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Abstract

We derive the leading asymptotic behavior and build a new series
representation for the Fredholm determinant of integrable integral oper-
ators appearing in the representation of the time and distance-dependent
correlation functions of integrable models described by a six-vertex
R-matrix. This series representation opens a systematic way for the
computation of the long-time, long-distance asymptotic expansion for
the correlation functions of the aforementioned integrable models away
from their free fermion point. Our method builds on a Riemann–Hilbert
based analysis.

1 Introduction

Highly structured determinants appear as a natural way for representing
the correlation functions in integrable models that are equivalent to the so-
called free fermions. It was already shown by Kaufman and Onsager that
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certain two-point functions of the two-dimensional (2D)-Ising model can
be represented by Toeplitz determinants [30]. Then Montroll et al. [44]
made this observation more systematic by expressing the so-called row-to-
row two-point function of this model in terms of a Toeplitz determinant.
It was observed by Lieb et al. [40] that such Toeplitz determinant-based
representations also hold for the so-called XY model. Then, the systematic
study of the correlation functions of the impenetrable Bose gas, the XY
model or its isotrpoic version the XX model lead to the representation of
various correlators in terms of Fredholm determinants (or their minors) of
the so-called integrable operators [7, 8, 36, 39, 42, 47]. Such types of Fredholm
determinants also appear in other branches of mathematical physics. For
instance, the determinant of the so-called sine-kernel acting on an interval J
is directly related to the gap probability (probability that in the bulk scaling
limit a given matrix has no eigenvalues lying in J) in the Gaussian unitary
ensemble [21]. Integrable integral operators [10] are operators of the type
I + V where the integral kernel V takes a very specific form. This fact allows
for a relatively simple characterization of the resolvent kernel and often for
a construction of a system of partial differential equations satisfied by the
associated Fredholm determinant or minors thereof [14, 24, 26, 29, 49].

In all of the aforementioned examples, the integrable integral operators
I + V act on some curve C with a kernel V (λ, μ) depending, in an oscilla-
tory way, on a parameter x. In the previous examples a lot of interesting
information can be drawn out of the asymptotic behavior of det [I + V ] for
large values of x. For instance, when dealing with the correlation func-
tions of integrable models, x plays the role of a spacial and/or temporal
separation between the two operators entering in the correlation function.
In such a case, computing the large-x asymptotic expansion of the associ-
ated Fredholm determinants, allows one to test the predictions of conformal
field theories. The form of the asymptotic behavior of the pure sine kernel
determinant log det [I + S] was strongly argued in [6, 19] and then proven,
to some extend, using operator methods [3, 20, 51]. Also, the discovery of
non-linear differential equations of Painlevé V type for this determinant [29]
allowed to compute many terms in the large-x asymptotic expansion of the
associated correlation functions [29, 41, 42, 43]

However, a really systematic and efficient approach to the asymptotic
analysis of various quantities related to integrable integral operators I + V
has been made possible thanks to the results obtained in [26]. There it was
shown that the analysis of such operators can be reduced to a resolution of
an associated Riemann–Hilbert problem (RHP). The jump contour in this
RHP coincides with the one on which the integral operator acts and the jump
matrix is built out of the functions entering in the description of the kernel.
In this way, one deals with a RHP depending on x in an oscillatory way.
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The asymptotic analysis of their solutions is possible thanks to the non-linear
steepest descent method of Deift–Zhou [16, 17]. It is in this context that the
full characterization of the leading asymptotic behavior of Fredholm deter-
minants of kernels related to correlation functions in free-fermion equivalent
models (the long-distance, long-time/long-distance at zero and also non-zero
temperature) has been carried out in the series of papers [4, 9, 23, 25, 27, 28].
Also, it was shown that the value of Dyson’s constant arising in the asymp-
totics of the pure sine kernel determinant can be obtained in the RHP-based
framework as well [13, 38].

This paper deals with an extension of these analysis to the case of a
Fredholm determinant of an integrable integral operator whose integral ker-
nel has a more involved structure then in the aforementioned cases. We
call our kernel the time-dependent generalized sine kernel. The Fredholm
determinant we analyze arises in the representation of the zero tempera-
ture long-distance/long-time asymptotic behavior of two-point functions in
a wide class of integrable models away from their free fermion point. In
particular, its asymptotics expansion (and especially the new series repre-
sentation that we obtain for it) plays a crucial role in the computation of
the long-time/long-distance asymptotic behavior of these two-point func-
tions. Therefore the results in this paper can be seen as a first step towards
such an asymptotic analysis of two-point functions. Let us be slightly more
specific.

In a wide class of algebraic Bethe Ansatz solvable models, one is able
to compute the so-called form factors (matrix elements of local operators)
and represent them as finite-size determinants [35, 46]. It has been shown
in [36] that, for free fermion equivalent models, it is possible to build on
these representations so as to explicitly sum-up the form factor expansion
and compute the zero-temperature (and even the non-zero temperature)
correlation functions of the model. In the limit of infinite lattice sizes, a
two-point function is then represented by a Fredholm determinant (or its
minors) of an integrable integral operator I + V acting on some contour C
determined by the properties of the model. For time and space translation
invariant models, the kernel V depends on the distance separating the two
operators as well as on the difference of time evolution between them. One
can show that for general free-fermion type models, the integral operator
I + V associated with the form factor expansion of the time and space-
dependent two-point functions acts on a finite subinterval [−q ; q ] of R and
its kernel V belongs to the class of kernels

V (λ, μ) = 4
sin [πν (λ)] sin [πν (μ)]

2iπ (λ − μ)
{E (λ) e (μ) − E (μ) e (λ)} . (1.1)
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There ν is some function encoding the fine structure of the excitations above
the ground state whereas e and E are oscillating factors. The function E is
expressed in terms of e

E (λ) = ie (λ)
{

−
∫

CE

ds

2π

e−2 (s)
s − λ

+
e−2 (λ)

2
cot [πν (λ)]

}
. (1.2)

The functions ν and e just as the integration curve CE appearing in (1.2)
depend on the specific model that one considers. We will give more precision
about their properties in the core of the paper. We stress that, for free-
fermion equivalent models, ν (λ) is some constant and e takes a simple form.
It was in such a context that the asymptotic analysis of det [I + V ] has been
carried out previously.

When considering integrable models that are away of their free-fermion
point, as it has been shown in [34, 37], it is as well possible to build on the
finite-size determinant representation for the form factors of local operators
in integrable models out of their free fermion point so as to sum up the form
factor series over the relevant sector of excited states. Even though Fredholm
determinant based representations are no longer possible in models away
from their free fermion point, the above procedure leads to a representation
for the time and space-dependent two-point functions in terms of series of
multiple integrals which take the generic form

∑
n≥0

1
n!

∫ q

−q

n∏
a=1

dλa

2iπ

∮
Cz

n∏
a=1

dza

2iπ

∮
Cy

n∏
a=1

dya

2iπ

n∏
a=1

eix[u(ya)−u(λa)]

za − λa

· det
n

[
1

za − λb

]
· Fn

(
λ1, . . . , λn

y1, . . . , yn

)
. (1.3)

There, Cz and Cy are some contours in C surrounding [−q ; q ], u is a holo-
morphic function in a neighborhood of [−q ; q ] ∪ Cy and Fn some func-
tion. In fact, an analogous type of series representation (1.3) have been
first obtained, through other method, in [33], this in the case of the space-
dependent functions only. That paper also proposed an approach to the
extraction of the large-x asymptotic behavior out of the “pure-distance”
analog of the series (1.3).

An important observation made in [34, 37] is that the intermediate com-
putations can be shown to boil down to effective generalized free fermionic
models. As such, they involve, again, the Fredholm determinants of oper-
ators I + V with V given by (1.1). However, then, the functions ν and e
become much more complex that at the free fermion point. In some sense,
the approach of [34, 37] shows that kernels (1.1) appear as a natural basis
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of special functions allowing one to represent the correlation functions of
a wide class of interacting (i.e., away from their free fermion point) inte-
grable models as certain (infinite) linear combinations thereof. Therefore,
the main motivation for our study of the time-dependent generalized sine
kernel (1.1) is to obtain a convenient and effective representation — that
we call the Natte series1 — for the associated Fredholm determinant. The
Natte series allows one to re-sum the aforementioned decomposition of the
representation (1.3) as a linear combination of Fredholm determinants into
some compact and explicit form. The latter provides one with a new type of
series of multiple integrals representation for two-point functions. Moreover,
it is built in such a way that one is able to read-off the asymptotic behavior
of the correlators out of it. Therefore, the results established in this paper
provide one of the fundamental tools that are necessary for carrying out the
long-distance and large-time asymptotic analysis of the two-point functions
in massless integrable models proposed in [34, 37].

This article contains two main results. We first derive the leading asymp-
totic behavior of the Fredholm determinant of I + V understood as acting
on L2 ([−q ; q ]), with q < +∞. This sets the ground for the second main
result of the paper. Namely, we derive a new series representation — the
Natte series — for the Fredholm determinant. This series is converging
rather fast in the asymptotic x → +∞ regime. Its main advantage is to
provide a direct (i.e., without the need to perform any additional analy-
sis) approach to the asymptotic expansion of the determinant. As already
stressed out, this series representation plays a crucial role in the computa-
tion of the large-time/long-distance asymptotic expansion of the two-point
functions in integrable models corresponding to a six-vertex R-matrix. Also,
the very form of the asymptotic expansion stemming from the Natte series
proves several conjectures relative to the structure of the asymptotic expan-
sions for certain particularizations (for specific values of ν, and e) of such
Fredholm determinants [45, 48]. Also, upon specialization, it yields the gen-
eral structure of the asymptotic expansion of the fifth Painleve transcendent
associated to the pure sine kernel [14, 29]

This article is organized as follows. In Section 2, we outline the main
assumptions that we rely upon throughout the article and give a discussion
of the class of functions e that we deal with. After introducing several
notations, we present the two main results of the paper. The remaining part
is of technical nature. In Section 3, we present the RHP problem that is at

1The origin of this name issues from the so-called pig-tail (or braid) hairstyle that is
called Natte in French. A braid is a specifically ordered reorganization of the loose hair-do
style. Similarly, the Natte series reorganizes the Fredholm series in a very specific way, so
that the resulting representation is perfectly fit for carrying out an asymptotic expansion.
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the base of the asymptotic analysis of det [I + V ] and the construction of
its Natte series. We also outline the chain of transformations corresponding
to the implementation of the Deift–Zhou [17] steepest-descent method. In
Section 5, we build the various local parametrices. This brings the original
RHP into one that can be solved through a series expansion of the associated
singular integral equation [5]. The latter naturally provides the large-x
asymptotic expansion of the solution. We build on these results so as to
derive the leading asymptotic expansion of the Fredholm determinant in
Section 6. Finally, Section 7 is devoted to the construction of Natte series
for the Fredholm determinant of I + V . In particular, we establish the
main properties of such series. We then give a conclusion and discuss the
further possible applications. In Appendix A, we recall all the properties of
the special functions that we use in this article. In Appendix B, we gather
some proofs relative to the structure of the large-x asymptotic expansions of
certain matrix valued Neumann series representing the solution to a singular
integral equation of interest to us. In appendix C, we establish bounds for
certain matrices appearing in our analysis.

2 The main results and assumptions

In this article, we will focus on the case where the function e takes the form

e−1 (λ) = ei
xu(λ)

2
+

g(λ)
2 . (2.1)

e (λ) is quickly oscillating in the x → +∞ limit and the function g entering
in the definition of e (λ) has been introduced so as to allow for some finite,
x-independent oscillatory behavior of the function e (λ). The principal value
integral appearing in the definition of E (1.2) is carried out along a curve CE

which corresponds to a slight deformation of the real axis and is depicted
in figure 1. Under the forthcoming hypothesis, such a contour allows to
strengthen the convergence of the integral defining E at infinity (in the
case of R, the convergence would be the one of an oscillating non-absolutely
integrable power-law whereas it is exponentially fast along CE).

2.1 The main assumptions

Throughout this paper, we make several assumptions on the function u, g
and ν entering in the description of the integrable kernel (1.1).

• There exists an open neighborhood U of R such that u and g are
simultaneously holomorphic on U .
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Figure 1: Contour CE for the definition of E.

• The function g is bounded on U .
• The function u is real valued on R and has a unique saddle-point in U

located at λ0 ∈ R. This saddle-point is a zero of u′ with multiplicity
one, that is to say ∃ ! λ0 ∈ R : u′ (λ0) = 0 and u′′ (λ0) < 0.

We also assume that the saddle-point lies away from the boundaries:
λ0 �= ±q.

• u is such that, given any η > 0, eiηu(λ) decays exponentially fast in λ
when ±	 (λ) > δ > 0 for any fixed δ > 0, and 
 (λ) →

λ∈U
∓∞.

• The function ν is holomorphic on U and such that sin [πν (λ)] has no
zeroes in some open neighborhood of [−q ; q ] lying in U .

• The function ν has a “sufficiently” small real part at ±q, i.e.,
|
 [ν (±q)]| < 1/2.

For technical reasons, one has to distinguish between two situations when
the saddle point λ0 is inside of ]−q ; q [ or outside. Following the tradition
we refer to the first case (−q < λ0 < q) as the time-like regime and to the
second one (|λ0| > q) as the space-like regime. Actually, in this article we
will only consider the case where λ0 > −q. Also, we do not treat the limiting
case when λ0 = ±q as this would require a significant modification of our
approach.

2.2 The main result

We now gather the main results of this paper into two theorems.

Theorem 2.1. Let V (λ, μ) be as in (1.1) and I + V act on L2 ([−q ; q ]).
Then, under the assumption stated in Section 2.1, the leading x → +∞
asymptotic behavior of det [I + V ] reads:

det
[−q ;q ]

[I + V ] e−
∫ q
−q [ixu′(λ)+g′(λ)]ν(λ)dλ

= Bx [ν, u]
(

1 + O
(

log x

x

))
+

b1 [ν, u, g]

x
3
2

Bx [ν, u]
(

1 + O
(

log x

x

))
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+ eix[u(q)−u(−q)]+g(q)−g(−q)Bx [ν + 1, u]
(

1 + O
(

log x

x

))

+ eix[u(−q)−u(q)]+g(−q)−g(q)Bx [ν − 1, u]
(

1 + O
(

log x

x

))
. (2.2)

The functional Bx [ν, u] takes the form

Bx [ν, u] = eC1[ν] G2 (1 + ν (q))G2 (1 − ν (−q))

[2qx (u′ (q) + i0+)]ν
2(q) [2qxu′ (−q)]ν

2(−q)

× (2π)ν(−q)−ν(q) eiπ
2 (ν2(q)−ν2(−q)). (2.3)

It is expressed in terms of the Barnes G function [1] and the auxiliary
functional

C1 [ν] =
1
2

∫ q

−q
dλdμ

ν ′ (λ) ν (μ) − ν ′ (μ) ν (λ)
λ − μ

+ ν (q)
∫ q

−q

ν (q) − ν (λ)
q − λ

dλ

+ ν (−q)
∫ q

−q

ν (−q) − ν (λ)
q + λ

dλ. (2.4)

The functional b1 [ν, u, g] takes different forms depending whether one is
in the so-called space-like regime (λ0 > q) or in the time-like regime (λ0 ∈
]−q ; q [):

b1 [ν, u, g] =
1√−2πu′′ (λ0)

×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ν (−q)
u′ (−q) (λ0 + q)2

S0

S−
− ν (q)

u′ (q) (λ0 − q)2
S0

S+
time-like

ν (−q)
u′ (−q) (λ0 + q)2

S−
S0

− ν (q)
u′ (q) (λ0 − q)2

S+

S0
space-like

.

(2.5)

There, we agree upon

S+ =
[
2qxu′ (q) + i0+

]2ν(q)
e2 (q) (e−2iπν(q) − 1)

Γ (1 − ν (q))
Γ (1 + ν (q))

× exp
{
−2

∫ q

−q

ν (q) − ν (μ)
q − μ

dμ

}
, (2.6)

S− =
(e−2iπν(−q) − 1)

[2qxu′ (−q)]2ν(−q)
e2 (−q)

Γ (1 + ν (−q))
Γ (1 − ν (−q))

× exp
{

2
∫ q

−q

ν (−q) − ν (μ)
q + μ

dμ

}
, (2.7)
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S0 = e2 (λ0) eiπ
4

(
λ0 + q

λ0 − q − i0+

)2ν(λ0)

exp

{
−2

∫ q

−q

ν (λ0) − ν (μ)
λ0 − μ

dμ

}

×
{(

e−2iπν(λ0) − 1
)2

time-like
1 space-like

. (2.8)

The proof of this theorem will be given in Section 6.2. It heavily relies on
the asymptotic analysis of the RHP associated with V that will be carried
out in Sections 3–5.

Above, the i0+ regularization is important only in the time-like regime as
then u′ (q) < 0. It allows one for a non-ambiguous definition of the power-
laws appearing above. In the space-like regime, the i0+ regularization makes
no difference.

A special limit of the kernel (1.1) can be related to the generalized sine
kernel studied in [32]. Indeed, when the saddle point λ0 is send to infin-
ity, by deforming slightly the contours CE , the function E can be seen to
be proportional to e−1, up to corrections that are uniformly O (x−∞) on
[−q ; q ]. In particular, one has that the x → +∞ asymptotic expansion of
the two Fredholm determinants coincide in this limit. This can be seen
directly by inspection of our formulae, at least in what concerns the leading
asymptotics.

A specific case of our kernel u (λ) = λ − tλ2/x, g = 0, q = 1 and ν = cst
has been studied in the literature in the context of its relation with the
impenetrable Fermion gas [4]. Upon such a specialization, our results agree
with the coefficients of the asymptotic expansion obtained in that paper.

The second main result obtained in this paper is the Natte series repre-
sentation for the Fredholm determinant.

Theorem 2.2. Under the assumptions stated in Section 2.1, the Fredholm
determinant of the operator I + V where the kernel V is given by (1.1)
admits the below absolutely convergent Natte series expansion. In other
words, there exists functionals Hn

[
ν, eg, eixu

]
such that

det [I + V ] [ν, u, g] = det [I + V ](0) [ν, u, g]

⎧⎨
⎩1 +

∑
n≥1

Hn [ν, eg, u]

⎫⎬
⎭ . (2.9)

There

det [I + V ](0) [ν, u, g] = Bx [ν, u] · exp
{∫ q

−q

[
ixu′ (λ) + g′ (λ)

]
ν (λ) dλ

}
.

(2.10)
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A more detailed structure of the functionals HN can be found in the core of
the text, formulae (7.10). One has the following estimates for the functionals
|Hn [ν, eg, x]| ≤ [m (x)]n, with m (x) = O (x−w) being n-independent and

w =
3
4
min

(
1/2, 1 − w̃ − 2 max

ε=± |
ν (εq)|
)

with

w̃ = 2 sup {|
 [ν (λ) − ν (εq)]| : |λ − εq| = δ, ε = ±} , (2.11)

where δ > 0 is taken small enough. Hence, the series is convergent for x
large enough.

The functionals Hn [ν, eg, u] take the form

Hn [ν, eg, u] = H(∞)
n [ν, eg, u] +

[n
2 ]∑

m=−[n
2 ]

eixm[u(q)−u(−q)]

x2m[ν(q)+ν(−q)]
H(m)

n [ν, eg, u]

+
[n
2 ]∑

b=1

b∑
p=0

[n
2 ]−b∑

m=b−[n
2 ]

eixm[u(q)−u(−q)]

x2m[ν(q)+ν(−q)]

· x b
2
eixη[bu(λ0)−pu(q)−(b−p)u(−q)]

x2η(b−p)ν(−q)−2ηpν(q)
· H(m,b,p)

n [ν, eg, u] . (2.12)

Above, we agree upon η = 1 in the space-like regime and η = −1 in the time-
like regime. There H(∞)

n [ν, eg, x] = O (x−∞) and the functionals H(�)
n [ν, eg, u]

and H(m,p,b)
n [ν, eg, u] admit the asymptotic expansions

H(m)
n [ν, eg, u] ∼

∑
r≥0

H(m)
n;r [ν, eg, u]

with H(m)
n;r [ν, eg, u] = O

(
(log x)n+r−2m

xn+r

)
,

H(m,b,p)
n [ν, eg, u] ∼

∑
r≥0

H(m,b,p)
n;r [ν, eg, u]

with H(m,b,p)
n;r [ν, eg, u] = O

(
(log x)n+r−2(m+b)

xn+r

)
. (2.13)

This theorem, together with a more explicit expressions for the functionals
Hn, will be proven in Section 7. Here, we would however like to comment



RIEMANN–HILBERT APPROACH 1665

on the form of the asymptotic expansion. Indeed the above asymptotic
expansion is not of the type usually encountered for higher transcenden-
tal functions. In fact, the large x-behavior of the functionals Hn (ν, eg, u)
and hence of the determinant det [I + V ] contains a tower of different frac-
tional powers of x, each appearing with its own oscillating pre-factor. Once
that one has fixed a given phase factor and its associated fractional power
of x, then the corresponding functional coefficients H(m)

n [ν, eg, u] or
H(m,b,p)

n [ν, eg, u] admit an asymptotic expansion in the more-or-less stan-
dard sense. That is to say, each of their entries admits an asymptotic
expansion into a series whose rth term can be written as Pr+n (log x) /xn+r

with Pr+n being a polynomial of degree at most r + n. One of the conse-
quences of such a structure is that an oscillating term that appears in a
sense “farther” (large values of n) in the asymptotic series might be dom-
inant in respect to a non-oscillating term present in the “lower” orders of
the Natte series. This structure of the asymptotic expansion proves the
conjectures raised in [45, 48] for certain specializations of this kernel. Also,
upon specialization, it yields the general structure of the asymptotic expan-
sion of the fifth Painlevé transcendent associated to the pure sine kernel
[29].

