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The mirror symmetry of K3 surfaces

with non-symplectic automorphisms

of prime order

Paola Comparin, Christopher Lyons,

Nathan Priddis and Rachel Suggs

We consider K3 surfaces that possess a non–symplectic automor-
phism of prime order p > 2 and we present, for these surfaces, a
correspondence between the mirror symmetry of Berglund-Hübsch-
Chiodo-Ruan and that for lattice polarized K3 surfaces presented
by Dolgachev.

1. Introduction

Nearly twenty years ago, Berglund and Hübsch described a transposition
rule for identifying mirror pairs of Calabi-Yau manifolds that are defined
as hypersurfaces in weighted projective space [6]. Subsequently, Berglund
and Henningson [5] and, independently, Krawitz [12] extended the rule to
include a group of diagonal symmetries. More recently, Chiodo and Ruan [7]
proved that this rule produces pairs of Calabi-Yau manifolds that are mirror
to each other in the classical sense. When one has a Calabi-Yau manifold
of dimension two, i.e., a K3 surface, a second type of mirror symmetry was
summarized by Dolgachev in [9]. In this paper we show that these two forms
of mirror symmetry agree for a large class of K3 surfaces.

The extension of the Berglund-Hübsch transposition rule given by
Berglund-Henningson and Krawitz is applicable to any quasihomogeneous
invertible polynomial W together with a group G of diagonal automor-
phisms. Here, invertibility signifies that W has the same number of mono-
mials as variables. If the pair (W,G) satisfies the Calabi-Yau condition
and we let YW = {W = 0} in weighted projective space, then the orbifold
[YW /G] defines an (orbifold) K3 surface. The Berglund-Hübsch-Chiodo-
Ruan (BHCR) mirror symmetry essentially says that for a well-defined poly-
nomial W T and group GT , the surfaces [YW /G] and [YWT /GT ] are a mirror
pair.

1335



1336 P. Comparin et al.

The form of mirror symmetry discussed in [9] applies to lattice polar-
ized K3 surfaces, and is hereafter referred to as LPK3 mirror symmetry.
Beginning with a K3 surface X polarized by a lattice M (that satisfies some
mild conditions), the construction produces a mirror family of dimension
20− rank(M) whose members are also lattice polarized K3 surfaces. One
may say that two lattice polarized K3 surfaces form an LPK3 mirror pair if
each belongs to the mirror family of the other.

If one starts only with an unpolarized K3 surface X, the standard choice
is usually to polarize X by the full Picard lattice. This is the approach
taken by Belcastro [4]. However, as can be seen from her work, polarizing
the two members of a BHCR mirror pair by their Picard lattices does not,
in general, produce an LPK3 mirror pair. One hope for fixing this is to use
smaller polarizing lattices, perhaps suggested by the particular forms of the
surfaces.

With this in mind, recall that a symplectic automorphism of a K3 surface
is one that acts trivially on the canonical bundle. Several papers, including
[1], [2], [16], and [19], classify all possible non-symplectic automorphisms
of prime order p based on their invariant lattice, a primitive sublattice of
the Picard lattice. The connection between BHCR mirror symmetry and
LPK3 mirror symmetry is made using the invariant lattice of a certain non-
symplectic automorphism of prime order possessed by the K3 surfaces in
question.

In [3], Artebani, Boissière, and Sarti use this idea for p = 2 to prove that
for a certain collection of K3 surfaces, a K3 surface and its BHCR mirror
pair belong to LPK3 mirror families. The surfaces for which they proved
this statement are those defined by equations of the form

x21 = f(x2, x3, x4).

These surfaces possess the obvious involution x1 �→ −x1. This paper extends
the Artebani-Boissière-Sarti result to surfaces of the form xp1 = f(x2, x3, x4)
for any prime p. Our main result is the following (see Sections 2 and 3 for
notation):

Theorem 1.1. Consider the hypersurface YW in a weighted projective space
P(w1, w2, w3, w4) given by a non–degenerate invertible polynomial of the
form

(1) xp1 + f(x2, x3, x4),



The mirror symmetry of K3 surfaces · · · 1337

where p is prime, and let G be any group of diagonal automorphisms of W
such that JW ⊂ G ⊂ SLW , where JW is the group generated by the exponen-

tial grading operator. Setting G̃ := G/JW and G̃T := GT /JWT , the resolu-

tions of the BHCR mirror orbifolds [YW /G̃] and [YWT /G̃T ] belong to LPK3
mirror families.

This result is the starting point for a larger program involving the
Gromov-Witten theory of the quotient of a K3 surface by a non-symplectic
automorphism, the monodromy group of the period domain of K3 surfaces
and the construction of automorphic forms.

By [15], any non-symplectic automorphism of a K3 surface of prime
order p will satisfy p ≤ 19. A detailed analysis shows that no equation of
the form of (1) with p = 11, 17, or 19 defines a minimal K3 surface. Since [3]
establishes Theorem 1.1 in the case p = 2, in this paper we will only consider
p = 3, 5, 7, and 13.

Our strategy in proving this theorem is to first list all possible polynomi-
als of the form (1) that define K3 surfaces. We do this using a classification
theorem due to Kreuzer and Skarke [13], [18] of invertible polynomials based
on so-called atomic types. After finding all possible groups G of automor-
phisms of W that satisfy the hypotheses of BHCR symmetry, we then prove
the theorem using the aforementioned results on non-symplectic automor-
phisms of prime order of K3 surfaces.

Finally, we mention that some related work has been done by Ebeling
in [10]. In particular, in section 3, Ebeling shows that many of the LPK3
mirror pairs identified by Belcastro [4] are also BHCR dual, provided they
are of the form (1) (with p not necessarily prime) and that SLW = JW . Some
of the polynomials in Ebeling’s work also show up here (precisely when p is
prime, and S(σp) is equal to the Picard lattice).

The structure of this paper is as follows. In Section 2 we give some
background and definitions necessary for understanding BHCR mirror sym-
metry, non-symplectic automorphisms of K3 surfaces, and lattice theory. In
Section 3 we explain in more detail two kinds of mirror symmetry—BHCR
and LPK3—and we restate our main result concerning their compatibility.
In section 4 we develop our method of proof by working all the computations
needed to prove the result for several K3 surfaces. Finally in Section 5 we
give several tables of calculations, which verify the theorem. In the Appendix
we have reproduced several tables from [2] which are relevant for finding the
invariant lattice of non-symplectic automorphisms of prime order.

The results presented here were achieved simultaneously and indepen-
dently by the first author and by collaboration of the latter three authors.
This joint paper emerged after each learned of the other’s work.
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2. Background Material

In this section we present some background necessary to understand BHCR
and LPK3 mirror symmetry.

2.1. Quasihomogeneous polynomials and diagonal symmetries

A map W : Cn → C is quasihomogeneous of degree d with integer weights
w1, w2, . . . , wn if for every λ ∈ C,

W (λw1x1, λ
w2x2, . . . , λ

wnxn) = λdW (x1, x2, . . . , xn).

By rescaling the numbers w1, . . . , wn and d, we can require that gcd(w1, w2,
. . . , wn) = 1. In this case, we sayW has the weight system (w1, w2, . . . , wn; d).

A quasihomogeneous polynomialW : Cn → C (sometimes called a poten-
tial in the physics literature) with a critical point at the origin is non-
degenerate if (i) the origin is the only critical point of W , and (ii) the frac-
tional weights w1

d , . . . , wn

d of W are uniquely determined by W . We say a
non-degenerate quasihomogeneous polynomial is invertible if it has the same
number of monomials as variables.

If W is invertible we can rescale variables so that W =
∑n

i=1

∏n
j=1 x

aij

j .
This polynomial can be conveniently represented by the square matrixAW =
(aij), which we will call the exponent matrix of the polynomial. The con-
ditions we have imposed on W ensure that AW is an invertible matrix. In
fact, the fractional weight wi

d is equal to the sum of the i-th row of A−1W .
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Theorem 2.1. (cf. Kreuzer and Skarke [13, Thm. 1]) A quasihomogeneous
polynomial W is non–degenerate and invertible if and only if it can be written
as a direct sum of the three atomic types:

• WFermat = xa

• Wloop = xa1

1 x2 + xa2

2 x3 + · · ·+ xan
n x1

• Wchain = xa1

1 x2 + xa2

2 x3 + · · ·+ x
an−1

n−1 xn + xan
n .

Here the exponents are all integers greater than one.

We will be interested in certain symmetries of the invertible polynomial
W , which we call the group of diagonal symmetries of W , denoted GW .
Precisely,

GW = {(c1, c2, . . . , cn) ∈ (C∗)n :

W (c1x1, c2x2, . . . , cnxn) = W (x1, x2, . . . , xn)}.

For γ = (c1, c2, . . . , cn) ∈ GW , the coordinates c1, c2, . . . , cn must be roots
of unity. This enables us to write the group GW additively as a subgroup of
(Q/Z)n, with the identification

(c1, c2, . . . , cn) = (e2πig1 , e2πig2 , . . . , e2πign)↔ (g1, g2, . . . , gn).

