
c© 2012 International Press
Adv. Theor. Math. Phys. 16 (2012) 39–63

Hamiltonian structure of

gauge-invariant variational

problems
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Abstract

Let C → M be the bundle of connections of a principal bundle on M .
The solutions to Hamilton–Cartan equations for a gauge-invariant
Lagrangian density Λ on C satisfying a weak condition of regularity, are
shown to admit an affine fibre-bundle structure over the set of solutions
to Euler–Lagrange equations for Λ. This structure is also studied for the
Jacobi fields and for the moduli space of extremals.

1 Introduction

Let p : E → M be a fibred manifold and let Λ be a Lagrangian density
on J1E. The solutions to the Hamilton–Cartan (H–C, in short) equations
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(e.g., see [7,8], or [14]) for Λ, are the sections s̄ : M → J1E of the canonical
projection p1 : J1E → M fulfilling equation (3.1) below. If Λ is regular,
i.e., its Hessian metric is non-singular (cf. Definition 5.4 below), then every
solution s̄ to the H–C equations is holonomic, i.e., s̄ = j1s, and s is a critical
section for Λ, that is, a solution to the Euler–Lagrange (E–L, in short)
equations. Nevertheless, a Lagrangian defined on the bundle of connections
p : C → M of a principal bundle π : P → M , which is invariant under the
gauge group of P , is never regular. Therefore, Hamilton–Cartan equations
and E–L are not equivalent for all the gauge-invariant variational problems
on connections.

In the present work we show that the solutions to H–C equations for a
gauge-invariant Lagrangian density Λ on the bundle C satisfying a weak
condition of regularity (most of interesting gauge-invariant Lagrangians in
the field theory satisfies this condition) admits an affine fibre-bundle struc-
ture over the set of critical sections of the variational problem defined by
the density under consideration. Moreover, the structure of this fibration is
completely determined; see Theorem 5.6 below. This proves, in particular,
that the E–L equations of a gauge-invariant Lagrangian are essentially of
first order.

Such a structure is meaningful even from the point of view of the observ-
ables of the field theory, because for every extremal section s the curvature
is constant along the fibre over j1s.

By passing to the quotient such a fibre bundle modulo the gauge group, we
obtain a — not necessary trivial — vector bundle associated to the principal
bundle of the moduli of extremals of Λ; see Proposition 5.11 below. Finally,
the aforementioned affine structure is also studied for the Jacobi fields;
i.e., for the vector fields in the kernel of the linearization of the E–L and
H–C operators at any extremal (cf. Theorem 5.12 below).

2 Notations and preliminaries

2.1 Jet bundles

The bundle of r-jets of a fibred manifold p : E → M is denoted by pr : Jr(p)
= JrE → M with projections prk : JrE → JkE, r ≥ k, the r-jet extension
of a section s : M → E of p being denoted by jrs. Every p-fibred coordinate
system (xi, yα), 1 ≤ i ≤ n = dimM , 1 ≤ α ≤ m = dimE − n, defined on an
open subset U ⊆ E, induces a coordinate system (xi, yα

I ), 0 ≤ |I| ≤ r, on
(pr0)−1(U) = JrU ; namely, yα

I (jr
xs) = (∂|I|(yα ◦ s)/∂xI)(x), with yα

0 = yα.
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Every fibred map Φ: E → E′ whose induced map φ : M → M ′ on the base
manifold is a diffeomorphism, induces a map Φ(r) : JrE → JrE′ by setting,
Φ(r)(jr

xs) = jr
φ(x)(Φ ◦ s ◦ φ−1), ∀jr

xs ∈ JrE.

An automorphism of p is a pair of diffeomorphisms Φ: E → E, φ : M →
M such that p ◦ Φ = φ ◦ p. The set of all automorphisms of p is a group
denoted by AutE.

For every — not necessarily p-projectable — vector field Y ∈ X(E) a
unique vector field Y (1) ∈ X(J1E) exists (called the one-jet prolongation
of Y ) such that, 1st) Y (1) is p10-projectable onto Y , and 2nd) LY (1)C ⊆ C,
where C is the contact system; i.e., the differential system generated by the
contact one-forms θα = dyα − yα

i dxi in Ω1(J1E).

If Y is a p-vertical vector field (the only case that we consider below), then
the formulas of one-jet prolongation are as follows (cf. [14, Section 2.4]):

Y (1) = vα ∂

∂yα
+ vα

i

∂

∂yα
i

, vα
i =

∂vα

∂xi
+

∂vα

∂yβ
yβ

i , (2.1)

Y = vα ∂

∂yα
, vα ∈ C∞(E).

Lemma 2.1 ([14]). For every p-vertical vector field Y ∈ Xv(E) the value of
the vector field Y (1) at a point j1

xs ∈ J1E depends only on j1
x

(
Y ◦ s

)
.

2.2 Bundles of connections

An automorphism of a principal G-bundle π : P → M is an equivariant
diffeomorphism Φ: P → P ; i.e., Φ(u · g) = Φ(u) · g, ∀u ∈ P , ∀g ∈ G. We
denote by AutP the group of all automorphisms of P under composition.
Every Φ ∈ AutP determines a unique diffeomorphism φ : M → M , such that
π ◦ Φ = φ ◦ π. If φ is the identity map, then Φ is said to be a gauge trans-
formation (cf. [1, 3.2.1]). We denote by GauP ⊂ AutP the subgroup of all
gauge transformations.

A vector field X ∈ X(P ) is said to be G-invariant if Rg · X = X, ∀g ∈ G.
If Φt is the flow of a vector field X ∈ X(P ), then X is G-invariant if and
only if Φt ∈ AutP , ∀t ∈ R. Because of this we denote the Lie subalgebra
of G-invariant vector fields on P by autP ⊂ X(P ). Each G-invariant vector
field on P is π-projectable. Similarly, a π-vertical vector field X ∈ X(P ) is
G-invariant if and only if Φt ∈ GauP , ∀t ∈ R. We denote by gauP ⊂ autP
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the ideal of all π-vertical G-invariant vector fields on P , which is called the
gauge algebra of P .

The group G acts on TP by setting X · g = (Rg)∗(X), ∀X ∈ TP ,
∀g ∈ G. The global sections of the quotient vector bundle T (P )/G can nat-
urally be identified to autP ; i.e., autP ∼= Γ(M, T (P )/G). Similarly, gauP ∼=
Γ(M, adP ), where adP denotes the adjoint bundle: The bundle associated
to P by the adjoint representation of G on its Lie algebra g, denoted by
πg : adP → M ; that is, adP = (P × g)/G, where the action of G on P × g
is defined by

(u, B) · g = (u · g, Adg−1(B)), ∀u ∈ P, ∀B ∈ g, ∀g ∈ G.

The G-orbit in adP of a pair (u, B) ∈ P × g is denoted by (u, B)ad.

An exact sequence of vector bundles over M (the so-called Atiyah
sequence) holds, 0 → adP → T (P )/G

π∗−→ TM → 0. The fibres (adP )x are
endowed with a Lie-algebra structure determined by [(u, B)ad, (u, B′)ad] =
(u,−[B, B′])ad, for all u ∈ π−1(x), B, B′ ∈ g, where [·, ·] denotes the bracket
in g. The sign of the bracket above is needed in order to ensure that the nat-
ural identification gauP ∼= Γ(M, adP ) is a Lie-algebra isomorphism, when
gauP is considered as a Lie subalgebra of X(P ).