The series representation (2.9) might appear abstract since there is no
generic simple expression for the functionals Hn, n ≥ 1. However, the
slightly more explicit (but also more cumbersome so that we did not present
it a this point) characterization of the functionals Hn, gives a thorough
and explicit description of the way Hn acts on eg. This characterization,
together with the overall form of the Natte series (2.9), is enough to build
a multidimensional deformation of (2.9) which describes a class of cor-
relation functions appearing in integrable models away from their free
fermion points. The very fact that the series representation one starts
with has good properties from the point of view of an asymptotic analy-
sis (for instance it immediately provides the leading asymptotics) leads to
a multidimensional deformation which has basically the same good prop-
erties in respect to the asymptotic analysis, in the sense that it admits an
expansion of the type (2.9), (2.12), (2.13). As a consequence, the long-time/
long-distance asymptotic behavior of two-point functions in an interacting
integrable model can be simply read-off by looking at the multidimensional
series.

2.3 Notations

We now introduce several notations that we use throughout the article.
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• Dz0,δ = {z ∈ C : |z − z0| < δ} is the open disk of radius δ centered at
z0. ∂Dz0,δ stands for its canonically oriented boundary and −∂Dz0,δ

for the boundary equipped with the opposite orientation.
• σ3, σ± and I2 stand for the below matrices

σ3 =
(

1 0
0 −1

)
σ+ =

(
0 1
0 0

)

σ− =
(

0 0
1 0

)
I2 =

(
1 0
0 1

)
. (2.14)

• Given an oriented curve C in C, Γ (C ) stands for a small counterclock-
wise loop around the curve C . This loop is always chosen in such a
way that the only potential singularities of the integrand inside of the
loop are located on C . For instance, if C consists of one point λ, then
Γ (C ) can be taken as ∂Dλ,δ, for some δ > 0 and small enough.

• When no confusion is possible, the variable dependence will be omit-
ted, i.e., u (λ) = u, g (λ) = g, etc.

• log refers to the ]−π ; π [ determination of the logarithm, and it is this
determination that is used for defining powers.

• Given a set U ,
◦
U refers to its interior and U to its closure.

• H+, resp. H−, stands for the upper {z ∈ C : 	 (z) > 0}, resp. lower
{z ∈ C : 	 (z) < 0}, half-planes.

• Given matrix valued functions M (λ), N (λ), the relation M (λ) =
O (N (λ)) is to be understood entry-wise Mk� (λ) = O (Nk� (λ)).

• Given an oriented curve C , one defines its + (resp. −) side as the one
lying to the left (resp. right) when moving along the curve. Above and
in the following, given any function or matrix function f , f± (λ) stands
for the non-tangential limit of f (z) when z approaches the point λ ∈ C
from the ± side of the oriented curve C .

• Given a piecewise smooth curve C and matrix M with entries in
Lp (C ), p = 1, 2,∞, we use the canonical matrix norms († stands for
Hermitian conjugation):

‖M‖L∞(C ) = max
i,j

‖Mij‖L∞(C ) , ‖M‖L2(C ) =
√
‖tr [M †M ]‖L1(C ) and

‖M‖L1(C ) = max
ij

‖Mij‖L1(C ) . (2.15)

• The distance between any two subsets A, B of C will be denoted by
d (A, B) ≡ inf {|x − y| : x ∈ A, y ∈ B}.
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2.4 Several remarks

It now seems to be a good place so as to gather several remarks in respect
to our assumptions.

• The assumptions on the type of the saddle-point at λ0 guarantee
that there exists a local parametrization for u (λ) around λ0, u (λ) −
u (λ0) = −ω2 (λ) with ω (λ) = (λ − λ0)h (λ), where h (λ0) �= 0 and h
is holomorphic on Dλ0,δ for some δ > 0.

• As it will become apparent from our asymptotic analysis, given func-
tions u, ν, g satisfying to all the hypothesis, one has that det [I + V ] �=
0 for x large enough.

• The assumption on the number of saddle-points and their order can
be relaxed in principle. RHP with multiple saddle-points have been
considered in [50]. This work was later extended to the case of less
regular functions and higher order saddle-points in [18].

• The restriction on the real part of ν in the vicinity of ±q is of tech-
nical nature. It allows us to avoid the analysis related to the so-
called ambiguous Fisher–Hartwig symbols. The method for dealing
with such kinds of problems in the framework of RHPs has been pro-
posed in [11, 12]. The cases where 
 (ν (±q)) ≥ 1/2 could in principle
be treated along these techniques, but we chose not to venture into
these technicalities.

• We have depicted the contour CE appearing in principal value integral
in (1.2) in figure 1. This contour CE is chosen in such a way that
the integral is converging exponentially fast at infinity. This avoids us
unnecessary complications and corresponds to most, if not all, situa-
tions that can arise in interacting integrable models.

• In the case of kernels involved in the representation of the two-point
functions in integrable models, the function u takes the form u (λ) =
p (λ) − tε (λ) /x. p corresponds to the momentum of excitations,
whereas ε corresponds to their energy. The parameter t plays the role
of the time-shift between the two operators and x that of their distance
of separation. In general, one is interested in the large-distance/long-
time behavior of the two-point function in the case where the ratio t/x
is fixed. In such a limit, for many models of interest, the function u
has a unique saddle-point on R. This physical interpretation can be
seen as a motivation for certain of our assumptions.

• It is not a problem to carry out the same analysis in the case where
the contour CE given in figure 1 is replaced by C

(w)
E = CE ∩ {z ∈ C :

|
 (z)| ≤ w}, with w ∈ R
+ such that q, −q and λ0 belong to ]−w ; w [.

Up to minor modifications due to such a truncation of the remote part
of the contour, the results remain unchanged.
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3 The initial RHP and some transformation

3.1 The RHP for χ

The kernel of any integrable integral operator can be recast in a form allow-
ing one to give a convenient characterization of the kernel R (λ, μ) of the
resolvent operator I − R to I + V .

Namely, in the case of the kernel V given in (1.1) one sets

∣∣ER (λ)
〉

=
2 sin [πν (λ)]

iπ

(
E (λ)
e (λ)

)
,

〈
EL (λ)

∣∣ = sin [πν (λ)]
(−e (λ) , E (λ)

)
, (3.1)

so that the kernel V is expressed as the scalar product:

V (λ, μ) =
〈EL (λ) | ER (μ)〉

λ − μ
. (3.2)

The resolvent I − R of I + V exists if det [I + V ] �= 0. In that case, one
defines

∣∣FR (λ)
〉

as the unique solution to the integral equation:

∣∣FR (μ)
〉

+
∫ q

−q
V (μ, λ)

∣∣FR (λ)
〉
dλ =

∣∣ER (μ)
〉
,

∣∣FR (λ)
〉

=
2 sin [πν (λ)]

iπ

(
F1 (λ)
F2 (λ)

)
(3.3)

where the integration is to be understood entry-wise.
〈
FL (λ)

∣∣ corresponds
to the solution of the integral equation where

∣∣ER (λ)
〉

has been replaced
with

〈
EL (λ)

∣∣. It was shown in [26] that the resolvent kernel can be repre-
sented as:

R(λ, μ) =
〈FL (λ) | FR (μ)〉

λ − μ
. (3.4)

It is well know since the results established in [14, 24, 26] that the study of
many properties (construction of the resolvent, calculation of the Fredholm
determinant, construction of a system of partial differential equations for
the determinant) of the so-called integrable integral operators I + V can be
deduced from the solution of a certain RHP. In the case of the kernel of
interest, this RHP reads
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• χ is analytic on C \ [−q ; q ] and has continuous boundary values on
]−q ; q [;

• χ (λ) = O
(

1 1
1 1

)
log

∣∣λ2 − q2
∣∣ for λ → ±q;

• χ (λ) = I2 + λ−1O
(

1 1
1 1

)
uniformly in λ → ∞;

• χ+ (λ)Gχ (λ) = χ− (λ) for λ ∈ ]−q ; q [ .

We remind that χ± stands for the ± boundary value of χ from the ±-side
of its jump curve.

The jump matrix Gχ (λ) appearing in the formulation of this RHP reads

Gχ (λ) = I2 + 4 sin2 [πν (λ)]
(

E (λ)
e (λ)

)
(−e (λ) , E (λ)) . (3.5)

The above RHP admits a solution as long as det [I + V ] �= 0. Indeed, it has
been shown in [26] that the matrix

χ(λ) = I2 −
∫ q

−q

∣∣FR(μ)
〉 〈

EL(μ)
∣∣

μ − λ
dμ,

χ−1(λ) = I2 +
∫ q

−q

∣∣ER(μ)
〉 〈

FL(μ)
∣∣

μ − λ
dμ. (3.6)

solves the above RHP. This solution is in fact unique, as can be seen by
standard arguments [2]. It follows [26] readily from (3.6) that the solution
χ (λ) allows one to construct

∣∣FR (λ)
〉

and
〈
FL (μ)

∣∣:
∣∣FR (λ)

〉
= χ (λ)

∣∣ER (λ)
〉
,

〈
FL (λ)

∣∣ =
〈
EL (λ)

∣∣χ−1 (λ) . (3.7)

3.2 Relation between χ and det [I + V ]

One can express partial derivatives of det [I + V ] in respect to the various
parameters entering in the definition of V (λ, μ) in terms of the solution
χ (λ) to the above RHP. We will derive a set of such identities below. These
will play an important role in our analysis.

Proposition 3.1. Let η ≥ 0 and Γ (CE) be a loop in U enlacing counter-
clockwisely CE and such that it goes to infinity in the regions where eiηu(z),
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η > 0 is decaying exponentially fast. Then,

∂x log det [I + V ] = −i
∂

∂η

{∮
Γ(CE)

dz

4π
eiηu(z)tr[(∂zχ) (z)

× (σ3 + 2C
[
e−2

]
(z)σ+)χ−1 (z)]

}

η=0+

, (3.8)

∂λ0 log det [I + V ] = x

{∮
Γ(CE)

dz

4π
[∂λ0u (z)] eiηu(z)tr[(∂zχ) (z)

× (σ3 + 2C
[
e−2

]
(z)σ+)χ−1 (z)]

}

η=0+

. (3.9)

There, C [f ] stands for the Cauchy transform on CE and C± [G] for its ±
boundary values on CE. One has more explicitly

C [G] (λ) =
∫

CE

G (μ)
μ − λ

dμ

2iπ
, and C+ [G] (λ) − C− [G] (λ) = G (λ) ,

for λ ∈ CE . (3.10)

Proof. The proof goes along similar lines to [32]. It is straightforward that

∂x log det [I + V ] =
∫ q

−q
[∂xV · (I − R)] (λ, λ) dλ. (3.11)

In order to transform (3.11) into (3.8), one should start by writing a conve-
nient representation for ∂xV (λ, μ). One has that

∂xe (λ) = − i

2
u (λ) e (λ) ,

∂xE (λ) =
i

2
u (λ) E (λ) − e (λ)

∫
CE

ds

2π

u (s) − u (λ)
s − λ

e−2 (s) . (3.12)

The last integral can be recast in a more convenient form

∫
CE

dμ

2π

u (μ) − u (λ)
μ − λ

e−2 (μ)

=
∫

CE

dμ

2π

∮
Γ({λ,μ})

dz

2iπ
u (z)

(z − λ) (z − μ)
e−2 (μ)
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= −i
∂

∂η

{∫
CE

dμ

2π

∮
Γ({λ,μ})

d

2iπ
eiηu(z)

(z − λ) (z − μ)
e−2 (μ)

}

η=0+

= −i
∂

∂η

{∫
CE

dμ

2π

∮
Γ(CE)

dz

2iπ
eiηu(z)

(z − λ) (z − μ)
e−2 (μ)

}

η=0+

= −i
∂

∂η

{∮
Γ(CE)

dz

2iπ
eiηu(z)

(z − λ)

∫
CE

dμ

2π

e−2 (μ)
z − μ

}

η=0+

= i
∂

∂η

{∮
Γ(CE)

dz

2π

eiηu(z)C
[
e−2

]
(z)

(z − λ)

}

η=0+

. (3.13)

We first have replaced the ratio of differences by a contour integral on
Γ ({λ, μ}). Here Γ ({λ, μ}) consists of two small loops around the points
λ and μ. In order to manipulate convergent integrals, we then wrote the
integral as an η-derivative. The derivative symbol could then be taken out
of the integral. Next we deformed the contour of integration from a compact
one Γ ({λ, μ}) into Γ (CE). Such a replacement is allowed as CE is chosen
precisely in such a way so as to make eiηu(λ), η > 0, decay exponentially
on a small neighborhood of CE where one can draw Γ (CE). Such a choice
of contours allows us to satisfy to the hypothesis of Fubini’s theorem and
hence permute the orders of integration. Also, we stress that one should
compute the η-derivative only once that all integrals have been computed.
Indeed, for generic choices of functions u, permuting the η-derivation with
the λ-integration in the last line of (3.13), leads to an apriori divergent
integral.

Once that this differential identity is established, one readily convinces
oneself that

∂xV (λ, μ) = i
∂

∂η

{∮
Γ(CE)

eiηu(z)

(z − λ) (z − μ)

× 〈EL (λ) | (σ3 + 2C
[
e−2

]
(z)σ+

) | ER (μ)〉dz

4π

}
η=0+

.

(3.14)

Denoting S (z) = σ3 + 2C
[
e−2

]
(z) σ+, using the representation (3.4) of the

resolvent R and the fact that 〈FL(λ) | FR(μ)〉 = tr
[∣∣FR(μ)

〉 〈
FL(λ)

∣∣],
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we get

∂x log det [I + V ] = i
∂

∂η

{∮
Γ(CE)

dz

4π
eiηu(z)

×
∫ q

−q
dλ

〈
EL (λ)

∣∣S (z)
∣∣ER (λ)

〉
(z − λ)2

}

η=0+

− i
∂

∂η
tr

{∮
Γ(CE)

dz

4π
eiηu(z)

∫ q

−q
dλdμ

∣∣FR (λ)
〉 〈

EL (λ)
∣∣

×
(

1
λ − z

− 1
λ − μ

)
S (z)

∣∣ER (μ)
〉 〈

FL (μ)
∣∣

(μ − z)2

}

η=0+

.

(3.15)

Using the integral expressions (3.6) for χ and χ−1, we obtain

∂x log det [I + V ] = i
∂

∂η

{∮
Γ(CE)

dz

4π
eiηu(z)

∫ q

−q
dλ

〈
EL (λ)

∣∣S (z)
∣∣ER (λ)

〉
(z − λ)2

− i
∂

∂η
tr

[∮
Γ(CE)

dz

4π
eiηu(z)

∫ q

−q
dμ (χ(μ) − χ(z))

× S (z)

∣∣ER(μ)
〉 〈

FL(μ)
∣∣

(μ − z)2

]}

η=0+

= −i
∂

∂η

{∮
Γ(CE)

dz

4π
eiηu(z)tr

{
∂zχ (z) S (z) χ−1 (z)

}}

η=0+

,

(3.16)

where we used (3.7). The proof of identity (3.9) goes along very similar
lines. �

4 The first set of transformations on the RHP

We now perform several transformations on the original RHP. We first sim-
plify the form of the oscillating functions E appearing in the formulation of
the RHP. This step in carried in the spirit of [28]. Then, we map this new
RHP into one whose jump matrix can be written as the identity plus some
purely off-diagonal matrix. Finally, we apply the non-linear steepest descent
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method by deforming the contour so as to obtain jump matrices that are a
O (x−∞) uniformly away from ±q and λ0. These last steps are a standard
implementation of the Deift–Zhou steepest descent method [16, 17].

4.1 Simplification of the function E

In order to replace the complicated function E by e−1, we perform the
substitution

χ (λ) = χ̃ (λ)
(
I2 + σ+C

[
e−2

]
(λ)

)
, (4.1)

where C is the rational Cauchy transform with support on CE defined in
(3.10).

It is readily checked that this new matrix χ̃ is the unique solution to the
RHP

• χ̃ is analytic on C \ CE and has continuous boundary values on
CE \ {±q};

• χ̃ (λ) = I2 + λ−1O
(

1 1
1 1

)
, uniformly in λ → ∞;

• χ̃ (λ) = O
(

1 1
1 1

)
log

∣∣λ2 − q2
∣∣ for λ → ±q;

• χ̃+ (λ)Gχ̃ (λ) = χ̃− (λ) for λ ∈ CE .

The jump matrix for χ̃ takes two different forms

Gχ̃ (λ) =

(
e−2iπν(λ) 0

e2iπν(λ)e2 (λ)
(
e−2iπν(λ) − 1

)2
e2iπν(λ)

)
, for λ ∈ ]−q ; q [

(4.2)
and

Gχ̃ (λ) =
(

1 e−2 (λ)
0 1

)
, for λ ∈ CE \ [−q ; q ] . (4.3)

The existence and uniqueness of solutions for the RHP for χ̃ ensures that
there is a one-to-one correspondence between χ and χ̃.
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4.2 Uniformization of the jump matrices

We now carry out the second substitution that will yield an RHP with
upper or lower diagonal jump matrices whose diagonal is the identity. For
this purpose, we define

α (λ) = κ (λ)
(

λ + q

λ − q

)ν(λ)

, where log κ (λ) = −
∫ q

−q

ν (λ) − ν (μ)
λ − μ

dμ.

(4.4)

The function α (λ) is holomorphic on C \ [−q ; q ], α (λ) −→
λ→∞

1 and satisfies

to the jump condition

α+ (λ) e2iπν(λ) = α− (λ) , for λ ∈ ]−q ; q [ . (4.5)

Then we set

Ξ (λ) = χ̃ (λ) ασ3 (λ) . (4.6)

The matrix Ξ (λ) is the unique solution to the RHP:

• Ξ is analytic on C \ CE and has continuous boundary values on
CE \ {±q};

• Ξ(λ) = O
(

1 1
1 1

)
(λ − q)−σ3ν(q) (λ + q)σ3ν(−q) log

∣∣λ2 − q2
∣∣ for λ → ±q;

• Ξ(λ) = I2 + λ−1O
(

1 1
1 1

)
uniformly in λ → ∞;

• Ξ+(λ)GΞ(λ) = Ξ−(λ) for λ ∈ CE .

The new jump matrix GΞ (λ) reads

GΞ =
(

1 α−2e−2

0 1

)
λ ∈ CE \ [−q ; q ] and

GΞ =
(

1 0
e2iπνα+α−e2

(
e−2iπν − 1

)2 1

)
λ ∈ ]−q ; q [ .

Again, there is a one-to-one correspondence between Ξ and χ.
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4.3 Deformation of the contour

We now perform the third substitution that will result in a change of the
shape of jump contour. Due to the fact that e±1 (λ) are exponentially small
in x in appropriate regions of the complex plane, we will end up with an
RHP for an unknown matrix Υ whose jump matrices are I2 + O (x−∞) and
this for λ uniformly away from the points ±q and λ0.

4.3.1 The time-like regime

We first introduce three auxiliary matrices M (λ) and N (L/R) (λ)

M (λ) =
(

1 α−2 (λ) e−2 (λ)
0 1

)
= I2 + P (λ) σ+, (4.7)

N (L) (λ) =
(

1 0
α2− (λ) e2 (λ)

(
e−2iπν(λ) − 1

)2
1

)
= I2 + Q(L) (λ)σ−,

N (R) (λ) =
(

1 0
α2

+ (λ) e4iπν(λ)e2 (λ)
(
e−2iπν(λ) − 1

)2
1

)
= I2 + Q(R) (λ) σ−.

(4.8)

Note that although the matrices N (R/L) (λ) have different expressions, they
coincide on U due to the jump conditions for α (λ). It is clear from its
very definition that N (L) (λ), resp. N (R) (λ), has an analytic continuation
to some neighborhood of [−q ; q ] in the lower, resp. upper, half-plane. Also,
the matrix M (λ) has an analytic continuation to U \ [−q ; q ] starting from
CE \ [−q ; q ].

The functions P and Q(L) and Q(R) have the local parameterizations
around ±q

P (λ) = eiζ−q [ζ−q]
−2ν(λ) e2iπν(λ) − 1

C(L) (λ)
for λ ∈ ∂D−q,δ,

P (λ) = e−iζq [ζq]
2ν(λ) e2iπν(λ) − 1

C(R) (λ)
, for λ ∈ ∂Dq,δ, (4.9)

Q(L) (λ) = C(L) (λ) e−iζ−q [ζ−q]
2ν(λ) (e2iπν(λ) − 1) and

Q(R) (λ) = C(R) (λ) eiζq [ζq]
−2ν(λ) (e2iπν(λ) − 1). (4.10)
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Figure 2: Contour ΣΥ = Γ(L)
↑ ∪ Γ(L)

↓ ∪ Γ(R)
↑ ∪ Γ(R)

↓ appearing in the RHP for
Υ (time-like regime).

There ζ−q = x (u (λ) − u (−q)) and ζq = x (u (q) − u (λ)) and we have set

C(L) (λ) = −κ2 (λ) e−g(λ)−ixu(−q)

[x (q − λ)]2ν(λ)

(
λ + q

u (λ) − u (−q)

)2ν(λ)

(e−2iπν(λ) − 1),

C(R) (λ) =
−κ2 (λ)

eg(λ)+ixu(q)

(
u (λ) − u (q)

λ − q
+ i0+

)2ν(λ)

× [x (λ + q)]2ν(λ) (e−2iπν(λ) − 1). (4.11)

We now define a piecewise analytic matrix Υ according to figure 2. We
will be more specific about the choice of the contours Γ(L/R)

↑/↓ around the
points ±q and λ0 when we will be constructing the local parametrices. Here,
we only precise that the jump contour for Υ remains in U and that all
jump curves are chosen so that, for a fixed z ∈ Γ(L)

↑ ∪ Γ(R)
↑ \ {±q, λ0} (resp.

z ∈ Γ(L)
↓ ∪ Γ(R)

↓ ), eixu(z) (resp. e−ixu(z)) is exponentially small in x. The

matrix Υ is discontinuous across the curve ΣΥ = Γ(L)
↑ ∪ Γ(L)

↓ ∪ Γ(R)
↑ ∪ Γ(R)

↓ .
One readily checks that the matrix Υ is the unique solution of the below
RHP (and hence there is a one-to-one correspondence between χ and Υ):

• Υ is analytic on C \ ΣΥ and has continuous boundary values on
ΣΥ \ {±q};

• Υ(λ) = O
(

1 1
1 1

)
(λ − q)−σ3ν(q) (λ + q)σ3ν(−q) log

∣∣λ2 − q2
∣∣ for λ → ±q;

• Υ(λ) = I2 + λ−1O
(

1 1
1 1

)
uniformly in λ → ∞;

• Υ+(λ)GΥ(λ) = Υ−(λ) for λ ∈ ΣΥ \ {±q, λ0}.
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With

GΥ (λ) = M (λ) on Γ(L)
↑ ∪ Γ(R)

↓ , GΥ (λ) = N (L) (λ) on Γ(L)
↓ and

GΥ (λ) = N (R) (λ) on Γ(R)
↑ . (4.12)

4.3.2 The space-like regime

We introduce two matrices M and N

M =
(

1 α−2e−2

0 1

)
= I2 + P (λ) σ+ and

N =
(

1 0
α2−e2

(
e−2iπν − 1

)2 1

)
= I2 + Q (λ) σ−. (4.13)

The matrix M (λ) has an analytic continuation to U \ [−q ; q ] starting from
CE \ [−q ; q ]. The matrix N (λ) has an analytic continuation to U ∩ H−.

