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Model based clustering for three-way data

structures

Cinzia Viroli∗

Abstract. The technological progress of the last decades has made a huge amount

of information available, often expressed in unconventional formats. Among these,

three-way data occur in different application domains from the simultaneous ob-

servation of various attributes on a set of units in different situations or locations.

These include data coming from longitudinal studies of multiple responses, spatio-

temporal data or data collecting multivariate repeated measures. In this work we

propose model based clustering for the wide class of continuous three-way data by

a general mixture model which can be adapted to the different kinds of three-way

data. In so doing we also provide a tool for simultaneously performing model

estimation and model selection. The effectiveness of the proposed method is illus-

trated on a simulation study and on real examples.

Keywords: Mixture models, Birth and death process, Matrix-variate normal dis-

tribution, Three-way data.

1 Introduction

We are living in an era characterized by an exponentially increasing availability of
information. This explosion of data, which can have complex structure, leads to an
increasing demand for appropriate new strategies of statistical analysis. Although in
principle complex data structures can take a myriad of formats, they can be often
arranged in a three-way data structure. A three-way data set is characterized by three
modes, namely rows, columns and layers. Depending on the entity indexed in each
of the three modes, different data examples may be considered. Thus, for instance,
longitudinal data on multiple response variables can be arranged in a three-way data
set where n observed units are represented in rows, a set of p variables are indexed in
columns and a set of r times are the layers. Some of the most common three-way data
structures are illustrated in Table 1.

We focus on the problem of clustering the n observed objects represented in rows
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Mode Rows Columns Layers

Three-way structure

Multivariate longitudinal data units variables times

Multivariate repeated measures units variables situations

Multivariate spatial data units variables locations

Multivariate time-series units/locations times variables

Multivariate spatio-temporal data locations variables times

. . . . . . . . . . . .

Table 1: Some common three-way data structures.

that can be a set of independent units or a set of spatially correlated locations. In a
geometrical perspective, a unit of a three-way data set can be viewed as a point in the
Euclidean space R(r×p) (in contrast to the conventional two-way data, where each unit
is a point in the p-dimensional space Rp). By denoting with j the generic observation
(where j = 1, . . . , n), we have an r × p observed matrix, Yj , for each statistical unit.
Thus, the challenge of the cluster analysis is to suitably classify realizations coming from
random matrices (instead of the conventional random univariate or p-variate variables)
in some k unknown groups, with k < n. Considering the peculiarity of the data, a
clustering strategy should address the following objectives:

i) modeling the possible (spatial) correlation between the observations (when units
are not i.i.d.);

ii) defining two different covariance matrices for describing the variable correlations
separately from the temporal (or spatial) correlations;

iii) modeling possible temporal (or spatial) covariance/correlation structures;

iv) estimating simultaneously the unknown number of groups k.

In this work we introduce, develop and explore a model based clustering approach, which
simultaneously addresses all the above objectives. In so doing, the proposed approach
represents a unified and general strategy for classifying the different types of three-way
data described in Table 1.
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2 Review of existing methods

Different solutions for clustering three-way data have been proposed in the statistical
literature. The simplest scheme consists in applying some dimension reduction tech-
niques, such as principal component analysis, to one of the modes, so as to convert the
three-way data set to a two-way data set, and thereby to apply conventional clustering
techniques. However, it can be shown that the leading components do not necessarily
preserve the clustering structure of the data (Chang 1983). Gordon and Vichi (1998)
and Vichi (1999) have developed a strategy based on a least-square approach, which has
been recently extended in order to combine clustering and data reduction (Vichi et al.
2007). These methodologies do not require an explicit distributional assumption on the
clusters and therefore do not allow one to explicitly model the correlation structures
along the two modes of interest. In a model-based perspective, Basford and McLachlan
(1985) adapted the Gaussian mixture likelihood approach to three-way data. In this
approach they assumed that the component mean vectors might vary between groups
and one of the two modes (for instance between the variables). On the contrary, the
within component covariance matrices are not taken to depend on the modes. This im-
plies that, coming back to the multivariate longitudinal data example, the correlations
between and within variables and times are not explicitly modeled and this represents
the main drawback of the method. In a different perspective, the Dirichlet process
mixture models (Reich and Bondell 2010; Gelfand et al. 2005) provide an interesting
approach for cluster analysis of multivariate spatial data, although they have not been
specifically developed for three-way data.

More recently, Mixtures of Matrix Normal distributions (MMN) have been proposed
and investigated (Viroli 2011) with the aim of taking into account the full information on
the two modes, separately but simultaneously. This purpose is achieved by modeling the
distribution of the observed matrices according to a matrix-variate normal distribution
(Nel 1977; Dutilleul 1999). This approach represents a very general framework that
includes, as special cases, both the conventional mixtures of multivariate normals and
the variant proposed by Basford and McLachlan (1985) for the analysis of three-way
data. The MMN model can be quite easily estimated by an EM algorithm (Dempster
et al. 1977) under the hypothesis that the number of mixture components is fixed or
known in advance and the observations are i.i.d. Thus, with reference to the four
objectives described above, MMN addresses only objective ii.

In this work we propose a generalized MMN model (GMMN). With respect to MMN,
the proposed GMMN model is developed in a Bayesian framework. This has the great
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advantage of extending MMN in order to address the remaining objectives described
above. More specifically, we will show that GMMN provides a unified tool for model
estimation and inference on the number of mixture components simultaneously (ob-
jective iv), with possible correlated observations (objective i) and temporal structured
covariance matrices (objective iii). Model inference is solved via the Gibbs sampler
(Geman and Geman 1984). For the general case of an unknown number of components,
an ergodic Markov chain with a stationary distribution given by the posterior distri-
bution of the enlarged parameter space to include k is constructed. This means that
the dimension of the parameters is allowed to vary throughout the MCMC iterative
procedure.