Let XhΓ ∈ X(P ) be the horizontal lift of a vector field X ∈ X(M) with
respect to a connection Γ on π : P → M . The vector field XhΓ is G-invariant
and projects onto X (cf. [10, II. Proposition 1.2]). Hence we have a splitting
of the Atiyah sequence, sΓ : TM → T (P )/G, sΓ(X) = XhΓ . Conversely, any
splitting σ : TM → T (P )/G of the Atiyah sequence (i.e., s is a vector bundle
homomorphism such that π∗ ◦ s = idTM ) comes from a unique connection on
P so that there is a natural bijection between connections on P and split-
tings of the Atiyah sequence. We thus define the bundle of connections
p : C = C(P ) → M as the sub-bundle of Hom(TM, T (P )/G) determined
by all R-linear mappings λ : TxM → (T (P )/G)x such that π∗ ◦ λ = idTxM .
Connections on P can be identified to the global sections of p : C → M . We
also denote by sΓ : M → C the section of the bundle of connections induced
by Γ.

An element λ : TxM → (T (P )/G)x of the bundle C over a point x ∈ M
is nothing but a ‘connection at a point x’; i.e., Λ induces a complementary
subspace Hu of the vertical subspace Vu(P ) ⊂ Tu(P ) for every u ∈ π−1(x).
Any other connection at x can be written as λ′ = h + λ, where h : TxM →
(adP )x is a linear map. Hence C is an affine bundle modelled over the vector
bundle Hom(TM, adP ) ∼= T ∗M ⊗ adP .
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Let (U ; xi) be a coordinate open domain in M such that π−1(U) ∼= U × G.
For every B ∈ g we define a flow of gauge transformations over U by setting
ϕB

t (x, g) = (x, exp(tB) · g), x ∈ U . Let B̃ be the corresponding infinitesimal
generator. If (B1, . . . , Bm) is a basis of g, then B̃1, . . . , B̃m is a basis of
Γ(U, adP ). Let p : C → M be the bundle of connections of P . The horizontal
lift with respect to Γ of the basic vector field ∂/∂xi is given as follows:

sΓ

(
∂

∂xi

)
=

(
∂

∂xi

)hΓ

=
∂

∂xi
− (Aα

i ◦ sΓ)B̃α.

The functions (xi, Aα
j ), i, j = 1, . . . , n = dimM , 1 ≤ α ≤ m = dimG, induce

a coordinate system on p−1(U) = C(π−1U) (cf. [2]).

Each automorphism Φ ∈ AutP acts on connections of P by pulling back
connection forms; that is, Γ′ = Φ(Γ) where ωΓ′ = (Φ−1)∗ωΓ (cf. [10, II.
Proposition 6.2-(b)]). If Ψ ∈ AutP is another automorphism, then
(Ψ ◦ Φ)(Γ) = Ψ(Φ(Γ)). For each Φ ∈ AutP there exists a unique diffeo-
morphism ΦC : C → C such that p ◦ ΦC = Φ ◦ p, where Φ: M → M is the
diffeomorphism induced by Φ on the base manifold. We thus obtain a
group homomorphism AutP → DiffC. For every connection Γ on P we
have ΦC ◦ sΓ = sΦ(Γ).

If Φt is the flow of a G-invariant vector field X ∈ autP , then (Φt)C is a
one-parameter group in DiffC with infinitesimal generator denoted by XC ,
and the map autP → X(C), X → XC is a Lie-algebra homomorphism.

2.3 Affine-bundle structures

Let V (p) = {X ∈ TE : p∗X = 0} be the vertical subbundle of a fibred
manifold p : E → M .

(a) Let p : E → M be an affine bundle modelled over the vector bun-
dle pW : W → M . The directional derivative determines an isomor-
phism of vector bundles over E, p∗W ∼= V (p), (e, w) → Xe,w, p(e) =
pW (w) = x, where Xe,w is the tangent vector at t = 0 to the curve
t → tw + e, which takes values in the fibre p−1(x). In coordinates,
Xe,w = wα(w)(∂/∂ eα)e.

(b) Moreover, if p : E → M is an arbitrary surjective submersion, then
the projection p10 : J1E → E is endowed with an affine-bundle struc-
ture modelled over p∗T ∗M ⊗ V (p). In fact, every jet j1

xs ∈ (p10)−1(e),
with s(x) = e, can be identified to the section s∗,e : TxM → TeE of
p∗,e : TeE → TxM . Hence, if j1

xs′ ∈ (p10)−1(e) is another jet, then p∗,e ◦
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(s′∗,e − s∗,e) = 0 and accordingly s′∗,e − s∗,e takes values into Ve(p).
Therefore, s′∗,e − s∗,e determines an element in Hom(TxM ⊗ Ve(p)) =
T ∗

xM ⊗ Ve(p). From (a) it follows an isomorphism, p∗10(p∗T ∗M
⊗ V (p)) = T ∗M ⊗J1C V (p) ∼= V (p10).

2.4 The Hessian metric

If p : E → M be an affine bundle modelled over the vector bundle pW : W →
M , then, according to the item (a) in Section 2.3, every w ∈ (pW )−1(x)
induces a vector field along the fibre Xw ∈ X(p−1(x)), Xw(e) = Xe,w,
∀e ∈ p−1(x). For every f ∈ C∞(E) and every e ∈ E, with x = p(e), a bilin-
ear form

Hesse(f) : Ve(p) × Ve(p) → R

can be defined as follows: Hesse(f)(w1, w2) = Xw2(e)((dE/Mf)Xw1), where
the canonical isomorphism Wx

∼= Ve(p), defined in the item (a) in Section 2.3,
has be used and dE/M denotes the fibred derivative, e.g., see [8]. As this
form is proved to be symmetric, e → Hesse(f) defines a section of the vector
bundle S2V ∗(p) ∼= p∗S2W ∗.

3 H–C equations

Let p : E → M be a fibred manifold, dimM = n, dimE = m + n, where M
is assumed to be connected and oriented by a volume form v. Below, Latin
indices run from 1 to n, and Greek indices run from 1 to m. The solutions
to the Hamilton–Cartan equations for a density Λ = Lv, L ∈ C∞(J1E) on
p, are the sections s̄ : M → J1E of the canonical projection p1 : J1E → M
such that,

s̄∗(iXdΘΛ) = 0, ∀X ∈ Xv(J1E), (3.1)

where

(i): ΘΛ = (−1)i−1(∂L/∂yα
i )θα ∧ vi + Lv is the Poincaré-Cartan form

attached to Λ (cf. [8], [14]);
(ii): Xv(J1E) denotes the Lie algebra of p1-vertical vector fields;
(iii): θα = dyα − yα

i dxi are the standard contact forms on the one-jet
bundle; and
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(iv): (xi, yα, yα
i ) is the coordinate system on J1E induced by a fibred

coordinate system (xi, yα) for the submersion p, adapted to the given
volume form; i.e., v = dx1 ∧ · · · ∧ dxn and vi = (−1)i−1i∂/∂xiv.

