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Abstract

We prove that for spacetimes solving the Einstein–Maxwell (EM) equa-
tions, the electromagnetic field contributes at highest order to the non-
linear memory effect of gravitational waves. In [5] Christodoulou showed
that gravitational waves have a nonlinear memory. He discussed how this
effect can be measured as a permanent displacement of test masses in a
laser interferometer gravitational-wave detector. Christodoulou derived a
precise formula for this permanent displacement in the Einstein vacuum
(EV) case. We prove in Theorem 2.6 that for the EM equations this per-
manent displacement exhibits a term coming from the electromagnetic
field. This term is at the same highest order as the purely gravitational
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term that governs the EV situation. On the other hand, in Section 3, we
show that to leading order, the presence of the electromagnetic field does
not change the instantaneous displacement of the test masses. Following
the method introduced by Christodoulou in [5] and asymptotics derived
by Zipser in [8, 9], we investigate gravitational radiation at null infinity
in spacetimes solving the EM equations. We study the Bondi mass loss
formula at null infinity derived in [9]. We show that the mass loss formula
from [9] is compatible with the one in Bondi coordinates obtained in [4].
And we observe that the presence of the electromagnetic field increases
the total energy radiated to infinity up to leading order. Moreover, we
compute the limit of the area radius at null infinity in Theorem 2.7.
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1 Introduction and main results

In this paper we investigate the null asymptotics for spacetimes solving the
Einstein–Maxwell (EM) equations, compute the radiated energy, derive lim-
its at null infinity and compare them with the Einstein vacuum (EV) case.
We show that the presence of the electromagnetic field does not affect the
instantaneous displacement of the test masses of a laser interferometer detec-
tor at leading order, as it only comes in at lower order. But the electromag-
netic field does contribute to the nonlinear effect of the displacement of the
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test masses. The EM case gives us a wonderful opportunity to observe mass
loss and also to measure gravitational radiation. It is crucial to understand
fully the behavior of the gravitational field also when other fields are present
and to investigate their interplay. The only way to achieve this is to compute
the null asymptotics of the spacetimes.

A major goal of mathematical General Relativity (GR) and astrophysics
is to precisely describe and finally observe gravitational radiation, one of
the predictions of GR. In order to do so, one has to study the null asymp-
totical limits of the spacetimes for typical sources. Among the latter we
find binary neutron stars and binary black hole mergers. In these processes
typically mass and momenta are radiated away in the form of gravitational
waves. Bondi, van der Burg and Metzner studied these in [3]. Christodoulou
showed in his paper [5] that every gravitational-wave burst has a nonlinear
memory. The insights of this work are based on the precise description of null
infinity obtained by Christodoulou and Klainerman in [7]. Among the many
pioneering results they derived the Bondi mass loss formula. This is all in
the regime of the EV equations. Then Zipser studied the Einstein–Maxwell
equations in [8,9] and computed limits along the lines of [7] for this case. She
derived a Bondi mass loss formula, where in addition to the one obtained
by Christodoulou and Klainerman, a component of the electromagnetic field
comes in. Thus the mass radiated away goes into the gravitational and the
electromagnetic field. Here, we rely on the methods introduced in [7], used
in [8,9] and by one of the present authors in [1,2]. There is a large literature
about gravitational radiation. However, in the present paper, we only give
the references that are relevant to our investigations.

The main results of this paper are the following. We first recall the Bondi
mass loss formula obtained in [9] for spacetimes solving the EM equations:

∂

∂u
M (u) =

1
8π

∫
S2

(
|Ξ|2 +

1
2
|AF |2

)
dμ◦

γ
.

Compared to the formula obtained in [7] for spacetimes solving the EV
equations, we have an additional term, |AF |2, from the electromagnetic field.
Furthermore, we compare the above mass loss formula to the corresponding
formula in Bondi coordinates [4]:

∂

∂w
M(w) = −

∫
S2

(
(∂wc)2 + (∂wd)2 +

1
2
(X2 + Y 2)

)
dμ◦

γ

and show that the two formulae agree.

As shown in the work of Christodoulou [5], Σ+ − Σ− is the term that gov-
erns the permanent displacement of test particles. Using this fact,
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Christodoulou shows that the gravitational field has a non-linear “memory”
which can be detected by a gravitational-wave experiment in a spacetime
solving the EV equations. We will describe this experiment in the last
section as well. In Section 2.3 of our paper, we study the permanent dis-
placement formula for uncharged test particles of the same gravitational-
wave experiment in a spacetime solving the EM equations and show that
the electromagnetic field contributes to the nonlinear effect. We first obtain
Theorem 2.6 which determines Σ+ − Σ− in the EM case. From Theorem 2.6,
we observe that the electromagnetic field changes the leading order term
of the permanent displacement of test particles. Then in the last section,
we study in details a gravitational-wave experiment for our findings. We
observe that the electromagnetic field does not enter the leading order term
of the Jacobi equation. As a result, to leading order, it does not change the
instantaneous displacement of test particles. But the electromagnetic field
does contribute at highest order to the nonlinear effect of the permanent
displacement of test masses. Furthermore, in Theorem 2.7 we compute the
limit of the area radius r on any null hypersurface Cu as t goes to ∞ and
show that the result coincides with the one obtained in [7] for EV.

