R is the parametric space
for µi, i = 1, . . . , n. The presence of the support S in this prior density is necessary to
avoid pathological behavior of the posterior, as we show in Section 2.3.

This prior distribution puts more probability mass on configurations with similar µi

values within clusters. The existence of different distributions between clusters is akin
to the existence of islands in the spatial context and this explains the rather unusual
exponent n − c of the precision τµ in (3) (Hodges et al. 2003; Knorr-Held 2003). The
degree of similarity is controlled by the hyperparameter τµ. Let the n− 1 dimensional
vector µ−i be the µ vector without the i-th entry. Suppose that µi, 1 < i < n, belongs
to a cluster with at least two observations. Then

f (µi | µ−i, π = {C1, . . . , Cc} , τµ) ∝ N
(
µi, (τµni)−1

)
1S(µi), (4)

where µi = (δi−1µi−1 + δiµi+1)/ni and ni = δi−1 + δi. The larger the hyperparameter
τµ, the more tightly clustered are the within cluster values.

To complete the model specification, we need the prior for τµ and, most importantly,
for the random partition π. The prior for the random partition is built by noticing the
equivalence of π to the random vector (δ1, . . . , δn−1):

π = {C1, . . . , Cc}
⇔ {δ1 = 1, . . . , δi1 = 0, δi1+1 = 1, . . . , δi2 = 0, . . . , δn−1 = 1}. (5)
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Let us suppose that p ∈ (0, 1) is the probability of two adjacent observations belonging
to the same temporal cluster. Assuming that the Bernoulli random variables δi are
independent, one option for the prior distribution of π may be given by:

P (π = {C1, . . . , Cc}|p) = pn−c(1− p)c−1, (6)

where c = n−∑n−1
i=1 δi denotes the number of temporal clusters in the data set.

It is noteworthy that, given p, the prior distribution for π is a product distribution.
In fact, it is a product of truncated geometric distributions. This implies that the prior
distribution for π is the same as that defined by Barry and Hartigan (1992) assuming
the Yao’s prior cohesion (Yao 1984).

In Section 2.4, we discuss several properties of the prior distribution in (6) that help
us to select appropriate hyperparameters in specific applications. The distribution in
(6) typically renders excellent results in practice (see the simulated and case studies
sections). However, it is not the only option for the partition prior. Other priors may
be more appropriate in some particular applications and hence we provide additional
options in the last section. For the sake of definiteness, we will continue introducing
our model in the present section using (6).

For the hyperparameters, we assume that p and τµ are independent with p ∼
Beta(a, b) and τµ ∼ Gamma(r, s), where a, b, r and s are known, positive and real
numbers.

Let θ = (µ, π, p, τµ). The posterior distribution of θ is given by:

P (θ|y) ∝ f(Y|µ)f(µ|τµ, π)P (π|p)f(p)f(τµ)

∝



c∏

j=1

ij∏

k=ij−1+1

f(yk | µk)


 τ (n−c+2r−2)/2

µ p n+a−c−1(1− p)c+b−2

× exp

{
−τµ

(
n−1∑

i=1

δi(µi − µi+1)2 + s

)}
m∏

i=1

1S(µi). (7)

The prior distribution of µ in (3) is improper (Banerjee et al. 2004). The use of
improper priors is acceptable as long as we get a proper posterior distribution. In
general they arise in reference or objective Bayesian analysis (see Robert 2007, for a
more detailed discussion) but are frequently used whenever there is no prior information
available. The next proposition provides conditions under which the posterior is proper.
Its proof is presented in Appendix A.
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Proposition 1. Assume the previous prior specifications for the components of θ and
that, given µ1, . . . , µn, the random variables Y1, . . . Yn are independent and such that
Yi | µi ∼ f(yi | µi). If g(µ) =

∏n
i=1 f(yi | µi)1S(µi) is an integrable function w.r.t. µ,

then the posterior distribution of θ given in (7) is proper.

The posterior distribution of π under the proposed model is a product distribution,
as it is the case for such posterior distribution under PPM (Barry and Hartigan 1992)
described in Section 2.1. In a general setting, consider a product prior distribution for
the partition π, say, assume P (π = {C1, . . . , Cc}) ∝

∏c
j=1 GCj

, where GCj
, j = 1, . . . , c,

is a non-negative number. Assume that the µ’s in different clusters are independent but
that they are correlated whenever in the same cluster, such that f(µ|π = {C1, . . . , Cc}) =∏c

j=1 f(µij−1+1, . . . , µij ). Thus, the posterior for π is given by:

P (π = {C1, . . . , Cc}|y) ∝
c∏

j=1

GCj f(yCj ),

where f(yCj ) =
∫

. . .
∫ ∏ij

k=ij−1+1 f(yk|µk)f(µij−1+1, . . . , µij )dµij−1+1 . . . dµij . There-
fore, the data factor f(yCj ) is more general than that assumed in the usual PPM (Barry
and Hartigan, 1992, 1993).

2.3 Poisson and Normal cases

In this section we present two particular applications of the proposed model, when the
sample distributions are the Poisson and normal ones. These are important special cases
because many data analyses assume these distributions for the observed data.

Assume that, given λ1, · · · , λn, the random variables Y1, . . . , Yn are independent and
such that Yi|λi ∼ Poisson(λi), λi > 0. Consider the canonical parameter µi = ln(λi).
Let µ = (µ1, . . . µn). The likelihood function when the data set is partitioned into C = c

temporal clusters is given by:

f(y|µ, π = {C1, . . . , Cc}) =
c∏

j=1

ij∏

k=ij−1+1

[
exp {−eµk + ykµk}

yk!

]
. (8)

The Poisson case illustrates the need for the introduction of the support set S in the
prior distribution (3). Let S∗ be the implied support set for λi = exp(µi), i = 1, . . . , n.
If we allow 0 to be an accumulation point of S∗ we are led to an improper posterior
if any yi = 0. This is clearly an undesirable property that can be readily remedied if
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we assume that there exists ε > 0 such that λi ∈ S∗ = (ε,∞) for all i = 1, . . . , n. An
important point is that, for the posterior to be proper, ε must merely exist. We do
not need to know its value in any specific application. In practice this assumption will
always be valid since ε can be taken arbitrarily small. Indeed, we can only think of
mathematically pathological examples where the assumption that such ε > 0 exists it is
not true. It is hard to imagine a situation, even one with many observed zeros, in which
we can not imagine an extremely small lower bound for the λi parameters. The mere
adoption of extremely small values such as ε = 10−30 suffices to make the posterior a
proper distribution.