Lemma 3.1. A section s̄ : M → J1E of p1 : J1E → M is a solution to the
H–C equations (3.1) if and only if the following equations hold:

(
sβ
j − s̄β

j

)
(

∂2L

∂yα
i ∂yβ

j

◦ s̄

)

= 0, 1 ≤ i ≤ n, 1 ≤ α ≤ m,

− ∂

∂xj

(
∂L

∂yα
j

◦ s̄

)

+
∂L

∂yα
◦ s̄ +

(
sβ
j − s̄β

j

)
(

∂2L

∂yα∂yβ
j

◦ s̄

)

= 0,

for 1 ≤ α ≤ m, where sα = yα ◦ s̄, sα
i = ∂sα/∂xi, and s̄α

i = yα
i ◦ s̄.

Proof. As a simple computation shows, we have

dΘΛ = θβ ∧
(

(−1)jd

(
∂L

∂yβ
j

)

∧ vj +
∂L

∂yβ
v

)

. (3.2)

Hence

s̄∗
(
i∂/∂yα

i
dΘΛ

)
= (−1)j−1

(
∂2L

∂yα
i ∂yβ

j

◦ s̄

)

s̄∗θβ ∧ vj ,

s̄∗
(
i∂/∂yαdΘΛ

)
=

(

− ∂

∂xj

(
∂L

∂yα
j

◦ s̄

)

+
∂L

∂yα
◦ s̄

)

v

+(−1)j−1

(
∂2L

∂yα∂yβ
j

◦ s̄

)

s̄∗θβ ∧ vj ,

and the formulas in the statement follow. �

If s̄ = j1s is a holonomic section, then s̄ is a solution to the H-C equa-
tions if and only if s is a solution to the E–L equations. If L is regular,
then the converse holds true: Every solution to the H–C equations, is of
the form s̄ = j1s, s being a solution to the E–L equations. Hence, for reg-
ular variational problems, H–C equations are equivalent to E–L equations;
but this is no longer true for non-regular densities, as is the case for the
Yang–Mills Lagrangian.
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4 Jacobi fields

4.1 Jacobi fields introduced

Let p : E → M be a fibred manifold and let Ω1(E/M) = Γ(M, V ∗(p)). Let

EΛ : Γ(p) → Ω1(E/M) ⊗C∞(M) Ωn(M)

be the E–L operator of Λ = Lv, L ∈ C∞(J1E), which is the second-order
differential operator locally given on a fibred coordinate system (U ; xi, yα)
for the submersion p and for every section s of p|U by,

EΛ(s) =
(EΛ

α ◦ j2s
)
dE/Myα ⊗ v,

where the functions EΛ
α ∈ C∞(J2E) are defined as follows:

EΛ
α (j2

xs) =
∂L

∂yα
(j1

xs) − ∂

∂xj

(
∂L

∂yα
j

◦ j1s

)

(x).

The linearization of EΛ at s ∈ Γ(p) is the operator

LsEΛ : TsΓ(p) = Γ(M, s∗V (p)) → Ω1(E/M) ⊗C∞(M) Ωn(M)

defined as follows.

If S : (−ε, ε) × U → E is a one-parameter family of sections, i.e., p ◦ St =
idU , |t| < ε, then a vector field X ∈ Γ(U, s∗V (p)) along s = S0 — called the
‘initial velocity’ of S — is defined to be the tangent vector X(x) ∈ Vs(x)(p) at
t = 0 to the curve t → St(x), which takes values in the fibre p−1(x) for every
point x ∈ U . Expanding yα ◦ St up to second order, we obtain yα ◦ St =
yα ◦ s + tvα + t2fα, for certain functions vα ∈ C∞(U), fα ∈ C∞((−ε, ε) ×
U). Hence,

X(x) = vα(x)(∂/∂yα)s(x), ∀x ∈ U.

Therefore, every vector field X ∈ Γ(U, s∗V (p)) is the initial velocity of a
one-parameter family of sections S, and we define,

LsEΛ(X) =
∂

∂t

∣
∣
∣
∣
t=0

EΛ(St).
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The definition makes sense as it does not depend on the particular one-
parameter family of sections chosen. In fact,

∂

∂t

∣
∣
∣
∣
t=0

(EΛ
α ◦ j2St

)
=

(
∂EΛ

α

∂yβ
◦ j2s

)
vβ +

(
∂EΛ

α

∂yβ
j

◦ j2s

)
∂vβ

∂xj

+

(
∂EΛ

α

∂yβ
jk

◦ j2s

)
∂2vβ

∂xj∂xk
.

This expression also shows that LsEΛ(X) depends linearly on X.

Definition 4.1. A vector field X ∈ Γ(M, s∗V (p)) defined along an extremal
s of a Lagrangian density Λ on p : E → M is said to be a Jacobi field if
X ∈ kerLsEΛ.

Proposition 4.2. A vector field X ∈ Γ(M, s∗V (p)) defined along an
extremal s of a Lagrangian density Λ on p : E → M is a Jacobi field if and
only if the following equation holds:

(j1s)∗
(
iY LX̃(1)dΘΛ

)
= 0, ∀Y ∈ Xv(J1E), (4.1)

where X̃ ∈ Xv(E) is an arbitrary p-vertical extension of X.

Proof. Equation (4.1) does not depend on the vertical extension chosen.
In fact,

(j1s)∗
(
iY LX̃(1)dΘΛ

)
= (j1s)∗

(
LX̃(1)(iY dΘΛ)

)
+ (j1s)∗

(
i[Y,X̃(1)]dΘΛ

)
,

(4.2)

and the second term on the right-hand side vanishes, as s is an extremal.
Hence

(j1s)∗
(
iY LX̃(1)dΘΛ

)
= d

(
(j1s)∗

(
iX̃(1)iY dΘΛ

))
+ (j1s)∗

(
iX̃(1)d (iY ΘΛ)

)
,

and we conclude by simply applying Lemma 2.1.

Moreover, from the formula (3.2) the following identity is obtained:

dΘΛ = EΛ
α θα ∧ v + (−1)i ∂2L

∂yα
i ∂yβ

θα ∧ θβ ∧ vi + (−1)i ∂2L

∂yα
i ∂yβ

j

θα ∧ θβ
j ∧ vi,
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where θβ
j = dyβ

j − yβ
(jk)dxk. If Φ̃t is the flow of X̃, then j1St = J1(Φ̃t) ◦ j1s

and from the previous formula we have

(j1s)∗
{

J1(Φ̃t)∗(iY dΘΛ)
}

= (j1St)∗ (iY dΘΛ)

=
(EΛ

α ◦ j2St

)
θα(Y )v.

Taking derivatives with respect to t at t = 0 in this formula, we have

(j1s)∗
(
LX̃(1)(iY dΘΛ)

)
= LsEΛ(X)v,

and we can conclude by simply applying formula (4.2) recalling that s is an
extremal. �

Let SΛ (resp. S̄Λ) denote the set of solutions to the E–L equations (resp.
H–C equations) attached to a Lagrangian density Λ = Lv, L ∈ C∞(J1E).