A very popular and conceptually elegant algorithm for inference of spaces with vary-
ing dimension is the reversible jump MCMC algorithm (Green 1995), which has been
successfully applied to univariate Gaussian mixtures (Richardson and Green 1997). Its
extension to mixtures of multivariate Gaussians is not straightforward because of the
mathematical complexity of the split and combine moves and of the Jacobian. The
problem has been solved via marginalized likelihood (Tadesse et al. 2005) or, alterna-
tively, by posing specific constraints on the eigenvalue decomposition of the component
covariance matrices (see Zhang et al. (2004), and Dellaportas and Papageorgiou (2006)).

As an alternative to the reversible jump MCMC algorithm, Stephens (2000a) devel-
oped a birth and death MCMC algorithm (BDMCMC). The key idea is to construct a
Markov birth-death process in which the number of components can vary by allowing
new components to be born and existing components to die in continuous time. BDM-
CMC can be thought of as a continuous-time version of the reversible jump MCMC
(Cappé et al. 2002) in which both good and bad births may occur but they can survive
for a different time interval according to their likelihood function. Stephens (2000a) has
successfully applied the algorithm to mixtures of univariate and bivariate normals and
t distributions. In this paper we adapt the BDMCMC scheme to the GMMN.

The paper is organized as follows. In the next Section, we introduce the proposed
model. In Section 4 we show, from a theoretical point of view, the application to
multivariate repeated measures, longitudinal data on multiple response variables and
multivariate spatio-temporal data. Section 5 covers the difficult issue of model selection
by the construction of a BDMCMC chain. In Section 6 we present some numerical
experiments with simulated and real data. Discussion and concluding remarks are
presented in Section 7.
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3 Model specification

3.1 Generalized Mixture of Matrix Normals

Let k be a set of sub-populations (or groups) of unknown proportions from which the
observed units are supposed to come. In a general perspective we consider the ob-
served sample of matrices Y1, Y2, . . . , Yn, as a set of conditionally independent and not
identically distributed observations coming from the mixture model

f(Yj |k, π,Θ1, . . . ,Θk) =
k∑

i=1

πijM(r×p)(Yj ;Θi), (1)

where j = 1, . . . , n and Θi denotes the set of parameters of each component distribution.
The weights π = [πij ]i=1,...,k;j=1,...,n satisfy πij > 0 with

∑k
i=1 πij = 1 for all j. They

vary with j because the observations are not necessarily taken independently. Obviously,
in the case of an independent sample of observations, πij = πi for all j. We focus on
continuous observed matrices. The distribution of the generic i-th component should
allow for a separate treatment of the variability of the second and third mode, in order to
model possible auto-correlated temporal or spatial covariance structures when necessary.
To this purpose the i-th density is assumed to be a matrix-variate normal distribution.
More specifically, the density of the r × p matrix of observations, Yj , is the matrix
normal distribution of parameters Θi = {Mi, Φi, Ωi}:

M(r×p)(Yj ; Mi,Φi, Ωi) = (2π)−
rp
2 |Φi|−

p
2 |Ωi|− r

2

exp
{
−1

2
tr

(
Φ−1

i (Yj −Mi)Ω−1
i (Yj −Mi)>

)}
(2)

where Mi is an r × p matrix of means; Φi an r × r covariance matrix containing the
variances and covariances between the r entities within the third mode; and Ωi is a p×p

covariance matrix containing the variance and covariances of the p variables (or times)
indexed by the second mode. The Kronecker product of the two covariance matrices
Σi = Φi ⊗ Ωi contains the pr × pr covariances between the entities of the two modes.

3.2 Hierarchical formulation of GMMN

Being a typical incomplete-data problem, the GMMN model can be rephrased according
to a hierarchical formulation.

We introduce n independent latent variables, {z1, . . . , zn} called allocation variables,
that identify the sub-population (or group) from which each observed matrix comes.
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More precisely, zj (with j = 1, . . . , n) is a vector of dimension k which assumes value
equal to 1 if the observation belongs to one of the k sub-populations and 0 elsewhere.
Therefore zj follows a multinomial distribution

f(zj |π, k) =
k∏

i=1

π
zij

ij , (3)

from which f(zij = 1|π, k) = πij .

For correlated observations we assume that Y1, . . . , Yn are independent given the set of
latent variables z = {z1, . . . , zn}. For unconditionally independent observed matrices
the n components of z are all equal to each other; that is to say, z reduces to a single
latent vector, z, of length k.

The conditional density of the random matrix, Yj , given the allocation variable, zj ,
is the matrix-variate normal distribution in the form:

f(Yj |zj ,Θ, k) =
k∏

i=1

[M(r×p)(Yj ; Mi,Φi, Ωi)
]zij

. (4)

Given k and the set of parameters π and Θ, the complete joint distribution of Y

and z can be decomposed into the product of two conditional densities

f(Y, z|π,Θ, k) = f(Y |z,Θ, k)f(z|π, k). (5)

3.3 Posterior density

We allow additional layers to the hierarchy by adding a set of hyperparameters ω for
Θ and π. In the GMMN model the distribution of interest is the posterior distribution
of the allocation variables, of the parameters and hyperparameters (including k) given
the observed data Y . By using formulation (5) it can be expressed as

f(z,π,Θ,ω, k|Y ) ∝ f(Y |z,Θ, k)f(z|π, k)f(π|ω, k)f(Θ|ω, k)f(ω|k)f(k), (6)

where f(π|ω, k), f(Θ|ω, k), f(ω|k) and f(k) are the prior distributions of parameters
and hyperparameters. Considering a sample of n observations, the posterior distribution
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can be expressed as follows:

f(z, π,Θ,ω, k|Y ) ∝




n∏

j=1

k∏

i=1

|Φi|−
p
2 zij









n∏

j=1

k∏

i=1

|Ωi|− r
2 zij





×


exp


−1

2

n∑

j=1

k∑

i=1

(
tr

(
Φ−1

i (Yj −Mi)Ω−1
i (Yj −Mi)>

))
zij








×




n∏

j=1

k∏

i=1

π
zij

ij



 f(π|ω, k)f(Θ|ω, k)f(ω|k)f(k). (7)