Let θ = (µ, π, p, τµ) and S∗ = (ε,∞), which implies that S = (log(ε),∞). The
posterior distribution of θ is given by:

P (θ|y) ∝ f(Y|µ)f(µ|τµ, π)P (π|p)f(p)f(τµ)

∝
c∏

j=1

ij∏

k=ij−1+1

[
exp {−eµk + ykµk}

yk!

]
τ (n−c+2r−2)/2
µ p n+a−c−1(1− p)c+b−2

× exp

{
−τµ

(
n−1∑

i=1

δi(µi − µi+1)2 + s

)}
n∏

i=1

1S(µi) . (9)

Corollary 1. Assume the previous prior specifications for the components of θ with
S∗ = (ε,∞) where ε > 0, and conditionally independent Poisson distributed data Yi.
The posterior distribution of θ given in (9) is proper.

Proof: Let λi = eµi and consider the function g(µ) =
∏n

i=1 exp{−eµi + yiµi}1∗S(λi).
Let Z ⊆ {1, . . . , n} be the set of indexes such that yi = 0. Then g(µ) is the product
of two factors, one collecting the indexes in Z, and the other collecting the remaining
indexes. For those indexes such that yi > 0, the corresponding factor in g(µ) is the
product of kernels of the Gamma pdfs which is an integrable function w.r.t. µ. Consider
now the indexes in Z and its corresponding factor

∏
i∈Z [eλiλi]−11S∗(λi) in g(µ). It is

clear that
∫∞

ε
[eλiλi]−1dλi < ∞. The result then follows from Proposition 1.

Using such an ICAR prior in the spatial context, Ghosh et al. (1998) proved that
the posterior distribution is proper for the related parameters but their result is not as
strong as needed for data analysis. For example, for Poisson data, the posterior is not
proper if there is at least one zero count in the sample. We have been able to prove that
a proper posterior is obtained including the zero count case by assuming a constraint
in the prior dominion.

Assume now that, given µ = (µ1, . . . µn) and τy, the random variables Y1, . . . , Yn
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are independent and such that Yi|µi, τy ∼ Normal
(
µi, τy

−1
)
. With the same previous

prior specifications and assuming that S = R and τy ∼ Gamma(t, u), the posterior
distribution for θ = (µ, τy, π, p, τµ) is given by:

P (θ|y) ∝ f(Y|µ, τy)f(µ|τµ, π)P (π|p)f(τy)f(p)f(τµ)

∝ exp

{
−τy

2

(
n∑

i=1

(yi − µi)2 + 2u

)}
exp

{
−τµ

(
n−1∑

i=1

δi(µi − µi+1)2 + s

)}

× τ (n+2t−2)/2
y τ (n−c+2r−2)/2

µ p n+a−c−1(1− p)c+b−2. (10)

Corollary 2 establishes that the joint posterior distribution for normally distributed
data in (10) is proper without any restriction in the parameter space, despite having
assumed an improper prior for µ.

Corollary 2. Assume that, given µ1, . . . , µn and τy, Y1, . . . , Yn are independent and
that Yi|µi, τy ∼ Normal(µi, τy

−1), i = 1, . . . , n. With the stated prior specification for θ

and for S = R the posterior distribution (10) of θ is proper.

Proof: The proof follows from Proposition 1 by noticing that

g(µ) = s−(n−c+2r)/2

[
1/2

(
n∑

i=1

(yi − µi)2 + 2u

)]2/(n+2t)

= s−(n−c+2r)/2u(n+2t)/2

[
1 +

1
2t

(µ− y)T Σ−1(µ− y)
]−(n+2t)/2

, (11)

where Σ−1 is an n × n matrix such that Σ−1 = diag{t/u, . . . , t/u}, is the kernel of
a multivariate Student-t distribution with location parameter y ∈ Rn, scale matrix
Σ ∈ R+ × R+ and degree of freedom 2t > 0. Consequently, the function g(µ) is
integrable with respect to µ.

Since the posterior distributions of θ in (9) and (10) do not have a closed form, we
use Markov chain Monte Carlo (MCMC) methods. We use the standard Metropolis-
Hastings algorithm to sample from the posterior distributions of the µ′is. To sample
from the posterior of π, we take into consideration the binary characteristic of δi and its
relationship with π. Then, we use the Gibbs sampling schemes introduced by Barry and
Hartigan (1993) and Loschi and Cruz (2005a). The posteriors for the other parameters
are approximated by a Gibbs sampler. We have no need for methods such as reversible
jump MCMC since our parameter vector has a fixed dimension, in contrast with PPM
(for the PPM approach for the normal case, see Barry and Hartigan 1993).
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2.4 On the prior specification for the random partition π

In this section, we derive some properties concerning the number and the composition of
the clusters that are instrumental for the prior specification in practice. The following
lemma summarizes some well known results related to C.

Lemma 1. If P (π = {C1, . . . , Cc} | p) = pn−c(1− p)c−1 then it follows that:

(i) the prior distribution of C, given p, is

P (C = c | p) =
(

n− 1
c− 1

)
pn−c(1− p)c−1, c = 1, . . . , n; (12)

(ii) if p ∼ Beta(a, b), then the prior distribution of C is:

P (C = c) =
(

n− 1
c− 1

)
Γ(a + b)Γ(a + n− c)Γ(b + c− 1)

Γ(a)Γ(b)Γ(n + a + b− 1)
, c = 1, . . . , n; (13)

(iii) if p ∼ Beta(a, b), then the expectation and the variance of C is, respectively,

E(C) = n− (n− 1) a
a+b ,

Var(C) = (n− 1)
[

ab(n−2)
(a+b)2(a+b+1) + a

a+b + a2

(a+b)2

]
.