Remark 4.3. If St ∈ SΛ is a one-parameter family of extremals, then its
initial velocity X is readily seen to be a Jacobi field along the extremal
s = S0; in this case, X is said to be ‘integrable’ (e.g., see [11, Definition 1.2],
[12, Section 2.6]). Although important examples of non-integrable Jacobi
fields exist, usually Jacobi fields along s are considered as the tangent space
TsSΛ at an extremal s ∈ SΛ to the ‘manifold’ of solutions to the E–L equa-
tions for Λ. By the same token, we give the following

Definition 4.4. The tangent space Ts̄S̄Λ at a solution s̄ ∈ S̄Λ to the ‘man-
ifold’ of solutions to the H–C equations for Λ is defined to be the space of
vector fields X̄ ∈ Γ(M, s̄∗V (p1)) that satisfy the equation

s̄∗(iY LX̃dΘΛ) = 0, ∀Y ∈ Xv(J1E),

where X̃ ∈ Xv(J1E) is a p1-vertical extension of X̄.

4.2 The embedding TsSΛ ↪→ Tj1sS̄Λ

Proposition 4.5. For every s ∈ SΛ, there is an embedding

TsSΛ ↪→ Tj1sS̄Λ,

X → X̃(1) ◦ j1s,

where X̃ is any p-vertical extension of X ∈ Γ(M, s∗V (p)) to E. If Λ is
regular, then TsSΛ

∼= Tj1sS̄Λ, ∀s ∈ SΛ.
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Proof. As a straightforward — but rather long — computation shows, a
vector field X̄ ∈ Γ(M, s̄∗V (p1)) with local expression

X̄ = vα ∂

∂yα

∣
∣
∣
∣
s̄

+ vα
i

∂

∂yα
i

∣
∣
∣
∣
s̄

, vα, vα
i ∈ C∞(M),

belongs to Ts̄S̄Λ if and only if the following two equations hold:

0 =

(
∂2L

∂yα∂yσ
◦ s̄ − ∂3L

∂xi∂yα∂yσ
i

◦ s̄ +
(

∂sβ

∂xi
− s̄β

i

)(
∂3L

∂yα∂yσ∂yβ
i

◦ s̄

)

− ∂sγ

∂xj

(
∂3L

∂yα∂yγ∂yσ
j

◦ s̄

)

− ∂s̄γ
h

∂xj

(
∂3L

∂yα∂yγ
h∂yσ

j

◦ s̄

))

vα

+
(

∂2L

∂yσ∂yα
i

◦ s̄ − ∂2L

∂yα∂yσ
i

◦ s̄

)
∂vα

∂xi
−

(
∂2L

∂yα
j ∂yσ

i

◦ s̄

)
∂vα

j

∂xi

+

((
∂sβ

∂xj
− s̄β

j

) (
∂3L

∂yσ∂yα
i ∂yβ

j

◦ s̄

)

− ∂3L

∂xj∂yα
i ∂yσ

j

◦ s̄

− ∂sβ

∂xj

(
∂3L

∂yβ∂yα
i ∂yσ

j

◦ s̄

)

− ∂s̄β
h

∂xj

(
∂3L

∂yβ
h∂yα

i ∂yσ
j

◦ s̄

))

vα
i , (4.3)

0 =

(
∂2L

∂yα
i ∂yσ

j

◦ s̄

)(
∂vα

∂xi
− vα

i

)
+

(
∂sα

∂xi
− s̄α

i

) (
∂3L

∂yβ∂yα
i ∂yσ

j

◦ s̄

)

vβ

+
(

∂sα

∂xi
− s̄α

i

)(
∂3L

∂yα
i ∂yβ

k ∂yσ
j

◦ s̄

)

vβ
k , (4.4)

where s = p10 ◦ s̄, sα = yα ◦ s̄ = yα ◦ s, and s̄α
i = yα

i ◦ s̄. Along a holonomic
section s̄ = j1s, equations (4.3) and (4.4) become, respectively,

0 =

(
∂2L

∂yα∂yσ
◦ j1s − ∂3L

∂xi∂yα∂yσ
i

◦ j1s − ∂sγ

∂xj

(
∂3L

∂yα∂yγ∂yσ
j

◦ j1s

)

− ∂2sγ

∂xh∂xj

(
∂3L

∂yα∂yγ
h∂yσ

j

◦ j1s

))

vα

+
(

∂2L

∂yσ∂yα
i

◦ j1s − ∂2L

∂yα∂yσ
i

◦ j1s

)
∂vα

∂xi
−

(
∂2L

∂yα
j ∂yσ

i

◦ j1s

)
∂vα

j

∂xi
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−
(

∂3L

∂xj∂yα
i ∂yσ

j

◦ j1s +
∂sβ

∂xj

(
∂3L

∂yβ∂yα
i ∂yσ

j

◦ j1s

)

+
∂2sβ

∂xh∂xj

(
∂3L

∂yα
i ∂yβ

h∂yσ
j

◦ j1s

))

vα
i , (4.5)

0 =

(
∂2L

∂yα
i ∂yσ

j

◦ j1s

)(
∂vα

∂xi
− vα

i

)
. (4.6)

In addition, if L is regular, then equation (4.6) is equivalent to saying that
vα
i = ∂vα/∂xi, and from formula (2.1) and Lemma 2.1 we conclude that X̄

is the one-jet prolongation of a Jacobi field, i.e., X̄ = X(1). �

Remark 4.6. From formula (4.5) we deduce that a vector field

X ∈ Γ(M, s∗V (p)),

X = vα ∂

∂yα

∣
∣
∣
∣
s

, vα ∈ C∞(M),

belongs to TsSΛ if and only if the following equations hold:

0 =

(
∂2L

∂yα∂yσ
◦ j1s − ∂3L

∂xi∂yα∂yσ
i

◦ j1s − ∂sγ

∂xj

(
∂3L

∂yα∂yγ∂yσ
j

◦ j1s

)

− ∂2sγ

∂xh∂xj

(
∂3L

∂yα∂yγ
h∂yσ

j

◦ j1s

))

vα

+

(
∂2L

∂yσ∂yα
i

◦ j1s − ∂2L

∂yα∂yσ
i

◦ j1s − ∂3L

∂xj∂yα
i ∂yσ

j

◦ j1s

− ∂sβ

∂xj

(
∂3L

∂yβ∂yα
i ∂yσ

j

◦ j1s

)

− ∂2sβ

∂xh∂xj

(
∂3L

∂yα
i ∂yβ

h∂yσ
j

◦ j1s

))
∂vα

∂xi

−
(

∂2L

∂yα
j ∂yσ

i

◦ j1s

)
∂2vα

∂xi∂xj
.

5 H–C equations and gauge invariance

5.1 Gauge-invariant Lagrangians

Definition 5.1. A smooth function L : J1C → R is said to be gauge invari-
ant if L ◦ Φ(1)

C = L for every Φ ∈ GauP .
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This equation obviously implies X
(1)
C L = 0 for every X ∈ gauP . The con-

verse also holds if the group G is connected. As every Φ ∈ GauP induces
the identity map on M , the function L is gauge invariant if and only if the
gauge group is a group of symmetries for the Lagrangian density Λ = Lv,
where v is an arbitrary volume form on the base manifold.