This allows to write convenient local parameterizations around ±q for
P and Q:

P (λ) = eiζ−q [ζ−q]
−2ν(λ) e2iπν(λ) − 1

C(L) (λ)
= −eiζq [ζq]

2ν(λ) e−2iπν(λ) − 1
C(R) (λ)

with
{

ζ−q = x (u (λ) − u (−q)) ,

ζq = x (u (λ) − u (q)) .
(4.14)

Similarly,

Q (λ) = C(L) (λ) e−iζ−q [ζ−q]
2ν(λ) (e2iπν(λ) − 1)

= −C(R) (λ) e−iζq [ζq]
−2ν(λ) (e−2iπν(λ) − 1). (4.15)

Here, we bring to the reader’s attention the difference of signs in the
definition of ζq in the time-like and space-like regimes. Also, the functions
C(L/R) (λ) have been defined in (4.11). The sole difference is that, in the
space-like regime, the +i0+ regularization plays no role.

The matrix Υ (λ) defined in figure 3 is the unique solution to exactly the
same RHP as formulated for the time-like case but with the contours being
defined in figure 3 and the jump matrix being now given by

GΥ (λ) = M (λ) on Γ(L)
↑ ∪ Γ(R)

↑ ∪ Γ(R)
↓ and GΥ (λ) = N (λ) on Γ(L)

↓ .

(4.16)
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Figure 3: Contour ΣΥ = Γ(L)
↑ ∪ Γ(L)

↓ ∪ Γ(R)
↑ ∪ Γ(R)

↓ appearing in the RHP for
Υ (space-like regime).

5 The local parametrices

We now build the parametrices around ±q and λ0. These will allows us
to put the RHP for Υ (and hence the one for χ) in correspondence with
an RHP that has its jump matrices close to the identity, uniformly on its
whole jump contour (in the case of Υ (λ) the jump matrices are close to
the identity only uniformly away from the points λ0 and ±q). The role of
the parametrices is to mimic the complicated local behavior of the solution
χ near the stationary point λ0 and the endpoints ±q. Once again, due to
slight differences between the two regimes, we treat the space-like and the
time-like regimes separately.

5.1 The time-like regime

We recall that for the time-like regime, the functions P (λ) and Q(L/R) (λ)
appearing in the jump matrices are given respectively by (4.9) and (4.10)
with C(L/R) (λ) given by (4.11).

5.1.1 The parametrix around λ0

It follows from the assumptions gathered in Section 2.1, that the function
u admits a local parameterization around λ0, i.e., there exists δ > 0 such
that Dλ0,δ ⊂ U and a holomorphic function h on some open neighborhood
of Dλ0,δ such that u (λ) − u (λ0) = −ω2 (λ) with ω (λ) = (λ − λ0) h (λ), and
h
(Dλ0,δ ∩ H±

) ⊂ H±.
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Figure 4: Contours appearing in the local RHP around λ0 in the time-like
case.

The curves Γ(L/R)
↓/↑ in Dλ0,δ are defined according to figure 4.

The parametrix P0 around λ0 reads

P0 (λ) = I2 − b21 (λ) e−iπ
4
ω (λ)

√
πx

2iπ
Ψ

(
1,

3
2
; ixω2 (λ)

)
σ−. (5.1)

There, Ψ (a, b; z) is Tricomi’s confluent hypergeometric function whose
definition is recalled in appendix A. The function b21 is defined piecewise:

b21 (λ) = α2 (λ) e−ixu(λ0)−g(λ)(e−2iπν(λ) − 1)2, for λ ∈ H
− ∩ Dλ0,δ, (5.2)

b21 (λ) = α2 (λ) e4iπν(λ)e−ixu(λ0)−g(λ)(e−2iπν(λ) − 1)2, for λ ∈ H
+ ∩ Dλ0,δ.

(5.3)

It is holomorphic on Dλ0,δ due to the jump condition satisfied by α (4.5).

The paramertix P0 solves the RHP:

• P0 is analytic in Dλ0,δ \
{

Γ(R)
↑ ∪ Γ(L)

↓
}
∩ Dλ0,δ with continuous bound-

ary values on
{

Γ(R)
↑ ∪ Γ(L)

↓
}
∩ Dλ0,δ;

• P0 = I2 +
1√
x

O (σ−) uniformly in λ ∈ ∂Dλ0,δ;

• [P0]+ (λ) (I2 + b21 (λ) eixω2(λ)σ−) = [P0]− (λ).

The first two points in the formulation of the RHP for P0 are obvious.
The validity of the jump conditions can be checked with the help of identity
(A.1).
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5.1.2 The parametrix at −q

The parametrices for the local RHPs at ±q are well known. They have
already appeared in a series of works [4, 11, 32] and can be constructed from
the differential equation method [22]. Here, we recall their form.

The parametrix P−q around −q reads

P−q (λ) = Ψ (λ)L (λ) [x (u (λ) − u (−q))]ν(λ)σ3 e−
iπν(λ)

2 , (5.4)

Ψ (λ) =
(

Ψ (ν (λ) , 1;−ix [u (λ) − u (−q)])
−ib21(λ) Ψ (1 + ν (λ) , 1;−ix [u (λ) − u (−q)])

ib12(λ) Ψ (1 − ν (λ) , 1; ix [u (λ) − u (−q)])
Ψ (−ν (λ) , 1; ix [u (λ) − u (−q)])

)
, (5.5)

b12 (λ) = −i
sin [πν (λ)]
πC(L) (λ)

Γ2 (1 − ν (λ))

b21 (λ) = −i
πC(L) (λ)

sin [πν (λ)] Γ2 (−ν (λ))

, so that b12 (λ) b21 (λ) = −ν2 (λ) .

(5.6)

C(L) (λ) is given by (4.11) and

L (λ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

I2 −π/2 < arg [u (λ) − u (−q)] < π/2,(
1 0
0 e2iπν(λ)

)
π/2 < arg [u (λ) − u (−q)] < π,

(
e2iπν(λ) 0

0 1

)
−π < arg [u (λ) − u (−q)] < −π/2.

(5.7)

P−q is an exact solution of the RHP:

• P−q is analytic on D−q,δ′ \
{

Γ(L)
↑ ∪ Γ(L)

↓
}

with continuous boundary

values on
{

Γ(L)
↑ ∪ Γ(L)

↓
}
\ {−q};

• P−q(λ) = O
(

1 1
1 1

)
(λ + q)σ3ν(−q) log |λ + q| , λ −→ −q;

• P−q (λ) = I2 +
1

x1−ρδ
O

(
1 1
1 1

)
, uniformly in λ ∈ ∂D−q,δ′ ;

•
{

[P−q]+ (λ) M (λ) = [P−q]− (λ) for λ ∈ Γ(L)
↑ ∩ D−q,δ′ ;

[P−q]+ (λ) N (L) (λ) = [P−q]− (λ) for λ ∈ Γ(L)
↓ ∩ D−q,δ′ .
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Figure 5: Contours for the local RHP around −q in the time-like case.

Here, we have set

ρδ′ = 2 sup
{∣∣
 (ν (λ)) : λ ∈ ∂D±q,δ′ ∪ ∂D−q,δ′

∣∣} < 1. (5.8)

The fact that ρδ′ < 1 for sufficiently small δ′ is a consequence of the assump-
tions that |
 (ν (±q))| < 1/2. The canonically oriented contour ∂D−q,δ′

together with the definition of the contours Γ(L)
↑/↓ is depicted in figure 5.

δ′ > 0 is chosen in such a way that D±q,δ′ ⊂
◦
U , D±q,δ′ ∩ Dλ0,δ = ∅ and

Dq,δ′ ∩ D−q,δ′ = ∅. Playing with the δ entering in the definition of the
parametrix P0, one can tune it in such a way that δ′ = δ. We shall assume
such a choice in the following.

5.1.3 The parametrix at q

The parametrix Pq around q reads

Pq (λ) = Ψ (λ) L (λ) [x (u (q) − u (λ))]−ν(λ)σ3 e−
iπν(λ)

2 . (5.9)

Here,

Ψ (λ) =
(

Ψ (−ν (λ) , 1;−ix [u (λ) − u (q)])
−i b̃21 (λ) Ψ (1 − ν (λ) , 1;−ix [u (λ) − u (q)])

i b̃12 (λ) Ψ (1 + ν (λ) , 1; ix [u (λ) − u (q)])
Ψ (ν (λ) , 1; ix [u (λ) − u (q)])

)
, (5.10)

b̃12 (λ) = i
π
[
C(R) (λ)

]−1

Γ2 (−ν (λ)) sin [πν (λ)]
b̃21 (λ) = iπ−1Γ2 (1 − ν (λ))C(R) (λ) sin [πν (λ)]

, b̃12 (λ) b̃21 (λ) = −ν2 (λ) .

(5.11)
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Figure 6: Contours for the local RHP around q in the time-like case.

C(R) (λ) is given by (4.11) and

L (λ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

I2 −π/2 < arg [u (q) − u (λ)] < π/2,(
e2iπν(λ) 0

0 1

)
π/2 < arg [u (q) − u (λ)] < π,

(
1 0
0 e2iπν(λ)

)
−π < arg [u (q) − u (λ)] < −π/2.

(5.12)

Pq is an exact solution of the RHP:

• Pq is analytic on Dq,δ \
{

Γ(R)
↑ ∪ Γ(R)

↓
}
∩ Dq,δ and has continuous

boundary values on
{

Γ(R)
↑ ∪ Γ(R)

↓
}
∩ Dq,δ \ {q};

• Pq(λ) = O
(

1 1
1 1

)
(λ − q)−σ3ν(q) log |λ − q| , λ −→ q;

• Pq(λ) = I2 +
1

x1−ρδ
O

(
1 1
1 1

)
, uniformly in λ ∈ ∂Dq,δ;

•
{

[Pq]+ (λ) N (R) (λ) = [Pq]− (λ) for λ ∈ Γ(R)
↑ ∩ Dq,δ \ {q} ,

[Pq]+ (λ) M (λ) = [Pq]− (λ) for λ ∈ Γ(R)
↓ ∩ Dq,δ \ {q} .

The canonically oriented contour ∂Dq,δ together with the definition of the
curves Γ(R)

↑/↓ in the vicinity of q is depicted in figure 6. Note the change of
orientation of the jump curve due to u′ (q) < 0. Also ρδ is as given in (5.8).

5.1.4 Asymptotically analysable RHP for Π

We now define a piecewise analytic matrix Π in terms of Υ and the para-
metrices according to figure 7. In particular one has Π = Υ everywhere
outside of the disks. The matrix Π has its jump matrices uniformly close
to the identity matrix in respect to the x → +∞ limit. Hence, it can be
computed perturbatively in x by the use [17] of Neumann series expansion
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Figure 7: Contour ΣΠ appearing in the RHP for Π, time-like regime.

for the solution of the singular integral equation equivalent to the RHP for
Π. This matrix Π is the unique solution to the RHP:

• Π is analytic on C \ ΣΠ and has continuous boundary values on ΣΠ;

• Π(λ) = I2 + λ−1O
(

1 1
1 1

)
, uniformly in λ → ∞;

• Π+(λ)GΠ(λ) = Π−(λ) for λ ∈ ΣΠ.

The jump matrix GΠ (λ) for Π (λ) reads

GΠ (λ) = GΥ (λ) on Γ̃ = Γ̃(L)
↑ ∪ Γ̃(L)

↓ ∪ Γ̃(R)
↓ ∪ Γ̃(R)

↑ and

GΠ (λ) =

{
P−1
±q (λ) on −∂D±q,δ,

P−1
0 (λ) on −∂Dλ0,δ.

(5.13)

5.2 Asymptotic expansion for the algebraically small jump
matrices

Note that the jump matrices along Γ̃ are exponentially close to I2 in x and
this in the L1 (ΣΠ) ∩ L2 (ΣΠ) ∩ L∞ (ΣΠ) sense. Only the jump matrices on
the disks are algebraically in x close to the identity matrix. The latter jump
matrices have the below asymptotic expansion into inverse powers of x, valid
uniformly on the boundary of their respective domains of definition (∂D±q,δ

or ∂Dλ0,δ):

P−1
−q (s) � I2 +

∑
n≥0

V (−;n) (s)
(n + 1)! [x (s + q)]n+1 ,
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P−1
q (s) � I2 +

∑
n≥0

V (+;n) (s)
(n + 1)! [x (s − q)]n+1 ,

P−1
0 (s) � I2 + σ− ∑

n≥0

d(n) (s)

xn+ 1
2 (s − λ0)

2n+1
. (5.14)

where

V (−;n) (s) = (−i)n+1

(
s + q

u (s) − u (−q)

)n+1

×
(

(−1)n+1 (−ν)2n+1 i (n + 1) b12 (−1)n+1 (1 − ν)2n
−i (n + 1) b21 (1 + ν)2n (ν)2n+1

)
,

(5.15)

V (+;n) (s) = (−i)n+1

(
s − q

u (s) − u (q)

)n+1

×
(

(−1)n+1 (ν)2n+1 i (n + 1) b̃12 (−1)n+1 (1 + ν)2n
−i (n + 1) b̃21 (1 − ν)2n (−ν)2n+1

)
,

(5.16)

d(n) (s) = − inΓ (1/2 + n)
2π

e−iπ
4

h2n+1 (s)
b21 (s) . (5.17)

We remind that ω (λ) = (λ − λ0)h (λ) and we have used the conditions
det [P±q] = 1 = det [P0] so as to invert the parametrices and then infer their
asymptotic expansion from the one of CHF (A.2). Also, we have not made
explicit that bij , b̃ij and ν are functions of s.

5.3 The space-like regime

The discussion of the space-like regime resembles, up to minor subtelties, to
the previous one. Therefore, we make it as short as possible.

5.3.1 The parametrix around λ0

The parametrix P0 on Dλ0,δ for the local RHP around λ0 reads

P0 (λ) = I2 − b12 (λ) eiπ
4
ω (λ)

√
πx

2iπ
Ψ

(
1,

3
2
;−ixω2 (λ)

)
σ+ with

b12 (λ) = α−2 (λ) eixu(λ0)+g(λ). (5.18)



RIEMANN–HILBERT APPROACH 1685

Figure 8: Contours for the local RHP around λ0 in the space-like case.

b12 is holomorphic on Dλ0,δ. The parametrix P0 is a solution to the RHP

• P0 is analytic in Dλ0,δ \
{

Γ(R)
↑ ∪ Γ(R)

↓
}
∩ Dλ0,δ and has continuous

boundary values on
{

Γ(R)
↑ ∪ Γ(R)

↓
}
∩ Dλ0,δ;

• P0 = I2 +
1√
x

O (σ+) uniformly in λ ∈ ∂Dλ0,δ;

• [P0]+ (λ)
(
I2 + b12 (λ) e−ixω2(λ)σ+

)
= [P0]− (λ).

The jump curve for the parametrix P0 is depicted in figure 8.

5.3.2 The parametrix around −q

This parametrix P−q is exactly the same as in the time-like regime. Hence,
we do not present it here.

5.3.3 The parametrix around q

The parametrix Pq around q reads

Pq (λ) = Ψ (λ) L (λ) [x (u (λ) − u (q))]−ν(λ)σ3 e
iπν(λ)

2 . (5.19)

Here,

Ψ (λ) =
(

Ψ (−ν (λ) , 1;−ix [u (λ) − u (q)])
−i b̃21 (λ) Ψ (1 − ν (λ) , 1;−ix [u (λ) − u (q)])

i b̃12 (λ) Ψ (1 + ν (λ) , 1; ix [u (λ) − u (q)])
Ψ (ν (λ) , 1; ix [u (λ) − u (q)])

)
, (5.20)

b̃12 (λ) = i
Γ2 (1 + ν (λ))

πC(R) (λ)
sin [πν (λ)]

b̃21 (λ) =
iπC(R) (λ)

Γ2 (ν (λ)) sin [πν (λ)]

, b̃12 (λ) b̃21 (λ) = −ν2 (λ) . (5.21)



1686 K.K. KOZLOWSKI

Figure 9: Contours for the parametrix around q in the space-like regime.

C(R) is given by (4.11) and

L (λ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

I2 −π/2 < arg [u (λ) − u (q)] < π/2,(
1 0
0 e−2iπν(λ)

)
π/2 < arg [u (λ) − u (q)] < π,

(
e−2iπν(λ) 0

0 1

)
−π < arg [u (λ) − u (q)] < −π/2.

(5.22)

Pq is an exact solution of the RHP:

• Pq is analytic on Dq,δ \
{

Γ(R)
↑ ∪ Γ(R)

↓
}
∩ Dq,δ with continuous bound-

ary values on
{

Γ(R)
↑ ∪ Γ(R)

↓
}
∩ Dq,δ \ {q};

• Pq(λ) = O
(

1 1
1 1

)
(λ − q)−σ3ν(q) log |λ − q| , λ −→ q;

• Pq(λ) = I2 +
1

x1−ρδ
O

(
1 1
1 1

)
, uniformly in λ ∈ ∂Dq,δ;

•
{

[Pq]+ (λ) M (λ) = [Pq]− (λ) for λ ∈ Γ(R)
↑ ∩ Dq,δ,

[Pq]+ (λ) N (λ) = [Pq]− (λ) for λ ∈ Γ(R)
↑ ∩ Dq,δ.

The canonically oriented contour ∂Dq,δ as well as the definition of the
jump curves Γ(L/R)

↓/↑ is depicted in figure 9. Finally, ρδ has been defined
in (5.8).

5.3.4 The RHP for Π

The matrix Π is defined according to figure 10 and is the unique solution
to the RHP formulated in exactly the same way as for the time-like regime.
The difference consists in the precise form of the contours due to the fact
that in the space-like regime λ0 > q.
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Figure 10: Contour ΣΠ appearing in the RHP for Π, space-like regime.

5.4 The asymptotic expansion for the parametrices

The jump matrices P−1
±q have the same asymptotic expansion as in the time-

like regime (5.14) with the sole exception that the coefficients b̃12, b̃21 enter-
ing in the definition of V (+;n) (5.16) are now given by (5.21). The matrix
P−1

0 has the below asymptotic expansion

P−1
0 (s) � I2 + σ+

∑
n≥0

d(n) (s)

xn+ 1
2 (s − λ0)

2n+1
with

d(n) (s) = b12 (s) (−i)n Γ (1/2 + n)
2π

eiπ
4

h2n+1 (s)
. (5.23)

6 Asymptotic expansion of the Fredholm determinant

Starting from now on, we will treat both regimes (space and time-like) simul-
taneously.

6.1 The asymptotic expansion for Π

In this subsection we present two ways of writing down the asymptotic
expansion for the matrix Π. The first, given in Proposition 6.1, traces back
all the different fractional powers of x and oscillating terms that appear in
the asymptotic expansion of Π. It also provides one with a sharp and quite
optimal control of the remainders. The second one, given in Proposition 6.2,
is considerably less explicit and, by far, does not provide optimal estimates
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Figure 11: The inslotted contour for N = 2. The integration over z1 runs
through the dotted contour whereas the one over z2 runs through the full
one. ∂D [zi] refers to the three disks over which the variable zi is integrated.

for the remainders. However, it is easier to implement from the computa-
tional point of view, especially when one is interested in calculating only a
couple of terms in the asymptotics. One can then build on the first asymp-
totic expansion so as to on the one hand argue for a sharper form of the
estimates for the remainders and on the other hand identify which among
the computed terms are relevant and which are not. We start this section
by presenting the Neumann series expansion for Π.

Definition 6.1. Let ΣΠ be the jump contour for the matrix Π. We define
the contour Σ(N)

Π as being the inslotted version of the N-fold Carthesian
product ΣΠ × · · · × ΣΠ. Namely it is obtained from ΣΠ × · · · × ΣΠ by
putting the contour for zk+1 slightly shifted to the right from the contour
for zk. We have depicted the inslotted contour for N = 2 in figure 11.

Let prk stands for the projection on the kth factor of an N-fold Carthesian
product, i.e., given z = (z1, . . . , zN ) one has prk (z) = zk. The contour Σ(N)

Π

thus defines N curves ΣΠ [zk] ≡ prk(Σ
(N)
Π ), k = 1, . . . , N . Each of these can

be interpreted as giving rise to the jump contour for the RHP problem
associated with the matrix Π. In the following whenever Δ, resp. ∇, is
integrated along ΣΠ [zk], it should be understood as originating from the
jump matrix I2 + Δ, resp. I2 + ∇, appearing in the RHP for Π, resp. Π−1,
when the latter is formulated on the jump contour ΣΠ [zk].

Lemma 6.1. Let I + Δ be the jump matrix for Π and ∇ = Comat (Δ)t be
the transpose of the adjugate matrix to Δ. Then, for x-large enough, the
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matrices Π and Π−1 admit the below uniformly convergent Neumann series

Π (λ) = I2 +
∑
N≥1

∫
Σ

(N)
Π

dNz

(2iπ)N

Δ (zN ) . . .Δ (z1)

(λ − z1)
N−1∏
s=1

(zs − zs+1)
, (6.1)

Π−1 (λ) = I2 +
∑
N≥1

∫
Σ

(N)
Π

dNz

(2iπ)N

∇ (z1) . . .∇ (zN )

(λ − z1)
N−1∏
s=1

(zs − zs+1)
. (6.2)

The convergence holds in L∞ (O) sense for λ ∈ O, with O any subset of C

such that d (O, ΣΠ) > 0. Also, it holds for λ± ∈ ΣΠ in the L2 (ΣΠ) sense.
Finally, the matrices Δ and ∇ that are integrated along the inslotted contour
Σ(N)

Π should be understood according to definition 6.1.