In fact, if γ = (g1, g2, . . . , gn) is an element of GW written additively, the
coordinates gj must satisfy

∑
j aijgj ∈ Z for 1 ≤ i ≤ n. This is equivalent to

the condition that γ is in the Z-span of the columns of A−1W . Thus GW is
generated by the columns of A−1W . From this fact, one can check that the
order of GW is

|GW |= det(AW ).

As W is quasihomogeneous, GW always contains the exponential grad-
ing operator jW = (e2πi

w1
d , e2πi

w2
d , . . . , e2πi

wn
d ) (in additive notation jW =(

w1

d , w2

d , . . . , wn

d

)
). The group generated by jW is JW = 〈jW 〉 and it is a

cyclic group of order d.
Finally, if we think of GW multiplicatively, we can identify an element

γ = (c1, c2, . . . , cn) ∈ GW with a diagonal matrix that has the ci on the diag-
onal. If this matrix is contained in the group SL(n,C), we abuse notation and
write γ ∈ SL(n,C). In additive notation (with cj = e2πigj ) this is equivalent
to

∑
j gj ∈ Z. We define the group SLW to be GW ∩ SL(n,C).

We will be interested in pairs (W,G), consisting of an invertible poly-
nomial W and a group of diagonal symmetries G ⊂ GW , that will give rise
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to K3 surfaces. Toward this end, we say that the pair (W,G) satisfies the
Calabi-Yau condition if both of the following hold:

(i)

n∑
i=1

wi = d,

(ii) JW ⊂ G ⊂ SLW .

Note that (i) ensures that JW ⊂ SLW .
The following section will explain how the objects described in this sec-

tion give rise to K3 surfaces.

2.2. K3 Surfaces

Recall that a K3 surface is a compact complex surface X with trivial canon-
ical bundle and dimH1(X,OX) = 0. All K3 surfaces considered here will be
projective and minimal. An automorphism of X is symplectic if the induced
action on the canonical bundle of X is trivial, and is non–symplectic other-
wise.

In this paper, we will be concerned with a class of K3 surfaces that arises
from certain hypersurfaces in weighted projective space. We start with the
weighted projective space P(w1, w2, w3, w4), assuming without loss of gen-
erality that it is normalized, in the sense that gcd(wi, wj , wk) = 1 when-
ever i, j, k are distinct. A non-degenerate quasihomogeneous polynomial
W ∈ C[x1, x2, x3, x4] with weight system (w1, w2, w3, w4; d) defines a hyper-
surface YW = {W = 0} of degree d in P(w1, w2, w3, w4). The nondegeneracy
of W implies that the hypersurface YW is quasismooth.

In independent work, Reid (unpublished) and Yonemura [21] have com-
piled a list of the 95 normalized weight systems (w1, w2, w3, w4; d) (“the 95
families”) such that P(w1, w2, w3, w4) admits quasismooth hypersurfaces of
degree d whose minimal resolutions are K3 surfaces. In all cases one has
d =

∑
iwi. By [8, Theorem 1.13], the general hypersurface of degree d in

one of these 95 weight systems is also well-formed, meaning that it does
not contain any of the coordinate lines {xi = xj = 0}. Moreover, any qua-
sismooth well-formed hypersurface in the normalized weighted projective
space P(w1, w2, w3, w4) of degree d =

∑
iwi has a K3 surface as its min-

imal resolution by [8, Lemma 1.12]. In particular, by Theorem 2.1, if W
is an invertible polynomial with weight system (w1, w2, w3, w4; d) belonging
to one of the 95 families, then the minimal resolution XW of YW is a K3
surface.
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The group GW acts in an obvious manner by automorphisms on the
surface YW , and by extension on the K3 surface XW . By [3, Proposition 1],
an automorphism σ ∈ GW is symplectic if and only if detσ = 1, that is, if
and only if σ ∈ SLW .

We now add the condition that W be of the form (1) for a prime p.
In this case, XW has an obvious non-symplectic automorphism of order p,
arising from the map

σp : [x1 : x2 : x3 : x4] �→ [ζpx1 : x2 : x3 : x4],

where ζp is a primitive p-th root of unity. We can identify this map as
multiplication by an element of GW , which we will also denote as σp. In

additive notation this is σp =
(
1
p , 0, 0, 0

)
.

We may further obtain K3 surfaces fromXW by taking quotients. Indeed,
if JW ⊂ G ⊂ SLW , then G̃ = G/JW acts symplectically on the K3 surface
XW , and we may consider the quotient XW /G̃. The minimal resolution
of XW /G̃, which we will denote as XW,G, is also a K3 surface. The non–

symplectic automorphism σp descends to XW /G̃, and thus one obtains a
non-symplectic automorphism of order p on XW,G; we will also denote the
automorphism on XW,G as σp when there is no risk of confusion. We remark
that, as JW acts trivially on XW , we have XW = XW,JW

.
In the sequel, we will be concerned exclusively with K3 surfaces arising

from the construction above, and for brevity we will summarize it by intro-
ducing the following terminology. Let W be an invertible polynomial with
weight system (w1, w2, w3, w4; d) and let G ⊂ GW . Suppose that (W,G) sat-
isfies the Calabi-Yau condition (see (i) and (ii) in Section 2.1), and that the
following additional conditions hold:

(iii) W is of the form (1), and

(iv) the weight system (w1, w2, w3, w4; d) belongs to one of the 95 families,

Then as in the discussion above we have a K3 surface XW,G that is the min-

imal resolution of XW /G̃. We will call XW,G a p-cyclic K3 surface because
it is equipped with the non–symplectic automorphism σp coming from the

diagonal symmetry
(
1
p , 0, 0, 0

)
∈ GW .

Next we describe restrictions on the prime exponent p in (1). As noted in
the introduction, for general reasons one must have p ≤ 19. But in fact the
specific nature of (1) further limits the possibilities for p. Indeed, among the
95 families, one may show by direct methods (see Example 2.2) that only
69 of these weight systems admit quasihomogenous invertible polynomials
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of the form (1), and only with the primes p = 2, 3, 5, 7, 13. If we further
limit ourselves to p �= 2 (as will be our focus), then the number of weight
systems is reduced to 41. All possibilities for W that may occur for p �= 2
are enumerated in terms of the exponent p in Tables 2 – 6 in Section 5. As
can be seen, many of these weight systems admit multiple polynomials and
some of the polynomials appear in more than one table.

Example 2.2. Let us show that the weight system (w1, w2, w3, w4; d) =
(5, 4, 3, 3; 15) appears among the 41 admissible families. We look for an
invertible polynomialW of the form (1) whose weight system is (5, 4, 3, 3; 15).
If W is as in (1), then pw1 = d holds. If w1 does not satisfy pw1 = d we can
perform a change of coordinates x1 ↔ xj such that pwj = d. In this case the
form of W will contain the term xpj . For this weight system, there are two
possible choices for p, i.e. p = 3, 5.

We start by considering p = 3. Thus W = x31 + f(x2, x3, x4) and admits
the automorphism σ3 =

(
1
3 , 0, 0, 0

)
. By Theorem 2.1, the polynomial W is a

sum of atomic types and thus f is one of the following:

f(x2, x3, x4) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

xa2 + xb3 + xc4 (Fermat)

xa2x3 + xb3x4 + xc4 (chain)

xa2x3 + xb3x4 + xc4x2 (loop)

xa2x3 + xb3 + xc4 (chain+Fermat)

xa2x3 + xb3x2 + xc4 (loop+Fermat)

for certain non-zero a, b, c ∈ N. Determining whether there is a polynomial
f of each of these types reduces to solving a linear system. There are two
possibilities: W1 = x31 + x32x3 + x43x4 + x54 and W2 = x31 + x32x3 + x53 + x54.

When we pass to p = 5, we find that the weight wj associated to the
term x5j must be 3. Hence we choose x1 ↔ x4 and obtain the polynomial

x31 + x32x3 + x53 + x54, which is W2 from above. Here the diagonal symmetry
of order 5 is

(
0, 0, 0, 15

)
.

In the sequel we will make a change of notation from (x1, x2, x3, x4) to
(x, y, z, w) for the variables of W , with the weights in nonincreasing order
from left to right. This convention is also used Tables 2 – 6 in Section 5.

2.3. Lattice theory

By a lattice, we shall mean a free abelian group L of finite rank equipped
with a non-degenerate symmetric bilinear form B:L× L→ Z. A lattice L
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is even if the associated quadratic form B(x, x) takes values in 2Z. The
signature of L is the signature (t+, t−) of B. A lattice is hyperbolic if its
signature is (1, rank(L)− 1). A sublattice L′ ⊆ L is called primitive if L/L′

is free.
As the bilinear form B is non-degenerate, it induces an embedding L ↪→

L∗, where L∗ = Hom(L,Z). The discriminant group AL = L∗/L is finite.
The minimal number of generators of AL is called the length of L. Note that
if one writes B as a symmetric matrix in terms of a basis of L, then the
order of AL is equal to |det(B)|. If AL = {0}, L is called unimodular. For
a prime number p, L is called p-elementary if AL  (Z/pZ)a for some a; in
this case, a is the length of AL.