Let

Ω: J1C →
∧2

T ∗M ⊗ adP,

Ω(j1
xσΓ) = (ΩΓ)x,

(5.1)

be the curvature map. Here, the curvature form ΩΓ of the connection Γ
corresponding to a section sΓ of p, is seen to be a two form on M with
values in the adjoint bundle adP . On the vector bundle ∧2T ∗M ⊗ adP we
consider the coordinate systems (xi; Rα

jk), j < k, induced by a coordinate
system (U ; xi) on M , and a basis (Bα) of g, as follows:

η2 =
∑

j<k

(
Rα

jk(η2)dxj ∧ dxk ⊗ B̃α

)

x
, ∀η2 ∈

∧2
T ∗

xM ⊗ (adP )x.

The geometric formulation of Utiyama’s Theorem (e.g., see [1]) states that
a Lagrangian L : J1C → R is gauge invariant if and only L factors through
Ω as L = L̃ ◦ Ω, where

L̃ :
∧2

T ∗M ⊗ adP → R (5.2)

is a differentiable function which is invariant under the adjoint representation
of G on the curvature bundle. As the curvature map (5.1) is surjective, the
function L̃ is unique.

5.2 Projecting S̄Λ onto SΛ

From Lemma 3.1 in Section 3, we readily obtain

Proposition 5.2. The H–C equations of a Lagrangian L on the bundle of
connections p : C → M of a principal bundle π : P → M , read as follows:

(
sβ
h,j − s̄β

h,j

)
(

∂2L

∂Aα
i,k∂Aβ

h,j

◦ s̄

)

= 0, ∀α, i, k,

− ∂

∂xj

(
∂L

∂Aα
i,j

◦ s̄

)

+
∂L

∂Aα
i

◦ s̄ +
(
sβ
h,j − s̄β

h,j

)
(

∂2L

∂Aα
i ∂Aβ

h,j

◦ s̄

)

= 0, ∀α, i,
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where s̄ : M → J1C is a section of p1 : J1C → M , and we have set

sα
i = Aα

i ◦ p10 ◦ s̄, sα
i,j =

∂sα
i

∂xj
, s̄α

i,j = Aα
i,j ◦ s̄.

Lemma 5.3. The Hessian metric of a gauge-invariant Lagrangian L on
the bundle of connections p : C → M of a principal bundle π : P → M , is
singular; i.e.,

det

(
∂2L

∂Aα
i,j∂Aβ

k,l

)α,i,j

β,k,l

= 0.

Proof. As L = L̃ ◦ Ω, we have ∂L/∂Aα
i,i = 0, taking the curvature equations

into account, i.e.,

Rα
ij ◦ Ω = Aα

i,j − Aα
j,i − cα

βγAβ
i Aγ

j .

Hence, ∂2L/∂Aα
i,i∂Aβ

k,l = 0, for all indices β, k, l. �

Definition 5.4. A Lagrangian L ∈ C∞(J1C) is said to be regular if the
Hessian metric Hess(L) is non-singular.

A gauge-invariant Lagrangian L ∈ C∞(J1C) is said to be weakly regular if
the Hessian metric Hess(L̃) of the function in (5.2) associated to L according
to Utiyama’s theorem, is non-singular.

In terms of the coordinate system (xi; Rα
jk), j < k, on

∧2 T ∗M ⊗ adP
introduced in Section 5.1, this means

det

(
∂2L̃

∂Rα
ij∂Rβ

kl

)α,i<j

β,k<l

�= 0. (5.3)

Remark 5.5. The inequation (5.3) imposes a generic condition on L̃. In
fact, most of gauge-invariant Lagrangians in the field theory satisfy the weak
regularity condition (5.3); for example, the general Yang–Mills Lagrangian
on the bundle of connections of a principal bundle P → M with semisim-
ple Lie group G over a pseudo–Riemannian manifold (M, g) (even when
constructed by using a non-degenerate adjoint-invariant pairing on the Lie
algebra other than the Cartan–Killing pairing, see [3, 5]) is weakly regular.
More generally, any quadratic function as in (5.2), which is simultaneously
invariant under the adjoint representation and under the action of the gauge
group of the principal bundle of g-orthonormal linear frames, gives rise to a
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weakly regular Lagrangian, see [4]. Similarly, Born-Infeld Lagrangians (e.g.,
see [15,16]) are also weakly regular. We remark on the fact that some special
Lagrangians are not weakly regular; for example, if we let the matter field
vanish in the Seiberg–Witten Lagrangian (e.g., see [9]) then we obtain a
Lagrangian on the bundle of connections, which is not weakly regular (basi-
cally, because it involves only the self-dual part of the curvature). Finally,
we should also remark that non-gauge-invariant Lagrangians (in the sense
of Section 5.1) may produce gauge-invariant actions, as the Chern–Simons
Lagrangian. All of them are not considered below.

Given an arbitrary fibred manifold p : E → M , we recall that the pro-
jection p10 : J1E → E is endowed with an affine-bundle structure modelled
over T ∗M ⊗E V (p) = p∗T ∗M ⊗ V (p); see the item (b) in Section 2.3. In the
particular case of the bundle of connections, which is itself an affine bun-
dle modelled over T ∗M ⊗ adP , we conclude that p10 : J1C → C is an affine
bundle modelled over

T ∗M ⊗C V (p) = p∗(⊗2T ∗M ⊗ adP ). (5.4)

Hence, sections of T ∗M ⊗C V (p) can be considered as adP -valued covariant
tensors of degree 2 on M with coefficients in C.

Theorem 5.6. Let S̄Λ (resp. SΛ) denote the set of solutions to H-C (resp.
E-L) equations of a weakly regular gauge-invariant Lagrangian L on the bun-
dle of connections p : C → M of a principal bundle π : P → M . If s̄ : M →
J1C belongs to S̄Λ, then the section s = p10 ◦ s̄ belongs to SΛ. Hence, a nat-
ural projection exists � : S̄Λ → SΛ, �(s̄) = p10 ◦ s̄, which is an affine bundle
modelled as follows:

�−1(s) = {j1s + t : t ∈ Γ(S2T ∗M ⊗ adP )}, ∀s ∈ SΛ.

Proof. We begin with the first H–C equation in Proposition 5.2. As L =
L̃ ◦ Ω, we obtain

∂L

∂Aα
i,i

= 0,
∂L

∂Aα
i,k

=
∂L̃

∂Rα
ik

◦ Ω, (5.5)

where we have set Rα
ik = −Rα

ki for i > k. Hence,

(
sβ
h,j − s̄β

h,j

)
(

∂2L̃

∂Rα
ik∂Rβ

hj

◦ (Ω ◦ s̄)

)

= 0.
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If we assume the weak regularity condition (5.3) holds, then the previous
equation yields

(
sβ
h,j − s̄β

h,j

)
−

(
sβ
j,h − s̄β

j,h

)
= 0, ∀β, h, j. (5.6)

If we write s̄ = j1s + t, for a two-tensor t, the condition above means that t
is symmetric; that is, t is a section of S2T ∗M ⊗ adP → M .

Next, we study the second equation in Proposition 5.2. Taking equations
(5.5) into account, we have

− ∂

∂xj

(
∂L

∂Aα
i,j

◦ s̄

)

+
∂L

∂Aα
i

◦ s̄ +
(
sβ
h,j − s̄β

h,j

)
(

∂

∂Aα
i

(
∂L̃

∂Rβ
hj

◦ Ω

)

◦ s̄

)

= 0.