Proof. We define two linear operators on 2 × 2 L2 (ΣΠ)-valued matrices

CΔ
ΣΠ

[M ] (λ) =
∫

ΣΠ

ds

2iπ (λ+ − s)
M (s) Δ (s) and

tC∇
ΣΠ

[M ] (λ) =
∫

ΣΠ

ds

2iπ (λ+ − s)
∇ (s) M (s) . (6.3)

Using that for sufficiently regular, not necessarily bounded, contours ΣΠ,
the ± limits of the Cauchy transform with support on ΣΠ are continuous
operators on L2 (ΣΠ) with norm c (ΣΠ) [31], it is easy to see that that the
two above operators are also continuous2 on the space M2

(
L2 (ΣΠ)

)
of

2 × 2 matrices with L2 (ΣΠ) entries:

∥∥CΔ
ΣΠ

[M ]
∥∥

L2(ΣΠ)
≤ 2c (ΣΠ) ‖Δ‖L∞(ΣΠ) ‖M‖L2(ΣΠ) (6.4)∥∥tC∇

ΣΠ
[M ]

∥∥
L2(ΣΠ)

≤ 2c (ΣΠ) ‖Δ‖L∞(ΣΠ) ‖M‖L2(ΣΠ) (6.5)

There we made use of the fact that ∇ is the transpose of the adjugate
matrix to Δ so that ‖Δ‖L∞(ΣΠ) = ‖∇‖L∞(ΣΠ) and ‖Δ‖L2(ΣΠ) = ‖∇‖L2(ΣΠ).

It is a standard fact [5] that there is a one-to-one correspondence between
the solution to the RHP for Π (or Π−1) and the unique solution to the

2By interchanging the roles of Δ and M , it is easy to see that CΔ
ΣΠ

is continuous on

M2 (L∞ (ΣΠ)) since Δ ∈ L2 (ΣΠ).
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singular integral equations

Π+ − CΔ
ΣΠ

[Π+] = I2 and Π−1
+ −t C∇

ΣΠ

[
Π−1

+

]
= I2. (6.6)

Indeed, provided that Π+ is known, the matrix Π (or Π−1) admits the below
integral representation for λ away from ΣΠ

Π (λ) = I2 +
∫

ΣΠ

ds

2iπ (λ − s)
Π+ (s) Δ (s) and

Π−1 (λ) = I2 +
∫

ΣΠ

ds

2iπ (λ − s)
∇ (s) Π−1

+ (s) . (6.7)

The estimates for the jump matrices on the boundary of the discs ∂D±q,δ and
∂Dλ0,δ and the specific choice for the shape of the contour ΣΠ at infinity
lead to ‖Δ‖L2(ΣΠ) + ‖Δ‖L∞(ΣΠ) = O (x−w) with w = min (1/2, 1 − ρδ) > 1
and ρδ defined in (5.8). This implies that for x-large enough the operators
I − CΔ

ΣΠ
and I −t C∇

ΣΠ
are invertible and that their inverse can be computed

by a Neumann series expansion converging in L2 (ΣΠ):

Π+ (λ) = I2 +
∑
N≥1

{CΔ
ΣΠ

}N
[I2] (λ)

= I2 +
∑
N≥1

∫
ΣΠ

dNz

(2iπ)N

Δ (zN ) . . .Δ (z1)

(λ+ − z1)
N−1∏
s=1

(
[zs]+ − zs+1

) . (6.8)

Π−1
+ (λ) = I2 +

∑
N≥1

{
tC∇

ΣΠ

}N
[I2] (λ)

= I2 +
∑
N≥1

∫
ΣΠ

dNz

(2iπ)N

∇ (z1) . . .∇ (zN )

(λ+ − z1)
N−1∏
s=1

(
[zs]+ − zs+1

) . (6.9)

Where
{
CΔ

ΣΠ

}N
= CΔ

ΣΠ
◦ · · · ◦ CΔ

ΣΠ
stands for the composition of N operators

CΔ
ΣΠ

. In (6.8)–(6.9) the integration runs across the Carthesian product of N
copies of ΣΠ: ΣΠ × · · · × ΣΠ.

The fact that Π±1 (λ) admits a uniformly convergent Neumann series for
λ belonging to any open set O at finite distance from ΣΠ follows from the
L2 (ΣΠ) convergence of the series (6.8)–(6.9), the fact that Δ ∈
M2

(
L2 (ΣΠ) ∩ L1 (ΣΠ)

)
, and that d (O, ΣΠ) > 0.
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Figure 12: Construction of the inslotted contour.

Figure 13: Deformation of the circles.

Finally, it is easy to check that one gets the expression for Π (λ) (resp.
Π−1 (λ)) on C \ ΣΠ by replacing the + type regularization λ+ of λ in (6.8)
(resp. (6.9)) by λ ∈ C \ ΣΠ.

The N th summand of the Neumann series for Π±1
+ can be expressed in

a regularized form by deforming the original contour ΣΠ × · · · × ΣΠ to the
inslotted one Σ(N)

Π . The latter manipulation is possible due to the properties
of the locally analytic matrices Δ (z) and ∇ (z). It allows one to get rid of
the + regularization in the integrals.

The construction of the inslotted contour Σ(N)
Π is depicted in figures 12

and 13. Initially, the integral is performed with the use of the + boundary
value of z1 on the integration contour for z2. Hence, away from the points
of triple intersections ci, we can deform the integration contour for z1 to
the + side of the integration contour for z2. One ends up with a contour as
depicted in figure 12. There, the dotted lines correspond to the integration
contour for z1 whereas the full lines give the integration contour for z2. One
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then proceeds inductively in this way up to zN . As λ is assumed to lie
uniformly away from the original contour ΣΠ, there is no problem to deform
the integration contour for z1 in the vicinity of ΣΠ as the pole at z1 = λ is
lying “far” away.

It remains to threat the integration on the intersection points of the disks
∂D[zj ] with the curves Γ̃(L/R)

↑/↓ [zj ]. We first reduce the most interior disc
(the one over which zN is integrated and then the procedure is repeated by
induction) to smaller a one. The jump matrices Δ have different analytic
continuations from the right and left of the points ci (this corresponds to
the discontinuity lines of P0 and P±). Taking this difference into account
produces the small extensions of the contours Γ(L/R)

↑/↓ [zN ] as depicted on
the right part of figure 13 together with smaller discs ∂D [zN ]. It is in this
way that the matrix Δ integrated over ΣΠ [zN ] is identified with the one
stemming from the jump matrix for Π when the latter is defined as in (5.13)
but with jumps on ΣΠ [zN ] (what corresponds to slight deformations of the
curves Γ̃(L/R)

↑/↓ ). �

Proposition 6.1. The matrix Π admits the series expansion

Π (λ) = I2 +
∞∑

N≥1

ΠN (λ)
xN

, (6.10)

that is valid uniformly away from ΣΠ and also on the boundary ΣΠ in the
sense of L2 (ΣΠ) boundary values. The coefficients ΠN of this expansion
take the form

ΠN (λ) = AN (λ) +
[N/2]∑

m=−[N
2 ]

eixm[u(q)−u(−q)]

x2m[ν(q)+ν(−q)]
Π(m)

N (λ)

+
[N/2]∑
b=1

b∑
p=0

[N
2 ]−b∑

m=b−[N
2 ]

eixm[u(q)−u(−q)]

x2m[ν(q)+ν(−q)]

· x b
2
eixη[bu(λ0)−pu(q)+(p−b)u(−q)]

x2η(b−p)ν(−q)−2pην(q)
Π(m, b, p)

N (λ) , (6.11)

and one should set η = 1 in the space-like regime and η = −1 in the time-
like.

The matrix AN (λ) contains only exponentially small corrections, i.e.,
[AN ]ij (λ) = O (x−∞) with a O that is uniform for λ-uniformly away from
ΣΠ.
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The matrices Π(m)
N (λ) and Π(m,b,p)

N (λ) admit the asymptotic expansion

Π(m)
N (λ) =

∑
r≥0

Π(m)
N ;r (λ) with

Π(m)
N ;r (λ) = O

(
(log x)N+r−δm,0−2m

xr
M

)
, (6.12)

Π(m, b, p)
N (λ) =

∑
r≥0

Π(m, b, p)
N ;r (λ) with

Π(m, b, p)
N ;r (λ) = O

(
(log x)N+r−2(m+b)

xr
M

)
, (6.13)

The estimates hold for λ uniformly away from ΣΠ.

The matrix M appearing in the various O estimates takes the form:

M =

⎛
⎝ 1

m̃+
x2ν(q)

eixu(q)
+ m̃−

e−ixu(−q)

x2ν(−q)
+ m̃0

√
x

eixu(λ0)

m+
eixu(q)

x2ν(q)
+ m−x2ν(−q)eixu(−q) + m0

√
xeixu(λ0)

1

⎞
⎠ (6.14)

There m±, m0, m̃± and m̃0 are x-independent coefficients. Moreover, nec-
essarily, m0 = 0 in the time-like regime and m̃0 = 0 in the space-like one.

We postpone the proof of this asymptotic expansion to Appendix B as
it is rather cumbersome and long. However, at this point, we would like to
make several comments in respect to the form of the asymptotic expansion.

The above asymptotic expansion is in a form very similar to the one of the
functionals Hn [ν, eg, u] given in Theorem 2.2. In fact, the large-x behavior of
the matrix ΠN contains various fractional powers of x, each appearing with
its own oscillating pre-factor. Once that one has fixed a given phase factor
and fractional power of x, then the corresponding matrix coefficients Π(m)

N or
Π(m, b, p)

N admit an asymptotic expansion in the more-or-less standard sense.
That is to say, each of their entries admits an asymptotic expansion into a
series whose nth term can be written as PN+n (log x) /xn with PN+n being
a polynomial of degree at most N + n. One of the consequences of such a
structure is that an oscillating term present in x−nΠn (λ) may be in fact
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dominant in respect to, say, a non-oscillating term present in x−n′
Πn′ (λ)

where n′ < n.

We would also like to point out that the asymptotic expansions of ΠN and
ΠN+1 share many oscillating terms at equal frequencies (e.g., eix[u(q)−u(−q)] is
present in ΠN and ΠN+1 for any N ≥ 2). However, those issued from ΠN+1

have an additional dumping pre-factor log x · x−1 in respect to the same ones
issued from ΠN . Finally, there may also appear additional oscillatory terms
e±ixu(z), z = ±q or λ0 (and their associated fractional powers of x) in the
off-diagonal parts of Π(m)

N and Π(m, b, p)
N , cf. (6.14).

There is also another way of writing down the asymptotic expansion of
Π (λ). Although it is more compact, it is also less explicit and provides one
with weaker estimates for the remainders.

Proposition 6.2. The matrix Π admits the asymptotic expansion

Π (λ) = I2 +
N∑

n≥0

Π(n) (λ)

x
1+n

2

+ O
(

1 1
1 1

)
x−(N+1)w with

w = min
(

1
2
, 1 − ρδ

)
, (6.15)

that is valid uniformly away from ΣΠ.

For λ belonging to any connected component of ∞ in C \ ΣΠ, the first few
terms appearing in this expansion read

Π(0) (λ) = −d(0) (λ0)
λ − λ0

σ, Π(1) (λ) = −
∑
ε=±

V (ε;0) (εq)
λ − εq

, (6.16)

Π(2) (λ) =
∑
ε=±

d(0) (λ0)
λ0 − εq

{
V (ε;0) (εq) σ

λ − λ0
− σV (ε;0) (εq)

λ − εq

}

− σ

2
∂2

∂s2

{
d(1) (s)
λ − s

}

s=λ0

. (6.17)

The expression for Π(3) is a bit more involved.

Π(3) (λ) =

[
d(0) (λ0)

]2
λ − λ0

∑
ε=±

σV (ε;0) (εq) σ

(λ0 − εq)2
+

∑
ε=±

ε
V (−ε;0) (−εq) V (ε;0) (εq)

2q (λ − εq)

− 1
2

∑
ε=±

∂

∂s

{
V (ε;1) (s) − 2V (ε;0) (εq) V (ε;0) (s)

λ − s

}

s=εq

. (6.18)
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There σ = σ+ in the space-like regime and σ = σ− in the time-like regime.

This form of the asymptotic expansion is the closest, in spirit, to the one
appearing in the literature, cf eg [15]. However, it does not represent a “well-
ordered” asymptotic expansion in the sense that each matrix Π(n) depends
on the various fractional powers of x and oscillating corrections. Some terms
present in the entries of Π(p) are dominant in respect to the ones present
Π(�), � < p. Moreover, the expansion (6.15) does not provide one with a
precise identification of these terms. This form is however very convenient
from the computational point of view, and having explicit expressions for
the matrices Π(�) easily allows one to identify the various matrices entering
in the “well-ordered” asymptotic expansion (6.10)–(6.11).

Proof. The unique solution Π+ to the singular integral equation (6.6) equiv-
alent to the uniquely solvable RHP for Π provides an integral representation
for Π on C \ ΣΠ. Namely,

Π (λ) = I2 +
∫

ΣΠ

ds

2iπ (λ − s)
Π+ (s) Δ (s) , for λ ∈ C \ ΣΠ. (6.19)

The only places where the jump matrix for Π is not exponentially close
to the identity are the three boundaries of the discs −∂D±q,δ and −∂Dλ0,δ.
There one has

Π+P−1
±q = Π− on −∂D±q,δ and Π+P−1

0 = Π− on −∂Dλ0,δ. (6.20)

Note that the minus sign refers to the clockwise orientation of the boundary
of the discs in figures 10 and 7.

By using the estimate

N (Δ) = ‖Δ‖L1(ΣΠ) + ‖Δ‖L∞(ΣΠ) = O
(
x−w

)
with w = min

(
1
2
, 1 − ρδ

)

(6.21)

and equation (6.6), one shows by standard methods (see e.g. [15]) the exis-
tence of the asymptotic expansion (6.15) for Π (λ). This expansion is valid
uniformly away from the jump curve ΣΠ.

We would like to stress that for computing the coefficients of the asymp-
totic expansion, we can drop the integration contours other then the bound-
aries of the disks ∂D±q/λ0;δ. Indeed as (Π+ − I2) ∈ L2 (ΣΠ), cf. (6.1), and



1696 K.K. KOZLOWSKI

‖Δ‖
L2∩L1(Γ̃) = O (x−∞), it is clear that the integration along Γ̃ in (6.6) can

only produce exponentially small corrections. Then, it cannot contribute
to the asymptotic expansion (6.15). As a consequence, the matrix coeffi-
cients Π(n) in (6.15) can be computed by plugging3 the asymptotic series
into the integral equation (6.19), dropping there all the exponentially small
corrections (stemming from the integration along Γ̃) and replacing the jump
matrices P−1

0 , P−1
±q by their asymptotic expansions which are valid uniformly

on the boundaries of the three discs. This leads to the formal (in the sense
that valid order by order in x) equation,

Π+ (λ) � I2 − 1
2iπ

∫
∂Dλ0,δ

ds

λ+ − s

∑
n≥0

Π+ (s) d (n) (s)σ

(s − λ0)
2n+1 xn+ 1

2

− 1
2iπ

∑
ε=±

∫
∂Dεq,δ

ds

λ+ − s

∑
n≥0

Π+ (s) V (ε;n) (s)
(n + 1)! (s − εq)n+1 xn+1

. (6.22)

It now remains to equate the coefficients of equal inverse powers in x. This
yields sets of recurrence relations between the various terms appearing in
the asymptotic expansion for Π. A straightforward residue computation
leads to the result for Π(n), n = 0, . . . , 3, for λ belonging to any connected
component of ∞ in C \ ΣΠ. �

6.2 Proof of the leading asymptotics of the determinant

We now prove Theorem 2.1. We divde the proof into three part. First, we
obtain a modified version of the integral representation (3.8) for
∂x log det [I + V ] that will be more suited for our further computations.
Then, we use this integral representation so as to compute the first few
x-dependent terms in the asymptotics. Finally, we fix the constant,
x-independent part of the asymtptotics.

• Modification of the integral representation

The first few terms of the asymptotic expansion of det [I + V ] can be
obtained by using the identity (3.8) between the x-derivative of log det [I +V ]
and the RHP data χ, together with the asymptotic expansion for Π. As a

3It is possible to insert the asymptotic expansion, which a priori is valid only uniformly
away from ΣΠ in (6.15) in as much as one slightly deforms the contour ΣΠ in the + direction
what is allowed in virtue of the analytic properties of Π+ and the local analyticity of Δ.
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starting remark, we observe that one can always choose the contour Γ (CE)
appearing in (3.8) in such a way that it only passes in the region where

χ (λ) = Π (λ)α−σ3 (λ)
(
I2 + C

[
e−2

]
(λ) σ+

)
. (6.23)

Then, plugging this exact expression for χ into the trace appearing in (3.8),
one gets that

tr
{
∂λχ (λ)

[
σ3 + 2C

[
e−2

]
(λ) σ+

]
χ−1 (λ)

}
= tr

[
∂λΠ (λ) σ3Π−1 (λ)

]− 2∂λ (log α) (λ) . (6.24)

It remarkable, but also important from the computational point of view,
that the matrix allowing one to simplify the complicated functions E (λ)
(1.2) appearing in the formulation of the initial RHP, does not play a direct a
role in the computation of the asymptotics of the determinant. In particular,
one does not have to deal with integrations on Γ (CE) of Cauchy transforms
C

[
e−2

]
(λ). Inserting (6.24) into (3.8), one obtains that the contribution of

−2∂λ (log α) (λ) can be separated from the rest, so that

∂x log det [I + V ] [ν, u, g]

= a−1 − i
∂

∂η

{∫
Γ(CE)

dλ

4π
eiηu(λ) tr

[
∂λΠ (λ)σ3Π−1 (λ)

]}

η=0+

, (6.25)

where we have set

a−1 =
∫ q

−q

dλ

2π
u′ (λ) log

(
α− (λ)
α+ (λ)

)
= i

∫ q

−q
u′ (λ) ν (λ) dλ. (6.26)

Note that one cannot exchange the η-derivation and the λ-integration
symbols in (6.25) yet. To be able to do so, we deform the most exterior parts
of the contour Γ (CE) in (6.25) to Γ̃(L)

↑ and Γ̃(R)
↓ , cf. figure 14. We denote

γ(0) the resulting interior loop. The integrand along γ(0) remains unchanged.
However, when integrating along the contours Γ̃(L/R)

↑/↓ , one should replace
tr

[
∂λΠ (λ)σ3Π−1 (λ)

]
by the difference between the two boundary values:

tr
[
∂λΠ− (λ) σ3Π−1

− (λ)
]− tr

[
∂λΠ+ (λ)σ3Π−1

+ (λ)
]
. (6.27)

We remind that not only the ± boundary values themselves, but also theses
of Π’s derivatives do exist on Γ̃(L/R)

↑/↓ . This is a consequence of the fact the

jump matrix I2 + Δ for Π on Γ̃(L/R)
↑/↓ admits an analytic continuation to a
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Figure 14: Contour γ = γ(L) ∪ γ(0) ∪ γ(R). The contour ΣΠ is depicted in
dotted lines.

neighborhood of these curves. This fact allows one for a local deformation
of the jump contour ΣΠ, meaning that Π+ (resp. Π−) admits an analytic
continuation to some neighborhood of ΣΠ located on its − (resp. +) side.

The difference in (6.27) can be estimated with the help of the jump con-
dition for Π along Γ̃(L/R)

↑/↓ : Π+M = Π− where M is given by (4.7):

tr
[
∂λΠ− (λ) σ3Π−1

− (λ)
]

= tr
[{[

∂λΠ+ (λ)
]
M (λ) + Π+ (λ) ∂λM (λ)

}
σ3M

−1 (λ) Π−1
+ (λ)

]
= tr

[
Π−1

+ (∂λΠ+ (λ)) M2 (λ)σ3

]
+ tr

[
∂λM (λ)σ3M

−1 (λ)
]
. (6.28)

Using that M = I2 + Pσ+, with P being defined in (4.9), we obtain the
jump formula

tr
[
∂λΠ− (λ) σ3Π−1

− (λ)
]− tr

[
∂λΠ+ (λ) σ3Π−1

+ (λ)
]

= 2α−2 (λ) e−2 (λ) tr
[
∂λΠ+ (λ) σ+Π−1

+ (λ)
]
. (6.29)

Using, once again, the jump condition on Γ̃(L/R)
↑/↓ , we see that tr[∂λΠ (λ) σ+

Π−1 (λ)] has no discontinuity across those parts of Γ̃(L/R)
↑/↓ that we focus on.

It can thus be extended to a holomorphic function in some neighborhood
of this curve. Thence, we can deform the contours of integration Γ̃(L/R)

↑/↓
to γ(L/R) as depicted in figure 14. Once that this has been done, there
is no problem anymore to exchange the η-derivation with the λ-integration.
Indeed, tr [∂λΠ (λ)σ+Π (λ)] is bounded when 
 (λ) → ±∞ along γ(L/R), and
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the function G given by

G (λ) = u (λ) {1γ(0) (λ) + 2α−2 (λ) e−2 (λ)1γ(L)∪γ(R) (λ)} (6.30)

is integrable. Here, 1A stands for the characteristic function of the set A.
Once that the η-derivative is computed, we get the below integral represen-
tation

∂x log det [I + V ] [ν, u, g] = a−1 +
∮

γ

dλ

4π
G (λ) tr

[
∂λΠ (λ) σ (λ) Π−1 (λ)

]
.

(6.31)

The final contour γ is depicted in figure 14 and the matrix-valued function
reads σ (λ) = σ31γ(0) (λ) + σ+1γ(L)∪γ(R) (λ).