We follow the method introduced by Christodoulou in [5] to study the
effect of gravitational waves. The treatment is based on the asymptotic
behavior of the gravitational field obtained at null and spatial infinity. These
rigorous asymptotics allow us to study the structure of the spacetimes at
null infinity. The spacetime is foliated by a time function t and by an
optical function u. The corresponding lapse functions are denoted by φ and
a. Each level set of u, Cu, is an outgoing null hypersurface and each level
set of t, Ht, is a maximal space-like hypersurface. We pick a suitable pair
of normal vectors along the null hypersurface. The flow along these vector
fields generates a family of diffeomorphisms φu of S2. We use φu to pull
back tensor fields in our spacetime. This allows us to study their limit at
null infinity along the null hypersurface Cu. Then we study the effect of
gravitational waves by taking the limit as u goes to ±∞. Christodoulou
in [5] gives a complete explanation of the structure at null infinity.

The methods introduced in [7], used in [8, 9], reveal the structure of the
null asymptotics of our spacetimes. In these works, to prove the stability
result, the data are assumed to be small. However, as far as the study of
the null asymptotics is concerned, the data can be large. We give a brief
outline in the last part of this introduction of the methods of [7].

In GR the fundamental equations are the Einstein equations linking the
curvature of the spacetime to its matter content:

Gμν := Rμν − 1
2

gμν R = 8πTμν (1.1)
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(setting G = c = 1), μ, ν = 0, 1, 2, 3. Gμν denotes the Einstein tensor, Rμν

is the Ricci curvature tensor, R the scalar curvature tensor, g the metric
tensor and Tμν is the energy-momentum tensor.

Here, we are discussing the EM equations. This means that Tμν on the
right-hand side of (1.1) is the stress-energy tensor of the electromagnetic
field. The twice contracted Bianchi identities imply that

DνGμν = 0. (1.2)

This is equivalent to the following equation, namely, that the divergence of
the stress-energy tensor of the electromagnetic field vanishes:

DνTμν = 0 (1.3)

with

Tμν =
1
4π

(
Fμ

ρFνρ − 1
4
gμνFρσF ρσ

)
, (1.4)

where F denotes the electromagnetic field. Note that F is an antisymmetric
covariant 2-tensor. As Tμν is trace free, the Einstein equations (1.1) take
the form

Rμν = 8πTμν . (1.5)

We find that the scalar curvature is identically zero. We write the EM
equations as

Rμν = 8πTμν , (1.6)

DαFαβ = 0, (1.7)

Dα ∗Fαβ = 0. (1.8)

As a consequence of the Maxwell equations, we have

�F = 0, (1.9)

where � is the de Rham Laplacian with respect to the metric g.

We split the Riemannian curvature Rαβγδ into its traceless part, namely
the Weyl tensor Wαβγδ, and a part including the spacetime Ricci curvature
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Rαβ and spacetime scalar curvature R:

Rαβγδ = Wαβγδ +
1
2
(gαγRβδ + gβδRαγ − gβγRαδ − gαδRβγ)

− 1
6

(gαγgβδ − gαδgβγ)R. (1.10)

One can then define the Bel–Robinson tensor

Qαβγδ = WαργσW ρ
β δ

σ + ∗Wαργσ
∗W ρ

β δ
σ
. (1.11)

The Bianchi equations for the Weyl tensor in the presence of an electromag-
netic field read

DαWαβγδ =
1
2
(DγRβδ − DδRβγ). (1.12)

In [7] Christodoulou and Klainerman derived the asymptotic behavior in the
case of strongly asymptotically flat initial data of the following type.

Definition 1.1. We define a strongly asymptotically flat initial data set in
the sense of [7] (studied by Christodoulou and Klainerman) to be an initial
data set (H, ḡ, k), where ḡ and k are sufficiently smooth and there exists
a coordinate system (x1, x2, x3) defined in a neighborhood of infinity such
that, as r = (

∑3
i=1(x

i)2)
1
2 → ∞, ḡij and kij are:

ḡij =
(

1 +
2M

r

)
δij + o4

(
r−3/2

)
, (1.13)

kij = o3

(
r−5/2

)
(1.14)

with M denoting the mass.

Under a smallness condition on the initial data, Christodoulou and Klain-
erman proved in [7] that this can be extended uniquely to a smooth, globally
hyperbolic and geodesically complete spacetime solving the EV equations.
The resulting spacetime is globally asymptotically flat. Together with the
existence and uniqueness theorem comes a precise description of the asymp-
totic behavior of the spacetime. While the smallness condition was imposed
in order to ensure completeness, the results about the behavior at null infin-
ity are largely independent of the smallness. The decay behavior of the
components of the Weyl tensor are given below. And the limits at null
infinity of the relevant quantities are given in Section 2.

In [7] as well as in [8,9] and [1,2] the Weyl tensor W in (M, g) is decom-
posed with respect to the null frame e4, e3, e2, e1. That is, e4 and e3 form
a null pair which is supplemented by eA, A = 1, 2, a local frame field for
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St,u = Ht ∩ Cu. Given this null pair, e3 and e4, we can define the tensor of
projection from the tangent space of M to that of St,u:

Πμν = gμν +
1
2
(eν

4e
μ
3 + eν

3e
μ
4 ).