The last term vanishes identically as sβ
h,j − s̄β

h,j is symmetric by virtue

of (5.6) and we have ∂L̃/∂Rβ
hj = −∂L̃/∂Rβ

jh. Then, the second equation
reduces to

− ∂

∂xj

(
∂L

∂Aα
i,j

◦ s̄

)

+
∂L

∂Aα
i

◦ s̄ = 0, (5.7)

which is precisely the E–L equation, but evaluated at s̄ instead of j1s. Nev-
ertheless, the following formula is readily checked:

∂L

∂Aα
i

= 2

(

cβ
αγAγ

j

∂L̃

∂Rβ
ij

)

◦ Ω. (5.8)

Moreover, from (5.6) we deduce

Ω ◦ s̄ =
(
s̄α
i,j − s̄α

j,i − cα
βγsβ

i sγ
j

)
dxi ∧ dxj ⊗ B̃α

=
(
sα
i,j − sα

j,i − cα
βγsβ

i sγ
j

)
dxi ∧ dxj ⊗ B̃α

= Ω ◦ j1s. (5.9)

Therefore, from formulas (5.5) and (5.8), we conclude that equation (5.7)
coincides with the E–L equation for s. �

Remark 5.7. As mentioned in the Introduction, formula (5.9) shows that
the curvature remains constant along the fibre of � over any j1s ∈ SΛ.
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Corollary 5.8. The H–C equations of a weakly regular gauge-invariant
Lagrangian L on the bundle of connections p : C → M of a principal bundle
π : P → M , are equivalent to the following system:

(
sα
h,j − s̄α

h,j

) − (
sα
j,h − s̄α

j,h

)
= 0, ∀α, h, j.

− ∂

∂xj

(
∂L

∂Aα
i,j

◦ j1s

)

+
∂L

∂Aα
i

◦ j1s = 0, ∀α, i,

where s̄ : M → J1C is a section of p1 : J1C → M , and sα
i , sα

i,j, and s̄α
i,j are

as in Proposition 5.2.

Remark 5.9. For every section s̄ : M → J1C of p1 : J1C → M , let s : M →
C be the section of p : C → M defined by s = p10 ◦ s̄. As the points s̄(x),
j1
xs ∈ J1C lie over the same fibre of p10 : J1C → C and this map admits an

affine-bundle structure modelled over the vector bundle (5.4), a map

δC : J1(p1) → ⊗2T ∗M ⊗ adP

exists such that, δC(j1
xs̄) = s̄(x) − j1

xs. If alt : ⊗2 T ∗M ⊗ adP → ∧2T ∗M ⊗
adP denotes the anti-symmetrization operator, then the first group of H–C
equations in Corollary 5.8 means that j1s̄ takes values into the sub-bundle
ker(alt ◦ δC).

Proposition 5.10. If Λ is a gauge-invariant Lagrangian density on the bun-
dle of connections of a principal bundle π : P → M and s̄ ∈ S̄Λ (resp. s ∈
SΛ), then Φ(1)

C ◦ s̄ ∈ S̄Λ (resp. ΦC ◦ s ∈ SΛ) for every Φ ∈ GauP . Accord-
ingly, the gauge group of P acts (on the left) on S̄Λ (resp. SΛ) by setting
Φ · s̄ = Φ(1)

C ◦ s̄ (resp. Φ · s = ΦC ◦ s), ∀s̄ ∈ S̄Λ (resp. ∀s ∈ SΛ), ∀Φ ∈ GauP .

Proof. We prove that the section Φ(1)
C ◦ s̄ of p1 is a solution to H–C equa-

tion (3.1). For every Z ∈ Xv(J1E), we set

Y = (Φ(1)
C )−1· Z ∈ Xv(J1E).

As Λ is gauge invariant, we have (Φ(1)
C )∗Λ = Λ, from the functorial character

of the Poincaré–Cartan form (see [7]) we obtain
(
Φ(1)

C ◦ s̄
)∗

(iZdΘΛ) = s̄∗
(
Φ(1)

C

)∗
(iZdΘΛ)

= s̄∗iY d
((

Φ(1)
C

)∗
ΘΛ

)

= s̄∗iY dΘ(
Φ

(1)
C

)∗
Λ

= s̄∗iY dΘΛ

= 0.
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The proof for the solutions to E–L equations, is similar and therefore it is
omitted. �

Theorem 5.6 shows that the set of solutions of H–C trivially fibers over the
set of solutions of E–L. On the other hand, for gauge-invariant problems,
the moduli space of solutions under the action of the (restricted) gauge
group plays a relevant role. We now study the relationship between the
moduli of H–C and E–L showing that the first fibres over the second, but
not necessarily in a trivial way. First, note that the gauge group GauP acts
on the adjoint bundle adP by setting Φad((u, B)ad) = (Φ(u), B)ad, ∀Φ ∈
GauP , ∀(u, B) ∈ P × g, and this action obviously induces another action on
S2T ∗M ⊗ adP as follows:

ΦadP (w1 � w2 ⊗ v) = w1 � w2 ⊗ ΦadP (v),

∀w1, w2 ∈ T ∗
xM, ∀v ∈ (adP )x,

(5.10)

where the symbol � denotes symmetric product.

Proposition 5.11. Given a point x0 ∈ M , let Gaux0P be the subgroup
of gauge transformations Φ ∈ GauP such that, Φ(u) = u, ∀u ∈ π−1(x0).
Then

(i) For every gauge-invariant Lagrangian density Λ on the bundle of con-
nections of π : P → M , the quotient map κP : SΛ → SΛ/Gaux0P is a
set-theoretical principal Gaux0P -bundle.

(ii) In addition, if Λ is weakly regular, the projection � : S̄Λ → SΛ defined
in Theorem 5.6, induces a mapping

�Gaux0P : S̄Λ/Gaux0P → SΛ/Gaux0P,

�Gaux0P (s̄ mod Gaux0P ) = �(s̄) mod Gaux0P,

which is the vector bundle associated to the principal bundle κP by the
action on S2Ω1(M) ⊗ gauP induced on the sections of S2T ∗M ⊗ adP
by the action of GauP defined in the formula (5.10) above.

Proof. As is known, Gaux0P acts freely on the space of connections, i.e.,
on the sections of p : C → M and, in particular, on S̄Λ and on SΛ (e.g.,
see [6, Theorem 2.2.4], [13, III.C]). Nevertheless, the quotients S̄Λ/Gaux0P
and SΛ/Gaux0P may be singular, e.g., see [6, p. 134]. Because of this, we
consider such structure from the set-theoretical point of view only.
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Furthermore, the mapping �Gaux0P is well defined as

�
(
Φ(1)

C ◦ s̄
)

=
(
p10 ◦ Φ(1)

C

)
◦ s̄

= (ΦC ◦ p10) ◦ s̄

= ΦC ◦ �(s̄),

and from Theorem 5.6 it follows that every s̄ ∈ S̄Λ can be uniquely written
as s̄ = j1s + t, where s = �(s̄) and t ∈ S2Ω1(M) ⊗ gauP . Hence, s̄ can be
identified to the pair (s, t), i.e., S̄Λ

∼= SΛ × S2Ω1(M) ⊗ gauP . Recalling that
ΦC : C → C is an affine-bundle morphism whose associated vector bundle is
idT ∗M ⊗ Φad : T ∗M ⊗ adP → T ∗M ⊗ adP , we have

Φ(1)
C ◦ s̄ = Φ(1)

C ◦ (j1s + t)

= J1 (ΦC ◦ s) + Φad · t,

thus concluding the proof. �

Theorem 5.12. With the same notations as in Section 4 and the same
assumptions as in Theorem 5.6, if X̄ ∈ Ts̄S̄Λ, then (p10)∗ ◦ X̄ ∈ TsSΛ, where
s = p10 ◦ s̄. Hence, the natural map � : S̄Λ → SΛ induces a linear map
�∗ : Ts̄S̄Λ →TsSΛ, �∗(X̄) = (p10)∗ ◦ X̄. Moreover, ker �∗∼= Γ(S2T ∗M ⊗ adP ).