3.4 Class prediction

In a model based perspective the problem is to allocate the random sample of n observed
matrices Y1, . . . , Yn to the component from which they are assumed to come, under
the assumption that each component corresponds to each sub-population or group.
Classification of units may be performed by computing the conditional probabilities
f(zij = 1|Y, π,Θ, k) = τij(π,Θ) which can be derived by the Bayes’ rule:

τij(π,Θ) =
πijM(r×p)(Yj ; Mi, Φi, Ωi)∑k

h=1 πhjM(r×p)(Yj ;Mh,Φh, Ωh)
. (8)

3.5 Identifiability

The model identifiability is crucial to obtain unique and consistent parameter estimates.
The model is not identified when different parameter vectors parameterize the same
distribution and therefore they are equivalent. There are two different identifiability
aspects to be considered in the proposed GMMN. The first one arises from the lack
of uniqueness of the Kronecker product of the two covariance matrices, which is Σi =
Φi ⊗ Ωi, for all i = 1, . . . , k. Given a multiplicative constant a, different from zero,
Σi = (aΦi)⊗ ( 1

aΩi). This ambiguity can be avoided by assuming that the trace of each
Φi, for all i, is equal to r, or alternatively, by imposing the trace of the matrices Ωi to
be equal to p.

The second aspect is that, being a mixture model, the proposed GMMN could be
affected by the so-called label-switching problem discussed by Stephens (2000b). The
label-switching problem arises since the likelihood is invariant under relabeling of the
mixture components and so under any possible permutation. Various solutions to the
label-switching problem have been proposed, including the k-means clustering algo-
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rithm and a transportation algorithm for optimization (see, among the others, Celeux
(1998) and Stephens (2000b)). In this work we adopt the solution to postprocess
the MCMC output by relabeling the sampled parameters according to the ranking of
tr

(
Φ−1

i MiΩ−1
i M>

i

)
for all i.

4 Specific Applications

4.1 Multivariate repeated measures

In multivariate repeated measures or longitudinal data on multiple responses, we ob-
serve a set of independent but not identically distributed matrices, Y1, . . . , Yn containing
the multiple responses in the different time points or situations. Within the i-th sub-
population Ωi is the covariance matrix of the variables and Φi the covariance matrix
between the repeated situations. We assume they are unstructured matrices. The ma-
trix Σi = Φi⊗Ωi of dimension rp× rp contains the covariances between the p variables
in the r repeated situations.

Prior formulation and hyperparameters

In this setting πij = πi for all j and distribution (3) simplifies to

f(z|π, k) =
k∏

i=1

πzi
i , (9)

because of the independence between the observations. The set of hyper-parameters is
ω = (β, ρ)>, and we further assume f(π|ω, k) = f(π|k). The role of the two hyperpa-
rameters β and ρ is to parameterize the prior distributions of Φi and Ωi respectively,
for all i. We can choose non-informative prior distributions for the model parameters.
More precisely:

Mi ∼ M(r×p)(M0,Φ0, Ω0) (10)

Φ−1
i |β ∼ Wr

(
2α, (2β)−1

)
(11)

β ∼ Wr

(
2g, (2h)−1

)
(12)

Ω−1
i |ρ ∼ Wp

(
2ζ, (2ρ)−1

)
(13)

ρ ∼ Wp

(
2l, (2m)−1

)
(14)

π ∼ D(%, . . . , %) (15)
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for i = 1, . . . , k. In the previous expressions M(r×p) denotes the matrix-variate normal
distribution of order r× p, W denotes the multivariate Wishart distribution and D the
symmetric Dirichlet. Moreover, β, Φ0 and h are r × r matrices, ρ, Ω0 and m are p× p

matrices, M0 is an r× p matrix and α, ζ, l and g are scalars. The prior distribution for
k is assumed to be a truncated Poisson:

f(k) ∝ λk

k!
, k ∈ {1, 2, . . . , kmax}

where the constants λ and kmax are data-driven choices.

Full conditionals

The full conditional distributions are proportional to known distributions. By using
| . . . to denote conditioning on all other variables, they are:

f(zij = 1| . . .) ∝ πiM(r×p)(Yj ; Mi,Φi, Ωi) (16)

vec(Mi)| . . . ∼ Nrp

(
Υ−1ξ,Υ−1

)
(17)

Φ−1
i | . . . ∼ Wr


2α + pni,


2β +

∑

j:zj=i

(Yj −Mi)Ω−1
i (Yj −Mi)>



−1


 (18)

Ω−1
i | . . . ∼ Wp


2ρ + rni,


2ζ +

∑

j:zj=i

(Yj −Mi)>Φ−1
i (Yj −Mi)



−1


 (19)

β| . . . ∼ Wr


2g + 2kα,

[
2h + 2

k∑

i=1

Ψ−1
i

]−1

 (20)

ρ| . . . ∼ Wp


2l + 2kζ,

[
2m + 2

k∑

i=1

Ω−1
i

]−1

 (21)