We decompose the second fundamental form kij of Ht into

kNN = δ, (1.15)

kAN = εA, (1.16)

kAB = ηAB, (1.17)

where N is the unit normal vector of St,u in Ht. Let T be the future-directed
unit normal to Ht. We define

θAB = 〈∇AN, eB〉.
The Ricci coefficients of the null standard frame T − N, T + N, e2, e1 are
given by the following:

χ′
AB = θAB − ηAB, (1.18)

χ′
AB

= −θAB − ηAB, (1.19)

ξ′
A

= φ−1∇/ Aφ − a−1∇/ Aa, (1.20)

ζ ′
A

= φ−1∇/ Aφ − εA, (1.21)

ζ ′A = φ−1∇/ Aφ + εA, (1.22)

ν ′ = −φ−1∇/ Nφ + δ, (1.23)

ν′ = φ−1∇/ Nφ + δ, (1.24)

ω′ = δ − a−1∇/ Na. (1.25)

We use χ, χ, etc. for the Ricci coefficients of the null frame a−1(T − N),
a(T + N), e2, e1.

Definition 1.2. We define the null components of W as follows:

αμν(W ) = Πμ
ρ Πν

σ Wργσδ eγ
3 eδ

3, (1.26)

β
μ
(W ) =

1
2

Πμ
ρ Wρσγδ eσ

3 eγ
3 eδ

4, (1.27)

ρ(W ) =
1
4

Wαβγδ eα
3 eβ

4 eγ
3 eδ

4, (1.28)

σ(W ) =
1
4

∗Wαβγδ eα
3 eβ

4 eγ
3 eδ

4, (1.29)

βμ(W ) =
1
2
Πμ

ρ Wρσγδ eσ
4 eγ

3 eδ
4, (1.30)

αμν(W ) = Πμ
ρ Πν

σ Wργσδ eγ
4 eδ

4. (1.31)
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The estimates in [7] yield the decay behavior:

α(W ) = O(r−1τ
−5/2
− ),

β(W ) = O(r−2τ
−3/2
− ),

ρ(W ) = O(r−3),

σ(W ) = O(r−3τ
−1/2
− ),

α(W ), β(W ) = o(r−7/2),

where τ2− = 1 + u2 and r(t, u) is the area radius of the surface St,u.

In [8, 9], Zipser works with the same conditions on the metric, second
fundamental form and curvature, in addition she imposes a decay condition
on the electromagnetic field F , namely

F |H = o3

(
r−5/2

)
. (1.32)

The null components of the electromagnetic field are written as

FA3 = α(F )A, FA4 = α (F )A ,

F34 = 2ρ (F ) , F12 = σ (F ) .
(1.33)

The corresponding null decomposition {α (∗F ) , α (∗F ) , ρ (∗F ) , σ (∗F )} of
∗F is given by

α (∗F )A = −α (F )B εBA, α (∗F )A = α (F )B εBA,

ρ (∗F ) = σ (F ) , σ (∗F ) = −ρ (F ) ,
(1.34)

where the Hodge dual of a tensor u tangent to St,u is defined by

∗uA = εA
BuB.

The estimates in [8, 9] yield the decay behavior:

α(F ) = O(r−1τ
−3/2
− ),

ρ(F ), σ(F ) = O(r−2 τ
−1/2
− ),

α(F ) = o(r−5/2).

One of the main difficulties in [7] is that a general spacetime has no sym-
metries and thus does not have suitable vectorfields to construct integral
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conserved quantities. To overcome this difficulty, Christodoulou and Klain-
erman use the “closeness” of their spacetimes to the Minkowski spacetime
and construct quasi-conformal vector fields. The main step is carried out
within a bootstrap argument in the “last slice,” namely in a space-like hyper-
surface which is a level set of the time function t. First, the authors foliate
the spacetime by functions t and u near the initial slice. From the foliations,
one constructs vectorfields that are almost Killing. Combining these vector-
fields with the Bel–Robinson tensor, one obtains local estimates for the Weyl
curvature tensor W and the electromagnetic field F . With these estimates,
one constructs a new optical function which is defined on a larger domain
in the spacetime. Then, following a continuity argument, one obtains a
smooth, globally hyperbolic and geodesically complete spacetime solving
the Einstein equations. The resulting spacetime is globally asymptotically
flat, satisfying the above decay properties.

2 Null asymptotics

2.1 Asymptotic behavior and Bondi mass

We need precise data at null infinity. In particular, we have to know the
Bondi mass and the asymptotic behavior of the components of the curva-
ture and the electromagnetic field. Zipser described them in [8, 9] following
the discussion in Chapter 17 of [7], making changes as necessary due to the
presence of the electromagnetic field. The parameters of the foliations and
the components of the Weyl tensor behave exactly as in [7]. That is, the
following holds: along the null hypersurfaces Cu as t → ∞, it is

lim
Cu,t→∞

φ = 1, lim
Cu,t→∞

a = 1 (2.1)

and

lim
Cu,t→∞

(rtrχ) = 2, lim
Cu,t→∞

(
rtrχ

)
= −2. (2.2)

Furthermore, we let

H = lim
Cu,t→∞

(
r2

(
tr χ′ − 2

r

))
. (2.3)

From the existence theorem of [8,9], Zipser makes the following conclusions,
which are generalizations of conclusions 17.0.1–17.0.4 in [7].
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Following the convention in [7,9], the pointwise norms | | of the tensors
on S2 relate to the metric

◦
γ, which is the limit of the induced metrics on

St,u rescaled by r−2 for each u as t → ∞.