(14)

The prior specification for π can be tuned by exploring the dependence of the prior
mean and variance of C on a and b. If we set a = b, it follows that E(C) = (n + 1)/2
and Var(C) = (n − 1)4−1

[
(n− 2)(2a + 1)−1 + 3

]
. As the common value of a and b

increases, the variance of C decreases converging to 3(n− 1)/4. This prior specification
of C with a = b implies that around 50% of the observations are expected to be change
points. Therefore, the special case of a = b in the prior for p stimulates a large number of
clusters. In the important particular case when a = b = 1, C has the discrete uniform in
the set {1, . . . , n}, which is a common prior specification for C. Although this stimulates
a priori a large number of clusters, it can be extremely effective in practice, as we show
in our simulated and real data illustrations in Sections 3 and 4.

If b is constant and a → 0, then E(C) → n and Var(C) → 0. In other words, we
are eliciting a priori that all the observations are in different clusters with probability
one. If a is constant and b → 0, then E(C) → 1 and Var(C) → 2(n − 1). In this case,
we are anticipating a small number of change points in the series. Notice that the prior
uncertainty about this number of clusters tends to increase as the sample size increases.
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In Proposition 2, we give additional results concerning the prior specification for π.
Let Nj be the number of observations in the temporal cluster which contains yj and
B(x, y) = Γ(x)Γ(y)/Γ(x + y).

Proposition 2. If P (π = {C1, . . . , Cc} | p) = pn−c(1−p)c−1, then, for all j ≤ (n+1)/2,
we have that

(i) the conditional prior distribution P (Nj = k | p) is given by:

k(1− p)2pk−1 if 1 ≤ k < j,

pk−1(1− p) + (j − 1)pk−1(1− p)2 if j ≤ k < (n− j + 1),
2pk−1(1− p) + [n− (k + 1)](1− p)2pk−1 if (n− j + 1) ≤ k < n,

(1− p)n−1 if k = n;

(15)

(ii) if p ∼ Beta(a, b), then the prior distribution P (Nj = k) is given by:

kB(a + k − 1, b + 2)/B(a, b), 1 ≤ k < j,

(B(a + k − 1, b + 1) + (j − 1)B(a + k − 1, b + 2)) /B(a, b), j ≤ k < n− j + 1,

(2B(a + k − 1, b + 1) + [n− (k + 1)]B(a + k − 1, b + 2)) /B(a, b), n− j + 1 ≤ k < n,

B(a, b + n− 1)/B(a, b), k = n.

(16)

The proof of Proposition 2 can found in Appendix C. Notice that there is a symmetric
relationship between observations that have the same distance from the middle. Thus,
the results in Proposition 2 also follow for j > (n + 1)/2.

2.5 Limitations of the use of improper priors

An important limitation of using improper priors in change point problems is the lack of
interpretability of the posterior results, as discussed in Girón et al. (2007) and Moreno
et al. (2005). A simplified example showing clearly the difficulties one can find is the fol-
lowing. Suppose conditionally that we observe independently and normally distributed
random variables Y1, . . . , Yn with known variance σ2

y = 1. Under the PPM, assume the
Jeffreys’s prior for the common means µCj within the temporal cluster Cj .

For illustration consider the following two partitions, π1 = {1, . . . , n}, implying no
change, and πn = {{1}, . . . , {n}}, implying that every observation is a change point.



J. V. D. Monteiro, R. M. Assunção, R. H. Loschi 703

Let ȳ =
∑

i yi/n. Then,

P (π1 | y) ∝ P (π1)
∫ (

1
2π

)n/2

exp

{
−1

2

∑

i

(yi − µ)2
}

dµ

∝ P (π1)
(

1
2π

)(n−1)/2

exp

{
−1

2

∑

i

y2
i +

n

2
ȳ2

}
,

P (πn | y) ∝ P (πn)
∫

. . .

∫ ∏

i

1
2π

exp
{
−1

2
(yi − µi)2

}
dµ1 . . . dµn

∝ P (πn) .

Suppose that we observe y1 = · · · = yn = 0, an empirical evidence favoring π1.
Thus,

R =
P (π1 | y = 0)
P (πn | y = 0)

=
P (π1)
P (πn)

(
1
2π

)(n−1)/2

.

Assuming the general prior in (6) with a beta distribution for p, we find

P (π1) =
Γ(a + b)Γ(a + n− 1)
Γ(a)Γ(a + b + n− 1)

, (17)

and

P (πn) =
Γ(a + b)Γ(b + n− 1)
Γ(b)Γ(a + b + n− 1)

. (18)

If a = b, we have R < 1 for all n and goes to zero as n increases. This is also true
when we assume a discrete uniform prior distribution for the random partition π. In
particular, if P (π1) = P (πn) = 1/2, we have the posterior probability of π1 always
smaller than that of πn and the ratio R going to zero as n increases. This is clearly
undesirable.

Considering our proposed model, the situation is different. The prior distribution
of µ under πn is constant, as the usual objective prior, and therefore the posterior
probability P (πn | y) ∝ P (πn), as in the PPM. However, given π1, the prior distribution
of µ is not constant and assumes the following expression

f(µ | τµ, π1) ∝ τ (n−1)/2
µ exp

{
−τµ

2

n−1∑

i=1

(µi − µi−1)
2

}
.

Consequently, we have that

P (π1 | y) ∝ τ (n−1)/2
µ det(A)1/2 exp

{
−1

2

(
yty − yt

(
A−1

)t
y
)}

P (π1) ,
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where A is the n× n covariance matrix

A =




τy + τµ −τµ 0 . . . 0
−τµ τy + 2τµ −τµ . . . 0
0 −τµ τy + 2τµ . . . 0
...

...
...

...
...

0 0 0 . . . τy + τµ




.

Considering the general prior distribution for the random partition and the same
beta prior distribution for p as before, we have that

R =
P (π1 | y = 0)
P (πn | y = 0)

=
P (π1)
P (πn)

τ (n−1)/2
µ |A|0.5, (19)

where P (π1) and P (πn) are given in (17) and (18), respectively.