π| . . . ∼ D(% + n1, . . . , % + nk) (22)

where ni =
∑n

j=1 zij , ξ = (Φi ⊗ Ωi)−1
∑n

j=1 vec(Yj)zij + (Φ0 ⊗ Ω0)−1vec(M0) and
Υ = ni(Φi ⊗ Ωi)−1 + (Φ0 ⊗ Ω0). The analytical derivation of full conditional (17) is
demonstrated in the Appendix. The other previous expressions can be easily obtained
by combining equation (7) with the priors previously described.
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4.2 Multivariate longitudinal data

In this second framework, the sample Y1, . . . , Yn represents a set of independent but
not identically distributed observed matrices at different r times; therefore, again, we
have πij = πi for all j. Within each sub-population i, Φi is assumed to be a temporal
structured covariance matrix. There are several popular correlation structures, including
the compound symmetry structure, the first-order autoregressive AR(1) structure or
the Toeplitz structure (see, for more examples, Jennrich and Schluchter (1986)). In this
paper we confine attention to the AR(1) structure for all the Φi covariance matrices.
The other common types of temporal structures could be considered and adapted to
the proposed setting with little mathematical treatment. In our setting, within each
component i, the covariance matrix Φi can be decomposed as

Φi(βi) = (σiIr)Ri(βi)(σiIr), (23)

where Ri(βi) is a correlation matrix having the AR(1) structure:

Ri(βi) = [βi]|u−v| with u, v = 1, . . . , r.

Identifiability constraint

It is worth noting that in this framework the estimation problem is simplified under the
identifiability constraint that the trace of each Φi is equal to r. In fact, expression (23)
becomes Φi(βi) = Ri(βi) because the identifiability condition is equivalent to imposing
σi = 1, for all i = 1, . . . , k.

Prior formulation and hyperparameters

In this situation, the set of hyperparameters is ω = (β1, . . . , βk, σ1, . . . , σk, ρ)>. We
consider non-informative prior distributions for each βi given by uniform distributions
in [-1,1]. The prior distribution for σ−1

i is a Gamma distribution with parameters a

and b, for all i, with i = 1, . . . , k. The prior distribution for ρ is given in (14). Being
a deterministic function of βi and σi, there is no prior distribution for Φi. It is worth
noting that, by fixing βi = β and σi = σ, a GMMN model with homoscedastic temporal
components could be estimated.
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Full conditionals

The full conditionals for βi and σi are derived in the Appendix. The other posterior
distributions are not changed with respect to the setting of the previous situation and
are given in expressions (17), (19), (21) and (22).

4.3 Multivariate spatio-temporal data

In this setting, we consider p variables observed at r times for n different locations.
The set of observed matrices, Y1, . . . , Yn, are not independent but they can be spatially
correlated. Spatial relationships are taken into account by allowing the weights of the
mixture in (1) to vary from one location to another. This solution is inspired by the
spatial mixture formulation for Poisson distributed two-way data proposed by Fernández
and Green (2002). It consists of introducing k independent additional latent variables to
capture spatial correlation. The weights are a function of these latent variables via the
logistic transform so as to incorporate the spatial dependence in the mixture model. The
temporal correlation between the observed matrices is modelled by estimating AR(1)
structured covariance matrices, as presented in the previous section.

Prior formulation and hyperparameters

In this formulation, the set of hyperparameters ω includes also the spatial latent vari-
ables, denoted by x1, . . . , xk, and an additional non-negative parameter ζ. Each xi

(with i = 1, . . . , k) is a Markov random field with density function:

f(xi|ζ) = (2π)−n/2
n∏

j=1

(1 + ζυj)1/2 exp


−1

2


ζ

∑

j∼j′
(xij − xij′)2 +

n∑

j=1

x2
j





 (24)

where υ1, . . . , υn denote the eigenvalues of a spatial matrix which contains the number of
neighbours of each location in the diagonal, the value -1 if two locations are neighbours
and zero otherwise.

∑
j∼j′ denotes the sum over all pairs of neighbours with each

pair counted only once. Finally ζ is a hyperparameter with uniform prior distribution
between 0 and ζmax. When ζ = 0 there is independence between locations, as ζ increases
neighbouring locations have ever more similar values of the spatial latent variable x.
Given x1, . . . , xk and ζ the weights for location j take the form

πij =
exij

∑k
h=1 exhj

.
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Full conditionals

The full conditional for z is now

f(zij = 1| . . .) ∝ πijM(r×p)(Yj ; Mi, Φi, Ωi) (25)

instead of (16). The posterior distributions of x1, . . . , xk and ζ are derived in the
Appendix.

5 Stochastic model selection for GMMN

In many real applications the number of mixture components k is unknown and this
model uncertainty has to be addressed. Conventionally in model based clustering each
mixture component is interpreted as a cluster even if non-homogeneous clusters could
be themselves described by a mixture of two or more component distributions. This
latter case can be addressed by merging mixture components according to some criterion
(Hennig 2010; Baudry et al. 2008). Making inference on k is of interest, regardless the
role of each component in a clustering perspective.

In the framework of GMMN, the BDMCMC scheme essentially consists of randomly
jumping between mixture models with a different number of components. Consider the
set of varying-dimension parameters in compact form denoted by ξ(k) = {k, π(k),Θ(k)}
in order to make explicit that the dimension of the parameters changes with k. The
aim is to combine the previously described posterior distributions in order to construct
an irreducible Markov chain with stationary distribution f(z, π(k),Θ(k),ω(k), k|Y ) =
f(z, ξ(k), ω(k)|Y ). The unknown quantities of interest ξ(k) and ω(k) may be estimated
by the sample path averages of the chain.