Theorem 2.1. On any null hypersurface Cu, the normalized curvature com-
ponents rα (W ), r2β (W ), r3ρ (W ), r3σ (W ), rα (F ), r2ρ (F ), r2σ (F ) have
limits as t → ∞, in particular

lim
Cu,t→∞

rα (W ) = AW (u, ·) , lim
Cu,t→∞

r2β (W ) = BW (u, ·) ,

lim
Cu,t→∞

r3ρ (W ) = PW (u, ·) , lim
Cu,t→∞

r3σ (W ) = QW (u, ·) ,

lim
Cu,t→∞

rα (F ) = AF (u, ·) ,

lim
Cu,t→∞

r2ρ (F ) = PF (u, ·) , lim
Cu,t→∞

r2σ (F ) = QF (u, ·)

with AW being a symmetric traceless covariant 2-tensor, BW and AF are
1-forms and PW , QW , PF , QF functions on S2 depending on u. The fol-
lowing decay properties hold:

|AW (u, ·)| ≤ C (1 + |u|)−5/2 , |BW (u, ·)| ≤ C (1 + |u|)−3/2 ,∣∣PW (u, ·) − PW (u)
∣∣ ≤ (1 + |u|)−1/2 ,

∣∣QW (u, ·) − QW (u)
∣∣ ≤ (1 + |u|)−1/2 ,

|AF (u, ·)| ≤ C (1 + |u|)−3/2 ,

|PF (u, ·)| ≤ (1 + |u|)−1/2 , |QF (u, ·)| ≤ (1 + |u|)−1/2

and

lim
u→−∞PW (u) = 0, lim

u→−∞QW (u) = 0.

The existence of the limits in the conclusion follows from the estimates in
the existence theorem of [9] (i.e., [8]).

Theorem 2.2. On the null hypersurface Cu, the normalized shear r2χ̂′ has
limit as t → ∞:

lim
Cu,t→∞

r2χ̂′ = Σ (u, ·)

with Σ being a symmetric traceless covariant 2-tensor on S2 depending on u.

The proof is the same as in [7] because the propagation equation stays
unaltered:

dχ̂AB

ds
= −tr χχ̂AB − α(W )AB .
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Theorem 2.3. On any null hypersurface Cu, the limit of rη̂ exists as t → ∞,
that is

lim
Cu,t→∞

rη̂ = Ξ (u, ·)

with Ξ being a symmetric traceless 2-covariant tensor on S2 depending on
u and having the decay property

|Ξ (u, ·)|◦
γ
≤ C (1 + |u|)−3/2 .

Further, it is
lim

Cu,t→∞
rθ̂ = −1

2
lim

Cu,t→∞
rχ̂′ = Ξ

as well as

∂Σ
∂u

= −Ξ, (2.4)

∂Ξ
∂u

= −1
4
AW . (2.5)

Zipser proves this result as conclusion 3 in [9]. The argument is along the
lines of the proof of conclusion 17.0.3 in [7].

Zipser follows [7] to derive the Bondi mass formula by calculating a prop-
agation equation for the Hawking mass enclosed by a 2-surface St,u. The
Hawking mass is defined as

m (t, u) =
r

2

(
1 +

1
16π

∫
St,u

tr χ tr χ

)
. (2.6)

Let

μ = −div/ ζ +
1
2
χ̂ · χ̂ − ρ (W ) − 1

2
(
ρ2 (F ) + σ2 (F )

)
. (2.7)

With respect to the l-pair, one has the null structure equations

dtr χ

ds
+

1
2
tr χ tr χ = −2μ + 2 |ζ|2 ,

dtr χ

ds
+

1
2

(tr χ)2 = −|χ̂|2 − |α (F )|2 .

One computes

d

ds
tr χ tr χ + tr χ

(
tr χ tr χ

)
= −2μ tr χ + 2trχ |ζ|2

− tr χ |χ̂|2 − tr χ |α (F )|2 ,
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thus

∂

∂t

∫
St,u

tr χ tr χ = −2
∫

St,u

aφμ tr χ

+
∫

St,u

aφ
(
−trχ |χ̂|2 − tr χ |α (F )|2 + 2trχ |ζ|2

)
. (2.8)

Using the Gauss equation

K = −1
4
trχtrχ +

1
2
χ̂ · χ̂ − ρ (W ) − 1

2
(
ρ2 (F ) + σ2 (F )

)
,

one derives

μ = −div/ ζ + K +
1
4
trχtrχ. (2.9)

By the Gauss–Bonnet formula and formulas (2.7), (2.9) conclude that

∫
St,u

μ =
∫

St,u

(
1
2
χ̂ · χ̂ − ρ (W ) − 1

2
(
ρ2 (F ) + σ2 (F )

))

= 4π

(
1 +

1
16π

∫
St,u

tr χ tr χ

)
=

8π

r
m. (2.10)

Moreover, by
d

dt
r =

r

2
φa tr χ,

and (2.8), (2.10), it is

∂

∂t
m (t, u) = − r

16π

∫
St,u

(
aφ tr χ − φa tr χ

)
μ

+
r

8π

∫
St,u

aφ

(
1
2
tr χ |ζ|2 − 1

4
tr χ |χ̂|2 − 1

4
tr χ |α (F )|2

)
.