Figure 1 shows that the behavior of R calculated in (19) depends on τµ and n. In

10 20 30 40 50

−
50

0
50

10
0

n

lo
g(

R
)

Figure 1: Logarithm of the ratio R = P (π1 | y = 0)/P (πn | y = 0) versus the sample size n,

for τµ = 0.1 (dotted line), τµ = 1.0 (solid line), and τµ = 10.0 (dashed line).

this plot, we considered τy = 1 and P (π1) = P (πn), which includes the cases of a = b as
well as the discrete uniform prior distribution for the random partition. We considered
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three different values for τµ (0.1, 1.0, and 10.0). When we assume a priori that the µ’s
within clusters are quite similar (that is, τµ = 1.0 or 10.0), the posterior probability for
π1 is higher than that for πn, and the ratio increases with n. For the case where the
degree of similarity among the µ’s within clusters is not high (that is, τµ = 0.1), the
posterior probability for π1 is smaller than that for πn and the ratio decreases with n.
This last case is an undesirable behavior, as in the PPM. The more evidence favoring
π1 the data provide, the more the inference favors πn.

However, this last situation, with τµ much smaller than τy, is one that is not likely
to be considered in practical change point analysis. To be useful, a change point model
should consider that τµ ≥ τy as one expects to have more residual variability of the y’s
around their means µ than the variation of these µ’s within a cluster. Different clusters
should show large differences between their µ’s but, within a cluster, we anticipate little
variation of the successive µ’s with respect to that on the data. This is the situation of
the first two cases, where our model behaves properly. These two prior specifications
presume a much smaller difference between successive µ’s within a cluster than the
variability of the y’s.

Although we have not proved that our model is pitfall free, we have shown that,
in constrast with the PPM in some specific cases, it has the behavior that one expects
from a good inference tool. Our proposed model is less susceptible to the inconvenient
interpretation issues that affect the PPM. Furthermore, in the following simulation
study we show in some examples how the proposed model performs better than a PPM
in identifying the number of clusters and their locations.

3 Analysis of simulated Poisson data

We ran a Monte Carlo study to evaluate repeated sampling properties of our proposed
model (hereafter, called PM) and PPM. We consider only the more interesting case of
Poisson distributed data. Three scenarios were considered, two favoring PPM and one
favoring our PM. Scenario 1 contains data sets that do not have any change points, with
n i.i.d. random values following a Poisson distribution. We considered two cases, data
with mean equal to 10 or data with mean 40. In Scenario 2 we have two change points,
at i = 21 and i = 41. Observations within the same temporal cluster are assumed to
be i.i.d. We also considered two different cases, the first one with λi changing from 10
in the first cluster to λi = 17 in the second, and λi = 25 in the third. The second case
had λi varying little, from 10 to 12 and then to 15.
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As before, Scenario 3 has two change points at i = 21 and i = 41 but, in contrast, it is
assumed that observations within the same temporal cluster have different distributions.
In the first case, we assumed that the independent observations followed the Poisson
distribution with mean 8+0.25(i−1) within the first cluster, with constant mean equal
to 22 in the second cluster, and with mean equal to 5(i−40) in the third cluster. In the
second case, we considered the means in the three clusters equal to 15− 0.25i, changing
to 13 + 0.75(i− 20), and then to the constant 22.

For all cases, we generated 100 independent series of size n = 60. For each series, the
MCMC specifications were: 21,000 updates taking every 30th observation to avoid serial
correlation. The MCMC initial values were the known simulation true values making
burn-in unnecessary. The algorithm for the proposed model was implemented in C++
and it can be obtained from the authors upon request. All scenarios were performed in
a PC, Intel Core 2 Duo 2.26 GHz processor, 3 GB RAM. For our proposed model, it
took approximately 55 minutes to run one case (100 series) while it took the PPM 10
minutes to run the same 100 series.

As prior specifications, we assume that p ∼ Beta(1, 1) and τµ ∼ Gamma (2×104, 10).
Notice that this prior expects a priori half of the observations to be change points, a clear
overestimation. However, it will work extremely well delivering a posterior distribution
concentrated around the true partition adopted, in contrast with the results for the
traditional PPM.

Since E(τ−1
µ ) and Var(τ−1

µ ) are close to zero, there is a strong prior belief that
the µ′s within the same temporal cluster are similar to each other, This ensures that
the prior assumptions for PM are close to those in the PPM, which assumes equal µ’s
within the clusters. Furthermore, by assuming a non-informative prior for p, we are
overestimating the number of clusters in the partition by a large amount (E(C) = 30.50
and Var(C) = 18.15). Following Loschi and Cruz (2005b) and in order to make the
models comparable, we also assume Gamma distributions for the common rates λ[ij−1ij ]

in PPM with little prior information, considering λ[ij−1ij ] ∼ Gamma(1.010, 0.001).

Figure 2 summarizes the information about the posterior means of λ, at each instant,
for both models, obtained from the replications of the series. It shows the average and
the interval obtained considering the 2.5% and 97.5% percentiles of the posterior means
for the λi’s. Such an interval is named the equal-tailed 95% interval. In Scenario 1,
case 1, on average, the posterior means of the λi’s are close to the true values of the
λi’s. However, under PM, the estimates present smoother behavior over time and the
equal-tailed 95% interval for the posterior means is shorter than under PPM. The tighter
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interval shows that the posterior means obtained are less influenced by different samples
under PM than under PPM. Similar conclusions can be drawn for case 2. The posterior
means for the λi’s under the PPM are more distant from the true values whenever data
variability is high. Moreover, the constant behaviour observed thorough time is not well
captured by the product estimates.

Although Scenario 2 favors the PPM, the proposed model provides better estimates
for the λ′is. Under PM, the equal-tailed 95% intervals are shorter and the averages of the
posterior means of the λ′is are closer to the true ones. More importantly, the estimates
near the change points are much closer to the true values under PM than under PPM.
For Scenario 3, case 1, on average, the models are comparable. A slight difference
concerns the last two observations which are less well modeled under PM. For the first
two temporal clusters, the equal-tailed 95% intervals are shorter under PM while in the
last temporal cluster this is slightly reversed. For case 2, both models estimate the λ′is

modestly well. Although PM is again better than PPM, both models poorly estimate
the λ′is around the change points 21 and 41. Also, PM shows inefficiency in estimating
the λ′s near the first observations. PPM does not work well in the second temporal
cluster, underestimating the λ′s.