5.1 A birth-death process for GMMN

Following the scheme proposed by Stephens (2000a), we first construct a continuous
time Markov birth-death process with stationary distribution f(ξ(k)|Y, ω(k)) (see Al-
gorithm 1). The continuous birth-death process is run for a virtual time of length
t0, in which many birth and death events may occur. Births and deaths are assumed
to be independent Poisson processes. As a consequence, the time passing between
each birth/death event is exponentially distributed with parameter depending on the
birth/death rates. In the following we present the birth-death algorithm. By combining
it with the full conditionals presented in Section 4, a Markov chain with stationary
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distribution f(z, ξ(k), ω(k)|Y ) is then implemented (see Algorithm 2).

Algorithm 1 In order to simulate a process with stationary distribution f(ξ(k)|Y, ω(k)),
a set of initial values for GMMN parameters in ξ(k) must be chosen. Then iterate the
following steps for an interval of time t0:

1. Let the birth rate be equal to λ;

2. Calculate the death rate for each component:

δi = λ
f(Y |ξ(k−1)

−i ,ω(k−1))
f(Y |ξ(k),ω(k))

p(k − 1)
kp(k)

(i = 1, . . . , k).

3. Calculate the total death rate δ =
∑k

i=1 δi.

4. Simulate the time to the next jump from an exponential distribution with mean
1/(λ + δ).

5. Simulate the type of jump: birth or death with respective probabilities λ
λ+δ and

δ
λ+δ

6. Adjust the parameters to reflect the birth or death:
Birth: Simulate each πj from a Beta distribution with parameters (1, k) and Θ

from the prior densities described in Section 4.
Death: Select a component to die with probability δi

δ , for i = 1, . . . , k.

In the algorithm f(Y |ξ(k), ω(k)) is the likelihood of the GMMN model:

f(Y |ξ(k),ω(k)) =
n∏

j=1

(
π1jM(r×p)(Yj ; M1,Φ1,Ω1)+, . . . , +πkjM(r×p)(Yj ; Mk, Φk, Ωk)

)

and f(Y |ξ(k−1)
−i ,ω(k−1)) is the likelihood of the GMMN model without the i-th com-

ponent. Therefore the chain may lead to many births of components which do not
contribute to describe the data, but such components will have a higher death rate.
The convergence of this process to the stationary distribution f(ξ(k)|Y, ω(k)) follows
from Stephens (2000a) (Theorem 3.1).
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5.2 The BDMCMC algorithm

By augmenting the data Y by the allocation variable z and combining Algorithm 1
with the previously described full conditionals an algorithm with stationary distribution
f(z, ξ(k), ω(k)|Y ) can be implemented.

Algorithm 2 Assuming a current set (ξ(k)
t , zt,ω

(k)
t ) of unknown quantities at iteration

t, simulate a new set for iteration t + 1 as follows:

1. Simulate ξ
(k)
t′ by running Algorithm 1 for a virtual fixed time t0 starting from ξ

(k)
t

and fixing ω(k) to be ω
(k)
t . Set ξ

(k)
t+1 = ξ

(k)
t′ .

2. Simulate zt+1 from its full conditional given the current set of parameters.

3. Simulate ω
(k)
t+1 from the full conditionals given the current set of parameters.

4. Simulate π
(k)
t+1 and Θ(k)

t+1 from the full conditionals given the current set of param-
eters.

Note that step 4 is not strictly necessary, since π(k) and Θ(k) are also updated at step
6 of Algorithm 1. This step has been included to improve mixing as suggested by
Stephens (2000a). The algorithm requires the specification of the time t0 for which the
birth and death process is run. This choice is related to the choice of the value for the
birth rate λ since the time between each birth/death event is distributed according to
an exponential distribution with mean 1/(λ + δ). In our applications, we have fixed
t0 = 1 and set different values for λ.

6 Experimental results

In the following, some numerical experiments with simulated and real data are presented.
The utilized code has been implemented in R (R Development Core Team 2008) and is
available at the author homepage.

6.1 Simulated data

The proposed GMMN is here evaluated on a simulation study. The aim of the simulated
example is twofold. First we implement a Gibbs sampling MCMC algorithm in simulated
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data with supposed known k. Then the BDMCMC algorithm is applied in order to make
inference on k. We also compare the obtained results with those obtained by applying
the MMN (Viroli 2011) on the same data.
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Figure 1: Simulated data. The figure shows the barplots of the posterior distribution
of k (ranging from 1 to 10) according to different priors (λ = 1, 3, 6, 10).

A sample of 500 matrix observations with r = 3 and p = 5 has been generated
from a mixture of three matrix normals with mean matrices reported in Table 2 and
weights given by π = {0.3, 0.4, 0.3}. The six (3 × 2) covariance matrices have been
randomly generated through the methodology proposed by Joe (2006). The simulated
data can be cast in the scheme of multivariate repeated measures. On this data we
have implemented a Gibbs sampling using the full conditionals derived in Section 4 for
this kind of three-way data. The values of the fixed quantities at the lowest level of
the hierarchical model have been chosen in order to guarantee relatively flat priors. M0
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has been set equal to the mid-point of the range of the observations. The values of the
other constants are:

Φ0 = diag
(
V 2

1 , . . . , V 2
r

)
, Ω0 = diag

(
S2

1 , . . . , S2
p

)

α = 1 + (r · k), ρ = 1 + (p · k) g =
r

2
, l =

p

2

h = diag
(

100g

αR2
1

, . . . ,
100g

αR2
r

)
, m = diag

(
100l

ρS2
1

, . . . ,
100l

ρS2
p

)
% =

(k − 1) · n
p · r ,

where V1, . . . , Vr and S1, . . . , Sp are the ranges along the two modes. In order to moni-
tor convergence to stationarity, graphical diagnoses and a multiple sequence diagnostic
analysis have been explored. We have run m = 10 parallel Gibbs sampling chains, each
of length n = 10, 000, with randomly selected starting points. The parallel sequences
have been compared using the analysis of variance approach by Gelman and Rubin
(1992). The potential scale reduction factor, PSRF , for each value of the component
mean matrices, is reported in Table 2. Since these values are very close to 1, no particu-
lar convergence problem has been observed. The good convergence behaviour was quite
evident by looking at some graphical diagnoses as well, like the traceplots and the den-
sity plots of the sampled parameters, the running mean plots and the autocorrelation
plots (not reported here for space reasons). On the basis of these diagnostic criteria, we
decided to discard the first 2,000 values as burn-in.