(2.11)

Note that K + 1
4tr χ tr χ = O

(
r−3
)
, μ = O

(
r−3
)
. From the asymptotic

behavior of the right-hand side of (2.11), it follows that

∂

∂t
m (t, u) = O

(
r−2
)
.

This means that m (t, u) has a limit for any fixed u as t → ∞, namely the
Bondi mass of the null hypersurface Cu. As in [7], it is denoted by M (u).
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The terms appearing due to the presence of the electromagnetic field are
shown to decay fast enough so that the mass decays at the same rate as
in [7]. In particular,

m (t, u) = M (u) + O
(
r−1
)

as t → ∞ on Cu.

Following [7], Zipser calculates a Bondi mass loss formula by considering

∂

∂u
m (t, u)

with

∂

∂u
m (t, u) =

1
2
a tr θm +

r

32π

∫
St,u

a
(∇Nμ + tr θμ

)
.

As l = a−1 (T + N) and l = a (T − N),

a(∇Nμ + tr θμ) =
1
2
a2
(
D4μ + tr χμ

)

− 1
2
(
D3μ + tr χ μ

)

and

D4μ + tr χμ = O(r−4),

D3μ + tr χμ = −1
4
tr χ

∣∣χ̂∣∣2 − 1
2
trχ |α (F )|2 + O(r−4).

Thus,

∂

∂u
m (t, u) =

r

64π

∫
St,u

tr χ

(∣∣χ̂∣∣2 +
1
2
|α (F )|2

)
+ O

(
r−1
)
.

Following [7], Zipser uses the following facts to derive the Bondi mass loss
formula: the metric γ̃ = φ∗

t,u

(
r−2γ

)
converges to the standard metric

◦
γ of

the unit sphere S2 as t → ∞ for each u (φ∗
t,u is a diffeomorphism from S2 to

St,u), moreover r
2tr χ converges to 1, and rχ̂ converges to −2Ξ. This yields

∂

∂u
M (u) =

1
8π

∫
S2

(
|Ξ|2 +

1
2
|AF |2

)
dμ◦

γ
.

The right-hand side of this expression is positive and integrable in u. Thus,
M (u) is a non-decreasing function of u and has finite limits M (−∞) for
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u → −∞ and M (∞) for u → ∞. Further, Zipser concludes from (2.10) that
M (−∞) = 0, and M (∞) is the total mass.

Theorem 2.4. The Hawking mass m (t, u) tends to the Bondi mass M (u)
as t → ∞ on any null hypersurface Cu. That is,

m(t, u) = M(u) + O(r−1)

and M (u) verifies the Bondi mass loss formula

∂

∂u
M (u) =

1
8π

∫
S2

(
|Ξ|2 +

1
2
|AF |2

)
dμ◦

γ

with dμ◦
γ

being the area element of the standard unit sphere S2.

We see that in the Bondi mass loss formula the limiting term AF of the
electromagnetic field comes in. At this point, let us compare this with the
Bondi mass loss formula obtained in [7, p. 499]: ∂

∂uM (u) = 1
8π

∫
S2 |Ξ|2 dμ◦

γ
.

In fact, the electromagnetic field contributes to the change of the Bondi
mass by 1

16π

∫
S2 |AF |2 dμ◦

γ
.

The decay behavior of AF is the same as for Ξ. See Theorems 2.1 and 2.3.
Similarly as in [5, 7] for the EV case, we can define now the new function

F =
1
8

∫ +∞

−∞

(
| Ξ |2 +

1
2
| AF |2

)
du. (2.12)

Then F
4π is the total energy radiated to infinity in a given direction per

unit solid angle. Thus the integrand in (2.12) is proportional to the power
radiated to infinity at a given retarded time u, in a given direction, per unit
area on S2 (per unit solid angle). Already in [5] Christodoulou tells us how
to adapt the formula for F when matter radiation is present, that is also in
the EM case.

In the next two subsections, we also need the following theorem for H.

Theorem 2.5. The function H satisfies

∂H

∂u
= 0, (2.13)

H̄ = 0. (2.14)
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Proof. In the EV case, equation (2.13) is proved in conclusion 17.0.5 of [7]
where one uses the fact that

∇N trχ′ +
1
2
χ′ = O(r−3).

In the EM case, it is easy to see that the additional terms involving the
electromagnetic field are also O(r−3). Thus equation (2.13) is still true in
the EM case.

In the EV case, equation (2.14) is proved in Lemma 17.0.1 in [7]. In the
proof, we need to show that r2δ̄ converges to 2M(u). From Proposition 4.4.4
in [7], we have

4πr3δ̄ =
∫ u

u0

du′
(∫

St,u

arθ̂ · η̂ − 1
2
κ(δ − δ̄) − ra−1∇/ a · ε + r(div k)N

)
.

Following the proof of Lemma 17.0.1 in [7], we see that
∫

St,u

arθ̂ · η̂ − 1
2
κ(δ − δ̄) − ra−1∇/ a · ε = r

∫
S2

|Ξ|2dμ◦
γ

+ O(1).