Figure 3 shows the average of the posterior probabilities that each observation is
a change point under the proposed model and the PPM. In scenario 1, a good model
should assign low probability that an observation is a change point, as PM does, in
contrast with PPM. Case 2 shows a puzzling pattern for PPM. For scenarios 2 and 3,
PM assigns probabilities higher than 0.2 for observations 21 and 41 being change points,
and lower probabilities for all the other observations. This is behavior not shared by
PPM. We advance that this may be explained by a larger effect of untypical observations
in the PPM than in the PM. This latter model seems to be more flexible to incorporate
the variation in the data. In case 2 of scenario 3, both models have a poorer performance
compared to their performance in case 1. On average, the posterior probability that
i = 41 is a change point is greater than that for i = 21, due to the smaller difference
λ21 − λ20 than λ41 − λ40.

Similarly, for scenario 3, case 1, on average, the posterior probabilities that an
observation is a change point under PM are much closer to what one expects from a
good model than the results for PPM. Note the increasing trend in these probabilities
for the final i indexes under PPM. This shows that PPM is more influenced by the
increasing trend in rates in the third temporal cluster than PM. For case 2, on average,
PM presents for almost all non-change points smaller posterior probabilities than PPM
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Figure 2: Average of the posterior means (dotted line) of the λ′is, 95% equal-tailed intervals

(dashed lines) and true parameters (solid line) for the product partition (PPM) and proposed

(PM) models, all scenarios (S) and cases (C).

while this order is reversed for the change points 21 and 41.

Table 1 gives some descriptive statistics for the posterior means of C under PM
and PPM and it shows that PM performs better than PPM in the identification of the
number of clusters. For Scenario 1, under PM, 75% of the posterior means of C are
smaller than 1.01, while PPM overestimates C by a large amount. For Scenario 2, PPM
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Figure 3: Average of the posterior probabilities that each observation is a change
point, proposed model (dashed line) and the PPM (solid line), for all scenarios(S) and
cases(C), Poisson data.

again overestimates C in both cases. PM correctly identifies the number of clusters in
case 1 (50% of the posterior means are between 3.011 and 3.047), but it underestimates
C in case 2 since the posterior mean is 2.21, on average. The detection of change points
in case 2 is more difficult than in case 1 and this explains why both models have the
average and the median of the posterior means of C smaller in case 2 than in case 1.
For scenario 3, both models overestimate the number of temporal clusters, with PPM
having a poorer performance. This behavior is due to the changing rates within the
temporal clusters.
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Table 1: Summaries for posterior means of C, Simulated Poisson data.

Scen. Case Model Q1 Median Mean Q3

1 1 Proposed 1.0010 1.0060 1.0210 1.0130
PPM 4.9770 5.0390 4.8920 5.0700

2 Proposed 1.0010 1.0040 1.0280 1.0100
PPM 20.5600 21.0700 21.0700 21.5500

2 1 Proposed 3.0110 3.0210 3.0630 3.0470
PPM 8.4310 8.9030 8.8570 9.1750

2 Proposed 2.1400 2.3360 2.4130 2.6410
PPM 5.9480 6.086 6.0530 6.1820

3 1 Proposed 7.4520 8.1490 8.0760 8.5220
PPM 16.0900 16.5900 16.6700 17.2300

2 Proposed 3.4000 4.0890 4.1200 4.5980
PPM 8.3800 8.6640 8.7460 9.0020

4 Case Studies

In this section, we apply the proposed model to two data sets. In the first application,
we consider a series of crime counts and hence we use the proposed model for Poisson
data. In the second application, we consider a time series of Brazilian household energy
consumption and we use the proposed model for normally distributed data.

4.1 Case 1: Violent Crimes Data

The rate of violent crimes in urban centers in Brazil had been increasing since the
1980s and the citizens’ trust in the police efficacy decreased, mainly after some acts of
human rights violation by the police namely Candelária Massacre, in Rio de Janeiro,
July 1993, the Carandiru Massacre, an October 1992 event in a São Paulo prison, and
the Massacre of Vigário Geral slum, in Rio de Janeiro, August 1993. Crime is also an
important issue in Belo Horizonte, a 2.4 million inhabitants city, Minas Gerais State
capital. To restore the public confidence in the police and to modernize the police
system the Military Police Command of Minas Gerais State introduced some changes
to improve the police service. Particularly, since 1997, the Military Police Command
is providing public specialized courses (which include Public Relations and Sociology)
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for police, through Fundação Jõao Pinheiro and Universidade Federal de Minas Gerais,
and in the late 1990s, introduced a new program for crime reduction - “Policing with
Results”. The central idea is to help the police to be converted from a quasi military
organization into a public service (Ward 2000).

Our interest is to estimate the rate of violent crimes in each month and to verify if the
“Policing with Results” program produced a change by decreasing this rate. As part of
a program to monitor crime statistics, we analyzed the series of counts of violent crimes
in a Belo Horizonte neighborhood recorded monthly from January 1998, to September
2001. The data is plotted in Figure 4 jointly with the posterior estimates for the rate
of crimes.
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Figure 4: Temporal Clusters, posterior means (solid line) of the λ′is and data (circles),
Violent crimes data.

We assume that, given the underlying rates, the number of violent crime incidents
are independent and distributed according to the Poisson distribution. For PPM, we
adopt the gamma distribution, the natural conjugate prior distribution, for the rate
of crimes λ[ij] within each cluster. Within the cluster, the observations have equal
rates. We do not have a precise information about the rate of violent crimes and hence
we assume that λ[ij] ∼ G(1.01, 0.001). For PM, we expect similar, but not exactly
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equal, rates of violent crimes within the same temporal cluster. Hence, we assume that
τµ ∼ Gamma(2000, 10) implying a prior expectation that τ−1

µ is around 0.005. A small
number of changes is expected in the series. Thus, we also assume that the probability
p has a beta prior distribution with parameters α = 1.2 and β = 0.24, which means
that the expected prior probability of a change is 16.7% and that E(C) = 7.4.

Table 2 and Figure 5 present the posterior distributions of p, τ−1
µ , and C for both

models. The posterior distributions for p and C under the two models have unique
modes and are asymmetric. The posterior probability of a change (1 − p) under the
proposed model is smaller than we have assumed in the prior evaluation. It is much
higher for PPM than for PM, with posterior expectation equal to 0.23. Similar behavior
is observed for the number of temporal clusters C. PM infers that the data sequence,
most probably, has 3 or 4 change points, with posterior probabilities 0.36 and 0.33,
respectively. Inference based on PPM points out that, most probably, there are 19
clusters in the series with posterior probability 0.43. The same conclusion can be drawn
from the posterior means. The posterior of τ−1

µ is concentrated in small values implying
that the parameters µi within each temporal cluster have similar values in the posterior
evaluation. The posterior shows that the parameters µi are as similar as we expected a
priori.