Proof. We first begin with the second Jacobi equation (4.4) for a gauge-
invariant Lagrangian L : J1C → R and a Jacobi vector field

X̄ = vα
i

∂

∂Aα
i

+ vα
i,j

∂

∂Aα
i,j

, vα
i , vα

i,j ∈ C∞(M),

along a solution s̄ ∈ S̄Λ. We have

0 =

(
∂2L

∂Aα
r,i∂Aσ

h,j

◦ s̄

)(
∂vα

r

∂xi
− vα

r,i

)

+
(

∂sα
r

∂xi
− s̄α

r,i

)(
∂3L

∂Aβ
l ∂Aα

r,i∂Aσ
h,j

◦ s̄

)

vβ
l

+
(

∂sα
r

∂xi
− s̄α

r,i

)(
∂3L

∂Aα
r,i∂Aβ

l,k∂Aσ
h,j

◦ s̄

)

vβ
l,k, (5.11)

for any σ, h, j. From Theorem 5.6, j1s − s̄ is a symmetric tensor. Moreover,
taking the formula (5.5) into account, the last two summands of (5.11)
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vanish. We thus obtain

0 =

(
∂2L

∂Aα
r,i∂Aσ

s,j

◦ s̄

) (
∂vα

r

∂xi
− vα

r,i

)
,

which, assuming the weak regularity of L, implies

vα
r,i =

∂vα
r

∂xi
+ tαr,i, (5.12)

where tαr,i are the components of a symmetric tensor t ∈ Γ(S2T ∗M ⊗ adP ).
From formula (2.1) and Lemma 2.1 we conclude X̄ = X(1) + t, where X(1) is
the one-jet prolongation of the vector field along s given by X = vα

i ∂/∂Aα
i .

Next, we consider the first Jacobi equation (4.3), from which we obtain

0 =

(
∂2L

∂Aα
r ∂Aσ

q

◦ s̄ − ∂3L

∂xi∂Aα
r ∂Aσ

q,i

◦ s̄ +
(
sβ
t,i − s̄β

t,i

)
(

∂3L

∂Aα
r ∂Aσ

q ∂Aβ
t,i

◦ s̄

)

− sγ
t,j

(
∂3L

∂Aα
r ∂Aγ

t ∂Aσ
q,j

◦ s̄

)

− ∂s̄γ
t,h

∂xj

(
∂3L

∂Aα
r ∂Aγ

t,h∂Aσ
q,j

◦ s̄

))

vα
r

+

(
∂2L

∂Aσ
q ∂Aα

r,i

◦ s̄ − ∂2L

∂Aα
r ∂Aσ

q,i

◦ s̄

)
∂vα

r

∂xi
−

(
∂2L

∂Aα
r,j∂Aσ

q,i

◦ s̄

)
∂vα

r,j

∂xi

+

(
(
sβ
t,j − s̄β

t,j

)
(

∂3L

∂Aσ
q ∂Aα

r,i∂Aβ
t,j

◦ s̄

)

− ∂3L

∂xj∂Aα
r,i∂Aσ

q,j

◦ s̄

− sβ
t,j

(
∂3L

∂Aβ
t ∂Aα

r,i∂Aσ
q,j

◦ s̄

)

− ∂s̄β
t,h

∂xj

(
∂3L

∂Aβ
t,h∂Aα

r,i∂Aσ
j

◦ s̄

))

vα
r,i.

(5.13)

Again taking the symmetry of the differences sβ
t,i − s̄β

t,i (and their deriva-
tives) into account, the previous equation reduces to the following:

0 =

(
∂2L

∂Aα
r ∂Aσ

q

◦ s̄ − ∂3L

∂xi∂Aα
r ∂Aσ

q,i

◦ s̄ − sγ
t,j

(
∂3L

∂Aα
r ∂Aγ

t ∂Aσ
q,j

◦ s̄

)

− ∂2sγ
t

∂xh∂xj

(
∂3L

∂Aα
r ∂Aγ

t,h∂Aσ
q,j

◦ s̄

))

vα
r

+

(
∂2L

∂Aσ
q ∂Aα

r,i

◦ s̄ − ∂2L

∂Aα
r ∂Aσ

q,i

◦ s̄

)
∂vα

r

∂xi
−

(
∂2L

∂Aα
r,j∂Aσ

q,i

◦ s̄

)
∂vα

r,j

∂xi
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−
(

∂3L

∂xj∂Aα
r,i∂Aσ

q,j

◦ s̄ + sβ
t,j

(
∂3L

∂Aβ
t ∂Aα

r,i∂Aσ
q,j

◦ s̄

)

+
∂2sβ

t

∂xh∂xj

(
∂3L

∂Aβ
t,h∂Aα

r,i∂Aσ
q,j

◦ s̄

))

vα
r,i. (5.14)

By taking derivatives in (5.12), we obtain

∂vα
r,j

∂xi
=

∂vα
r

∂xj∂xi
+

∂tαr,j
∂xi

,

and substituting these expressions into equation (5.14), again by virtue of
the skew-symmetry of ∂L/∂Aα

i,j , we have

0 =

(
∂2L

∂Aα
r ∂Aσ

q

◦ s̄ − ∂3L

∂xi∂Aα
r ∂Aσ

q,i

◦ s̄ − sγ
t,j

(
∂3L

∂Aα
r ∂Aγ

t ∂Aσ
q,j

◦ s̄

)

− ∂2sγ
t

∂xj∂xh

(
∂3L

∂Aα
r ∂Aγ

t,h∂Aσ
q,j

◦ s̄

))

vα
r

+

(
∂2L

∂Aσ
q ∂Aα

r,i

◦ s̄ − ∂2L

∂Aα
r ∂Aσ

q,i

◦ s̄

)
∂vα

r

∂xi
−

(
∂2L

∂Aα
r,j∂Aσ

q,i

◦ s̄

)
∂vα

r

∂xi∂xj

−
(

∂3L

∂xj∂Aα
r,i∂Aσ

q,j

◦ s̄ + sβ
t,j

(
∂3L

∂Aβ
t ∂Aα

r,i∂Aσ
q,j

◦ s̄

)

+
∂2sβ

t

∂xh∂xj

(
∂3L

∂Aβ
t,h∂Aα

r,i∂Aσ
q,j

◦ s̄

))
∂vα

r

∂xi
.