Moreover, in the EM case, due to the constraint equation, we have

(div k)N = R0N = 2F0
ρFNρ. (2.15)

Using equation (2.15), we see that
∫

St,u

r(div k)N =
r

2

∫
S2

|AF |2dμ◦
γ

+ O(1),

since the leading terms of F0A and FNA are both 1
2α(F )A. As a result, we

can still conclude that

rδ̄ =
2
r2

∫ u

u0

r
∂

∂u
m(t, u) + O(r−1).

The rest of the proof follows easily from the proof of Lemma 17.0.1 in [7]. �

2.2 Compare result with mass loss in Bondi coordinates

In this subsection, we compare the mass loss formula obtained in [8,9], cited
above in Theorem 2.4, with the mass loss formula in Bondi coordinates.
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Bondi coordinates are first defined by Bondi et al. in [3] for axially symmetric
vacuum spacetimes. The main motivation for such coordinates is to study
gravitational radiation at null infinity. The form of the metric is chosen
such that many computations are simplified at null infinity. As a result,
one can derive many useful theorems and formulae assuming the existence
of such coordinates. In particular, the Bondi mass loss formula in Bondi
coordinates is first derived for axially symmetric vacuum spacetimes in [3]
and is generalized to the EM case in [4]. However, for a given spacetime, it is
hard to tell whether such coordinates exist. On the other hand, spacetimes
studied in [8] are obtained by evolving small initial data on a space-like
hypersurface by EM equations. In particular, it is not clear whether all
spacetimes studied in [8] admit such coordinates. Here we show that for the
leading term in the mass loss formula, the two different coordinate systems
give the same result.

The mass loss formula from [8,9] is

∂

∂u
M (u) =

1
8π

∫
S2

(
|Ξ|2 +

1
2
|AF |2

)
dμ◦

γ
.

Let us recall the mass loss formula and asymptotic expansion for solutions
to the EM equations in Bondi coordinates [4]. The line segment is

−UV dw2 − 2Udw dr + σab(dxa + W a dw)(dxb + W b dw), a, b = 2, 3

with the electromagnetic field given by a skew-symmetric two tensor Fμν .
We have the following asymptotics for the line segment:

V = 1 − 2m

r
+ O(r−2), U = 1 + O(r−2) and W a = O(r−2),

σab =
(

r2 + 2cr + · · · −2dr sin θ + · · ·
−2dr sin θ + · · · sin2 θ(r2 − 2cr) + · · ·

)
.

We also need the following asymptotics for Fμν :

Fwθ = X + O(r−1) and Fwφ = Y sin θ + O(r−1)

as well as

Fra = O(r−2), Fab = O(1) and Fwr = O(r−2).

Level sets of w, Cw, are outgoing null hypersurfaces. Each Cw is then foliated
by level sets of r, Sw,r. Hence, it is natural to consider the following pair of
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null vectors normal to Sw,r :

e3 =
∂

∂w
− W c ∂

∂xc
− V

2
∂

∂r
and e4 =

∂

∂r
,

since e4 is a natural choice of null vector on Cw and

lim
r→∞〈e3, e4〉 = −1.

Let M(w) be the Bondi mass. It is given by

M(w) =
1
8π

∫
S2

mdμ◦
γ
.

The mass loss formula reads

∂

∂w
M(w) = −

∫
S2

(
(∂wc)2 + (∂wd)2 +

1
2
(X2 + Y 2)

)
dμ◦

γ
.

To show that the two mass loss formulae agree, we prove that

|Ξ|2 = (∂wc)2 + (∂wd)2 and |AF |2 = X2 + Y 2.

First we compute

−χ′
(

∂

∂xa
,

∂

∂xb

)
=
〈

∂

∂w
− W c ∂

∂xc
− V

2
∂

∂r
,∇ ∂

∂xa

∂

∂xb

〉

=
〈

∂

∂w
− W c ∂

∂xc
− V

2
∂

∂r
, Γr

ab

∂

∂r
+ Γw

ab

∂

∂w
+ Γc

ab

∂

∂xc

〉

=
〈

∂

∂w
− W c ∂

∂xc
− V

2
∂

∂r
, Γr

ab

∂

∂r
+ Γw

ab

∂

∂w

〉
.

The Christoffel symbols are

Γw
ab = −1

2
gwr∂rgab =

1
2
∂rgab + O(1)

Γr
ab =

1
2
gwr(∂bgwa + ∂agwb − ∂wgab) +

1
2
grr(−∂rgab)

+
1
2
grc(∂bgca + ∂agcb − ∂cgab)

=
1
2
∂wgab − 1

2
∂rgab + O(1).
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As a result, one finds

〈
∂

∂w
− W c ∂

∂xc
− V

2
∂

∂r
,∇ ∂

∂xa

∂

∂xb

〉
=

1
4
∂rσab − 1

2
∂wσab + O(1).

One can easily see that up to O(1) terms, ∂wσab is traceless and ∂rσab has
zero traceless part. As a result,

|Ξ|2 = (∂wc)2 + (∂wd)2.

For the second equality, we use the expression for e3 and the asymptotics
for Fμν . A direct computation shows that

|AF |2 = X2 + Y 2.