Table 2: Posterior summaries, Violent crime data.

Parameter Mean St. Dev. HPD: 95%

Proposed Model p 0.9244 0.0429 0.8396 0.9908
C 3.6956 1.0615 2.0000 6.0000

τ−1
µ 0.0050 0.0001 0.0047 0.0052

PPM p 0.7683 0.0335 0.6972 0.8269
C 18.8438 0.8787 17.0000 20.0000

Figure 4 shown previously also presents the posterior most probable partitions and
the posterior means for the λi’s under both models. The estimates for λ′is are smoother
than the ones obtained under the PPM. Also, the estimates for the λi’s provided by the
proposed model are less influenced by more extreme observations. Figure 4 also shows
the most probable partitions a posteriori. The two bars on the bottom of each graph
represent the two most probable partitions π. On the right hand side, the numbers
on the extreme right give the posterior probability of each one of these partitions.
The temporal clusters are represented by blocks of alternating white and gray colors.
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Figure 5: Posterior distributions for p, C and τ−1
µ , Violent crimes data.

Within each cluster, we print the change point observation index. Moreover, the three
bars in the top of Figure 4 represent a different attempt to summarize the posterior
distribution of the partitions. CP is a fixed cut probability such that if the probability
that observations i and i + 1 belong to the same temporal cluster is higher than CP,
then observations i and i + 1 are considered to belong to the same temporal cluster.
The right hand side in Figure 4 shows the results for PPM using CP equal to 0.5, 0.7,
and 0.9.

The most probable partition under PM has posterior probability equal to 0.23 and
it indicates that the data sequence is divided into 3 temporal clusters with changes
occurring in March and October 1999. This same partition was obtained using CP =
0.5. The second most probable partition has posterior probability equal to 0.11 and
it is the same as the one we obtain using CP = 0.7. This partition has three change
points taking place in March and October 1999, and in May 2000. Under PPM, both
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the most probable partition π as well as the partitions based on the CP cut points
indicate a large number of clusters in the data sequence. However, in this case, the two
most probable partitions occur with posterior probability 0.02, which is very small, and
indicates a large degree of uncertainty about π.

In conclusion, we observe that the rate of violent crimes in the analyzed region of
Belo Horizonte is considerably high and experiences many changes in its behavior. A
positive effect of the Policing with Results program could be the reduction of the rate
of increase of the rate of violent crimes observed after May 2000.

4.2 Case 2: Consumption of Electric Energy Data

We turn now to the second case study. In 2001, Brazil experienced an energy crisis that
led the government to adopt some policies to decrease the electric energy consumption.
Figure 6 shows the time series of the Brazilian energy consumption in GWh/1000 and
the posterior means, recorded monthly from January 1997 to December 2007 (source:
www.ipeadata.gov.br). The goal is to verify if such policies produced a change in the
behavior of Brazilian people concerning the use of power energy.

Since we do not introduce parameters to explicitly capture trends and seasonality
in the time series, we expect a large number of changes in addition to one associated
with the energy saving policy adopted by the government. We also expect the mean
consumption within the same temporal cluster to be similar. Therefore, we take as
prior specifications for τµ, τy and p the distributions Gamma(10, 1), Gamma(1, 1) and
Beta(5, 1), respectively. The prior expectation for the probability of a change is small
and equal to 0.167, and the expected prior number of clusters in the time series is 22.

Somewhat surprisingly, the posterior inference was quite different from the prior we
used. Table 3 and Figure 7 present the posterior distributions of p, τ−1

µ , τ−1
y and C

for both models. The posterior distribution of p is left-skewed. This implies that the
posterior probability 1 − p of a change is smaller than we have assumed in the prior
evaluation. In fact, the posterior expectation of 1 − p is 0.0134 and the number of
clusters resulted much smaller then we assumed a priori. It is most probable that the
data sequence experiences only one change with probability 76.8%. Similar conclusion
is drawn considering the posterior mean of C. The posterior of τ−1

µ is concentrated in
small values (around 0.0474) indicating that the parameters µi within each temporal
cluster are more similar than we expected a priori (the prior mean is 0.11). The posterior
distribution of τ−1

y is also concentrated in small values, indicating that the consumption
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of energy has small variability.

Table 3: Posterior summaries, Consumption of energy data.

Parameter Mean St. Dev. HPD: 95%

p 0.9866 0.0101 0.9671 0.9999
C 1.8880 0.4717 1.0000 3.0000

τ−1
y 0.0099 0.0022 0.0059 0.0143

τ−1
µ 0.0474 0.0094 0.0302 0.0660
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y , Consumption of energy data.

From Figure 6 we also perceive that the posterior means of the µi’s follow the time
series seasonality and indicate a change in the time series behavior around May 2001.
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Notice also that the most probable partition, which occurs with probability 66.0%, as
well as the partitions obtained using the CP = 0.5 and CP = 0.7 cut points, indicate
that there is only one change point taking place in June 2001. Such decrease in the
consumption of energy coincides with the energy crisis in Brazil and could be explained
by the policy adopted by the Brazilian government for saving energy.

5 Conclusions

We extend the product partition model by introducing a hierarchical Bayesian model
for clustering detection in the temporal setting. The new model assumes independence
of the parameters into different temporal clusters but, contrary to PPM assumptions, it
considers that the observations within the same temporal cluster have their distributions
indexed by different and correlated parameters. Such correlation was introduced into
the model by means of a Gibbs prior distribution for the parameters. Since such a
prior is improper, we gave sufficient conditions under which the resulting posteriors are
proper. We considered in particular the cases where the observed data are Poisson or
normally distributed.

As one reviewer of this paper pointed out, there are limitations in using improper
priors in change point problems. Even having proper posterior distributions, we can
obtain undesirable paradoxical posterior results in some situations. These problems are
especially acute in the PPM, as shown in Section 2.5. We have not proved that our
model is completely free of these potential interpretation problems. However, we showed
that our proposed model is less susceptible to those issues if the prior specifications are
in agreement with the usual assumptions of change point models.