Finally, taking the equations Ω ◦ s̄ = Ω ◦ j1s, L = L̄ ◦ Ω, into account, we
conclude that s̄ can be replaced by j1s into the previous equation and we
can end the proof by simply applying Remark 4.6. �

Corollary 5.13. A Jacobi field X̄ ∈ Ts̄S̄Λ is integrable if and only if the
Jacobi field �∗(X̄) = X ∈ TsSΛ, s = p10 ◦ s̄, is integrable.

Proof. If X̄ ∈ Ts̄S̄Λ is an integrable Jacobi field, then X̄ = d/dε|ε=0s̄ε where
s̄ε = j1sε + tε, with π10 ◦ s̄ = sε ∈ SΛ, tε being a symmetric tensor. Then,

�∗(X̄) = (π10)∗X̄ =
d

dε

∣
∣
∣
∣
ε=0

π10 ◦ s̄ε =
d

dε

∣
∣
∣
∣
ε=0

sε.
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Hence X = �∗(X̄) is integrable. Conversely, assume X = d/dε|ε=0sε, sε ∈
SΛ, and X̄ ∈ (�∗)−1X. We know that X̄ = X(1) + t, where t is a sym-
metric tensor. Then, X̄ = d/dε|ε=0s̄ε with s̄ε = j1sε + εt ∈ S̄Λ, and X̄ is
integrable. �

6 H–C self-dual and anti-self-dual connections

Let (M, g) be a pseudo-Riemannian n-dimensional oriented connected man-
ifold of signature (n+, n−), n = n+ + n−, and let vg =

√|det(gij)|dx1 ∧
· · · ∧ dxn, gij = g(∂/∂xi, ∂/∂xj), be its pseudo-Riemannian volume form.
The canonical duality isomorphism attached to g is denoted by TxM →
T ∗

xM , X → X�, with inverse map T ∗
xM → TxM , w → w�. Let g(r) be the

metric on
∧r T ∗M given by g(r)(w1 ∧ · · · ∧ wr, w̄1 ∧ · · · ∧ w̄r) = det(g((wi)�,

(w̄j)�))r
i,j=1.

Let V → M be a vector bundle. The Hodge star can be extended to
V -valued forms as follows: �(ωr ⊗ v) = (�ωr) ⊗ v, ∀ωr ∈ ∧r T ∗

xM , ∀v ∈ Vx.

Let π : P → M be a principal G-bundle and let πadP : adP → M be the
adjoint bundle; i.e., the bundle associated with P under the adjoint repre-
sentation of G on its Lie algebra g. For every B ∈ g and every u ∈ P , let
(u, B)G be the coset of (u, B) ∈ P × g modulo G. A symmetric bilinear form
〈·, ·〉 ∈ S2g∗ is said to be invariant under the adjoint representation if the
following equation holds: 〈AdgB,AdgC〉 = 〈B, C〉, ∀g ∈ G, ∀B, C ∈ g. By
taking derivatives on this equation we obtain 〈[A, B], C〉 + 〈B, [A, C]〉 = 0,
∀A, B, C ∈ g. If the group G is connected, then both equations above are
equivalent.

Every symmetric bilinear form 〈·, ·〉 ∈ S2g∗ invariant under the adjoint
representation induces a fibred metric 〈〈·, ·〉〉 : adP ⊕ adP → R by setting

〈〈(u, B)G, (u, C)G〉〉 = 〈B, C〉, ∀u ∈ P, ∀B, C ∈ g. (6.1)

We further assume that the pairing (6.1) is non-degenerate.

Every pseudo-Riemannian metric g on M and every fibred 〈〈·, ·〉〉 on adP
induce a fibred metric on the vector bundle of adP -valued differential r-forms
on M as follows: ((αr ⊗ a, βr ⊗ b)) = g(r)(αr, βr) 〈〈a, b〉〉, ∀αr, βr ∈ ∧r T ∗

xM ,
and ∀a, b ∈ (adP )x. Moreover, the pairing (6.1) defines an exterior product
(see [1]),

∧̇ :
(∧•

T ∗M ⊗ adP
)
⊕

(∧•
T ∗M ⊗ adP

)
→

∧•
T ∗M,

(αq ⊗ a)∧̇(βr ⊗ b) = (αq ∧ βr) 〈〈a, b〉〉.
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Let p : C → M be the bundle of connections of P . According to the
previous definitions, a pseudo-Riemannian metric g on M and an adjoint-
invariant symmetric bilinear form 〈·, ·〉 allow one to define a quadratic
Lagrangian density Λ = Lvg on J1C by setting,

Λ(j1
xs) = ((Ωs(x), Ωs(x)))vg(x)

= Ωs(x)∧̇ � Ωs(x), (6.2)

where s is a local section of p defining a principal connection whose curvature
form is denoted by Ωs. In [3] it is proved that the E-L equations of the
Lagrangians above are seen to be independent of the pairing (6.1) and they
coincide with the classical Yang–Mills equations: ∇s � Ωs = 0.

Theorem 6.1. In addition to the hypotheses above, assume dim M = 4
and g is a Riemannian metric. Let S+

Λ (resp. S−
Λ ) be the set of self-dual

(resp. anti-self-dual) connections with respect to the Lagrangian density
(6.2). A section s̄ of p1 : J1C → M belongs to the fibre �−1(s), with s ∈ S+

Λ

(resp. s ∈ S−
Λ ) if and only if the following equations hold:

alt(s̄ − j1s) = 0, (6.3)

�(Ω ◦ s̄) = (Ω ◦ s̄) (resp. � (Ω ◦ s̄) = −(Ω ◦ s̄)), (6.4)

where alt : ⊗2 T ∗M ⊗ adP → ∧2 T ∗M ⊗ adP is the alternating operator.

Remark 6.2. Equation (6.3) is a first-order differential equation, whereas
(6.4) is a purely algebraic equation. The condition alt(s̄ − j1s) = 0 is not
specific of the Yang–Mills Lagrangian but general for any weakly regular
gauge-invariant Lagrangian. In fact, it defines the subset of Γ(p1) given by

{j1s + t : s ∈ Γ(p), t ∈ Γ(S2T ∗M ⊗ adP )}. (6.5)

It is thus interesting to note that the group of equations really defined by self-
dual (resp. anti-self-dual) connections, is not longer a differential equation
but an algebraic constrain on the subset (6.5).

Proof of Theorem 6.1. As L is weakly regular, if s̄ ∈ S̄Λ, then alt(s̄ − j1s) =
0 by virtue of Remark 5.9. Moreover, as

− ∂

∂xj

(
∂L

∂Aα
i,j

◦ s̄

)

+
∂L

∂Aα
i

◦ s̄ = − ∂

∂xj

(
∂L

∂Aα
i,j

◦ j1s

)

+
∂L

∂Aα
i

◦ j1s,
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as Ω ◦ s̄ = Ω ◦ j1s, we also obtain ∇s � Ωs = 0, where Ωs = Ω ◦ j1s and
s = p10 ◦ s̄. Hence, the definition of a self-dual connection (i.e., �(Ω ◦ j1s) =
(Ω ◦ j1s)) can be written as �(Ω ◦ s̄) = (Ω ◦ s̄) for every s̄ ∈ �−1(S+

Λ ). Simi-
larly for S−

Λ . �
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