Rudakov and Shafarevich [17] have given a complete classification of
even, indefinite, p-elementary lattices. It states in particular that for p �= 2,
an even indefinite p-elementary lattice of rank r ≥ 2 is uniquely determined
by the integer a. In the case p = 2 a third invariant δ ∈ {0, 1} is necessary
to identify the lattice, though this will not be relevant in this paper.

We follow the notation of [2, Section 1] to present some particular lat-
tices that are relevant to our calculations. The lattice U is the unimodular
hyperbolic lattice of rank 2. For a properly chosen basis the bilinear form is
given by the matrix (

0 1
1 0

)
.

The lattice An is the negative definite even lattice whose discriminant
group has order n+ 1. It is associated to the Dynkin diagram An, n ≥ 1.
In particular, if p is prime, then Ap−1 is p-elementary with a = 1. Likewise,
E8 is the negative definite unimodular even lattice of dimension 8, and is
associated to the Dynkin diagram E8.

If p ≡ 3 (mod 4), we denote by Kp the lattice corresponding to the
matrix (−(p+ 1)/2 1

1 −2
)
.

It is a negative-definite, p-elementary lattice with a = 1.
If p ≡ 1 (mod 4) the lattice Hp corresponding to the matrix(

(p− 1)/2 1
1 −2

)

is a hyperbolic, p-elementary lattice of length 1.
Given a lattice L, we denote by L(n) the lattice obtained by multiplying

the bilinear form by n.
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Let X be a K3 surface. We have the cup product form

H2(X,Z)×H2(X,Z)
∪−→ H4(X,Z) −̃→ Z,

where the isomorphism on the right sends the class of a point to 1 ∈ Z. This
pairing makes H2(X,Z) into an even unimodular lattice of signature (3, 19).
As such, it is isometric to the K3-lattice

LK3 = U3 ⊕ (E8)
2.

Here and in the sequel, a direct sum of lattices denotes orthogonality.
We let

SX = H2(X,Z) ∩H1,1(X,C)

denote the Picard lattice of X in H2(X,Z) and TX = S⊥X denote the tran-
scendental lattice.

Any non-symplectic automorphism σ ∈ Aut(X) induces an isometry σ∗ ∈
Aut(H2(X,Z)). We let S(σ) ⊆ H2(X,Z) denote the σ∗-invariant sublattice
of H2(X,Z), which one can check is a primitive sublattice of H2(X,Z). We
let T (σ) = S(σ)⊥ denote its orthogonal complement, which is also primitive.
Note that, as σ is non-symplectic, the Lefschetz (1, 1) Theorem implies that

S(σ) ⊂ SX .

Finally, as the sum over the 〈σ〉-orbit of an ample divisor class is a σ-invariant
ample class by Nakai-Moishezon, the Hodge Index Theorem implies that the
signature of S(σ) is (1, t) for some t ≤ 19, i.e. S(σ) is hyperbolic.

Lemma 2.3. (Nikulin [15], Artebani et al. [2, Theorem 2.1]) Let X be a
K3 surface with a non–symplectic automorphism σ of prime order p. Then
S(σ) and T (σ) are p-elementary lattices, and AS(σ)

∼= AT (σ)
∼= (Z/pZ)a with

a ≤ rank(T (σ))
p−1 .

We will let r denote the rank of S(σ). Then we have a set of invariants
(r, a) of the lattice S(σ). In addition to r and a, some authors also work
with m = 22−r

p−1 , which is the rank of T (σ) as a Z[ζp]-module, for a primitive
p-th root of unity ζp. In this paper our main focus will be on r and a, but
we will make some use of m (e.g., see Theorem 2.4 and the discussion at the
end of Section 3.1). Note that the lemma says a ≤ m.

Let Xσ denote the fixed locus of σ. In [2], the authors prove that there
is a close connection between the invariants of S(σ) and the topological
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structure of Xσ. In fact, each determines the other, as demonstrated in the
following theorem. We omit the case p = 2, as we are primarily interested
in the cases p = 3, 5, 7, 13.

Theorem 2.4 (cf. Artebani et al. [2]). Let X be a K3 surface with a
non-symplectic automorphism σ of prime order p �= 2. Then the fixed locus
Xσ is nonempty, and consists of either isolated points or a disjoint union
of smooth curves and isolated points of the following form:

(2) Xσ = C ∪R1 ∪ · · · ∪Rk ∪ {p1, . . . , pn}.

Here C is a curve of genus g ≥ 0, Ri are rational curves and pi are isolated
points.

Furthermore, if Xσ contains a curve and S(σ) has invariants (r, a), then
the following hold:

• m = 2g + a;

• if p = 3 then 1− g + k = (r − 8)/2 and n = 10−m ;

• if p = 5 then 1− g + k = (r − 6)/4 and n = 16− 3m;

• if p = 7 then 1− g + k = (r − 4)/6 and n = 18− 5m;

• if p = 13 then (g, n, k) = (0, 9, 0) and S(σ) = H13 ⊕ E8.

Remark. In [1] this theorem is rendered slightly differently for the case
p = 3. The difference there is that the invariant k represents the total number
of fixed curves, including the curve with (possibly) positive genus. Here and
in [2], the invariant k does not include the curve C. We also point out the
the case g = 0 does occur. In that case the curve C is also rational, and
the total number of fixed rational curves is k + 1. (See Example 4.3 for an
example.)

Tables A1 – A4 in Appendix A contain a complete classification of the
lattices S(σ) and T (σ) according to their invariants when σ is of order 3, 5, 7
or 13.

Note that there is only a single possibility for the isometry class of S(σ)
when p = 13. Since this fact renders our main result (see Theorem 3.5) trivial
when p = 13, we focus mainly on the cases p = 3, 5, 7.
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3. Mirror Symmetry

3.1. LPK3 mirror symmetry

In this section we describe relevant aspects of mirror symmetry for lattice
polarized K3 surfaces. As mentioned, we will refer to this simply as LPK3
mirror symmetry. For a more complete treatment, we refer the reader to [9].

Suppose that M is an even lattice of signature (1, t) with t ≤ 18 that
embeds primitively into LK3. Let ι : M ↪→ LK3 be such an embedding and
suppose further that there is a primitive embedding ι′ : U ↪→ ι(M)⊥ of the
lattice U into the orthogonal complement ofM in LK3. Under these assump-
tions, [14, Corollary 1.13.3] ensures that the isometry class of the orthogonal
complement of ι′(U) inside ι(M)⊥ is in fact independent of the choices ι, ι′.
This observation ensures that the following is well-defined:

Definition 3.1. Let M be a lattice of signature (1, t) with t ≤ 18 that
admits a primitive embedding ι : M ↪→ LK3. We will say M is mirror-
hyperbolic if its orthogonal complement ι(M)⊥ in LK3 admits a primitive
embedding ι′ : U ↪→ ι(M)⊥. For a mirror-hyperbolic latticeM , we define (up
to isometry) the mirror lattice M∨ of M via the orthogonal decomposition

ι(M) = ι′(U)⊕M∨.

Note that M∨ also embeds primitively into LK3 and has signature
(1, 19− t). By [14], the discriminant groups of M and M∨ are isomor-
phic. Thus if M is p-elementary, with invariants (r, a), then M∨ is also
p-elementary with invariants (20− r, a). One easily checks that M∨ is also
mirror-hyperbolic and that the mirror lattice of M∨ is M . 1

Now let X be a K3 surface and suppose that M is a lattice of signature
(1, t). If j:M ↪→ SX is a primitive embedding into the Picard lattice of X,
one calls the pair (X, j) an M -polarized K3 surface. More coarsely, we will
call the pair (X,M) an M -polarizable K3 surface if such an embedding j
exists. Note that for an M -polarizable K3 surface (X,M), the lattice M
necessarily embeds primitively into LK3.

1This definition of the mirror lattice uses a more restrictive hypothesis than that
in [9]; in the terminology used there, we are assuming that M⊥ contains an isotropic
1-admissible vector. Moreover, our definition in this restricted setting is coarser than
the one used by Dolgachev, since we do not keep track of the embedding U ↪→M⊥

and instead only consider M∨ up to isometry.
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Definition 3.2. Let (X,M) be an M -polarizable K3 surface and (X ′,M ′)
be anM ′-polarizable K3 surface, whereM andM ′ are both mirror-hyperbolic.
We will say that (X,M) and (X ′,M ′) are LPK3 mirrors if M ′ = M∨ (or
equivalently M = (M ′)∨).