2.3 Permanent displacement formula

The permanent displacement of the test masses of a laser interferometer
gravitational-wave detector is governed by Σ+ − Σ−. Christodoulou showed
in [5] how this works. We discuss the corresponding wave experiment in the
EM case in Section 3. In the following, we are going to state and prove a
theorem for Σ+ − Σ− in the EM case. We point out that the final formula —
even though in its form identical to the one obtained by Christodoulou and
Klainerman in [7] — differs from the EV case by a contribution from the
electromagnetic field. The form of the formula is not altered due to the fact
that the corresponding extra electromagnetic terms cancel. However, the
limiting term AF enters the new formula nonlinearly.

Theorem 2.6. Let Σ+(·) = limu→∞ Σ(u, ·) and Σ−(·) = limu→−∞ Σ(u, ·).
Let

F (·) =
∫ ∞

−∞

(
| Ξ(u, ·) |2 +

1
2
| AF (u, ·) |2

)
du. (2.16)

Moreover, let Φ be the solution with Φ̄ = 0 on S2 of the equation

◦

/ Φ = F − F̄ .

Then Σ+ − Σ− is given by the following equation on S2:

◦
div/ (Σ+ − Σ−) =

◦
∇/ Φ. (2.17)
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Proof. Equation (2.4) in Theorem 2.3 yields that Σ tends to limits Σ+ as
u → ∞ and Σ− as u → −∞. Also, it is

Σ(u) = Σ− −
∫ u

−∞
Ξ(u′)du′

and

Σ+ − Σ− = −
∫ ∞

−∞
Ξ(u′)du′.

When taking the limits for the Hodge system ((2.23), (2.24)) on Cu as
t → ∞, we will compute the corresponding limits for and involving Ψ, Ψ′.
From Zipser’s work [9, Chapter 9.1, (9.13) and Lemma 9], we know


Ψ = r|η̂ |2 −r

4
| α(F ) |2, (2.18)


Ψ′ = −ra−1λ
( | η̂ |2 −| η̂ |2)+

r2a−1

4
(
aD/ 4 | α(F ) |2 −aD/ 4 | α(F ) |2),

(2.19)

whereas in the work of Christodoulou and Klainerman [7, Chapter 11.2,
(11.2.2b) and (11.2.7b)], it is


Ψ = r | η̂ |2, (2.20)


Ψ′ = −ra−1λ
( | η̂ |2 −| η̂ |2). (2.21)

We compute the following limits in the new case:

lim
Cu,t→∞

Ψ = Ψ, lim
Cu,t→∞

Ψ′ = Ψ′,

lim
Cu,t→∞

r∇NΨ = Ω(u, ·), lim
Cu,t→∞

r∇NΨ′ = Ω′(u, ·). (2.22)

We proceed by investigating the Hodge system for ε. The Hodge system for
ε reads, see also [9, Chapter 9]:

div/ ε = −∇Nδ − 3
2
tr θδ + η̂ · θ̂

− 2(a−1∇/ a) · ε +
1
4
| α(F ) |2 −1

4
| α(F ) |2, (2.23)

curl/ ε = σ(W ) + θ̂ ∧ η̂. (2.24)

We observe that the curl/ equation coincides with the one obtained by
Christodoulou and Klainerman in [7], whereas the div/ equation contains the
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extra terms | α(F ) |2 and | α(F ) |2 from the electromagnetic field. (See [7,
Chapter 17, ((17.0.12a), (17.0.12b))].) According to [9, Chapter 9], one has

∇Nδ − θ̂ · η̂ +
1
4
| α(F ) |2

= −2r−3(∇Nr)p + r−2∇Np − r−2(∇Nr)∇NΨ + r−1∇2
NΨ

= −χ̂ · η̂ − r−1
/ Ψ − r−2
(
r tr θ + a−1λ

)∇NΨ

− r−1a−1∇/ a · ∇/ Ψ + r−2∇Np − 2r−3a−1λp (2.25)

with

p = r∇Nq + q′ + Ψ′.

This differs from [7, Chapter 17, (17.0.12c)] by the extra curvature term
from the electromagnetic field. Zipser derived in [9, Chapter 9, Lemma 9],


q = r(μ − μ) + I, (2.26)

where

I =
1
2

(rN)π̂ijkij +
r

4
| α(F ) |2 −r

4
| α(F ) |2 −
Ψ

= rχ̂ · η̂ − κδ − 2ra−1∇/ a · ε +
r

4
| α(F ) |2

and μ is the mass aspect function given by

μ = −ρ(W ) − χ̂ · η̂.

Recall the radial decomposition of 
 to be ∇2
N = 
− tr θ∇N −
/ − a−1

∇/ a · ∇/ . Now, we obtain from the last equations that


q = ∇2
Nq + tr θ∇Nq + 
/ q + a−1∇/ a · ∇/ q

= −r(ρ − ρ̄) − rχ̂ · η̂ − κδ − 2ra−1∇/ a · ε +
r

4
| α(F ) |2 . (2.27)

We proceed as follows: Substituting first for ∇Np from (2.27) in (2.25) and
then the resulting terms from (2.25) in (2.23) yields

div/ ε = ρ − ρ̄ + χ̂ · η̂ − χ̂ · η̂ + r−1
/ Ψ − r−2∇NΨ′

− r−3a−1λΨ′ + l.o.t., (2.28)

curl/ ε = σ(W ) + θ̂ ∧ η̂. (2.29)
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Let

E = lim
Cu,t→∞

(
r2ε
)
.