• Extracting the first few x-dependent terms

tr
[
∂λΠ (λ)σ+Π−1 (λ)

]
is bounded on γ(L) ∪ γ(R) and ‖G‖L1(γ(R)∪γ(L)) =

O (x−∞). Hence, we can drop the part of integration over γ(L) ∪ γ(R) when
computing the asymptotic expansion of log det [I + V ]. It thus remains to
treat the integration along γ(0).

As follows from Proposition 6.1, Π has a uniform asymptotic expansion
on γ(0) given by (6.10). In order to obtain the leading asymptotic expansion
for the x-derivative of the determinant, it is readily seen that it is enough
to plug in the more compact expansion (6.15) to the desired order and then
drop all the terms that are irrelevant. This is simpler from the point of view
of computations and justified a posteriori by the form of the well-ordered
asymptotic expansion (6.10). Therefore, we get

tr[∂λΠ (λ)σ3Π−1 (λ)]

=
1
x

tr{[Π(1)]′ (λ)σ3} +
1

x
3
2

tr{[Π(2)]′ (λ) − Π(0) (λ) [Π(1)]′ (λ)

− Π(1) (λ) [Π(0)]′ (λ)}σ3

+
1
x2

tr{[Π(3)]′ (λ) − Π(1) (λ) [Π(1)]′ (λ)}σ3

+ o

(
e±ix[u(q)−u(−q)]

x±2[ν(q)+2ν(−q)]+2
,
eiηx[u(λ0)−u(±q)]

x
3
2
∓2ν(±q)

,
(log x)

x2

)
, (6.32)

uniformly on γ(0). There the o refers to sub-leading terms that have been
ignored. It distinguishes between the various oscillating and non-oscillating
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corrections that have been ignored. Also one should set η = 1 in the space-
like regime and η = −1 in the time-like regime. Note that due to the com-
pactness of γ(0), the order of the o-remainder is preserved by the integration
along γ(0).

Note that, in (6.32), we have been able to simplify certain products by
exploiting that, regardless of the time or space-like regimes [Π(0)]2 = 0 and
that traces of matrices proportional to σ (with σ = σ± depending on the
space to time-like regime) vanish (eg Π(0)Π(1)

[
Π(0)

]′ ∝ σ).

We now insert the explicit form of the first few matrix coefficients appear-
ing in the expansion of Π and then integrate the expansion (6.32) along γ(0)

with the appropriate weight. At the end of the day, by using the precise
estimates provided by the expansion (6.10), we get

∂x log det [I + V ] = a−1 +
a0

x
+

a1

x
3
2

(
1 + O

(
log x

x

))
+

aosc
2

x2

(
1 + O

(
log x

x

))

+
ano

2

x2

(
1 + O

(
log x

x

))
+ O

(
a1

xw+ 3
2

)
+ O

(
aosc

2

xw+2

)
.

Above the last O corresponds to higher order oscillating correction with big-
ger phases than those involved in the definition of a1 and aosc

2 . The term
responsible for the logarithmic contribution to the determinant coincides
with the one appearing in the time-independent case (the so-called general-
ized sine kernel) considered in [32]:

a0 = −(
ν2 (q) + ν2 (−q)

)
. (6.33)

The first λ0-dependent term is an oscillating correction

a1 =
i

2

∑
ε=±

d(0)(λ0)
u (λ0) − u (εq)

(λ0 − εq)2
tr{V (ε;0) (εq) [σ3, σ]}. (6.34)

aosc
2 contains the oscillating term coming from the boundaries ±q:

aosc
2 = −u (q) − u (−q)

2i (2q)2
tr

{[
V (+;0)(q) , V (−;0)(−q)

]
σ3

}
. (6.35)
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Finally, ano
2 corresponds to the first non-oscillating corrections issued from

the endpoints ±q:

ano
2 =

i

4

∑
ε=±

u′′(εq) tr
{

V (ε;1)(εq) −
[
V (ε;0)(εq)

]2
}

σ3

+ u′(εq) tr
{[

V (ε;1)
]′

(εq) − 2V (ε;0)(εq)
[
V (ε;0)

]′
(εq)

}
σ3. (6.36)

Here, we precise that u′ = ∂λu, u′′ = ∂2
λu and

[
V (ε,a)

]′
= ∂λV (ε,a).

It now remains to insert the explicit expressions for V (±,k) as well as d(n)

so as to obtain the expressions for the coefficients ak, k = 1, 2.

We get that, independently of the time-like or space-like regime,

aosc
2

x2
= i [u (q) − u (−q)] · ν (q) ν (−q)

u′(q) u′(−q) (2qx)2

(S−
S+

− S+

S−

)
. (6.37)

As for a1, we have

a1

x
3
2

=
1

2
√

πh (λ0)x
3
2

×
{

iν (−q) · [u (−q) − u (λ0)]
u′(−q) (λ0 + q)2

S0

S−
− iν (q) · [u (q) − u (λ0)]

u′ (q) (λ0 − q)2
S0

S+

}

(6.38)

in the time-like regime, and

a1

x
3
2

=
1

2
√

πh (λ0)x
3
2

×
{

iν (−q) · [u (λ0) − u (−q)]
u′(−q) (λ0 + q)2

S−
S0

− iν (q) · [u (λ0) − u (q)]
u′(q) (λ0 − q)2

S+

S0

}

(6.39)

in the space-like one. We remind that S± and S0 have been defined in (2.7)
and (2.8)

• The constant term

The x-derivative cannot fix the constant in x part of the leading asymptotics.
We use the λ0-derivative identity so as to fix the λ0-dependent part of this
constant. Then, in the space-like regime one obtains the λ0-independent
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part of the constant term by sending λ0 → ∞ (the asymptotic expansion is
uniform in λ0 lying uniformly away to the right from q). In such a limit, the
determinant can be related, up to O (x−∞) corrections, to the generalized
sine kernel determinant studied in [32]. In this way, we are able to fix
the constant in this regime. In the time-like regime, in order to fully fix
the constant, one has also to compute the q-derivative of the determinant
asymptotically.

We already know from the above analysis that log det [I + V ] = xa−1 +
log xa0 + C [ν, u, g] + o (1). Using (3.9), we get

∂λ0C [ν, u, g] =
∮

γ(0)

dz

4π
(∂λ0u) (z)

∑
ε=±

tr
[
V (ε;0) (εq) σ3

]
(z − εq)2

= −∂λ0

{
ν2 (q) log

∣∣u′ (q)
∣∣ + ν2 (−q) log u′ (−q)

}
. (6.40)

The absolute value has been chosen so as to treat the space-like and time-like
regimes simultaneously.

In the space-like regime, the asymptotics are uniform in λ0, as long as
λ0 remains uniformly away from q. Hence, one can set λ0 = ∞ in the
asymptotics so as to fix the constant term. When λ0 = +∞, the function u
has no saddle-point, a straightforward computation shows that V (λ, μ) =
VGSK (λ, μ) + O (x−∞), with

VGSK (λ, μ) =−
{

1 − e2iπν(λ)
} 1

2
{

1− e2iπν(μ)
} 1

2 · ẽ−1(λ) ẽ (μ) − ẽ−1(μ) ẽ (λ)
2iπ (λ − μ)

with ẽ (λ) = e (λ)
(
e−2iπν(λ) − 1

) 1
2
.

Moreover, the big O symbol is uniform on [−q ; q ]. This means that

det
[−q ;q ]

[I + V ] = det
[−q ;q ]

[I + VGSK ] · (1 + O
(
x−∞))

. (6.41)

This last identity stems from the fact that the resolvent of a generalized sine
kernel is polynomially bounded in x, and this uniformly on [−q ; q ], cf [32].
Using the x → +∞ asymptotic behavior of det[−q ;q ] [I + VGSK ] obtained in
[32], we get that

C [ν, u, g] = −ν2 (q) log
[
2q

(
u′(q) + i0+

)]− ν2 (−q) log
[
2qu′ (−q)

]
+ log G (1, ν (q))G (1, ν (−q)) + C1 [ν]

+
∫ q

−q
dλg′ (λ) ν (λ) −

∫ q

−q
dλν (λ) log′

(
e−2iπν(λ) − 1

)
. (6.42)
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The functional C1 has been defined in (2.4) and we agree upon the short-
hand notation G (1, z) = G (1 + z) G (1 − z) for the product of two Barnes
functions. Note that the i0+ regularization only matters in the time-like
regime where u′ (q) < 0. Of course, for the moment we have only proven
the value of the constant term in the space-like regime. To see that the
constant term is indeed given by C [ν, u, g] (6.42) in the time-like regime as
well, we apply the so-called q derivative method [32]. Namely, starting from
the identity

∂q log det [I + V ] = R (q, q) + R (−q,−q) , (6.43)

one replaces the resolvent R by its leading in x part corresponding to sending
Π = I2 in the reconstruction formula for

∣∣FR (λ)
〉

in terms of χ. The leading
resolvent around ±q is then expressed in terms of CHF with the use of
identities (A.6). Then, following word for word the steps described in [32]
one obtains that, in the time-like regime, ∂qC [ν, u, g] is indeed given by the
partial q-derivative of (6.42). This fixes the λ0 and q-dependent part of the
constant term in this regime. As the remaining λ0 and q-independent part
has to be the same in both regimes, the constant term is fully fixed.

The form of the asymptotic expansion given in Theorem 2.1 follows once
upon applying the identity

e−
∫ q
−q log′(e−2iπν(λ)−1)ν(λ)dλG (1, ν (q))G (1, ν (−q))

= eiπ
2 (ν2(q)−ν2(−q)) (2π)ν(−q)−ν(q) G2 (1 + ν (q))G2 (1 − ν (−q)) . (6.44)

This identity is a direct consequence of (A.8). �

7 Natte Series for the determinant

In this section, we derive a new series representation, that we call the Natte
series, for det [I + V ]. Just as a Fredholm series is well adapted for comput-
ing the determinant of the operator I + V perturbatively when the kernel
V is small, the Natte series is built in such a way that it is immediately fit
for an asymptotic analysis of the determinant. The form and existence of
the series is closely related to the fact that the asymptotic behavior of this
determinant can be obtained by an application of the Deift–Zhou steepest-
descent method.
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Let I + Δ be the jump matrix for Π. Then, according to Sections 3 and 5,
Δ has an asymptotic expansion that is valid uniformly on the contour ΣΠ:

Δ (z) �
∑
n≥0

Δ(n)(z; x)
xn+1

where

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Δ(n)(z; x) =
√

x
d(n)(z)

(z − λ0)
2n+1 σ for z ∈ ∂Dλ0,δ

Δ(n)(z; x) =
V (±;n)(z)

(n + 1)! (z ∓ q)n+1 for z ∈ ∂D±q,δ

(7.1)

and everywhere else Δ(n) (z; x) = 0. In other words Δ (z; x) is a O (x−∞)
everywhere else on the contour. Moreover, one can convince oneself that
this O (x−∞) holds in the L1 ∩ L∞(C ) sense, for any curve C that is lying
sufficiently close to CE . Finally, we remind that σ = σ+ in the space-like
regime and σ = σ− in the time-like regime.

7.1 The leading Natte series

We start the derivation of the Natte series by providing a convenient integral
representation for log det [I + V ].

Lemma 7.1. Let V be the kernel defined in (1.1) and Π (λ) ≡ Π (λ; x) be the
unique solution to the associated RHP. Then, the logarithm of the Fredholm
determinant admits the below representation

log det [I + V ] [ν, u, g] = log det [I +V ](0)[ν, u, g] + log det [I +V ](sub)[ν, u, g]

(7.2)
where

log det [I + V ](0) [ν, u, g]

= ix

∫ q

−q
u′(λ) ν (λ) dλ − (

ν2(q) + ν2(−q)
)
log x + C [ν, u, g] (7.3)

and C [ν, u, g] has been defined in (6.42). Also

log det [I + V ](sub)[ν, u, g]=
∫ x

+∞
dx′

∮
γ

dλ

4π
G (λ)

{
tr[∂λΠ

(
λ; x′)σ (λ) Π−1

(
λ; x′)]

+
1
x′

∫
∂D

dz

2iπ
tr

[
Δ(1) (z; x′) σ3

]
(λ − z)2

}
. (7.4)
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The contour γ is as defined in figure 14 and ∂D = −∂Dq,δ ∪ −∂D−q,δ ∪
−∂Dλ0,δ. The function G has been defined in (6.30), Δ(1) in (7.1) and
we remind that σ (λ) = σ31γ(0)(λ) + σ+1γ(R)∪γ(L)(λ).

The convergence of this integral representation is part of the conclusion
of the lemma.

Proof. The formula for the x-derivative of the determinant (3.8) is the start-
ing point of the proof. By re-ordering the terms we get, exactly as in the
proof of Theorem 2.1,

∂x log det [I + V ] [ν, u, g] = ∂x log det [I + V ](0)[ν, u, g] + R, (7.5)

in which

R = −i
∂

∂η

[∫
Γ(CE)

dλ

4π
eiηu(λ)

{
tr

[
∂λΠ (λ; x)σ3Π−1(λ; x)

]

+
∫

∂D
dz

2iπ
tr

[
Δ(1) (z; x)σ3

]
x (λ − z)2

}]

η=0+

. (7.6)

Here the matrix Δ(1) appears in (7.6) as its contribution has already been
taken into account in ∂x log det [I + V ](0). It had thus to be subtracted.

Now, performing exactly the same steps as in the proof of Theorem 2.1,
we recast the integral in such a way that the η-derivative can be moved
inside of the integration symbol. Note that the operation of squeezing the
contour Γ (CE) in (7.6) to γ does not affect the term coming from Δ(1) as it is
holomorphic outside of ∂D. Once that the η-derivative has been computed,
the result follows by an x-integration. This integration is licit as, due to the
presence of Δ(1), the η-differentiated integrand behaves as O

(
log x/x2

)
, for

x → +∞, in what concerns the non-oscillating contributions and as eixvx−w

for the oscillating terms. Here, v and w are constants such that v ∈ R and

 (w) > 0. The oscillating contributions are thus also integrable, at least in
the Riemann-sense. �

We are now in position to derive the logarithmic Natte series representa-
tion for log det [I + V ].
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Theorem 7.1. There exists a sequence of functionals FN [ν, u, eg] (x), such
that

log det [I + V ] [ν, u, g] = log det [I + V ](0) [ν, u, g] +
∑
N≥1

FN [ν, u, eg] (x) .

(7.7)
There exists a positive N-independent constant m (x) such that
|FN [ν, u, eg] (x) | ≤ [m (x)]N . m (x) is such that m (x) = O (x−w) where, for
δ > 0 but small enough

w =
3
4

min
(

1/2, 1 − w̃ − 2 max
ε=± |
 [ν (εq)]|

)
and

w̃ = 2 max
ε=±

{
sup

∂Dεq ,δ

|
 [ν − ν (εq)]|
}

. (7.8)

The functionals FN [ν, u, eg] (x) admit the integral representation

FN [ν, u, eg] (x) =
N∑

r=1

∑
Σεk=0

εk∈{±1,0}

∑
τ=↓,↑

∫ x

+∞
dx′

∮
γτ

dλ

4π

∫
{Στ

Π}(r,N)

dNz

(2iπ)N

· HN,r

(
λ, {zj}N

j=1, x
′; {εj}N

j=1

)
[ν, u] ·

N∏
p=1

eεpg(zp) (7.9)

in terms of the auxiliary functionals

HN,r

(
λ, {zj}N

j=1, x; {εj}N
j=1

)
[ν, u]

=
−G (λ)DN,r

(
λ, {zj}N

j=1, x; {εj}N
j=1

)
[ν, u]

(λ − z1)
2 (λ − zr+1)

r−1∏
p=1

(zp − zp+1)
N∏

p=r+1
(zp − zp+1)

. (7.10)

The first summation in (7.9) runs through all possible choices of the vari-
ables εk ∈ {±1, 0} subject to the constraint

∑
εk = 0. Then, one sums over

integrals running over the upper/lower part γ↑/↓ of the contour γ and also

over the associated inslotted contour
{

Σ↑/↓
N

}(r,N)
.
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For N ≥ 2, the functionals DN are defined as the functionals of ν and u
that appear in the expansion of

tr [Δ (zr) . . .Δ (z1) σ (λ)∇ (zr+1) . . .∇ (zN )]

=
∑

Σεk=0
εk∈{±1,0}

DN,r

(
λ, {zj}N

j=1, x; {εj}N
j=1

)
[ν, u] e

N∑
p=1

εpg(zp)

, (7.11)

into different powers of eg(z�). For N = 1 one has

D1 (λ, z1, x) = tr
[(

Δ (z1) − x−1Δ(1)(z1)
)

σ3

]
1γ(0)(λ) . (7.12)

Above, ∇ is the adjugate matrix to Δ: ∇ = Comat [Δ]t, so that I2 + ∇
corresponds to the jump matrix for Π−1

+ . Finally, γ↑/↓ denotes that part
of the curve γ which lies above/below of ΣΠ. Let P1, P2 stand for the two
intersection points between γ and ΣΠ, cf. figure 14. Then, Σ↑/↓

Π is the
contour equal everywhere to ΣΠ except in a small vicinity of the points Pk,

where it avoids these points by below/above. Then
{

Σ↑/↓
Π

}(r,N)
is realized

as the Carthesian product of two inslotted contours of length r and N − r:{
Σ↑/↓

Π

}(r,N)
=

{
Σ↑/↓

Π

}(r) ×
{

Σ↑/↓
Π

}(N−r)
.

Starting from the definition 6.1 of the matrices Δ and ∇ on inslotted
contours Σ(N)

Π , one defines the matrices Δ and ∇ on Σ↑/↓
Π [zk] as the analytic

continuations of Δ from ΣΠ [zk].

Proof. The functional FN [ν, u, g] will be constructed by merging the inte-
gral representation (7.4) with the Neumann series for Π (6.1) and Π−1 (6.2).
These series converge uniformly in λ (and every finite-order λ-derivative)
on every open set O such that d(O, ΣΠ) > 0. However, in (7.4), one inte-
grates tr

[
∂λΠ (λ) σ (λ) Π−1(λ)

]
with a weight along γ, where the contour γ

is depicted in figure 14. The latter contour intersects ΣΠ. Hence, it contains
points that are not uniformly away from ΣΠ. However, we have already
argued that tr

[
∂λΠ± (λ)σ (λ) Π−1

± (λ)
]

can be analytically continued to a
small neighborhood of ΣΠ located to the right/left of ΣΠ. Such an analytic
continuation can be also performed on the level of the Neumann series for
Π±1.

In order to have a Neumann series representation for Π or Π−1 that is
uniformly convergent in λ ∈ γ↑/↓ \ {P1, P2}, we use the local analyticity of
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the jump matrices for Π so as to deform the original jump contour ΣΠ

appearing in the RHP for Π and Π−1 (6.1)–(6.2) into the contour Σ↑/↓
Π :

Π (λ) = I2 +
∑
N≥1

∫
Σ

↑/↓
Π

dz

2iπ (λ − z)

{
CΔ

Σ
↑/↓
Π

}N−1

[I2] (z) Δ (z) and

Π−1 (λ) = I2 +
∑
N≥1

∫
Σ

↑/↓
Π

dy

2iπ (λ − y)
∇ (y)

{
tC∇

Σ
↑/↓
Π

}N−1

[I2] (y) .

According to these formulae Π, Π−1 are holomorphic on some small vicinity
of γ↑/↓. However, we do stress that these analytic continuation from above
and below Pk differ at Pk. Hence, for λ ∈ γ↑/↓ \ {P1, P2}, we get

tr
[
∂λΠ (λ)σ (λ) Π−1(λ)

]
=

∑
N≥1

fN (λ, x) (7.13)

with

fN (λ, x) =
N−1∑
r=1

∫
Σ

↑/↓
Π

−dzdy

(2iπ)2 (λ − z)2 (λ − y)

× tr

[{
CΔ

Σ
↑/↓
Π

}r−1

[I2] (z) Δ (z, x)σ (λ)∇ (y, x)
{

tC∇
Σ

↑/↓
Π

}N−r−1

[I2] (y)

]

+
∫

Σ
↑/↓
Π

−dz

2iπ (λ − z)2
· tr

[{
CΔ

Σ
↑/↓
Π

}N−1

[I2] (z) Δ (z, x)σ (λ)

]
. (7.14)

Above, we have insisted on the dependence on x of the matrices Δ and ∇.
The representation (7.13) allows us to define the functional FN [ν, u, eg]:

F1 [ν, u, eg] =
∫ x

+∞
dx′

∮
γ

{
f1

(
λ, x′)+

1
x′

∫
∂D

dz

2iπ
tr

[
Δ(1) (z; x′) σ3

]
(λ − z)2

}
G (λ)

dλ

4π

(7.15)
and, for N ≥ 2,

FN [ν, u, eg] =
∫ x

+∞
dx′

∮
γ
fN

(
λ, x′)G

(
λ, x′) dλ

4π
. (7.16)

We remind that G is given by (6.30) and above, we have explicitly insisted
on its x-dependence.

In the following we justify that (7.15)–(7.16) are well defined and that one
can exchange the integrals over γ and [x ; +∞ [ in (7.4) with the summation
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(7.13). Then, we provide explicit bounds for FN [ν, u, eg] and finally outline
the steps leading to the derivation of the representation (7.9) for FN .

Exchange of symbols

Building on the identities:

|tr (AB)| ≤ maxj,k (|Bjk|)
∑
j,k

|Ajk| and

∑
j,k

∥∥∥(AB)jk

∥∥∥
L1(C )

≤
∑
j,k,�

‖Aj�‖L2(C ) ‖B�k‖L2(C ) ≤ 4 ‖A‖L2(C ) ‖B‖L2(C ) ,

and after some algebra one obtains that

‖fN‖L∞(γ) ≤ 4 max
τ∈{↑,↓}
k=2,3

{d−k(γτ , Στ
Π)}

×
∑

τ=↑,↓

N−1∑
r=1

{∥∥∥∥
{
CΔ

Στ
Π

}r−1
[I2]

Δ
2π

∥∥∥∥
L2(Στ

Π)

∥∥∥∥ ∇
2π

{
tC∇

Στ
Π

}N−1−r
[I2]

∥∥∥∥
L2(Στ

Π)

+
∥∥∥∥
{
CΔ

Στ
Π

}N−1
[I2]

∥∥∥∥
L2(Στ

Π)

∥∥∥∥ Δ
2π

∥∥∥∥
L2(Στ

Π)

}
.