Remark. Let XW,G be a p-cyclic K3 surface, with its non-symplectic auto-
morphism σp. We have noted that the invariant lattice S(σp) embeds prim-
itively into the Picard lattice, yielding the polarizable K3 surface (XW,G,
S(σp)). We will also see in Lemma 3.4 that S(σp) is mirror-hyperbolic. If
p = 3, 5 or 7, then our results show that the notion of the mirror lattice of
S(σp) has an elegant formulation in terms of a certain reflection, as we now
describe.

By [2, Theorem 0.1], the invariant lattice S(σp) is determined, up to
isometry, by the pair of invariants (r, a) associated to S(σp). Recalling that
m = 22−r

p−1 , the same is then true of the pair (m, a). When one plots in the
(m, a)-plane those values that are realized as the invariants of S(σ), for
some non-symplectic automorphism σ of order p on some K3 surface X, one
arrives at the figures in Appendix A. One sees that each figure is nearly
symmetric about the line m = μ/2, where

μ =
24

p− 1
=

⎧⎪⎨
⎪⎩
12 if p = 3

6 if p = 5

4 if p = 7.

The reflection through this line is given by the involution (m, a) �→ (μ−
m, a). Using instead the invariants (r, a), this involution takes the form
(r, a) �→ (20− r, a). Note that, as mentioned after Definition 3.1, this is the
same involution relating the invariants of a mirror-hyperbolic lattice M to
those of its mirror M∨.

Studying the figures in Appendix A, one sees that only a few anomalous
values (by which we mean that (m, a) appears but (μ−m, a) does not) keep
this involution from being a true symmetry of the figure. One facet of our
results is that none of these anomalous values arise from p-cyclic K3 surfaces.
(This will follow from (i) Lemma 3.4 below and (ii) the fact that σ3 always
fixes at least one curve on a 3-cyclic K3 surface, ruling out the invariants
(r,m, a) = (8, 7, 7) for S(σ3)). The conclusion is then that in the case of
p-cyclic K3 surfaces, the mirror lattice of S(σp), with invariants (m, a), is
exactly the lattice obtained by reflection across the line m = μ/2.
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3.2. BHCR mirror symmetry

The second formulation of mirror symmetry that we consider comes from the
Landau-Ginzburg model for mirror symmetry. This particular formulation
of mirror symmetry was developed initially by Berglund and Hübsch [6], and
later refined by Berglund and Henningson [5] and Krawitz [12].

General Landau-Ginzburg mirror symmetry is defined for a large class of
pairs (W,G), where W is an invertible polynomial and G ⊂ GW is a group
of diagonal symmetries. Howevever, we will restrict ourselves to the case
where (W,G) satisfies the Calabi-Yau condition.

Given such a pair, we will define the mirror pair (W T , GT ) in the fol-
lowing way. First, if W =

∑n
i=1

∏n
j=1 x

aij

j , we define W T =
∑n

i=1

∏n
j=1 x

aji

j .

In other words, W T is the polynomial corresponding to the transpose of the
exponent matrix AW of W . That W T is an invertible polynomial follows
from the classification in Theorem 2.1.

Next, using additive notation we define the dual group GT of G as

(3) GT =
{
g ∈ GWT | gAWhT ∈ Z for all h ∈ G

}
.

From Artebani et al. [3, Proposition 3] we have the following useful
properties of the dual group.

• (GT )T = G

• If G1 ⊂ G2, then GT
2 ⊂ GT

1 and G2/G1
∼= GT

1 /G
T
2 .

• (GW )T = {0}
• (JW )T = SLWT

• In particular, if JW ⊂ G, then GT ⊂ SLW .

It remains to verify that the pair (W T , GT ) also satisfies the Calabi-
Yau condition. Note that since W satisfies

∑
wi = d, the transpose poly-

nomial W T does as well (this is because wi

d is the sum of the i-th row
of the matrix A−1W ). Also, the properties of GT listed above tell us that
JWT ⊂ GT ⊂ SLWT . We conclude that (W T , GT ) indeed satisfies the Calabi-
Yau condition.

The mirror construction that we have just described was initially used
to identify mirror pairs of Landau-Ginzburg models constructed from
(W,G) and (W T , GT ), respectively. Because the groups G̃ = G/JW and

G̃T = GT /JWT act on the hypersurfaces YW = {W = 0} and YWT = {W T =
0}, respectively, we can investigate the Calabi-Yau orbifolds [YW /G̃] and
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[YWT /G̃T ]. Chiodo and Ruan [7] established what is known as the Landau-
Ginzburg/Calabi-Yau correspondence. Using this correspondence Chiodo
and Ruan proved the following theorem, thus establishing a close connec-
tion between Landau-Ginzburg mirror symmetry and mirror symmetry for
Calabi-Yau orbifolds.

Theorem 3.3. (Chiodo and Ruan [7, Theorem 2]) The orbifolds [YW /G̃]

and [YWT /G̃T ] form a mirror pair; that is,

Hp,q
CR([YW /G̃],C) ∼= Hn−2−p,q

CR ([YWT /G̃T ],C)

where HCR(−,C) indicates Chen-Ruan orbifold cohomology.

Now consider a p-cyclic K3 surfaceXW,G, so that in particular the weight
system of W belongs to one of the 95 families. Then we have seen that
(W T , GT ) also satisfies the Calabi-Yau condition. A direct check shows that
the weight system of W T belongs to the 95 families. Hence XWT ,GT is also
a p-cyclic K3 surface. In light of Theorem 3.3, following [3], we define the
BHCR mirror of XW,G to be XWT ,GT .

We have now described two kinds of mirror symmetry, and we expect
some form of compatibility in situations where both apply. The next section
states our main theorem, which makes precise the sense in which BHCR and
LPK3 mirror symmetry are compatible.

3.3. Main Theorem

Our goal is to show compatibility of BHCR and LPK3 mirror symmetry for
p-cyclic K3 surfaces XW,G where p �= 2. Clearly, in order to talk about such
compatibility, we must first verify that an LPK3 mirror exists for each such
surface. This is accomplished by the following lemma.

Lemma 3.4. If p = 3, 5, 7, 13, then the lattice S(σp) is mirror-hyperbolic.

Proof. This amounts to showing that U embeds primtively into T (σp). Upon
consulting Tables A1 – A4, this is equivalent to showing that the invariants
(r, a) of S(σp) do not take on the following values:

• For p = 3: (r, a) = (20, 1)

• For p = 5: (r, a) = (6, 4)

• For p = 7: (r, a) = (4, 3).
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This in turn follows from inspection of Tables 2 – 6. �

We are now ready to state our main result, which is the following:

Theorem 3.5. Consider a p-cyclic K3 surface XW,G with its non-symplectic
automorphism σp of prime order, along with its BHCR mirror XWT ,GT

with its non-symplectic automorphism, which we will denote as σT
p . Then

(XW,G, S(σp)) and
(
XWT ,GT , S(σT

p

)
) are LPK3 mirrors.

Proof. The theorem will be verified if S(σp)
∨ = T (σp)/U ∼= S(σT

p ). This in

turn follows by checking that the invariants of S(σp) and S(σT
p ) are (r, a) and

(20− r, a), respectively. Thus, at the heart of this proof is the determination
of the isometry class of S(σp) for all p-cyclic K3 surfaces XW,G with p �= 2.
Detailed illustrations of the methods behind this determination are given
in Section 4, but the brief idea is to find the topological invariants of the
fixed locus of σp acting on XW,G, which by Theorem 2.4 will determine the
isometry classes of S(σp). A complete list of all possibilities for W is found in
Tables 2 – 6 (and we have shown in Section 2.2 how to obtain them). These
same tables list the invariants (r, a) of S(σp). Thus, our theorem follows
from inspection of Tables 2 – 6, in the following manner.

First, in all but one exceptional case (namely No. 3a in Table 2), the
group SLW /JW is cyclic, and hence a subgroup JW ⊂ G ⊂ SLW is uniquely
determined by the order of G/JW . Thus given a p-cyclic K3 surface XW,G,
one finds the row of the table corresponding to (W,G), and from this one
may (in the non-exceptional cases) read off the invariants (r, a) of S(σp) and
the number of W T (labelled as “BHCR dual”). Noting that

|GT /JWT |= |SLW /G|= |SLW /JW |
|G/JW | ,

one may then find the row corresponding to (W T , GT ) and verify the afore-
mentioned symmetry between the invariants of S(σp) and S(σT

p ).
More details about the exceptional case No. 3a are found in Example 4.4.

�

4. Examples

To illustrate the techniques used to compute the invariants given in Tables
2 – 6, we will give some examples. All cases are similar to those highlighted
here. We begin with a few results that we will use later.
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We start with an equation xp1 + f(x2, x3, x4) in P(w1, w2, w3, w4), with
the non–symplectic automorphism σp. In order to describe the surface YW =
{W = 0} ⊂ P(w1, w2, w3, w4) more explicitly, we will find the singular points.
Since YW is quasismooth, the singular points YW only occur at singular
points of P(w1, w2, w3, w4). To find them, we examine the action of C∗ on
C4, which is given by

λ · (x, y, z, w) = (λw1x, λw2y, λw3z, λw4w).