Some probabilistic results related to the prior specification for the partition, such as
the distribution for the number of observations in the temporal cluster which contains
a specific observation, were also obtained. We showed by means of simulations and real
data illustrations that this simple prior distribution produces excellent results. However,
if the user finds that (6) is not an appropriate prior distribution for the partition π,
another possible approach is to consider a uniform prior for the random partition π with
P (π = {C1, . . . , Cc}) = 1/2n−1, implying that C ∼ Binomial(n− 1, 0.5). Hence, we have
around 50% of the observations expected to be change points, a likely overestimation.

Another alternative to (6) is to choose the uniform distribution P (C = c) = 1/(n−1)
for c = 1, . . . , n. Hence, the configurations have different probabilities. For example, the
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single partition with only one cluster (the entire data sequence) or the single partition
with n clusters (each observation is a cluster) receives the same prior probability as
the large set of partitions with c = n/2 temporal clusters. In this approach, we avoid
altogether the use of a prior distribution for p, defining the prior distribution of π

conditioned on the number of clusters C. It follows that

P (π = {C1, . . . , Cc}|C = c) =
1
n

(
n− 1
c− 1

)−1

, c = 1, . . . , n.

Partitions with c and n−c+1 temporal clusters have the same prior probabilities. Note
that partitions with c ≈ n/2 (number of clusters close to half observations) are the least
probable.

We presented three Monte Carlo studies using simulated Poisson data. We compared
the results obtained by using the proposed and the product partition models. We
concluded that PM presented better performance than PPM in all scenarios analyzed,
including those that follow the PPM assumptions. In particular, PM provided better
estimates for the number of temporal clusters and for the position of change points,
while PPM overestimates the number of temporal clusters. PM also presented better
estimates for the Poisson means. We also analyzed two data sequences based on non-
simulated datasets and in both cases PM performed very well.

In summary, the proposed model provided better estimates for all parameters, in-
cluding the number and positions of the temporal clusters, even for scenarios which
favor the PPM (Scenarios 1 and 2). We conclude that by assuming non identical but
correlated parameters within the same temporal cluster, we end up with better inference
about the temporal clusters in the time series without burdening the computation of
the posteriors.

A possible explanation for the worse performance of the PPM when compared to
the proposed model is the assumptions considered in its construction. Since the PPM is
built assuming constant cluster-specific parameters, high (similarly, for small) observed
values in the time series - that commonly occur, for instance, when the rate in the
Poisson model is high - tend to be identified as outliers, that is, as change points that
do not truly occur. The proposed model is more flexible and depending on the degree of
similarity assumed a priori for the parameters in the same cluster such observations are
not atypical and, therefore, can not represent a change. Because of this flexibility the
results provided by the proposed model is not as influenced by such atypical observations
as the PPM is.
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Appendix A: Proof of Proposition 1

We show here that the joint posterior distribution in (7) is a proper distribution. Inte-
grating with respect to p and τµ successively, we obtain that

P (π = {C1, . . . , Cc}, µ|y) ≤ K1

(
n∏

i=1

f(yi | µi)1S(µi)

)
Γ

(
n−1∑

i=1

δi + a

)

× Γ

(
n− 1−

n−1∑

i=1

δi + b

)
Γ

(∑n−1
i=1 δi + 2r

2

)
(20)

×
[
s +

n−1∑

i=1

δi(µi − µi+1)2
]−(∑n−1

i=1 δi+2r)/2

, (21)

where K1 > 0 is a constant that does not depend on π = {C1, . . . , Cc} and µ.

Denote by h(µ) the function collecting all terms in (21) that depend on µ and let

g(µ) =

(
n∏

i=1

f(yi | µi)1S(µi)

)
s−(∑n−1

i=1 δi+2r)/2. (22)

Since
∑n−1

i=1 δi(µi − µi+1)2 > 0 and (
∑n−1

i=1 δi + 2r)/2 > 0, then h(µ) ≤ g(µ) for all
µ ∈ Rn. It also follows that

∫

S

. . .

∫

S

g(µ)dµ1 . . . dµn = C(δ, r, s)
∫

S

. . .

∫

S

n∏

i=1

f(yi | µi)dµ1 . . . dµn, (23)

where C(δ, r, s) = s(
∑n−1

i=1 δi+2r)/2.

By hypothesis, we have that
∫

S
f(yi | µi)dµi < ∞, ∀i = 1, . . . , n. Then, the right

term in (23) is finite. Since the bounding function g(µ) is integrable, the function h(µ)
is also integrable. Consequently, we have that

P (π = {C1, . . . , Cc}|Y) ≤ K1Γ

(
n−1∑

i=1

δi + a

)
Γ

(
n− 1−

n−1∑

i=1

δi + b

)

× Γ

(∑n−1
i=1 δi + 2r

2

)
K2(δ, r, s),

where K1 > 0 is a constant that does not depend on π. Since π = {C1, . . . , Cc} is a
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function of a finite set of δ′is, it follows that:

1∑

δ1=0

. . .

1∑

δn−1=0

P (π = {C1, . . . , Cc}|Y) < ∞ .

Appendix B: Proof of Proposition 2

Denote by [i; j], the temporal cluster {i, i + 1, . . . j}, where i, j ∈ I and i ≤ j and let x

be the number of observations in the temporal cluster that contains yj and that appear
before yj .

For the first case, since k < j, all temporal clusters of size k that contain the
observation yj can be written as [j − x; j + k− (x + 1)], where 0 ≤ x ≤ k− 1. All these
clusters have the same pattern: δj−x, . . . , δj+k−(x+2) = 1, and δj−x−1 = δj+k−(x+1)) =
0. A similar pattern also happens for the extreme cases. For instance, if x = 0, the
temporal cluster of interest is [j; j + k − 1], and δl = 1 for k − 1 observations. Since
1 ≤ k < j, the lower limit of this temporal cluster is such that j ≥ 2.

Since j < b(n + 1)/2c, the number of observations after the yj is n − j + 1 ≥
b(n + 1)/2c. Thus, it follows that:

k < j and j ≤ b(n + 1)/2c ⇒ k < b(n + 1)/2c ⇒ k ≤ bn/2c ,

n− j + 1 ≥ b(n + 1)/2c ⇒ n− j + 1 ≥ bn/2c ⇒ n− j + 1 > k.