In the intermediate calculation we have used ‖σ (λ)‖L∞(γ) = 1. By using the
estimates (6.4)–(6.5), one gets that for τ =↑ or ↓

∥∥∥{CΔ
Στ

Π

}r
[I2]

∥∥∥
L2(Στ

Π)
≤

{
2c (Στ

Π) ‖Δ‖L∞(Στ
Π)

}r−1 ∥∥∥CI2
Στ

Π
[Δ]

∥∥∥
L2(Στ

Π)

≤ {2c (Στ
Π)}r ‖Δ‖r−1

L∞(Στ
Π) ‖Δ‖L2(Στ

Π)

and

∥∥∥{tC∇
Στ

Π

}r
[I2]

∥∥∥
L2(Στ

Π)
≤ {2c (Στ

Π)}r ‖Δ‖r−1

L∞(Στ
Π) ‖Δ‖L2(Στ

Π) .

Also, one has

∥∥∥{CΔ
Στ

Π

}r
[I2] Δ

∥∥∥
L2(Στ

Π)
≤ 2 ‖Δ‖L∞(Στ

Π)

∥∥∥{CΔ
Στ

Π

}r
[I2]

∥∥∥
L2(Στ

Π)
. (7.17)
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The estimates and asymptotic expansions of Δ ensure that there exists an
x-independent constant C2 such that

max
τ∈{↑,↓}

{
‖Δ‖L∞(Στ

Π) + ‖Δ‖L2(Στ
Π)

}
≤ C2

c (ΣΠ)
x−w

where c (ΣΠ) = max
τ∈{↑,↓}

c (Στ
Π) .

Hence,

‖fN‖L∞(γ) ≤
2N

πc(ΣΠ)
max

τ∈{↑,↓}
k=2,3

{
d−k(γτ , Στ

Π)
}(

2C2

xw

)N (
π−1 + c (ΣΠ)

)

with w =
3
4

min(1/2, 1 − w̃ − 2max± |
ν (±q)|) . (7.18)

It follows that for x large enough and for N ≥ N0 (with N0w > 1)
(λ, x′) �→ ∑N

p=N0
G (λ, x′) fp (λ, x′) is bounded on γ × ]x ; +∞ [ by an

integrable function. The terms corresponding to p = 1, . . . , N0 − 1 are also
integrable as will be shown below. Hence, by the dominated convergence
theorem one can exchange the summation and the integration symbols lead-
ing to (7.7). It now remains to provide sharper estimates for each summand.

Sharper estimates for FN [ν, u, eg]

It follows from Proposition C.1 applied to the jump contour Σ↑/↓
Π , that for

λ ∈ γ↑/↓ one has the representation

ΠN (λ) = AN (λ) +
[N/2]∑
b=0

b∑
p=0

[N/2]−b∑
m=b−[N/2]

(
e (q; x)

e (−q; x)

)m−ηp (
e (λ0; x)
e (−q; x)

)ηb

×
∑

ε∈{±1,0}
[e (vε; x)]

σ3
2 Π(m,b,p)

N ;ε (λ) [e (vε; x)]−
σ3
2

where e (q, x) = eixu(q)x−2ν(q), e (−q, x) = eixu(−q)x2ν(−q) and
e (λ0, x) = eixu(λ0)x−η

2 . Also, we remind that η = 1 in the space-like regime
and η = −1 in the time-like and we agree upon v0 = λ0 and v±q = ±q. The
matrix AN (λ) contains exponentially small corrections in x and the remain-
ing part represents the algebraically small ones.
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This representation ensures that for λ ∈ γ

fN (λ, x) =
aN (λ, x)

xN
+

1
xN

[N/2]+1∑
b=0

b∑
p=0

[N/2]+1−b∑
m=b−[N/2]−1

(
e (q, x)

e (−q, x)

)m−ηp

×
(

e (λ0, x)
e (−q, x)

)ηb

c
(m,b,p)
N (λ, x) . (7.19)

The functions c
(m,b,p)
N (λ, x) and aN (λ, x) can be expressed as traces

involving appropriate combinations of the matrices AN and Π(m,b,p)
N ;ε . We

have included all the exponentially small corrections stemming from the
Aj ’s, j = 1, . . . , N into aN (λ, x).

It follows from the properties of Aj(λ) and Π(m,b,p)
j;ε (λ), j = 1, . . . , N that

these functions are smooth in λ ∈ γ and x. Moreover, by using the estimates
for the L∞ norms of the aforementioned matrices AN and Π(m,b,p)

N ;ε (C.4),
after some algebra one shows that, for x-large enough, given any k ∈ N

there exists an N -independent constant C > 0 such that

|aN (λ, x)| ≤ CN

xk
and∣∣∣c(m,b,p)

N (λ, x)
∣∣∣ ≤ CNxNw̃, uniformly in λ ∈ γ↑/↓. (7.20)

These estimates remain unchanged when considering first-order partial deri-
vatives in respect to x of these functions. Hence for all integers m, b, p of
interest the function

(λ, y) �→ φm,b,p (λ, y) = y−N

(
e (q, y)

e (−q, y)

)m−ηp

×
(

e (λ0, y)
e (−q, y)

)ηb

c
(m,b,p)
N (λ, y) G (λ; y) (7.21)

is Riemann-integrable on γ × ]x ; +∞ [. Suppose that m, b or p is non-zero.
Then, for N ≥ 2 an integration by parts leads to the estimate

∣∣∣∣
∫ +∞

x
dyφm,b,p (λ, y)

∣∣∣∣ ≤ [C̃]N

xNw
|G (λ; x)| , (7.22)



1712 K.K. KOZLOWSKI

with w being defined as in (7.18). When m = b = p = 0 one simply deals
with a non-oscillating integral. In that case,

∣∣∣∣
∫ +∞

x
dyφm,b,p (λ, y)

∣∣∣∣ ≤ [C̃]N

xN(1−w̃)−1
|G (λ; x)| . (7.23)

There are two cases of interest to consider. If w = 3/8, then since w̃ = O(δ),
taking δ sufficiently small we get that Nw ≤ N (1 − w̃) − 1. It remains to
treat the case when, for all δ > 0 small enough w < 3/8. In other words,
1 − w̃ − 2 max± |
ν(±q)| < 1/2. Therefore

1
4
− w̃

2
≤ max± |
ν(±q)| . (7.24)

Thus, taking δ small enough, so that w̃ ≤ 1/10 one gets max± |
ν(±q)| ≥
1/5. Hence, for N ≥ 2

∣∣∣∣
∫ +∞

x
dyφm,b,p (λ, y)

∣∣∣∣ ≤ [C̃]N

xNw
|G (λ; x)| . (7.25)

Thus, once upon the integration over λ ∈ γ↑ ∪ γ↓ = γ, we get that there
exists a constant m (x) = O (x−w) such that |FN [ν, u, g](x)| ≤ [m (x)]N for
N ≥ 2. The fact that |F1 [ν, u, g] (x)| ≤ m (x) follows from a direct calcu-
lation based on the representation (7.15) and the first few terms of the
asymptotic expansion of the matrix Δ.

Justification of (7.9)

We conclude this proof by explaining how one can obtain a slightly more con-
venient representation for each individual functional FN [ν, u, g] (x). Start-
ing from the Neumann series representations (6.8) and (6.9), it follows that
for λ ∈ γ↑/↓

tr
[
∂λΠ (λ) σ (λ) Π−1 (λ)

]

= −
∑
N≥1

N∑
r=1

∫
{

Σ
↑/↓
Π

}(r,N)

dNz

(2iπ)N

× tr [Δ (zr) . . . Δ (z1)σ (λ)∇ (zr+1) . . .∇ (zN )]

(λ − z1)
2 (λ − zr+1)

r−1∏
p=1

(zp − zp+1)
N−1∏

p=r+1
(zp − zp+1)

. (7.26)
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Above,
{

Σ↑/↓
Π

}(r,N)
is the Cartesian product of two inslotted contours{

Σ↑/↓
Π

}(r) ×
{

Σ↑/↓
Π

}(N−r)
. To obtain (7.26) it is enough to multiply out the

two series for ∂λΠ (λ), Π−1 (λ) and then take the trace. One can convice
oneself that the matrices Δ and ∇ are such that

Δ (z) = e
g(z)σ3

2 Δ|g=0 (z) e−
g(z)σ3

2 and ∇ (z) = e
g(z)σ3

2 ∇|g=0 (z) e−
g(z)σ3

2 .
(7.27)

This means that there exists functionals DN,r

(
λ, {zj}N

j=1, x; {εj}N
j=1

)
[ν, u]

such that

tr [Δ (zr) . . . Δ (z1)σ (λ)∇ (zr+1) . . .∇ (zN )]

=
∑

Σεk=0
εk∈{±1,0}

DN,r

(
λ, {zj}N

j=1, x; {εj}N
j=1

)
[ν, u] exp

⎧⎨
⎩

N∑
p=1

εpg (zp)

⎫⎬
⎭. (7.28)

Above, the sum is taken over all possible choices of N integers εk ∈ {±1, 0},
such that

∑N
k=1 εk = 0. We replace the trace in (7.26) by (7.28) and then

insert the result into the integral representation for log det [I + V ]sub. One
can exchange the γ and x′-integrals with the summation over N in virtue
of the previous discussion. One can also pull-out the finite sum over εk ∈
{±1, 0} out of the integrals. Indeed, given any choice of {εk}, the func-
tion (λ, x′) �→ G (λ, x′) DN,r is Riemann–integrable along γ × ] x ; +∞ [. This
stems from the fact that DN,r is bounded in λ, and as follows from the previ-
ous discussion, is at least Riemann-integrable in x as an oscillatory integral.
Moreover, it is clear that by harping on the steps that allow one to prove
the expansion for ΠN given in Proposition 6.1, one can just as well prove a
similar type of expansion for FN [ν, u, eg]. �

Lemma 7.2. Under the assumptions of section 2.1, the Fredholm determi-
nant of I + V , with V being given by (1.1), admits the below, absolutely
convergent for x-large enough, Natte series representation:

det [I + V ] [ν, u, g] = det [I + V ](0) [ν, u, g]

{
1

+
∑
n≥1

∑
k∈Kn

∑
{εt}∈E(k)

Hn

(
x, {k} , {εt}t∈J{k}

) [
ν, u, Πt∈J{k}e

εtg(zt)
]}

.

(7.29)
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The nth term of this series is a O([m(x)]n), with m (x) = O (x−w) w being
given as in (7.8) and the O being n independent. The functional Hn appear-
ing above is a linear functional in respect to the function

∏
t∈J{k} eεtg(zt) of

the n-variables zt. It produces a weighted integration of this function over
curves lying in some small neighborhood of the real axis:

Hn

(
x, {k} , {εt}t∈J{k}

) [
ν, u,

∏
t∈J{k}

eεtg(zt)
]

=
d1∑

rd=1
d∈D{k}

∑
τd=↑/↓

∏
d∈D{k}

∫ x

+∞
dxd

∮
γτd

dλd

4π

∫
{Σ

τd
Π }(rd ,d1)

dd1zd,j

(2iπ)d1

n∏
j=1

1
kj !

·
∏

d∈D{k}

Hd1,rd

(
λd, {zd,j}d1

j=1, xd; {εd,j}d1
j=1

)
[ν, u] ·

∏
t∈J{k}

eεtg(zt).

(7.30)

In (7.29), the sum is carried out over all the possible choices of n-uples of
integers k = (k1, . . . , kn) belonging to

Kn =

{
k = (k1, . . . , kn) ∈ N

n :
n∑

s=1

sks = n

}
(7.31)

Each such n-uple of integers defines a set of triplets

J{k} =
{

(s, p, j) , s ∈ [[ 1 ; n ]], p ∈ [[ 1 ; ks ]], j ∈ [[ 1 ; s ]]
}

(7.32)

and a set of doublets

D{k} =
{

(s, p) , s ∈ [[ 1 ; n ]], p ∈ [[ 1 ; ks ]]
}
. (7.33)

A triplet (s, p, j) belonging to J{k} is denoted by t and a doublet (s, p) belong-
ing to D{k} is denoted by d = (s, p). The notation d1 stands for the first
coordinate of d, i.e., if d = (s, p), then s = d1. Once that a choice of k is
made, one sums over all the possible elements of

E (k) =

{
{εt}t∈J{k} : εt ∈ {±1, 0} and

d1∑
j=1

εd,j = 0 for all d ∈ D{k}

}
.

(7.34)
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The sums and integrations in (7.30) are also ordered by the sets of triplets
J{k} and doublets D{k}. One first starts to sum up over rd, where d runs
through D{k}. There are #D{k} such sums in total, corresponding to d run-
ning through the set D{k}. Finally, for each d ∈ D{k}, there is one integral
over the corresponding xd, one over the corresponding λd and d1 integrals
over the subordinate set of z-variables {zd,j}d1

j=1.

Proof. We define an auxiliary function

A (γ) =
∑
N≥1

γNFN [ν, u, g] (x) , (7.35)

which is holomorphic in γ on the open disc of radius m−1(x), with m (x) =
O (x−w) and w given by (7.8), as follows from the estimates on the growth
of FN with x. This means that eA(γ) is holomorphic on the same disc. The
radius of convergence of its Taylor series around γ = 0 has its lower bound
given by m−1 (x).

The series for the Fredholm determinant is obtained by using the Faa-di-
Bruno formula so as to compute the nth derivative of eA(γ) at γ = 0

1
n!

dn

dγn
eA(γ)

∣∣∣∣
γ=0

=
∑
{k}

Σsks=n

eA(0)
n∏

j=1

⎧⎨
⎩

1
kj !

(
A(j) (0)

j!

)kj

⎫⎬
⎭

⇒
∣∣∣∣∣
1
n!

dn

dγn
eA(γ)

∣∣∣∣
γ=0

∣∣∣∣∣ ≤
[4m (x)]n

n!
dn

dγn
exp

{
1

2 − γ

}∣∣∣∣
γ=0

.

(7.36)

Where we used that |FN [ν, u, g]| ≤ (m (x))N , with m (x) = O (x−w). The
last estimates allow one to see explicitly that the Taylor series at γ = 0 for
eA(λ) has a radius of convergence that scales as m−1 (x). It is in particular
convergent at γ = 1 leading to

det [I + V ] [ν, u, g] = det [I + V ](0) [ν, u, g]

×
⎧⎨
⎩1 +

∑
n≥1

∑
Σsks=n

n∏
j=1

(kj !)
−1 ·

n∏
j=1

[Fj [ν, u, g] (x)]kj

⎫⎬
⎭ .

(7.37)
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In this language of doublets and triplets, the expression for the product
in (7.37) reads

n∏
j=1

(Fj [ν, u, g] (x))kj

=
d1∑

rd=1
d∈D{k}

∑
d1∑

j=1
εd,j=0

εd,j∈{±1,0}

∑
τd=↑/↓

∏
d∈D{k}

∫ x

+∞
dxd

∮
γτd

dλd

4π

∫
{Σ

τd
Π }(rd,d1)

d1∏
j=1

dzd,j

(2iπ)

×
∏

d∈D{k}

Hd1,rd

(
λd, {zd,j}d1

j=1, xd; {εd,j}d1
j=1

)
[ν, u] exp

⎧⎨
⎩

∑
t∈J{k}

εtg (zt)

⎫⎬
⎭.

(7.38)

The result follows. �

The expression (7.30) for the functionals involved in the Natte series is
more explicit then as it was given in Theorem 2.2.

7.2 Proof of Theorem 2.2

The first part of Theorem 2.2, i.e., the very form of the expansion (2.9) is
a consequence of Lemma 7.2. The latter provides moreover a more explicit
form for the functionals Hn [ν, eg, u].

The well-ordered asymptotic expansion in x for each functional
Hn[ν, eg, u], as given in (2.12), is a direct consequence of the existence of
a similar representation for FN [ν, u, g] together the correspondence (7.37)
between FN [ν, u, g] and det [I + V ]. Finally, the existence of a representa-
tion for FN [ν, u, g] in the spirit of (2.12) can be readily obtained by insert-
ing the well-ordered series representation for Π and Π−1 (we remind that
Π−1 = tComat (Π) since det [Π] = 1) given in Proposition 6.1 into the inte-
gral representation for FN , (7.14), (7.15), (7.16). �

7.3 Higher order Natte series

The higher order Natte series is a generalization of the Natte series derived
in the previous sub-sections. It gives a direct access to part of the asymptotic
expansion without having to compute the effective form of the functionals
DN,r and then carry out the contour integrals. Indeed, even if it is possible
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in principle to compute explicitly, order-by-order the functionals DN,r and
thus Hn, this task becomes very quickly monstrously cumbersome. In order
to get the corrections, it is more desirable to apply the procedure below (or
its obvious extension to higher order asymptotics) if one wants to access to
the higher order correction then those contained in det [I + V ](0) [ν, u, g].

Proposition 7.1. The Fredholm determinant of I + V admits the below
convergent Natte series representation:

det [I + V ] [ν, u, g] = det [I + V ](0) [ν, u, g]

× exp
{∫ x

+∞
dx′ [x′]− 3

2 a1

(
x′) +

[
x′]−2 [

aosc
2

(
x′) + ano

2

(
x′)]}

×
{

1 +
∑
n≥1

∑
k∈Kn

∑
{εt}∈E(k)

H̃n (x, {k} , {εt})
[
ν, u, Πt∈J{k}e

εtg(zt)
]}

.

(7.39)

There H̃n is defined as in (7.30), (7.10), but with the minor difference that
the functionals DN in (7.10) should be replaced by the functionals D̃N as
given in (7.41). Also, a1, aosc

2 , anosc
2 are given by (6.36), (6.37), (6.38),

(6.39). Note that here we have explicitly insisted on their dependence on
the large-parameter x′. The fundamental difference between the higher order
Natte series and the one discussed previously is that for x large enough and
for an n-independent O:

∣∣∣∣∣∣Hn (x, {k} , {εt})
[
ν, u,

∏
t∈J{k}

eεtg(zt)

]∣∣∣∣∣∣
= min

{
O

(
1

xnw

)
, O

(
log2 x

x3
,
a1 log x

x
5
2

,
aosc

2 log x

x3
,

a1

x
3
2
+w

,
aosc

2

x2+w

)}
.

The constant w is as defined in (7.8).

Proof. One starts by performing the decomposition

log det [I + V ] [ν, u, g]

= log det [I + V ](0) [ν, u, g] +
∫ x

+∞
dy

(
a1 (y)

y
3
2

+
aosc

2 (y) + ano
2 (y)

y2

)

+ log det [I + V ](sub2)[ν, u, g] .
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There, log det [I + V ](sub2)[ν, u, g] corresponds to that part of
log det [I + V ](sub)[ν, u, g] (7.4) where all terms that give rise to the inte-
gral involving a1 and a

osc/no
2 have been subtracted. Namely,

log det [I + V ](sub2) [ν, u, g] =
∫ x

+∞
dx′

∮
γ

dλ

4π
G (λ)

×
{

tr
[
∂λΠ (λ) σ (λ) Π−1 (λ)

]− 1γ(0)(λ)
y

tr
{[

Π(1)
]′

(λ)σ3

}

− 1γ(0)(λ)

y
3
2

tr
{[

Π(2)
]′

(λ) − Π(0)(λ)
[
Π(1)

]′
(λ) − Π(1)(λ)

[
Π(0)

]′
(λ)

}
σ3

− 1γ(0)(λ)
y2

tr
{[

Π(3)
]′

(λ) − Π(1)(λ)
[
Π(1)

]′
(λ)

}
σ3

}
. (7.40)

We stress that the variable of integration x′ corresponds to the large param-
eter (denoted by x before) that enters in the formulation of the RHP for Π
and on which Π depends implicitly.

The expansion of log det [I + V ](sub) [ν, u, g] goes along the same lines
as before, with the minor difference that the functionals DN,r are defined
slightly differently. Indeed one has to subtract from the Neumann series
like expansion for tr

[
∂λΠ (λ) σ (λ) Π−1(λ)

]
all the subleading contributions

that appear in (7.40). For this purpose, we define

tr [Δ (zr) . . .Δ (z1)σ (λ)∇ (zr+1) . . .∇ (zN )] − RN,r ({z}, x)

=
∑

Σεk=0
εk∈{±1,0}

D̃N,r

(
λ, {zj}N

1 , x; {εj}N
j=1

)
[ν, u] e

N∑
p=1

εpg(zp)

. (7.41)

In order to define RN,r ({z}, x) we represent the asymptotic expansion of
Δ (z) slightly differently then in (7.1).

Δ (z) �
∑
p≥1

x− p
2 M (p) (z, x) with

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

M (2p+1)(z; x) =
d(p)(z)

(z − λ0)
2p+1 · 1Dλ0,2δ\Dλ0,δ′(z)

M (2p)(z; x) =
∑
ε=±

V (ε;p−1)(z)
p! (z − εq)p−1 · 1Dεq,2δ\Dεq,δ′(z) .

(7.42)
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There we took δ small enough and δ > δ′ > 0. In terms of such matrices one
has

RN,r ({z} , x) = δN,1δr,N

⎡
⎣ 4∑

p=1

x− p
2 tr

[
M (p)(z1, x)σ3

]⎤⎦

+
δN,3δr,3

x2
tr

[
M (1)(z3, x)M (2)(z2, x)M (1)(z1, x)σ3

]

+
2∑

r=1

δN,2 (−1)r

⎡
⎣ 2∑

p,p′=1

x− p+p′
2 tr

[
M (p)(z1, x)σ3M

(p′)(z2, x)
]⎤⎦.

Finally, defining H̃n as in (7.30), (7.10), but with the minor difference that
the functionals DN in (7.10) should be replaced by the functionals D̃N given
in (7.41). One gets the desired representation. �

A similar Natte series can be obtained for other quantities that are also
related with the correlation functions in integrable models.