The singularities in question will occur at points [x : y : z : w] ∈ YW for
which two or three of the coordinates vanish and for which the action of
C∗ has non-trivial isotropy. Resolution of these points will yield XW,JW

.
Exceptional curves of the resolution will often contribute to the fixed locus
of σp.

Recall that we can calculate (r, a) if we know the topological invariants
(g, n, k). We can find n and k explicitly from the action of σp. In order to
compute g, we need the following lemma, which can be found, e.g., in [11,
Theorem 12.2].

Lemma 4.1. The genus of a quasismooth curve of degree d in P(w1, w2, w3)
is

g(C) =
1

2

⎛
⎝ d2

w1w2w3
− d

∑
i>j≥1

gcd(wi, wj)

wiwj
+

3∑
i=1

gcd(wi, d)

wi
− 1

⎞
⎠ .

With these results in mind, we will now give several examples. The first
example, in which W T = W , will give the most detail. The second example
differs only in that W T �= W . In Example 4.4, we resolve the ambiguity in
the K3 surface numbered 3a from Table 2 by computing each subgroup of
SLW and its transpose.

Example 4.2. We will work through the calculations for the K3 surfaces
arising from the polynomial W = x2 + y3 + z8 + w24 in detail. This is No.
13d in Table 2. Note that the order of the variables has been changed to
match the table, so that x1 in (1) corresponds with the variable y in W .
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The weight system for W is (12, 8, 3, 1; 24), and so in additive notation
we have jW =

(
1
2 ,

1
3 ,

1
8 ,

1
24

)
. The exponent matrix is

AW =

⎛
⎜⎜⎝

2 0 0 0
0 3 0 0
0 0 8 0
0 0 0 24

⎞
⎟⎟⎠ .

Since AW is symmetric, we see that W T = W .
We need to find all subgroups G ⊂ GW satisfying JW ⊂ G ⊂ SLW . By

Section 3.2 we know GW /SLW
∼= JWT

∼= JW . By Section 2.1 we have |GW |=
det(AW ) = 1152. As |JW |= 24, we can see that |SLW /JW |= 2 as in Figure 1.
So there are two possible choices for the group G, namely JW and SLW .

{0}

JW

SLW

GW

1152

24

2

24

Figure 1. Subgroup lattice for GW when W = x2 + y3 + z8 + w24

The non–symplectic automorphism σ3 of order 3 is

[x : y : z : w] �→ [x : ζ3y : z : w].

Written additively, this is σ3 =
(
0, 13 , 0, 0

)
. Now we have two K3 surfaces to

consider, which are BHCR mirrors, namely XW,JW
and XW,SLW

. We need
to show that (XW,JW

, S(σ3)) and (XW,SLW
, S(σ3)) are LPK3 mirrors. To do

this we consider each one separately.

• (W,JW ):
We will first describe the surface YW = {W = 0} ⊂ P(12, 8, 3, 1) more

explicitly, and then describe its resolution XW,JW
. Since YW is quasis-

mooth, the singular points of the surface YW only occur at singular
points of P(12, 8, 3, 1). To find them, we examine the action of C∗ on
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C4, which is given by

λ · (x, y, z, w) = (λ12x, λ8y, λ3z, λw).

As mentioned previously, the singularities in question will occur at
points [x : y : z : w] ∈ YW for which two or three of the coordinates
vanish and for which the action of C∗ has non-trivial isotropy.

From the action, we see that the point [1 : −1 : 0 : 0] ∈ YW is a point
with Z/4Z isotropy, arising from λ = i. Since the order of the isotropy
is 4, YW has an A3 singularity at this point.

Moreover, the points [±i : 0 : 1 : 0] are 2 points with Z/3Z isotropy
arising from λ = ζ3 and so they give 2A2 singularities in YW . Resolving
these singularities, we obtain XW . We have diagrammed the resolution
in Figure 2.

y = 0

w = 0

Figure 2. Curve configurations on XW in Example 4.2

All that remains is to calculate the invariant lattice of the non-
symplectic automorphism σ3. This is determined by r and a, which in
turn can be calculated by considering the fixed locus of the action of
σ3 on XW .

The curve y = 0 is obviously fixed. Furthermore, by the calculation

[x : ζ3y : z : w] = [ζ123 x : ζ93y : ζ33z : ζ3w]

= [x : y : z : ζ3w],

it follows that an alternate description of σ3 is

[x : y : z : w] �→ [x : y : z : ζ3w].

From this description, we see that w = 0 is also fixed.
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To describe this computation more generally, we want to find other
descriptions of σ3. Since we are working on the quotient by C∗, written
additively, we have

(γ1, γ2, γ3, γ4) ∼ (0, 13 , 0, 0) (mod Z)

if and only if there exists q ∈ Q/Z such that

(0, 13 , 0, 0) + (12q, 8q, 3q, q) ≡ (γ1, γ2, γ3, γ4) (mod Z).

In general, we want to consider representatives of σ3 which fix one
or more coordinates. There are only finitely many q giving us such a
representative.

By Lemma 4.1, the curves y = 0 and w = 0 have genus 3 and 0,
respectively.

Finally, we can compute n and k explicitly from the action of σ3 by
examining Table A1. Since w = 0 is fixed by σ3, each of the exceptional
divisors from the resolution of singularities is invariant (though per-
haps not fixed pointwise). Nothing else is fixed. Since the fixed curves
must be disjoint, by examining Table A1 we find that the only possible
configuration of fixed points and fixed curves has one curve of genus
3, three isolated points and 2 rational curves, i.e. (g, n, k) = (3, 3, 2).
From there one can easily compute (r, a) using Theorem 2.4.

Referring to Table A1 in the Appendix, we see that the automor-
phism σ3 has invariant lattice S(σ3) = U ⊕ E6, S(σ3)

⊥ = T (σ3) = U ⊕
U ⊕A2 ⊕ E8, and so S(σ3)

∨ = U ⊕A2 ⊕ E8.

• (W, SLW ):

First we provide a description of XW /S̃LW . To do so, we find the

isotropy points of the action of S̃LW = SLW /JW on XW . Here S̃LW
∼=

Z/2Z and hence, from [15, Section 5], we know that the action of S̃LW

on the resolution of XW has eight fixed points, each resulting in an A1

singularity on the quotient (see also [20]).
In general, for JW ⊂ G ⊂ SLW , we find these fixed points by finding

representatives γ1, . . . , γk for generators of GC∗/C∗ ∼= G/JW . Then,
similar to the previous calculation with σ3, we find other represen-
tatives γ′i ∼ γi such that γ′i fixes one or more coordinates. In this
case we need only one generator of SLW /JW , which we may take
as γ =

(
1
2 , 0, 0,

1
2

)
. The other representatives we need to consider are(

1
2 , 0,

1
2 , 0

)
and

(
0, 0, 38 ,

5
8

)
.
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From the first representative, we find that the point [0 : −1 : 1 : 0]
is fixed. From the second, the points [0 : ζj6 : 0 : 1], j = 1, 3, 5 (where
ζ6 is a primitive 6-th root of unity) are fixed. From the third repre-
sentative, we find that the remaining four isotropy points lie on the
resolution of the A3 singularity. To complete the analysis, the config-
urations of curves from the A2 singularities, which were obtained by
blowing up the points [±i : 0 : 1 : 0], are permuted by γ; hence these

two configurations become identified on the quotient X/S̃LW .

Note that S̃LW preserves the curves y = 0 and w = 0, so that the
diagram for the resolution XW,SLW

of the quotient XW /S̃LW looks as
in Figure 3. There we have labeled the images of y = 0 and w = 0
somewhat abusively as y = 0 and w = 0, and we have represented the
new exceptional curves with dashed lines. Note that there are eight of
them.

y = 0

w = 0

Figure 3. Curve configurations on XW,SLW
in Example 4.2 (dashed curves

arise from resolution of XW /S̃LW )

We can use the Reimann-Hurwitz formula to calculate the genus of
(the image of) the curve y = 0 in XW,SLW

. Indeed, we have a degree 2
cover with no ramification. Thus

2− 2gold = 2(2− 2gnew)−
∑
ρ∈S′

(eρ − 1)

2− 2 · 3 = 2(2− 2gnew)− 0

gnew = 2.
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In the same way, we find that the genus of the curve w = 0 in the
resolved surface is 0. Indeed, we have a degree 2 cover by a curve of
genus 0, with four points of ramification index 2. Thus

2− 2gold = 2(2− 2gnew)−
∑
ρ∈S′

(eρ − 1)

2− 2 · 0 = 2(2− 2gnew)− 4

gnew = 0.