The Gibbs sampler estimates for the component mean matrices have been obtained
by computing the posterior mean across the m = 10 parallel outputs. These values
(denoted by M̂GS) are reported in Table 2. As shown in the table, estimates are quite
accurate.

The BDMCMC algorithm has been applied with random starting points for the
model parameters and with values λ = 1, 3, 6, 10. We have run 10,000 iterations of the
algorithm for each of the four settings. The run took about an hour on R 2.8.1 under
Microsoft Windows XP professional (CPU X86 Family 15, Model 4, ∼2666 Mhz). In
order to have an idea of the mixing of the chain, we have computed the percentages of
iterations which changed k, which in this case were 9.3% for λ = 1, 23.9% for λ = 3,
40.9% for λ = 6 and 45.4% for λ = 10.

Inference on k may be based on the estimates of the marginal posterior distribution.
Figure 1 shows the barplots of the posterior distribution of k (ranging from 1 to 10)
according to the different priors (λ = 1, 3, 6, 10). These results indicate that inference
for k is quite sensitive to the choice of the priors. As λ increases the mixing behavior
increases as well and the algorithm explores more states of the space. However, the



C. Viroli 589

i = 1 i = 2 i = 3

M M̂GS PSRF M M̂GS PSRF M M̂GS PSRF

M11 -0.18 -0.18 1.00 -0.44 -0.41 1.00 -0.19 -0.20 1.00

M21 -0.88 -0.86 1.00 0.28 0.21 1.00 0.99 0.96 0.99

M31 -0.03 -0.10 1.00 -0.63 -0.61 1.00 -0.25 -0.30 1.00

M12 -0.25 -0.20 0.99 0.34 0.33 0.99 -0.28 -0.27 1.00

M22 0.08 0.01 1.00 -0.80 -0.71 1.01 -0.13 -0.25 1.00

M32 0.26 0.25 1.00 -0.15 -0.10 1.00 0.43 0.43 1.00

M13 -0.42 -0.32 1.00 -0.46 -0.52 1.01 0.91 0.77 1.00

M23 -0.47 -0.48 1.03 -0.85 -0.66 1.00 0.67 0.09 1.00

M33 -0.69 -0.72 1.00 -0.60 -0.61 1.00 -0.08 -0.27 1.00

M14 -0.78 -0.58 1.00 0.72 0.68 1.00 -0.15 -0.02 1.00

M24 -0.45 -0.43 1.00 0.78 0.74 1.00 0.19 0.15 1.03

M34 0.09 0.04 1.02 0.02 0.05 1.00 0.85 0.84 1.00

M15 -0.36 -0.33 1.00 -0.42 -0.38 1.02 0.50 0.30 1.00

M25 -1.00 -0.92 1.00 0.11 0.13 1.00 0.76 0.61 1.00

M35 0.37 0.31 1.01 0.02 -0.01 1.02 -0.19 -0.05 1.00

Table 2: Simulated data. The table shows the true values of the mean matrices, M ,
of the three components (i = 1, 2, 3) and the corresponding Gibbs sampling estimates
denoted by M̂GS. PSRF is the potential scale reduction factor (Gelman and Rubin
1992).
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true value of components, k = 3, is suggested in all the four settings. For comparative
purposes, on the same data we have applied the MMN (Viroli 2011) with different values
of k ranging from 1 to 4 and with different starting points, randomly generated, in the
EM-algorithm. It is well known that the EM-algorithm is quite sensitive to the choice of
its initial values and this aspect was evident also in our analysis. Table 3 shows the best
values of the Bayesian Information Criterion (BIC), the Akaike Information Criterion
(AIC) and the Integrated Classification Likelihood Criterion (ICL-BIC) obtained in a
sequence of 100 multistart estimation procedures.

Table 3: Frequencies with which each model is selected according to the information
criteria BIC, AIC and ICL-BIC.

k = 1 k = 2 k = 3 k = 4

BIC 0 20 41 39
AIC 0 17 43 40

ICL-BIC 0 20 41 39

Results show that in this simulation study all the criteria suggest the correct number
of components, k = 3, most of the time, but k = 4 seems to be a plausible choice, as well.
From a computational point of view, the computational time required for this extensive
exploratory analysis was about three hours and hence significantly higher than those
required for running the BDMCMC algorithm.

6.2 Real example 1: Headache data

This data set derives from a study of C. Philips and M. Jahanshahi of the London
University Institute of Psychiatry (Hand and Taylor 1987). The aim of the study was
to investigate the reactions to noise of n = 75 headache sufferers, distinguished by two
types of headache: migraine or tension. Each subject was exposed to a sequence of
operations; first an initial measurement of sensitivity scores followed by a relaxation
pause and treatment, then again the measurement of sensitivity scores. The sensitivity
scores were obtained by listening to a tone which was gradually increasing in volume.
The levels at which the noise became uncomfortable (first variable of the analysis) and
definitely unpleasant (second variable of the analysis) have been recorded. Information
collected in this study represents an example of multivariate repeated measures where
p = 2 variables are observed in r = 2 time points. We want to investigate if the reaction
to the noise listening is different for the two kinds of headache sufferers or in other terms
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if the observed subjects cluster into k = 2 groups. To answer this question, we have
applied the proposed GMMN model with unstructured covariance matrices. Since here
k is known, we have directly implemented a Gibbs sampling using the full conditionals
derived in Section 4. Results are based on runs of length 10,000 with the first 5,000
iterations being discarded as burn-in. This burn-in period is larger than necessary, since
from all graphical tools for monitoring convergence it was evident that stationarity is
quickly achieved.