Proposition 7.2. Let F1 be as defined in (3.3), then the below Fredholm
minor admits a Natte series representation:

{∫
CE

dλ

2π
e−2(λ) +

∫ q

−q

dλ

2π
4 sin2 [πν (λ)] F1 (λ)E (λ)

}
det [I + V ] [ν, u, g]

= det [I + V ](0) [ν, u, g]

{
S−1

0 1] q ;+∞ [ (λ0)√−2πxu′′(λ0)
+

ν (q)
xu′ (q)

S−1
+ − ν (−q)

xu′ (−q)
S−1
−

+
∑
n≥1

∑
k∈K̃n

∑
{εt}∈Ẽ(k)

H̃(+)
n (x,k, {εt})

[
ν, u, Πt∈J{k}e

εtg(zt)
]}

. (7.43)

There the summation runs through all the possible choice of integers
k1, . . . , kN+1 belonging to

Kn =

{
k = (k1, . . . , kn+1) : ks ∈ N, s = 1, . . . , n and

kn+1 ∈ N
∗ kn+1 +

n∑
s=1

sks = n

}
. (7.44)
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The remaining summation run through sets that are labelled by doublets and
triplets belonging to

J{k} =
{

(s, p, j) , s ∈ [[ 1 ; n + 1 ]] , p ∈ [[ 1 ; ks ]] , j ∈ [[ 1 ; s − δs,n+1n ]]
}

D{k} =
{

(s, p, j) , s ∈ [[ 1 ; n ]] , p ∈ [[ 1 ; ks ]]
}

.

Indeed, then

Ẽ (k) =

{
{εt}t∈J{k} : εt ∈ {±1, 0} ,

d1∑
j=1

εd,j = 0 with d ∈ D{k} and

kn+1∑
p=1

εkn+1,p,1 = 1

}
. (7.45)

Finally, the functionals H̃
(+)
n (x, {k} , {εt}) read

H̃(+)
n (x, {k} , {εt})

[
ν, u,

∏
t∈J{k}

eεtg(zt)

]

=
∫

Σ
(n)
Π

n∏
p=1

dzn+1,p,1

2iπ
C̃n

(
{zn+1,p,1}n

p=1, {εn+1,p,1}n
p=1, x

)
[ν, u]

×
n∏

p=1

eεn+1,p,1g(zn+1,p,1).

when kn+1 = n and in all other cases,

H̃(+)
n

(
x, {k} , {εt}t∈J{k}

)[
ν, u,

∏
t∈J{k}

eεtg(zt)

]

=
d1∑

rd=1
d∈D{k}

∑
τd=↑/↓

∏
d∈D{k}

∫ x

+∞
dxd

∮
γτd

dλd

4π

∫
{Σ

τd
Π }(rd ,d1)

dd1zd,j

(2iπ)d1

×
∫

Σ
(kn+1)
Π

kn+1∏
p=1

dzkn+1,p,1

2iπ
×

n∏
j=1

1
kj !
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× Ckn+1

(
{zkn+1,p,1}kn+1

p=1 , x, {εkn+1,p,1}kn+1

p=1

)
[ν, u]

·
∏

d∈D{k}

Hd1,rd

(
λd, {zd,j}d1

j=1, xd; {εd,j}d1
j=1

)
[ν, u] ·

∏
t∈J{k}

eεtg(zt).

Note that we have used above the notation introduced in Lemma 7.2. Also
we have set

i
tr [Δ (zN ) . . . Δ (z1)σ−] − δN,1

∑2
p=1 x− p

2 tr
[
M (p)(z1, x)σ−]

∏N−1
p=1 (zp − zp−1)

=
∑

Σεs=1

C̃N

({zj}N
1 , x, {εj}N

1

)
[ν, u]

N∏
p=1

eεpg(zp)

itr
[
Δ (zN ) . . .Δ (z1) σ−] ·

N−1∏
p=1

(zp − zp−1)
−1

=
∑

Σεs=1

CN

({zj}N
1 , x, {εj}N

1

)
[ν, u]

N∏
p=1

eεpg(zp).

The sums in the two equations above run over all choices of the variables εs,
s = 1, . . . , N with εs ∈ {±1, 0} and

∑N
s=1 εs = 1.

Proof. By using the integral representation for χ (3.6), one readily gets that

i [χ∞]12 ≡ lim
λ→+∞

tr
[
λχ (λ) σ−] =

∫ q

−q

dλ

2π
4 sin2 [πν (λ)] F1 (λ) E (λ) . (7.46)

Also, it is easy to convince oneself that

i [Π∞]12 = i [χ∞]12 +
∫

CE

e−2(λ)
dλ

2π
. (7.47)

The claim follows by expanding [Π∞]12 into a higher order Natte series
(where the first few terms of the asymptotics have been taken into account)
and then taking the product of this series with the Natte series for the
Fredholm determinant. The details are left to the reader. �

It follows from the leading asymptotics given in (7.43) that, in the case of
the time-like regime, the saddle-point λ0 does not contribute to the leading
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order. It can however be checked that it does eventually contribute. Its
contribution is a O

(
x−5/2, x−5/2

(
x−ν(q) + x−ν(−q)

)2
)
.

8 Conclusion

In this paper we have obtained the first few terms in the leading x →
+∞ asymptotics of the Fredholm determinant of a class of integrable inte-
gral operator that provide a starting point for the analysis of the large-
distance/long-time asymptotic behavior in integrable models away from
their free fermion point. Also, we have derived a new series representation
for the Fredholm determinant, the so-called Natte series. This series is well
adapted for an asymptotic analysis of the Fredholm determinant and can
thus be thought of as being an analog of the Mellin–Barnes integral repre-
sentation for hypergeometric functions. In two subsequent paper, the Natte
series will appear as a central tool in computing the large-distance/long-time
asymptotic behavior of the correlation functions in the non-linear
Schrödinger model away from its free Fermion point [34, 37]. As a byproduct
of our analysis, we have been able to bring a little more order to the struc-
ture of the asymptotic expansion of Fredholm determinants of operators
belonging to the class of the generalized sine kernel. It would be interesting
to extend/push forward the form of the full asymptotic expansion of the
determinant given in Theorem 2.2, in particular by providing a closed form
(i.e., the explicit values of coefficients/functionals), at least in the case of
some particular kernel such as the sine kernel.
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Appendix A. Several Properties of CHF

One can check that for z ∈ R
+

Ψ
(

1,
3
2
;−ei0+

z

)
− Ψ

(
1,

3
2
;−e−i0+

z

)
= 2i

√
π

z
e−z. (A.1)
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Ψ (a, c; z) has an asymptotic expansion at z → ∞ given by

Ψ (a, c; z) =
M∑

n=0

(−1)n (a)n (a − c + 1)n

n!
z−a−n + O

(
z−M−a

)
,

for − 3π

2
< arg(z) <

3π

2
. (A.2)

It also satisfies to the monodromy properties

Ψ(a, 1; ze2iπ) = Ψ(a, 1; z)e−2iπa +
2πie−iπa+z

Γ2(a)
Ψ(1 − a, 1;−z), 	(z) < 0,

(A.3)

Ψ(a, 1; ze−2iπ) = Ψ(a, 1; z)e2iπa − 2πieiπa+z

Γ2(a)
Ψ(1 − a, 1;−z), 	(z) > 0.

(A.4)

Tricomi’s CHF can be expressed in terms of Humbert’s CHF

Ψ (a, c; z) = Γ
(

1 − c
a − c + 1

)
Φ (a, c; z) + Γ

(
c − 1

a

)
z1−cΦ (a − c + 1, 2 − c; z).

(A.5)

There exists a similar formula expression Tricomi’s CHF Ψ (a, c; z) in terms
of Humbert’s one

Φ (a, c; z) =
Γ (c)

Γ (c − a)
eiεaπΨ (a, c; z) +

Γ (c)
Γ (a)

eiεπ(a−c)+zΨ (c − a, c;−z) ,

(A.6)

where ε = sgn (	(z)), and

Φ (a, c; z) =
∞∑

n=0

(a)n

(c)n

zn

n!
. (A.7)

The Barnes’ G function satisfies to the reflection property

G (1 − z) =
G (1 + z)

(2π)z exp
{∫ z

0
πx cot [πx] dx

}
, (A.8)

which holds for 
 (z) < 1 in the usual sense (and also everywhere else by
analytic continuation).



1724 K.K. KOZLOWSKI

Appendix B. Proof of the asymptotic expansion for Π

B.1 Two lemmas

We first need a technical lemma

Lemma B.1. Let the matrices Δj take the form

Δj =
[
ej

]σ3
2 Δ̃j

[
ej

]−σ3
2 =

(
aj bjej

cje
−1
j dj

)
, (B.1)

where the entries aj , bj , cj , dj do not depend on ej. Then

ΔN . . .Δ1 =
[N

2 ]∑
a=0

∑
j(a)∈Ba;N

(
Aj(a) eNBj(a)

e−1
N Cj(a) Dj(a)

)
·
(

ej2 . . . ej2a

ej1 . . . ej2a−1

)σ3

. (B.2)

Above, the sum runs through all choices of 2a-uples of integers j(a) =
(j1, . . . , j2a) with j(a) belonging to

Ba;N =
{

(j1, . . . , j2a) ∈ [N∗]2a : 1 ≤ j1 < · · · < j2a ≤ N
}

. (B.3)

The entries of each matrix appearing in the sum are linear polynomials the
entries of the matrices Δ̃p.

This lemma allow us to trace back all the dependence on the fractional
power of x in the products Δ (zN ) . . .Δ (z1) of the non-trivial parts of the
jump matrices for Π.

Proof. The result clearly holds for N = 1 as then, the only possibility is to
take a = 0.

We prove the induction hypothesis for the 11 entry. It goes similarly for
all the others. By applying the induction hypothesis to ΔN . . . Δ1 and then
explicitly multiplying out with ΔN+1, we get that

[ΔN+1 . . .Δ1]11 =
[N

2 ]∑
a=0

∑
j(a)∈Ba;N

(
ej2 . . . ej2a

ej1 . . . ej2a−1

)

×
{

aN+1Aj(a) +
eN+1

eN
bN+1Cj(a)

}
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=
[N

2 ]∑
a=0

∑
j(a)∈Ba;N

(
ej2 . . . ej2a

ej1 . . . ej2a−1

)
aN+1Aj(a)

+
[N

2 ]∑
a=0

∑
j(a)∈Ba;N−1

(
ej2 . . . ej2aeN+1

ej1 . . . ej2a−1eN

)
bN+1Cj(a)

+
[N

2 ]∑
a=1

∑
j(a)∈Ba;N

j2a=N

(
ej2 . . . ej2a−2eN eN+1

ej1 . . . ej2a−1eN

)
bN+1Cj(a) . (B.4)

The result follows as the above sums can be seen organized in respect to the
partition

[N+1/2]⋃
a=1

Ba;N+1 =

{
[N/2]⋃
a=1

Ba;N

}

⋃{
[N/2]⋃
a=1

{1 ≤ j1 < · · · < j2a ≤ N − 1, j2a+1 = N, j2a+2 = N + 1}
}

⋃{
[N/2]⋃
a=1

{1 ≤ j1 < · · · < j2a−1 ≤ N − 1, j2a = N + 1}
}

. (B.5)

�
Lemma B.2. Let FN (z1, . . . , zN ) be a holomorphic function on
D = Dv,δ1 × · · · × Dv,δN

, where 0 < δN < · · · < δ1 and v ∈ C. Let
∂D = ∂Dv,δ1 × · · · × ∂Dv,δN

be the skeleton of D and np a set of positive
integers. Then, for λ lying outside of Dv,δ1 , one has

∮
∂D

dNz

(2iπ)N

FN (z1, . . . , zN )

(λ − z1)
N−1∏
k=1

(zk − zk+1)
·

N∏
p=1

1
(zp − v)np+1

=
rN∑

kN=0

. . .

r1∑
k1=0

1
(λ − v)r0

·
{

1
k1!

∂k1

∂zk1
1

. . .
1

kN !
∂kN

∂zkN
N

FN

}

|zp=v

. (B.6)

where we agree upon

rp =
N∑

�=p

n� + N − p −
N∑

�=p+1

k� and n0 = 0. (B.7)
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The proof is a straightforward induction. Note that the total highest
possible order of derivatives of FN that is produced by the above contour
integral is

∑N
�=1 n� + N − 1. It corresponds to no-derivation in respect to

the variables z2, . . . , zN and a derivative in respect to z1 of order
∑N

�=1 n� +
N − 1. All other choices of the integers {ka} lead to a total order of the
partial derivatives that is strictly smaller.

B.2 Proof of Proposition 6.1

We are now in position to prove Proposition 6.1.

Here, we will only discuss the case of the time-like regime. The proof in
the case of the space-like regime goes very similarly, so that we omit it here.

We have already established that, for x-large enough, Π (λ) is given in
terms of a uniformly convergent Neumann series (6.8):

Π (λ) = I2 +
∑
N≥1

ΠN (λ)
xN

with

ΠN (λ) = xN

∫
Σ

(N)
Π

dNz

(2iπ)N

Δ (zN ) . . .Δ (z1)

(λ − z1)
N−1∏
p=1

(zp − zp+1)
. (B.8)

Above each N-fold integral runs across the inslotted contour Σ(N)
Π as defined

in figure 11 and the equality holds for λ uniformly away from the boundary
ΣΠ. We remind that in this Neumann series the matrices Δ (zk) are sub-
ordinate to the jump matrix I2 + Δ (λ) for Π (λ) solving the Π-type RHP
associated with the jump contour ΣΠ [zk], cf. Definition 6.1.

To prove the claim of Proposition 6.1, we build on (B.8) so as to obtain
a more precise form of the asymptotic expansion of ΠN (λ).

Recall that each contour ΣΠ [zk] entering in the definition of the inlsotted
contour Σ(N)

Π can be divided into its exterior part Γ̃ [zk] and three circles
∂Dq,δk

∪ ∂D−q,δk
∪ ∂Dλ0,δk

. There 0 < δN < · · · < δ1 and δ1 is small enough,
in particular it is such that δ1 < |λ0 ± q| /2. However, the very choice of the
contour Γ̃ implies that

‖Δ‖
L∞(Γ̃[zk]) + ‖Δ‖

L2(Γ̃[zk]) + ‖Δ‖
L1(Γ̃[zk]) = O

(
x−∞)

. (B.9)
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Hence, from the point of view of the asymptotic expansion, one can drop all
contributions to ΠN (λ) stemming from those parts of the multiple integral
in (B.8), where at least one variable is integrated along Γ̃. Indeed, due to
the estimates (B.9), such an integration would only produce O (x−∞) terms.

The matrix AN (λ) appearing in (6.11) contains exactly these contribu-
tions, and hence AN (λ) = O (x−∞) uniformly away from ΣΠ.

It thus now remains to focus on the effect of the integration on the bound-
ary of the three disks centered at ±q and λ0. In other words,

ΠN (λ) = AN (λ) + xN
∑

ε∈EN

∮
∂Dε

dNz

(2iπ)N
· Δ (zN ) . . .Δ (z1)∏N

k=1 (zk−1 − zk)
,

where z0 = λ. (B.10)

The above sum corresponds to summing up over all the possible choices of
the integration contour ∂Dvεk

,δk
for each variables zk. More precisely, one

sums over all the N -dimensional vectors ε belonging to

EN = {ε = (ε1, . . . , εN ) : εk ∈ {±1, 0}} . (B.11)

We also agree upon the shorthand notation v+ = q, v− = −q and v0 = λ0.
Finally, the integration contour ∂Dε in each summand corresponds to the
Cartesian product of N-circles ∂Dε = ∂Dvε1 ,δ1 × · · · × ∂DvεN

,δN
of decreas-

ing radii 0 < δN < · · · < δ1, with δ1 small enough.

We stress that there exists natural constraints on the possible choices of
the εk. Indeed, if zj and zj+1 both belong to a sufficiently small neigh-
borhood of λ0, then Δ (zj) Δ (zj+1) = 0. Hence, choices of N -dimensional
vectors ε having two neighboring coordinates (εj and εj+1 for some j) equal
to zero do not contribute to the sum in (B.10).

The asymptotic expansions of Δ (z) on each of the three disks all take the
generic form:

Δ (z) �
∑
n≥0

[e (z; ε)]
σ3
2 · Δ̃(n)(z) · [e (z; ε)]−

σ3
2

xn+1 (z − vε)
n(2−|ε|)+1

uniformly in z ∈ Dvε,2δ \ Dvε,δ′ ε ∈ {±1, 0} . (B.12)

The radii are such that δ > δ′ > 0 and δ is taken sufficiently small, but are
arbitrary otherwise. (B.12) is to be understood in the sense of an asymptotic
expansion, i.e., up to a truncation to any given order in x. The detailed
expression for the matrices Δ̃(n) (z) and e (z; ε) differ on each of the disks
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(i.e., for ε = ±1 or 0). However, e (z; ε) are holomorphic on any sufficiently
small neighborhood of ±q or λ0. Also, the matrix Δ̃(n)(z) does not depend
on x anymore. The function e (z; ε) contains a fractional power of x and also
an oscillating term:

e (z; ε) =

⎧⎨
⎩

eixu(q)x−2ν(z) for ε = 1,

eixu(−q)x2ν(z) for ε = −1,

eixu(λ0)x− 1
2 for ε = 0.

(B.13)

We are now in position to establish the asymptotic expansion of the second
term in (B.10).

Expanding each matrix Δ (zn) into its asymptotic series (B.12), using
that the latter is uniform on the compact domain of integration we obtain
the asymptotic expansion of ΠN :

ΠN (λ) �
∑
r≥0

1
xr

∑
ε∈EN

∑
n∈N (r)

N

×
∫

∂Dε

dNz

(2iπ)N
· [eN ]

σ3
2 Δ̃(nN )(zN ) [eN−1/eN ]

σ3
2. . . [e1/e2]

σ3
2 Δ̃(n1)(z1) [e1]

−σ3
2

(λ − z1) ·
N∏

k=2

(zk−1 − zk) ·
N∏

p=1

(
zp − vεp

)np(2−|εp|)+1
.

(B.14)

There appears a summation over N -dimensional integer valued vectors n
belonging to

N (r)
N =

{
n = (n1, . . . ,nN ) : nk ∈ N, ΣN

p=1np = r
}

. (B.15)

Note that in order to lighten the notations slightly, we have set ek ≡ e (zk; εk).
Also, just as in (B.12), we did not make the remainder explicit.

Lemma B.1 ensures the existence of holomorphic functions A
(n)

j(a) ({zk}),
. . . , D

(n)

j(a) ({zk}) of z1, . . . , zN such that

[eN ]
σ3
2 Δ̃(nN )(zN )

[
eN−1

eN

]σ3
2

. . .

[
e1

e2

]σ3
2

Δ̃(n1)(z1) [e1]
−σ3

2

=
[N

2 ]∑
a=0

∑
j(a)∈Ba;N

⎛
⎝ A

(n)

j(a) ({zk}) eNB
(n)

j(a) ({zk})
e−1
N C

(n)

j(a) ({zk}) D
(n)

j(a) ({zk})

⎞
⎠

(
ej2 . . . ej2a

ej1 . . . ej2a−1

)σ3

.

(B.16)
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Due to the form taken by the matrices Δ(n)(z), not all configurations
of the 2a-uples j(a) appear in (B.16). Indeed, when zk ∈ ∂Dλ0,δk

(i.e.,
εk = 0) the matrix Δ̃(n)(zk) is proportional to σ− (cf. (5.14)). It appears
in (B.14) with a pre-factor e−1

k . Therefore, for zk ∈ ∂Dλ0,δk
the only non-

vanishing terms in the sum over j(a) ∈ Ba;n are those corresponding to
choices of 2a-uples j(a) = (j1, . . . , j2a) such that jp = k for some p. In other
words, each time an integration variable belongs to ∂Dλ0,δk

for some k, the
associated oscillating exponent e−1(λ0; 0) is always present. Moreover, all
matrix entries in the expansion (B.16) that appear (after taking the matrix
products) in front of the monomials (ej2 . . . ej2a)

±1 /
(
ej1 . . . ej2a−1

)±1 vanish
whenever a function ejp ≡ e

(
zjp ; εjp

)
corresponding to zjp ∈ ∂Dλ0,δjp

would
appear in the numerator. More precisely, if there exists a p such that jp = k
then

• for p ∈ 2N + 1 (i.e., εj2�+1
= 0 for some �), one has B

(n)

j(a) = D
(n)

j(a) = 0;

• for p ∈ 2N (i.e., εj2�
= 0 for some �), one has A

(n)

j(a) = C
(n)

j(a) = 0 .

Putting together (B.14) and (B.16) leads to the below form of the asymp-
totic expansion for ΠN

ΠN (λ) �
∑
r≥0

1
xr

∑
n∈N (r)

N

∑
j(a)∈Ba;N

∑
ε∈EN

Iε;n

[
Mj(a)

]
. (B.17)

There Mj(a) stands for the matrix appearing in the expansion (B.16) and Iε;n

is a functional depending on the choices of the entries of the N -dimensional
vectors ε and n. It acts on holomorphic functions (or matrices in the sense
of entrywise action) Dε = ∂Dvε1,δ1

× · · · × ∂DvεN ,δN
according to:

Iε;n [FN ]

=
∮

∂Dε

dNy

(2iπ)N
· FN (y1, . . . , yN )

(λ − y1) ·
N∏

s=2
(ys−1 − ys) ·

N∏
s=1

(ys − vεs)
(2−|εs|)ns+1

.

(B.18)

The functional In;ε can be estimated by computing the residues at vεs . This
produces partial derivatives of FN at the points ys = vεs . From now on,
we focus on the analysis of the action of In;ε on the 11 entry of the matrix
Mj(a) . The case of all the other entries can be treated similarly.