Finally, when considering the action of σ3 on XW,SLW
, y = 0 and

w = 0 are invariant. Furthermore, three of the exceptional curves are
permuted by σ3 and the other ten are invariant. In order to compute
n and k, we again consult Table A1. We find that the only possible
configuration of fixed points and fixed curves has one curve of genus
2, five isolated points and three rational curves, i.e. (g, n, k) = (2, 5, 3).
Thus (r, a) = (12, 1). By Table A1, the invariant lattice is then S(σ3) =
U ⊕ E8 ⊕A2.

Since the mirror lattice in the first case matches the fixed lattice in the
second, this verifies Theorem 3.5 in this example.

Example 4.3. We now describe an example in which W �= W T . The cal-
culation of the invariants (r, a) in the various cases proceeds exactly as in
Example 4.2. We summarize the results below.

To start, consider

W = x2 + y5 + z5 + xw5,

which corresponds to No. 6c in Table 4. This is quasihomogenous with
weight system (5, 2, 2, 1; 10) and has the non-symplectic automorphism σ5 =(
0, 15 , 0, 0

)
. Its transpose is

W T = x2w + y5 + z5 + w5,

which corresponds to No. 21a in Table 4 and has weight system (2, 1, 1, 1; 5).
Thus jW =

(
1
2 ,

1
5 ,

1
5 ,

1
10

)
has order 10 and jWT =

(
2
5 ,

1
5 ,

1
5 ,

1
5

)
has order 5.

From this we conclude that

|GW /SLW |= |(SLW )T /(GW )T |= |JWT /{0} |= 5.

Since |GW |= det(AW ) = 250 and |JW |= 10, it follows that one has the dia-
gram of subgroups of GW to be as in Figure 4. In particular, the index of
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{0}

JW

SLW

GW

250

10

5

5

Figure 4. Subgroup lattice for GW when W = x2 + y5 + z5 + xw5

JW in SLW is 5, and so the only subgroups JW ⊂ G ⊂ SLW are G = JW
and G = SLW .

• (W,JW ):
One finds that YW contains 5A1 singularities (comprising the set

{x = w = 0}) that resolve to yield five exceptional curves on XW .
These five curves are permuted by the action of σ5 =

(
0, 15 , 0, 0

)
. Also,

σ5 fixes the curve y = 0, which has genus g = 2 by Lemma 4.1. Finally,
an equivalent form of σ5 is

(
0, 0, 45 ,

2
5

)
, which is seen to fix the point

corresponding to z = w = 0. Hence we have (g, n, k) = (2, 1, 0) and by
Theorem 2.4, the invariants of S(σ5) are (r, a) = (2, 1). It follows from
Table A2 that S(σ5) = H5 and S(σ5)

∨ = H5 ⊕ E2
8 .

• (W, SLW ):
One element of SLW \JW is τ =

(
0, 45 ,

1
5 , 0

)
, which also has equiv-

alent forms
(
0, 35 , 0,

2
5

)
and

(
0, 0, 25 ,

3
5

)
. Thus the symplectic action of

S̃LW on XW fixes {y = z = 0}, {y = w = 0}, and {z = w = 0}. This
amounts to four isolated fixed points, which yield 4A4 singularities
on the quotient XW /S̃LW that resolve to give 16 exceptional curves
on XW,SLW

. All of these exceptional curves are invariant under the
action of σ5 on XW,SLW

, as is the image of the exceptional curve from
XW . Furthermore, σ5 fixes (the images of) y = 0, z = 0 and w = 0. By
Riemann-Hurwitz, one calculates the genus of these curves on XW,SLW

to be 0, and there are no fixed curves of higher genus. Again from
Table A2, the only possible configuration of fixed points and curves has
three rational curves and 13 fixed points, giving us (g, n, k) = (0, 13, 2)
and so (r, a) = (18, 1). This gives S(σ5) = H5 ⊕ E2

8 and S(σ5)
∨ = H5.

Remark. In computing k recall that the fixed curve C from (2) may
have genus 0, as happens in this case. There are indeed three fixed



1358 P. Comparin et al.

rational curves, but one of them is C, and hence k = 2 (see the remark
following Theorem 2.4).

Next we make the same types of calculations for the BHCR mirrors,
which correspond to No. 21a in Table 4. The subgroup lattice ofGWT is given
in Figure 5. (Note that this is essentially the result of applying the transpose
operation to Figure 4.) The groups JWT ⊂ G ⊂ SLWT to consider are G =

{0}

JWT

SLWT

GWT

250

5

5

10

Figure 5. Subgroup lattice for GWT when W T = x2w + y5 + z5 + w5

JWT and G = SLWT . Below we denote the non-symplectic automorphism on
XWT ,G by σT

5 =
(
0, 15 , 0, 0

)
.

• (W T , JWT ):
The hypersurface YWT has one A1 singularity, which lies on the

curve y = 0. Its resolution gives an exceptional curve on XWT , and
this exceptional curve is left invariant by σT

5 . The only fixed curve of
σT
5 is y = 0, which has genus g = 2. As fixed curves must be disjoint,

the exceptional curve is not fixed, but must contain one other fixed
point. Thus (g, n, k) = (2, 1, 0). Therefore (r, a) = (2, 1) and S(σT

5 ) =
H5, S(σ

T
5 )
∨
= H5 ⊕ E2

8 .

• (W T , SLWT ):
An element of SLWT \JWT is

(
0, 15 ,

4
5 , 0

)
. It fixes exactly four points

on XWT , and hence the quotient XWT /S̃LWT has 4A4 singularities,
whose resolution yields 16 exceptional curves on XWT ,SLWT

. All of
these are invariant under the action of σT

5 , as is the exceptional curve
coming fromXWT . The fixed curve y = 0 has genus g = 0 and the fixed
curve z = 0 has genus 0, as well. From the equivalence σ5 =

(
4
5 , 0, 0,

2
5

)
we get a fixed point corresponding to x = w = 0. Finally, the 16 excep-
tional curves contribute one fixed curve and 12 fixed points, giving
us in total (g, n, k) = (0, 13, 2). Hence we obtain (r, a) = (18, 1) and
S(σT

5 ) = H5 ⊕ E2
8 , S(σ

T
5 )
∨
= H5.
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Remark. Again here we have the number of fixed rational curves
equal to k + 1 (see the Remark following Theorem 2.4).

Having completed these calculations, the theorem for this case is verified
by comparison. Looking at the calculations for the BHCR mirror pair XW ,
XWT ,SLWT

, one sees that S(σ5)
∨ = S(σT

5 ); thus the lattice polarized K3
surfaces (XW , S(σ5)) and (XWT ,SLWT

, S(σT
5 )) are LPK3 mirrors. A similar

statement holds for the BHCR mirror pair XW,SLW
, XWT .

Example 4.4. The data in Table 1 is insufficient for verifying Theorem 3.5
for entry No. 3a, where

W = x3 + y3 + z6 + w6

and σ3 =
(
1
3 , 0, 0, 0

)
. We include here the necessary further details. One may

show that SLW /JW  (Z/3Z)2, so that there are four distinct subgroups
JW ⊂ G ⊂ SLW for which |G/JW |= 3. Using the same order as in Table 2,
these four subgroups may be described as Gi = 〈gi〉, i = 1, . . . , 4, where

g1 =

(
2

3
,
1

3
, 0, 0

)
, g2 =

(
1

3
,
1

3
,
1

3
, 0

)

g3 =

(
2

3
, 0,

1

3
, 0

)
, g4 =

(
0,

2

3
,
1

3
, 0

)

Since W = W T , we have GW = GWT . By (3) and the calculation g1AW gT2 ∈
Z, we find GT

1 = G2 and GT
2 = G1. On the other hand, from the calculations

g3AW gT3 ∈ Z and g4AW gT4 ∈ Z, we conclude that GT
3 = G3 and GT

4 = G4.
Using the methods described in the previous examples, one calculates

for the surface XW,G that the invariants (r, a) of S(σ3) are those given in
the following table:

G r a

G1 14 4
G2 6 4
G3 10 4
G4 10 4

In each case, we see that if (r, a) are the invariants of S(σ3) for XW,G,
then the corresponding invariants for XW,GT are (20− r, a). This proves the
theorem when G = Gi, i = 1 . . . 4.
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5. Tables

This section contains tables listing all p-cyclic K3 surfaces for p = 3, 5, 7, 13.
We compute the invariants (r, a) of the fixed lattice S(σp) for each surface
using the methods illustrated in Section 4.

Numbering of the weight systems follows the numbering in [21].