Table 4 shows the misclassification rates of the fitted model. For comparative pur-
poses, we have fitted the mixture model proposed by Basford and McLachlan (1985)
and some conventional clustering methods on the data collapsed by taking the mean of
the variables between the two time points. In the table we have reported the misclassifi-
cation rates obtained with the Basford and McLachlan model (BMclust), the Gaussian
mixtures by the mclust package of R (Fraley and Raftery 2002, 2006) and the classical
hierarchical clustering (HC) according to different methods (complete linkage, single
linkage and Ward method).

GMMN BMclust Complete HC Single HC Ward HC Mclust

0.067 0.213 0.173 0.293 0.200 0.133

Table 4: Misclassification rates for headache data according to different clustering meth-
ods: BMclust refers to the Basford and McLachlan model, Complete HC, Single HC
and Ward HC denote the hierarchical clustering according to the complete linkage, the
single linkage and the Ward method, respectively; Mclust refers to the conventional
Gaussian mixtures.

Results indicate that collapsing the full information contained in the two modes
leads to less flexible methods, while GMMN leads to the lowest error rate; only 5 out
of 75 subjects are misclassified.

6.3 Real example 2: Crime in the 103 Italian provinces

Every year, an Italian financial newspaper, Il Sole 24 Ore, analyzes the quality of life
in the 103 provinces of Italy through several indicators collected in different thematic
areas (www.ilsole24ore.com). This data set consists of p = 4 measurements on crime
in the Italian provinces collected and published in r = 5 years, from 2005 to 2009. The
p = 4 indicators are: home-invasion robberies (per 100,000 residents), teenage crime
rate (per 1,000 residents), the number of reported robberies (per 100,000 residents)
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and rate of muggings and pickpockets (per 100,000 residents). These are not violent
crime measurements but they could still offer a useful indication on the safety level in
the different geographical areas. Since Italy is a complex and heterogeneous country
characterized by a deep income inequality between the dynamic, industrialized North
and the less developed, agricultural-based Centre-South, we expect a deep territorial
heterogeneity in terms of safety and quality of life.

The aim of this study is to cluster the Italian provinces on the basis of the four crime
indicators taking into account the entire period of the five years 2005-2009.

In order to measure the strength of the spatial dependence among the provinces
we have computed the Moran’s I autocorrelation coefficient (Gittleman and Kot 1990)
separately for year and variable (see Table 5). The null hypothesis of no correlation
is tested assuming normality of the Moran’s I statistic under this null hypothesis. In
brackets the obtained p-values are reported. From the results it is clear that the first
and second variables are always positively spatially correlated, while the other two
variables are spatially correlated only in certain years. However, overall, there is a
significant correlation between the provinces and the observations cannot be considered
independent. Therefore this data set represents an example of multivariate spatio-
temporal data with dependent observations.

2005 2006 2007 2008 2009

home robberies 0.54 (0.000) 0.56 (0.000) 0.57 (0.000) 0.56 (0.000) 0.50 (0.000)
teenage crime 0.56 (0.000) 0.57 (0.000) 0.46 (0.000) 0.49 (0.000) 0.46 (0.000)
robberies 0.08 (0.051) 0.10 (0.033) 0.08 (0.063) 0.08 (0.062) 0.06 (0.137)
muggings 0.22 (0.000) 0.17 (0.002) 0.08 (0.093) 0.12 (0.029) 0.10 (0.059)

Table 5: Crime in the Italian provinces. Moran’s I autocorrelation coefficient. In
brackets the p-values are reported.

We have modelled the territorial dependence through priors on the mixture weights
and the temporal correlations among the five years with an AR(1) structure. What
differentiates our cluster analysis from a classification on a single year only is the fact
that we model simultaneously the correlations of variables within and between the
different years. In fact it could easily happen that clustering of provinces observed in
2005 could be quite different from that obtained in 2009, since in the considered years
the political action to reduce these criminal activities could have achieved different
results across the provinces.
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home robberies teenage crime robberies muggings

i = 1
2005 239.02 16.84 33.24 200.70
2006 263.27 19.37 34.34 196.97
2007 283.84 17.03 35.11 215.85
2008 327.22 17.45 37.91 248.82
2009 282.23 18.22 34.26 202.91

i = 2
2005 161.00 9.36 30.85 61.94
2006 166.29 10.00 29.22 74.03
2007 197.34 9.77 29.69 86.77
2008 226.33 9.91 33.01 92.10
2009 209.35 10.76 29.61 77.18

i = 3
2005 216.66 16.48 106.34 481.76
2006 242.83 21.35 104.06 546.84
2007 294.87 20.57 119.53 689.74
2008 322.60 20.16 129.16 676.33
2009 274.54 19.34 112.57 494.50

i = 4
2005 138.48 4.36 351.25 220.38
2006 147.51 6.25 341.74 243.79
2007 162.82 6.51 354.39 240.09
2008 182.91 7.88 315.71 236.51
2009 166.66 11.84 273.59 220.48

Table 6: Crime in the Italian provinces. Values of the four (i = 1, 2, 3, 4) component
mean matrices.
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Figure 2: Crime in the Italian provinces. Results from BDMCMC algorithm to fit the
GMMN model with λ = 2. The first plot shows the posterior probabilities of different
values of k. The second graph depicts the autocorrelation plot for sampled values of k.