Depending on the choice of the components of the N-dimensional vector
ε and hence of the evaluation points vεp , after performing the integration
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induced by In;ε (and having computed the eventual derivatives) the ratio
(ej2 . . . ej2a) /

(
ej1 . . . ej2a−1

)
present in the 11 entry of (B.17) reduces to:

• em(q; +)
em(−q;−)

for some −a ≤ m ≤ a;

• or
ep(q; +) eb−p(−q;−)

eb(λ0; 0)
·
(

e(q; +)
e(−q;−)

)m

for some 1 ≤ b ≤ m, 0 ≤ p ≤ b, −(a − b) ≤ m ≤ a − b;

Hence, we get that there exists two sets of constant c
(m)
j�

, and c
(m, b, p)
j�

,

∑
n∈N (r)

N

∑
ε∈EN

In;ε

[[
Mj(a)

]
11

]
=

a∑
m=−a

(
e (q; +)

e (−q;−)

)m

c
(m)

j(a)

+
�∑

b=1

b∑
p=0

a−b∑
m=b−a

ep(q; +) eb−p(−q;−)
eb(λ0; 0)

·
(

e(q; +)
e(−q;−)

)m

c
(m, b, p)

j(a) . (B.19)

Each derivative of the factor ek in respect to zk, when zk is in a neighbor-
hood of ±q, produces one power of log x. This log x term appears due to a
differentiation of the exponent x−2εkν(zk). It thus follows that the coefficients
c
(m)

j(a) and c
(m, b, p)

j(a) are polynomials in log x. In the following, we determine
the degree of these polynomials. This will allow us to show that

max deg
(
c
(m)

j(a)

)
= r + N − 2m − δm,0 and

max deg
(
c
(m,b,p)

j(a)

)
= r + N − 2 (b + m) (B.20)

where the sup is taken over all possible choices of n, ε, j(a). Once that (B.20)
is established we get the claim.

The degree of c
(m)

j(a)

As already argued, when εk = 0, there necessarily appears e (zk; 0) in the
denominator of

[
Mj(a)

]
11

. As no function e (z�; 0), � �= k, can appear in

the numerator, this implies that in such a situation e (λ0, 0) appears with
some strictly positive exponent after computing the integrals. Therefore,
one ends-up with a term that does not corresponds to the coefficient c

(m)

j(a) .

Hence, contribution to the coefficients c
(m)

j(a) can only stem from these choice
of N -dimensional vectors ε whose entries are in {±1}. This means that
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when focusing on c
(m)

j(a) , all “admissible” choices of the N -dimensional vector
ε can be parameterized as

ε = ( ε1, . . . , ε1︸ ︷︷ ︸
�1

, ε2, . . . , ε2︸ ︷︷ ︸
�2

, . . . , εp, . . . , εp︸ ︷︷ ︸
�p

) with

εs = (−1)s−1 ε1 ε1 ∈ {±1} for some p ≤ N. (B.21)

We now compute explicitly the action of the functional Iε;n corresponding
to some ε given by (B.21). For this purpose, it is convenient to relabel the
integration variables yi appearing in (B.18) in a form that is subordinate to
such a representation of the vector ε. Namely,

(y1, . . . , yN ) =
{
z1,1, . . . , z1,�1 , z2,1, . . . , zs,t, . . . , zp,�p

}
, i.e.,

zs,t = y �s+t, where �s =
s−1∑
r=1

�r. (B.22)

We relabel the entries of the vector n in a similar way, i.e., ns,t = n �s+t.
Then, the functional Iε;n reads

Iε;n

[[
Mj(a)

]
11

]

=
∮

∂Dε

dNz

(2iπ)N
·

[
Mj(a)

]
11

({z})
p∏

s=1

{(
zs−1,�s−1 − zs,1

) · �s−1∏
t=1

(zs,t − zs,t+1)
}

·
p∏

s=1

�s∏
t=1

1
(zs,t − vεs)

ns,t+1 . (B.23)

Here we agree upon �0 = 0 and z0,0 = λ. The above integral is directly
computed by an inductive application of Lemma B.2:

Iε;n

[[
Mj(a)

]
11

]

=
rs,t∑

ks,t=0

p∏
s=1

�s∏
t=1

{
1

ks,t!
∂ks,t

∂z
ks,t

s,t

}

·
[[

Mj(a)

]
11

({z})
p∏

s=1

(
zs−1,�s−1 − vεs

)−rs,0

]

zs,t=vεs

. (B.24)
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In (B.24) one sums over integers ks,t with s = 1, . . . , p and t = 1, . . . , �s where
each ks,t is summed from 0 to

rs,t =
�s∑

j=t

ns,j + �s − t −
�p∑

j=t+1

ks,t with ns,0 = 0. (B.25)

It follows that each block of variables (zs,1, . . . , zs,�s) associated to the
same εs, is subject to partial derivatives of total order

∑�s
t=1 ks,t. Hence,

the maximal total order of all the derivatives that may act on this block
of variables is rmax

s,1 =
∑�s

j=1 ns,j + �s − 1. The unique way of realizing this
maximal order is through a single derivative of order rmax

s,1 with respect to the
variable zs,1. We stress that in this case, all the other variables of the block
are simply set equal to vεs . Very similarly, the maximal total order of all the
partial derivatives that may act on a sub-block of variables (zs,t, . . . , zs,�s)
associated to the same εs is rmax

s,t =
∑�s

j=t ns,j + �s − t. The unique way of
realizing this maximal order is by a derivative of order rmax

s,t with respect to
the variable zs,t. Then zs,t+1, . . . , zs,�s should be set equal to vεs .

As we have already mentioned, the function ejk
≡ e (yjk

; εk) depends on x.
Hence, its derivative in respect to yjk

generates powers of log x. Therefore,
the highest degree in log x appearing in Iε;n

[
Mj(a)

]
will be generated by a

derivative of the highest order possible in respect to the variables yjk
, with

k = 1, . . . , 2a.

Hence, to be able to determine this maximal degree in log x, we first have
to order the indices jk according to the block to which they belong. For this
purpose, we set

As =
{
k : jk ∈ [[ �s + 1 ; �s+1 ]]

}
and as = min {k : k ∈ As} , (B.26)

see figure 15 for an example. Suppose that one deals with a block of variables
(zs,1, . . . , zs,�s) such that #As �= 0. Then the highest possible power of lnx
that an integration over the variables of this block can produce will be issued
by the action of a derivative of the highest order possible on the variable
zs,jas−�s

. Thence, an integration over this block of variables generates a
polynomial in lnx of degree rmax

s,jas−�s
. Clearly, if #As = 0, its associated set

of variables and functions cannot generate, once upon being integrated, any
power of log x.

We now characterize the oscillating term appearing in Iε;n

[
Mj(a)

]
. If a

given block (zs,1, . . . , zs,�s) corresponds to a set As having an even number
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Figure 15: Definition of the sets As and of its minimal element as. One has
A1 = {1, 2, 3}, A2 = {4, 5}, A3 = ∅, . . . , Ap = {2� − 1, 2�}. The εk delimit
the block of variables of length �k associated to εk.

of elements (#As ∈ 2N), then after taking the derivatives and once upon
evaluating at zs,t = vεs , the associated ratio of the functions ej cancels out.
Indeed, there are as many identical factors in the denominator that in the
numerator. For instance, when as is even one has

ejas
. . . ejas+#As

ejas+1 . . . ejas+#As−1

∣∣∣∣
zs,t=vεs

= 1. (B.27)

However, if a given block (zs,1, . . . , zs,�s) corresponds to a set As with an
odd number of elements (#As ∈ 2N + 1), then after taking the derivatives,
the associated ratio of the functions ej reduces to [e (vεs ; εs)]

(−1)as

. Indeed

as ∈ 2N ⇒ ejas
. . . ejas+#As−1

ejas+1 . . . ejas+#As−2

∣∣∣∣
zs,t=vεs

= e (vεs ; εs) and

as ∈ 2N + 1 ⇒ ejas+1 . . . ejas+#As−2

ejas
. . . ejas+#As−1

∣∣∣∣
zs,t=vεs

=
1

e (vεs ; εs)
. (B.28)

Therefore, we obtain that

Iε;n

[[
Mj(a)

]
11

]
= P

(j(a))
ε;n (log x) ·

p∏
s=1

#As∈2N+1

[e (vεs ; εs)]
(−1)as

where deg
(
P

(j(a))
ε;n

)
=

p∑
s=1

#As �=0

⎧⎨
⎩

�s∑
k=jas−�s

ns,k + �s −
(
jas − �s

)
⎫⎬
⎭ . (B.29)

Now, in order to obtain the coefficient c
(m)

j(a) we should sum up (B.29)

over n ∈ N (r)
N and also over all the possible configurations of vectors ε

parameterized as in (B.21) and such that we eventually generate the power
(e (q; +) /e (−q;−))m. Then, among such configurations, we should look for
those that correspond to a polynomial Pε;n (log x) of highest degree.



1734 K.K. KOZLOWSKI

Given a fixed number of flips p in (B.21), one maximizes the degree in
(B.29) by choosing the lengths �s is such a way that #As �= 0 for any s and
such that jas = �s + 1. One can do so for all s, but s = 1. Indeed, in the
latter case one necessarily has ja1 = j1 ≥ 1. Therefore, for such a choice
of lengths �s, once upon choosing n1,t = 0 for t = 0, . . . , j1 − 1 one obtains
that this maximal degree of is r + N − p − (j1 − 1). Note that, we have used∑

s,t ns,t = r and
∑

s �s = N .

There is also a condition on the number of flips that are necessary to
generate the oscillatory factors (e (q; +) /e (−q;−))m. Due to the form of the
oscillatory factor in (B.29), we get that one sequence (εs, . . . , εs) generates
at most one factor [e (εsq; εs)]

τ , τ = ±1. Hence, if m �= 0 there are at least
2m flips necessary to generate the factors (e (q; +) /e (−q;−))m. If m = 0,
then one still has one sequence (ε1, . . . , ε1) of length �1 = N . Therefore, one
has p ≥ max (2m, 1). Taking the lowest possible value, i.e., p = max (2m, 1),
we get that

max
ε ; n

deg
(

P
(j(a))
ε;n

)
= n + N − 2m − δm,0 + (j1 − 1) . (B.30)

In order to obtain estimates for [ΠN ]11 one should still sum up over all
the possible configurations of 2a-uples j(a). Therefore the highest degree in
log x of

[
Π(m)

N,r

]
11

is obtained by setting j1 = 1. That is, we reproduce (B.20).

The degree of c
(m, b, p)

j(a)

It follows from the previous discussions that each time an integration over
∂Dλ0,δ occurs in (B.17)–(B.18), there appears, once upon integrating, a fac-
tor e−1(λ0, 0). Hence, the oscillating factor in front of c

(m, b, p)

j(a) is necessarily
generated by these choices of N -dimensional vectors ε where precisely b
entries are equal to zero (i.e., there are exactly b integrations over ∂Dλ0,δ).

Taking into account the fact that, as previously argued, two neighboring
entries of the vector ε cannot simultaneously vanish, we get that such vectors
ε can be parameterized as

ε = ( ε1, . . . , ε1︸ ︷︷ ︸
�1

, . . . , ετ1 , . . . , ετ1︸ ︷︷ ︸
�τ1

, 0, ετ1+1, . . . , ετb
, 0, . . . , εp, . . . , εp︸ ︷︷ ︸

�p

),

where
p∑

r=1

�r = N − b. (B.31)
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We relabel the integration variables yi appearing in (B.18) in a form subor-
dinate to (B.31):

(y1, . . . , yN ) =
{
z1,1, . . . zτa,�τa

, ωa, zτa+1,1 . . . , zp,�p

}
,

i.e., zs,t = y �s+t, ωa = y �τa+1 (B.32)

where we agree upon

�s =
s−1∑
r=1

�r + # { k : τk < s } . (B.33)

We also relabel the entries of the vector n in a similar way, i.e., ns,t = n �s+t

and n
(0)
a = n �τa+1. The action of the associated functional Iε;n takes the

form

Iε;n

[[
Mj(a)

]
11

]
=

∮
∂Dε

dN−bz

(2iπ)N−b
· dbω

(2iπ)b

p∏
s=1

s �=τa+1

1(
zs−1,�s−1 − zs,1

)

·
p∏

s=1

�s−1∏
t=1

1
(zs,t − zs,t+1)

[
Mj(a)

]
11

({z} ; {ω})∏p
s=1

∏�s
t=1 (zs,t − vεs)

ns,t+1

·
b∏

a=1

1(
zτa,�τa

− ωa

)
(ωa − zτa+1,1)

·
b∏

a=1

1

(ωa − λ0)
2n

(0)
a +1

.

(B.34)

The integrals over ωa are readily computed. We set

GN−b ({z}) =
b∏

a=1

⎧⎨
⎩

1(
2n

(0)
a

)
!

∂2n
(0)
a

∂ω2n
(0)
a

a

⎫⎬
⎭ ·

⎡
⎣

[
Mj(a)

]
11

({z} ; {ω})(
zτa,�τa

− ωa

)
(ωa − zτa+1,1)

⎤
⎦

ωa=λ0

.

(B.35)
Then, the analysis boils down to the case previously studied:

Iε;n

[[
Mj(a)

]
11

]
=

∮
∂Dred

ε

dN−bz

(2iπ)N−b
GN−b ({z})

p∏
s=1

s �=τa+1

1(
zs−1,�s−1 − zs,1

)

×
p∏

s=1

�s−1∏
t=1

1
(zs,t − zs,t+1)

·
p∏

s=1

�s∏
t=1

1
(zs,t − vεs)

ns,t+1 .

(B.36)
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The integrals runs over the contour ∂Dred
ε , which corresponds to that part

of the initial contour ∂Dε where the integrals over the variable ωa have been
suppressed. Therefore

Iε;n

[[
Mj(a)

]
11

]

=
rs,t∑

ks,t=0

p∏
s=1

�s∏
t=1

{
1

(ks,t)!
∂ks,t

∂z
ks,t

s,t

}
·
[

GN−m ({z})
p∏

s=1
s �=τa+1

(
zs−1,�s−1 − vεs

)rs,0

]

|zs,t=vεs

.

(B.37)

The sum over the integers ks,t runs from 0 to

rs,t=
�s∑

j=t

ns,j + �s − t −
�s∑

j=t+1

ks,t.

Similarly to the previous analysis, we set

As =
{
k : jk ∈ [[ �s + 1 ; �s + �s ]]

}
and as = min {k : k ∈ Ak} . (B.38)

It is then easy to see by using similar arguments to those invoked for c
(m)

j(a)

that

Iε;n

[[
Mj(a)

]
11

]
=

P
(j(a))
ε;n (log x)
eb (λ0; 0)

·
p∏

s=1
#As∈2N+1

[e (vεs ; εs)]
(−1)as

where deg
(
P

(j(a))
ε;n

)
=

p∑
s=1

#As �=0

⎧⎨
⎩

�s∑
k=jas−�s

ns,k + �s −
(
jas − �s

)
⎫⎬
⎭ . (B.39)

In order to obtain the maximal degree in log x associated to the oscillating
term

ep(q, +) eb−p(−q,−)
eb(λ0; 0)

·
(

e(q, +)
e(−q;−)

)m

(B.40)

present in [ΠN ]11, we should maximize the degree of the previous polynomial
in (B.39) under the constraint that the sequence εa in (B.31) ought to change
its value at least b + m times (this in order to produce the sought form of
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the oscillatory term with its associated power-law behavior) and that these
changes are such that eventually (B.40) is generated.

We should also maximize this degree in respect to all the possible choices
of 2a-uples j(a) of various lengths 2a and over the allowed vectors n ∈ N (r)

N .
In order to obtain this maximal degree, one should choose a minimal number
of flips (m + b), choose the lengths �k and the jk in such a way that jas =
�s + 1. Finally, one should also take n

(0)
a = 0 for all a. This leads to the

conclusion that the maximal degree in lnx is r + N − 2 (m + b). �

Appendix C. Fine bounds on ΠN

In this appendix we provide bounds for the matrices Π(m,b,p)
N entering in the

decomposition for ΠN given in Proposition 6.1.

Proposition C.1. Let ΣΠ be a contour appearing in the RHP for Π and U
any open set such that d (U, ΣΠ) > 0. Let ΠN be as defined by (6.10) and,
agreeing upon η = 1 in the space-like regime and η = −1 in the time-like
regime, let

e (z; ε) =

⎧⎨
⎩

eixu(q)x−2ν(z) for ε = 1,

eixu(−q)x2ν(z) for ε = −1,

eixu(λ0)x−η 1
2 for ε = 0.

(C.1)

Then the matrix ΠN (λ) admits the representation

ΠN (λ) = AN (λ)

+
[N/2]∑
b=0

b∑
p=0

[N/2]−b∑
m=b−[N/2]

(
e (q; +)

e (−q;−)

)m−ηp (
e (λ0; 0)
e (−q;−)

)ηb

Π(m,b,p)
N (λ) .

(C.2)

For x-large enough, the matrices Π(m,b,p)
N (λ) and AN (λ) depend smoothly on

x and holomorphically on λ ∈ U . One has the decomposition

Π(m,b,p)
N (λ) =

∑
ε∈{±1,0}

[e (vε; ε)]
σ3
2 Π(m,b,p)

N ;ε (λ) [e (vε; ε)]
−σ3

2

where v± = ±q and v0 = λ0. (C.3)

The matrix Π(m,b,p)
N ;ε (λ) is such that it does not contain any oscillating factor

in its entries. Moreover, for all k ∈ N there exists an N-independent constant
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C > 0 such that

‖AN‖L∞(U) ≤
CN

xk
and

∥∥∥Π(m,b,p)
N ;ε

∥∥∥
L∞(U)

≤ CNxw̃N

with w̃ = 2 max
ε=±

{
sup

∂Dεq,δ

|
 (ν − ν (εq))|
}

. (C.4)

These estimates also hold for the first-order partial derivatives (in respect to
x or λ).

Proof. Recall that the matrix ΠN can be represented in terms of Cauchy
transforms (or their + boundary values) on ΣΠ:

ΠN (λ) = CΔ
ΣΠ

◦ · · · ◦ CΔ
ΣΠ

[I2] (λ) =
{CΔ

ΣΠ

}N
[I2] (λ) . (C.5)

Above and in the following, CΔ
C [M ] (λ) for λ �∈ C corresponds to the case

where in the integral representation (6.3) for this operator we substitute the
+ boundary value with λ �∈ C . This is clearly a well defined expression.
We decompose the jump contour for Π according to ΣΠ = ∂D ∪ Σ̃Π with
∂D = ∂Dq,δ ∪ ∂D−q,δ ∪ ∂Dλ0,δ.

The exponentially small in x terms gathered in AN can be written as

AN (λ) =
N−1∑
k=0

{CΔ
∂D

}N−1−k ◦
{
CΔ

Σ̃Π

}
◦ {CΔ

ΣΠ

}k
[I2] (λ) , (C.6)

whereas

ΠN (λ) − AN (λ) =
∑

ε∈EN

CΔ
∂Dvε1,δ

◦ · · · ◦ CΔ
∂DvεN ,δ

. (C.7)

There, the sum runs through ε ∈ EN = {ε = (ε1, . . . , εN ) : εs ∈ {±1, 0}}.
One can readily convince oneself that for any matrix function M such that
ΔM ∈ L2

(
Σ̃Π

)
there exists a constant c′ such that

∥∥∥CΔ
Σ̃Π

[M ]
∥∥∥

L2(∂D)
≤ c′ ‖ΔM‖

L2(Σ̃Π) . (C.8)

Thence setting c = max {c′, c (ΣΠ) , c (∂D)} (we recall that for a curve Γ,
c (Γ) stands for the norm of the + boundary value of the Cauchy operator
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on L2 (Γ)), one gets

‖AN‖L∞(U) ≤ N
[2cNΣΠ

(Δ)]N−1

π2d (U, ΣΠ)
N

Σ̃Π
(Δ)

with NC (Δ) = ‖Δ‖L2(C ) + ‖Δ‖L∞(C ) .

Thus, the claim follows for AN as, by construction, N
Σ̃Π

(Δ) = O (x−∞).

It remains to obtain estimates for the remaining, algebraically small in x,
part. For this we set

Δ̂ (z) = [e (ϕ (z) ; ε (z))]−
σ3
2 Δ (z) [e (ϕ (z) ; ε (z))]

σ3
2

with
{

ϕ (z) = q1∂Dq,δ
− q1∂D−q,δ

+ λ01∂Dλ0,δ

ε (z) = 1∂Dq,δ
− 1∂D−q,δ

.

Then, by carrying out similar expansions to (B.14) and (B.16) it is easy
to convince oneself that

I2 ·
[
Π(m,b,p)

N ;ε

]
k1,kN+1

(λ) =
∑

ε∈EN

′
2∑

ka=1

′ CΔ̂k2k1
∂Dvε1,δ

◦ · · · ◦ CΔ̂kN+1,kN

∂DvεN ,δ
[I2] . (C.9)

Above Δ̂ab stands for the ab entry of Δ̂. Also, there appears Δ̂ instead of
Δ as the oscillating factors have been already pulled-out, as in (C.2)–(C.3).
Also the primes ′ in front of the two sums are there to indicate that these are
constrained. Namely, one should sum-up only over those choices of ε ∈ EN

and ka ∈ {1, 2}, a = 2, . . . , N which, upon the replacement Δ̂ �→ Δ would
give rise to the oscillating factor associated with

[
Π(m,b,p)

N ;ε

]
k1,kN+1

. By using

the continuity of the + boundary value Cauchy operator on L2 (∂D), one
shows that there exists a constant c such that for any ε, τ ∈ {±1, 0} and any
f ∈ L2 (∂D):

∥∥∥CI2
∂Dvε,δ

[fI2]
∥∥∥

L2(∂Dτ,δ)
≤ c ‖f‖L2(∂Dvε,δ) . (C.10)
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Then,

∥∥∥Π(m,b,p)
N ;ε

∥∥∥
L∞(U)

≤ cN−1

d (U, ΣΠ)

∑
ε∈EN

′
2∑

ka=1

′
∥∥∥Δ̂k2k1

∥∥∥
L2
(
∂Dvε1,δ

)

×
N−1∏
a=2

∥∥∥Δ̂ka+1ka

∥∥∥
L∞

(
∂Dvεa,δ

) ∥∥∥Δ̂kN+1kN

∥∥∥
L2
(
∂DvεN ,δ

)

≤ (2c)N−1

d (U, ΣΠ)
N∂D

(
Δ̂
)

. (C.11)

Since there exists c′ > 0 such that || Δ̂ ||L2(∂D)≤ c′xw̃, the claim follows.

Also, we stress that, by construction, Π(m,b,p)
N ;ε does not contain any oscillating

terms in x in its asymptotic expansion when x → +∞. �
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