Table for p = 3

No. Weights Polynomial |SLW /JW | |G/JW | (r, a) BHCR Dual

2a (4,3,3,2;12) x3 + y3z + yz3 + w6 1 1 (10,4) 2a

2b (4,3,3,2;12) x3 + y4 + z4 + w6 2 2 (10,4) 2b

1 (10,4)

2c (4,3,3,2;12) x3 + y3z + z4 + w6 3 3 (18,2) 3c

1 (10,4)

3a∗ (2,2,1,1;6) x3 + y3 + z6 + w6 9 9 (18,2) 3a

3 (14,4)

3 (6,4)

3 (10,4)

3 (10,4)

1 (2,2)

3b (2,2,1,1;6) x3 + y3 + z5w + w6 3 3 (14,4) 17a

1 (2,2)

3c (2,2,1,1;6) x3 + y3 + yz4 + w6 3 3 (10,4) 2c

1 (2,2)

3d (2,2,1,1;6) x3 + y3 + z5w + zw5 6 6 (18,2) 3d

3 (14,4)

2 (6,4)

1 (2,2)

3e (2,2,1,1;6) x3 + y3 + yz4 + zw5 2 2 (6,4) 15a

1 (2,2)

4a (4,4,3,1;12) x3 + y3 + z4 + w12 3 3 (16,3) 4a

1 (4,3)

4b (4,4,3,1;12) x3 + y3 + z4 + zw9 3 3 (16,3) 18a

1 (4,3)

4c (4,4,3,1;12) x3 + y3 + z4 + yw8 1 1 (4,3) 16b

10a (6,4,1,1;12) x2 + y3 + z11w + w12 1 1 (2,0) 46

10b (6,4,1,1;12) x2 + xw6 + y3 + z11w 1 1 (2,0) 65

10c (6,4,1,1;12) x2 + y3 + z11w + zw11 5 5 (18,0) 10c

1 (2,0)

10d (6,4,1,1;12) x2 + y3 + z12 + w12 6 6 (18,0) 10d

3 (14,2)

2 (6,2)

1 (2,0)

10e (6,4,1,1;12) x2 + y3 + xz6 + w12 3 3 (14,2) 24b

1 (2,0)

11a (15,10,3,2;30) x2 + y3 + z10 + w15 1 1 (10,2) 11a

11b (15,10,3,2;30) x2 + y3 + xz5 + w15 1 1 (10,2) 22b

∗There are four subgroups of order 3. We do not differentiate them here, other
than listing (r, a). See Example 4.4 in Section 4 for disambiguation.



The mirror symmetry of K3 surfaces · · · 1361

Table for p = 3

No. Weights Polynomial |SLW /JW | |G/JW | (r, a) BHCR Dual

12a (9,6,2,1;18) x2 + y3 + z9 + zw16 1 1 (4,1) 48a

12b (9,6,2,1;18) x2 + y3 + z9 + xw9 3 3 (16,1) 25d

1 (4,1)

12c (9,6,2,1;18) x2 + y3 + z9 + w18 3 3 (16,1) 12c

1 (4,1)

13a (12,8,3,1;24) x2 + y3 + xz4 + w24 1 1 (8,1) 20a

13b (12,8,3,1;24) x2 + y3 + xz4 + zw21 1 1 (8,1) 59a

13c (12,8,3,1;24) x2 + y3 + z8 + xw12 1 1 (8,1) 27

13d (12,8,3,1;24) x2 + y3 + z8 + w24 2 2 (12,1) 13d

1 (8,1)

13e (12,8,3,1;24) x2 + y3 + z8 + zw21 1 1 (8,1) 49

14a (21,14,6,1;42) x2 + y3 + z7 + w42 1 1 (10,0) 14a

14b (21,14,6,1;42) x2 + y3 + z7 + xw21 1 1 (10,0) 28b

14c (21,14,6,1;42) x2 + y3 + z7 + zw36 1 1 (10,0) 51b

15a (5,4,3,3;15) x3 + y3z + z4w + w5 2 2 (18,2) 3e

1 (14,4)

15b (5,4,3,3;15) x3 + y3z + z5 + w5 1 1 (14,4) 17b

16a (8,7,6,3;24) x3 + y3w + z4 + zw6 1 1 (16,3) 18b

16b (8,7,6,3;24) x3 + y3w + z4 + w8 1 1 (16,3) 4c

17a (5,5,3,2;15) x3 + y3 + z5 + zw6 3 3 (18,2) 3b

1 (6,4)

17b (5,5,3,2;15) x3 + y3 + z5 + yw5 1 1 (6,4) 15b

18a (3,3,2,1;9) x3 + y3 + z4w + w9 3 3 (16,3) 4b

1 (4,3)

18b (3,3,2,1;9) x3 + y3 + z4w + yw6 1 1 (4,3) 16a

18c (3,3,2,1;9) x3 + y3 + xz3 + zw7 1 1 (4,3) 54

18d (3,3,2,1;9) x3 + y3 + z4w + zw7 3 3 (16,3) 18d

1 (4,3)

18e (3,3,2,1;9) x3 + y3 + z3x+ w9 3 3 (16,3) 18e

1 (4,3)

20a (9,8,6,1;24) x2z + y3 + z4 + w24 1 1 (12,1) 13a

20b (9,8,6,1;24) x2z + y3 + z4 + xw15 1 1 (12,1) 72a

22a (6,5,3,1;15) x2z + y3 + xz3 + w15 1 1 (10,2) 22a

22b (6,5,3,1;15) x2z + y3 + z5 + w15 1 1 (10,2) 11b

22c (6,5,3,1;15) x2z + y3 + z5 + xw9 2 2 (16,1) 25c

1 (10,2)

24a (5,4,2,1;12) x2z + y3 + z6 + xw7 1 1 (6,2) 67

24b (5,4,2,1;12) x2z + y3 + z6 + w12 3 3 (18,0) 10e

1 (6,2)

25a (4,3,1,1;9) x2w + y3 + xz5 + zw8 1 1 (4,1) 88

25b (4,3,1,1;9) x2z + y3 + z8w + w9 1 1 (4,1) 48b

25c (4,3,1,1;9) x2w + y3 + xz5 + w9 2 2 (10,2) 22c

1 (4,1)

25d (4,3,1,1;9) x2w + y3 + z9 + w9 3 3 (16,1) 12b

1 (4,1)
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No. Weights Polynomial |SLW /JW | |G/JW | (r, a) BHCR Dual

25e (4,3,1,1;9) x2w + y3 + z9 + xw5 3 3 (16,1) 25e

1 (4,1)

27 (11,8,3,2;24) x2w + y3 + z8 + w12 1 1 (12,1) 13c

28a (10,7,3,1;21) x2w + y3 + z7 + xw11 1 1 (10,0) 28a

28b (10,7,3,1;21) x2w + y3 + z7 + w21 1 1 (10,0) 14b

28c (10,7,3,1;21) x2w + y3 + z7 + zw18 1 1 (10,0) 51c

46 (33,22,6,5;66) x2 + y3 + z11 + zw12 1 1 (18,0) 10a

48a (24,16,5,3;48) x2 + y3 + z9w + w16 1 1 (16,1) 12a

48b (24,16,5,3;48) x2 + y3 + z9w + xw8 1 1 (16,1) 25b

49 (21,14,5,2;42) x2 + y3 + z8w + w21 1 1 (12,1) 13e

51a (18,12,5,1;36) x2 + y3 + z7w + zw31 1 1 (10,0) 51a

51b (18,12,5,1;36) x2 + y3 + z7w + w36 1 1 (10,0) 14c

51c (18,12,5,1;36) x2 + y3 + z7w + xw18 1 1 (10,0) 28c

54 (7,6,5,3;21) x3 + y3w + yz3 + w7 1 1 (16,3) 18c

59a (8,7,5,1;21) x2z + y3 + z4w + w21 1 1 (12,1) 13b

59b (8,7,5,1;21) x2z + y3 + z4w + xw13 1 1 (12,1) 72b

65 (14,11,5,3;33) x2z + y3 + z6w + w11 1 1 (18,0) 10b

67 (9,7,3,2;21) x2z + y3 + z7 + xw6 1 1 (14,2) 24a

72a (7,5,2,1;15) x2w + y3 + xz4 + w15 1 1 (8,1) 20b

72b (7,5,2,1;15) x2w + y3 + xz4 + zw13 1 1 (8,1) 59b

88 (11,9,5,2;27) x2z + y3 + z5w + xw8 1 1 (16,1) 25a

Table 2. Calculations for p = 3

Table for p = 5

No. Weights Polynomial |SLW /JW | |G/JW | (r, a) BHCR Dual

6a (5,2,2,1;10) x2 + y5 + z5 + w10 5 5 (18,1) 6a

1 (2,1)

6b (5,2,2,1;10) x2 + y5 + z5 + zw8 1 1 (2,1) 30a

6c (5,2,2,1;10) x2 + y5 + z5 + xw5 5 5 (18,1) 21a

1 (2,1)

9a (10,5,4,1;20) x2 + y4 + z5 + w20 2 2 (10,1) 9a

1 (10,1)