The analysis has been performed by running a BDMCMC chain with λ = 2, repre-
senting the prior belief that provinces could be clustered into safe areas and dangerous
ones. We applied the BDMCMC algorithm to obtain a sample of size 20,000 from ran-
dom starting points, and discarded the first 10,000 observations as burn-in. The mixing
behavior of the chains over k was quite good since the percentage of sample points for
which k changed was 67.23%. The posterior probabilities and the autocorrelation for
sampled values of k are shown in Figure 2. As shown from the first graph, the mode is
k = 4. Therefore a GMMN model with four components has been fitted to this data
by running 20,000 iterations of the Gibbs sampler algorithm (with a burn in of 10,000
iterations). The estimated value of ζ is 0.12, thus denoting that a certain proportion of
spatial dependence has affected the probabilities of group membership.

In order to interpret the estimated four groups of provinces, we can consider the
component mean matrices of the GMMN classification, reported in Table 6, for the four
groups (i = 1, 2, 3, 4).

As shown from the table, the first cluster is characterized by high values for home
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cluster 1
cluster 2
cluster 3
cluster 4

Figure 3: Crime in the Italian provinces. Province classification into k = 4 groups.

robberies and teenage crime and relatively low values for the other two measurements.
This group consists of n1 = 31 provinces. The estimated temporal correlation is β1 =
0.71. On the contrary, the second cluster consists of n2 = 61 relatively safe cities
(all the crime measurements are lower than those of the other groups), with higher
correlations between the years (β2 = 0.83). In line with the economic and territorial
differences mentioned above, the first cluster of provinces corresponds to some of the
most industrialized and rich provinces of the North and Center of Italy, while provinces
of the second cluster are mainly located in the Center and South of Italy. This clustering
is shown in Figure 3, which represents the map of Italy with the 103 provinces. The
third cluster includes the n3 = 9 biggest and most touristic provinces, like Rome,
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Turin, Florence and Milan (see Figure 3). These are the provinces with the highest
values of home robberies, teenage crimes and reported muggings, and therefore the
most dangerous ones in terms of the crime indicators considered in this analysis. The
temporal correlation is β3 = 0.66. Cluster 4 consists of only two provinces (Naples and
Caserta) of the South of Italy, which are notoriously and particularly unsafe in terms
of robberies and muggings. The estimated temporal correlation for this last cluster is
β4 = 0.55.

7 Conclusions

We believe that the mixture model that has been introduced and discussed in this paper
provides an interesting new tool for clustering the most common classes of three-way
data which include, as examples, multivariate repeated measures, spatio-temporal data
or longitudinal studies of multiple responses. The proposed GMMN has several advan-
tages compared to the conventional statistical approaches for clustering three-way data.
First, by defining two different covariance matrices for the two modes, it can describe
the variable correlations separately from the temporal (or spatial) correlations. This
also allows one to model structured temporal or spatial correlation. As a consequence,
the GMMN model seems to be more flexible and it can outperform other clustering
methods in terms of classification performance, as shown in the first real example. Sec-
ond, the model can be easily adapted to deal with non-independent observations, like in
the context of spatio-temporal data where the statistical units are represented by spa-
tially correlated locations. Finally, and more importantly, the GMMN model has been
developed in a Bayesian framework thus providing a tool for model estimation of several
classes of three-way data and inference on the number of mixture components. Model
inference can be obtained by means of a conventional MCMC approach based on the
Gibbs sampling, while the issue of model selection has been addressed by constructing
a Markov chain through the simulation of a continuous-time stochastic birth-and-death
point process. From the computational point of view, the algorithm could be expen-
sive and the computational burden increases as the dimensionality or the sample size
increase. To give an example, running 10,000 iterations of the BDMCMC algorithm
with n = 500, r = 3 and p = 5 in the simulation study took about an hour on R 2.8.1
under Microsoft Windows XP professional (CPU X86 Family 15, Model 4, ∼2666 Mhz).
Of course the computational time could be considerably reduced under different plat-
forms. However, in some circumstances it could be useful to apply some dimensionality
reduction techniques to reduce the model complexity when r or p increases, without the
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need of collapsing the three-way structure into a two-way data set. Finally, it would be
interesting to explore wider classes of covariance structures for modeling the spatial or
temporal correlations in order to broaden the application fields of the proposed method.

Appendix: Posterior distributions

Full conditional for M

The full conditional (17) of the mean component matrix Mi is obtained by combining
(10) and (7):
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Now by using the properties of trace we obtain
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which is proportional to the multivariate Gaussian distribution in (17).
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Full conditional for βi and σi

By putting (23) into (7) it is possible to derive the posteriors of the two parameters of
interest βi and σi given the other parameters and variables:

f(βi, σi| . . .) ∝ (σ2
i )−

rp
2 ni |Ri(βi)|−

p
2 ni exp

[
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2
σ−2

i tr
(
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with Pi =
∑

j:zj=i(Yj −Mi)Ω−1
i (Yj −Mi)>. In order to obtain the full conditional for

βi, we consider |Ri(βi)| = (1− β2
i )r−1 and
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,

where C1 is a tridiagonal matrix with 0 on the diagonal and 1 on the lower and upper
diagonals and C2 = diag(0, 1, . . . , 1, 0). Therefore,
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The analytical derivation of full conditional of βi is
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This expression is not a known distribution but realizations from it can be generated
according to a self-normalized importance sampling scheme.

The full conditional for σi can be obtained as follows:
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from which it follows
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,

where G represents the Gamma distribution.

Full conditionals for x1, . . . , xk and ζ

In order to derive the posterior distribution for the spatial latent variables, they are
regarded as n vectors of length k and updated sequentially. By considering prior (24)
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into (7) we get
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The product between the last two terms within the bracket is the product between two
normals which is still normally distributed. Therefore we obtain
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The full conditional for ζ simply derives by evaluating (7) and takes the form
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