Consequently, the upper limit is such that j +k−1 ≤ n−1. That is, in the extreme
case x = 0, the upper limit j + k − 1 for the temporal cluster can be the penultimate
observation at the most. Thus, since the lower limit of the temporal cluster is at least
2 and the upper limit is n− 1 at the most, we have that δj−1 and δj+k−1 are equal to
0 and also there are k − 1 δi’s equal to 1, say, δj = 1, . . . , δj+k−2 = 1.

A similar argument holds for the other extreme case when x = k−1 and the temporal
cluster of interest is [j−k +1; j]. Since k < j, the lower limit is such that j−k +1 > 1,
which means that the lower limit of such a cluster is at least in the second observation.
Since j < b(n + 1)/2c, we also have that the upper limit of the temporal cluster never
can reach the last observation. Therefore, it follows that δj−k and δj are equal to 0,
and there are k − 1 δ′is equal to 1, say, δj−k+1 = . . . = δj−1 = 1.

Each of these temporal clusters occurs with probability (1− p)2pk−1. Consequently,
since there are k temporal clusters with k observations which contain yj ,

P (Nj | p) = k(1− p)2pk−1 if 1 ≤ k < j.
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Consider now that j ≤ k < n − j + 1. Then, all temporal clusters of size k that
contain yj are such that [j − x; j + k − (x + 1)], where 0 ≤ x ≤ j − 1.

There are two different patterns for temporal clusters in this situation. In one pattern
we observed k − 1 variables δi assuming value 1 and two others assuming value zero,
say, δj−x = . . . = δj+k−(x+2) = 1, and δj−x−1 = δj+k−(x+1) = 0. In the other pattern,
we have k − 1 δ′is equal to 1, say, δj−x = . . . = δj+k−(x+2) = 1, and δj+k−(x+1) = 0.

Let us consider the extreme cases for clusters with the first kind of pattern. If
x = j − 1, the temporal cluster of interest is [1; k]. Since k < n − j + 1, we have that
the upper limit of such a temporal cluster is j < n. Thus, in this case, there are k − 1
variables δi which assume values equal to 1, say, δ1 = 1, . . . , δk−1 = 1 and one that is
such that δk = 0. Consequently, this event occurs with probability pk−1(1− p). On the
other hand, for the second kind of pattern, if x = 0 the temporal cluster is [j; j +k− 1].
If j = 1, the only possible cluster is [1; k]. Then, let us consider 2 ≤ j < n − j + 1.
Since k < n− j +1 the upper limit is such that j + k− 1 ≤ n− 1, which means that the
upper limit of the temporal cluster is the penultimate observation at the most which
implies that δj+k−1 = 0. Also, it follows that the lower limit is such that j ≥ 2, that is,
δj−1 = 0.

If x = j − 2 the temporal cluster of interest is [2, k + 1]. Since k < n − j + 1,
the upper limit of this temporal cluster is such that k + 1 < n, which means that the
upper limit of the temporal cluster can be, at the most, at the penultimate observation.
Thus, δk+1 and δ1 are equal to 0. This particular cluster occurs with probability to
pk−1(1− p)2. Moreover, for all the other cases, say, j − 2 < x < 1, the same pattern is
observed. Consequently, there are j− 1 temporal clusters of size k which contain the yj

and that have the same pattern observed for the case x = 0 and x = j − 2. Therefore,
for situation 2, it follows that

P (Nj = k|p) = pk−1(1− p) + (j − 1)pk−1(1− p)2 if j ≤ k < (n− j + 1).

Assume now that (n − j + 1) ≤ k < n. Then, all temporal clusters of size k that
contain the yj are such that [j − x; j + k − (x + 1)], where k − (n− j + 1) ≤ x ≤ j − 1.

Notice that here we also have two different patterns for the temporal clusters. In
one pattern δj−x = . . . = δj+k−(x+2) = 1, and δj−x−1 = δj+k−(x+1)= 0. In the other
pattern, δj−x = . . . = δj+k−(x+2) = 1 and δj+k−(x+1) = 0.

Let us consider the extreme cases in which x = k − (n − j + 1) and the temporal
cluster of interest is [n−k+1; n]. Since k < n the lower limit is such that n−k +1 > 1,
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which means δn−k = 0. There are k − 1 δ′is equal to 1, say, δn−k+1 = 1, . . . , δn−1 = 1.
For the other extreme case, when x = j − 1, the temporal cluster is [1; k]. Since k < n

the upper limit can reach the penultimate observation at the most, so that δk = 0. As
a consequence, it follows that δ1 = . . . = δk−1 = 1. Thus, this temporal cluster occurs
with probability pk−1(1− p).

The pattern changes when k−(n−j+1) < x < j−1. For instance, if x = k−(n−j)
the temporal cluster is [n − k;n − 1]. Consider k < n − 1 (if k = n − 1 the temporal
cluster has a pattern mentioned before). Then, the lower limit of the temporal cluster
is such that n − k > 1. Thus, the observation n − k is, at least, equal to 2, that is,
δn−k−1 = 0. Similarly, for n − 1, we have that δn−1 = 0. In all these cases, there are
k − 1 δ′is equal to 1, say, δn−k = . . . =, δn−2 = 1.

On the other hand, if x = j − 2, the temporal cluster is [2, k + 1]. Since k < n − 1
the upper limit can reach, at the most, the observation n − 1. Then, δk+1 = δ1 = 0.
Therefore, there are k − 1 δ′is equal to 1, say, δ2 = . . . =δk = 1. It follows that this
temporal cluster occurs with probability pk−1(1− p)2.

All temporal clusters such that k− (n− j +1)+1 < x < j−2 have the same pattern
observed for x = k− (n− j) and x = j− 2. Therefore, there are (j− 2)− [k− (n− j)]+
1 = n − (k + 1) temporal clusters with such pattern. It follows that P (Nj = k|p) =
2pk−1(1− p)+ [n− (k + 1)](1− p)2pk−1 if (n− j + 1) ≤ k < n. The proof is concluded
by noticing that, for k = n, δ1 = . . . = δn−1 = 0. Thus, P (Nj = k|p) = (1 − p)k−1 if
k = n.
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