9b (10,5,4,1;20) x2 + y4 + z5 + yw15 1 1 (10,1) 34

9c (10,5,4,1;20) x2 + y4 + z5 + xw10 1 1 (10,1) 26

9d (10,5,4,1;20) x2 + xy2 + z5 + w20 1 1 (10,1) 9d

9e (10,5,4,1;20) x2 + xy2 + z5 + yw15 1 1 (10,1) 71a

15b (5,4,3,3;15) x3 + y3z + z5 + w5 1 1 (6,2) 17b

17b (5,5,3,2;15) x3 + y3 + z5 + yw5 1 1 (14,2) 15b

17c (5,5,3,2;15) x2y + y3 + z5 + xw5 2 2 (18,1) 21d

1 (14,2)

21a (2,1,1,1;5) x2w + y5 + z5 + w5 5 5 (18,1) 6c

1 (2,1)

21b (2,1,1,1;5) x2y + y4z + z5 + w5 1 1 (2,1) 30b

21c (2,1,1,1;5) x2z + y5 + z4w + xw3 1 1 (2,1) 86
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Table for p = 5

No. Weights Polynomial |SLW /JW | |G/JW | (r, a) BHCR Dual

21d (2,1,1,1;5) x2z + xy3 + z5 + w5 2 2 (6,2) 17c

1 (2,1)

21e (2,1,1,1;5) x2w + y5 + z5 + xw3 5 5 (18,1) 21e

1 (2,1)

26 (9,5,4,2;20) x2w + y4 + z5 + w10 1 1 (10,1) 9c

30a (20,8,7,5;40) x2 + y5 + z5w + w8 1 1 (18,1) 6b

30b (20,8,7,5;40) x2 + y5 + z5w + xw4 1 1 (18,1) 21b

34 (15,7,6,2;30) x2 + y4w + z5 + w15 1 1 (10,1) 9b

71a (4,7,3,1;15) x2y + y2w + z5 + w15 1 1 (10,1) 9e

71b (4,7,3,1;15) x2w + xy2 + z5 + yw11 1 1 (10,1) 71b

86 (9,7,5,4;25) x2y + y3w + z5 + xw4 1 1 (18,1) 21c

Table 4. Calculations for p = 5

Table for p = 7

No. Weights Polynomial |SLW /JW | |G/JW | (r, a) BHCR Dual

14a (21,14,6,1;42) x2 + y3 + z7 + w42 1 1 (10,0) 14a

14b (21,14,6,1;42) x2 + y3 + z7 + xw21 1 1 (10,0) 28b

14d (21,14,6,1;42) x2 + y3 + z7 + yw28 1 1 (10,0) 45b

28a (10,7,3,1;21) x2w + y3 + z7 + xw11 1 1 (10,0) 28a

28b (10,7,3,1;21) x2w + y3 + z7 + w21 1 1 (10,0) 14b

28d (10,7,3,1;21) x2w + y3 + z7 + yw14 1 1 (10,0) 45c

32 (7,3,2,2;14) x2 + y4z + z7 + w7 1 1 (4,1) 35a

35a (14,7,4,3;28) x2 + y4 + z7 + yw7 1 1 (16,1) 32

35b (14,7,4,3;28) x2 + xy2 + z7 + yw7 1 1 (16,1) 66a

45a (14,9,4,1;28) x2 + y3w + z7 + yw19 1 1 (10,0) 45a

45b (14,9,4,1;28) x2 + y3w + z7 + w28 1 1 (10,0) 14d

45c (14,9,4,1;28) x2 + y3w + z7 + xw14 1 1 (10,0) 28d

66a (3,2,1,1;7) x2z + xy2 + z7 + w7 1 1 (4,1) 35b

66b (3,2,1,1;7) x2w + xy2 + z7 + yw5 3 3 (16,1) 66b

1 (4,1)

Table 5. Calculations for p = 7

Table for p = 13

No. Weights Polynomial |SLW /JW | |G/JW | (r, a) BHCR Dual

87 (5,4,3,1;13) x2z + xy2 + yz3 + w13 1 1 (10,1) 87

Table 6. Calculations for p = 13
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Appendix A. Tables of lattices

In Tables A1 – A4, we reproduce tables in [1, 19] and [2] that classify possi-
bilities for the following situation. Given a K3 surface with a non-symplectic
automorphism σ of prime order p ∈ {3, 5, 7, 13}, each table describes all pos-
sible values for the invariants (r, a) of the fixed lattice S(σ), the invariants
(g, n, k) of the fixed locus Xσ, the isometry class of the orthogonal comple-
ment T (σ) of S(σ), and the isometry class of S(σ).

r a g n k T (σ) S(σ)

2 2 4 0 0 U ⊕ U ⊕A2 ⊕ E6 ⊕ E8 U(3)
2 0 5 0 1 U ⊕ U ⊕ E2

8 U
4 3 3 1 0 U ⊕ U ⊕A2 ⊕ E2

6 U(3)⊕A2

4 1 4 1 1 U ⊕ U ⊕ E6 ⊕ E8 U ⊕A2

6 4 2 2 0 U ⊕ U ⊕A3
2 ⊕ E6 U(3)⊕A2

2

6 2 3 2 1 U ⊕ U ⊕ E2
6 U ⊕A2

2

8 7 - 3 - U ⊕ U(3)⊕A5
2 U(3)⊕ E∗6(3)

8 5 1 3 0 U ⊕ U ⊕A5
2 U(3)⊕A3

2

8 3 2 3 1 U ⊕ U ⊕A2
2 ⊕ E6 U ⊕A3

2

8 1 3 3 2 U ⊕ U ⊕A2 ⊕ E8 U ⊕ E6

10 6 0 4 0 U ⊕ U(3)⊕A4
2 U(3)⊕A4

2

10 4 1 4 1 U ⊕ U ⊕A4
2 U ⊕A4

2

10 2 2 4 2 U ⊕ U ⊕A2 ⊕ E6 U ⊕A2 ⊕ E6

10 0 3 4 3 U ⊕ U ⊕ E8 U ⊕ E8

12 5 0 5 1 U ⊕ U(3)⊕A3
2 U ⊕A5

2

12 3 1 5 2 U ⊕ U ⊕A3
2 U ⊕A2

2 ⊕ E6

12 1 2 5 3 U ⊕ U ⊕ E6 U ⊕A2 ⊕ E8

14 4 0 6 2 U ⊕ U(3)⊕A2
2 U ⊕A3

2 ⊕ E6

14 2 1 6 3 U ⊕ U ⊕A2
2 U ⊕ E2

6

16 3 0 7 3 U ⊕ U(3)⊕A2 U ⊕A2 ⊕ E2
6

16 1 1 7 4 U ⊕ U ⊕A2 U ⊕ E6 ⊕ E8

18 2 0 8 4 U ⊕ U(3) U ⊕A2 ⊕ E6 ⊕ E8

18 0 1 8 5 U ⊕ U U ⊕ E2
8

20 1 0 9 5 A2(−1) U ⊕ E2
8 ⊕A2

Table A1. Order 3

We also include diagrams, discussed at the end of Section 3.1, of the
possible values of the invariants (m, a) of S(σ) for the primes p = 3, 5, 7.
(Recall that m = (22− r)/(p− 1) is the Z[ζp]-rank of T (σp).) Table A1 is a
modification, using [14, Corollary 1.13.3], of the tables found in [1] and [19]
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that makes the verification of mirror symmetry more straightforward. For
instance, we have used in places the isometry U(3)⊕ E6

∼= U ⊕A3
2.

r a g n k T (σ) S(σ)

2 1 2 1 0 U ⊕H5 ⊕ E2
8 H5

6 2 1 4 0 U ⊕H5 ⊕A4 ⊕ E8 H5 ⊕A4

6 4 - 4 - U(5)⊕H5 ⊕A4 ⊕ E8 H5 ⊕A∗4(5)
10 1 1 7 1 U ⊕H5 ⊕ E8 H5 ⊕ E8

10 3 0 7 0 U ⊕H5 ⊕A2
4 H5 ⊕A2

4

14 2 0 10 1 U ⊕H5 ⊕A4 H5 ⊕A4 ⊕ E8

18 1 0 13 2 U ⊕H5 H5 ⊕ E2
8

Table A2. Order 5

r a g n k T (σ) S(σ)

4 1 1 3 0 U ⊕ U ⊕A6 ⊕ E8 U ⊕K7

4 3 - 3 - U ⊕ U(7)⊕A6 ⊕ E8 U(7)⊕K7

10 0 1 8 1 U ⊕ U ⊕ E8 U ⊕ E8

10 2 0 8 0 U ⊕ U(7)⊕ E8 U(7)⊕ E8

16 1 0 13 1 U ⊕ U ⊕K7 U ⊕A6 ⊕ E8

Table A3. Order 7

r a g n k T (σ) S(σ)

10 1 0 9 0 U ⊕ E8 ⊕H13 E8 ⊕H13

Table A4. Order 13

0 1 2 3 4 5 6 7 8 9 1011

1
2
3
4
5
6
7

m

a

g
k

Figure A1. Order p = 3
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4
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Figure A2. Order p = 5

0 1 2 3

1

2

3

m
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g
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Figure A3. Order p = 7
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Laboratoire de Mathématiques et Applications, Université de Poitiers
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