We multiply equations (2.28) and (2.29) by r3 and take the limits on Cu as
t → ∞. This yields

◦
curl/ E = Q + Σ ∧ Ξ, (2.30)

◦
div/ E = P − P̄ + Σ · Ξ − Σ · Ξ +

◦

/ Ψ − Ψ′ − Ω′. (2.31)

Then we investigate the limits as u → +∞ and u → −∞. Considering the
last equations for ε, respectively E, and using Theorems 2.3 and 2.1 one
finds that E tends to a limit E+ as u → +∞ and to E− as u → −∞.

By conclusions along the lines of [7, Chapter 17], we obtain

◦
curl/ (E+ − E−) = 0.

In order to compute
◦

div/ (E+ − E−), we have to consider especially the
corresponding limits for the terms involving Ψ and Ψ′, that is also Ω′.

Much like Christodoulou and Klainerman computed the formulas in
Lemma 17.0.2, on p. 504 of [7], we derive the new results in which the
electromagnetic field term α(F ), respectively, its limit AF , is present. To
do that, we use the fact that

D/ 4α(F )A = −1
2
tr χα(F )A + l.o.t. (2.32)

The derivation of (2.32) can be found in Zipser’s work [9] on p. 351 formula
(4.15). Now, considering (2.19) and using (2.32), we find that

D/ 4 | α(F ) |2= −tr χ | α(F ) |2 + l.o.t. (2.33)

Using (2.33), (2.20) and (2.21), we deduce formulas for Ψ, Ψ′, Ω, Ω′ by
computing the limits (2.22). We give the formulas:

Ψ = − 1

2
1
2 4π

∫ +∞

−∞

{∫
S2

| Ξ |2 (u′, ω′)

(1 − ωω′)
1
2

dω′ +
1
2

∫
S2

| AF |2 (u′, ω′)

(1 − ωω′)
1
2

dω′
}

du′,

Ψ′ =
1

2
1
2 4π

∫ +∞

−∞

{∫
S2

| Ξ |2 (u′, ω′) − | Ξ |2 (u′)

(1 − ωω′)
1
2

dω′

+
1
2

∫
S2

| AF |2 (u′, ω′) − | AF |2 (u′)

(1 − ωω′)
1
2

dω′
}

du′,
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Ω =
1

2
3
2 4π

∫ +∞

−∞

{∫
S2

| Ξ |2 (u′, ω′)

(1 − ωω′)
1
2

dω′ +
1
2

∫
S2

| AF |2 (u′, ω′)

(1 − ωω′)
1
2

dω′
}

du′

+
1
2

∫ +∞

−∞

{
sgn(u − u′)

(
| Ξ |2 (u′, ω′) +

1
2
| AF |2 (u′, ω′)

)}
du′,

Ω′ = − 1

2
3
2 4π

∫ +∞

−∞

{∫
S2

| Ξ |2 (u′, ω′) − | Ξ |2 (u′)

(1 − ωω′)
1
2

dω′

+
1
2

∫
S2

| AF |2 (u′, ω′) − | AF |2 (u′)

(1 − ωω′)
1
2

dω′
}

du′

− 1
2

∫ +∞

−∞

{
sgn(u − u′)

((
| Ξ |2 (u′, ω′) − | Ξ |2 (u′)

)

+
1
2

(
| AF |2 (u′, ω′) − | AF |2 (u′)

))}
du′.

Straightforward calculation shows that when evaluating the difference of the

limits as u → +∞ and u → −∞ in (2.31), the contribution of
◦

/ Ψ, Ψ′ and

Ω′ comes only from terms in Ω′. We find that Ω′ tends to limits Ω′+(·) and
Ω′−(·) as t → ∞ and t → −∞, respectively. Thus, we conclude

Ω′+(·) − Ω′−(·) =
∫ +∞

−∞

( | Ξ(u, ·) |2 −| Ξ(u, ·) |2 +
1
2
| AF (u, ·) |2

− 1
2
| AF (u, ·) |2)du. (2.34)

Finally, we obtain

◦
div/ (E+ − E−) = −Ω′+ + Ω′−

=
∫ +∞

−∞

(−| Ξ(u, ·) |2 + | Ξ(u, ·) |2 − 1
2
| AF (u, ·) |2

+
1
2
| AF (u, ·) |2)du. (2.35)

Proceeding along the lines of [7, Chapter 17], it is

(E+ − E−) =
◦
∇/ Φ (2.36)

with Φ being the solution of vanishing mean of

◦

/ Φ = −Ω′+ + Ω′− on S2.
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Accordingly, also by conclusions along the lines of [7, Chapter 17], we derive
(2.38). To see this, we consider the normalized null Codazzi equation

(div/ χ̂)A − 1
2
∇/ Atrχ + εBχ̂AB − 1

2
εAtrχ

= −β(W )A − ρ(F )α(F )A − εABσ(F )α(F )B . (2.37)

Multiply equation (2.37) by r3 and take the limit as t → ∞ on Cu. We
obtain ◦

div/ Σ =
◦
∇/ H + E

as in [7, Conclusion 17.0.8, p. 510] since the extra terms from the elec-
tromagnetic field in (2.37) decay fast enough. Due to equation (2.13), we
conclude ◦

div/ (Σ+ − Σ−) = E+ − E−. (2.38)
Thus, the theorem is proved. �

2.4 Limit for r as t → ∞ on null hypersurface Cu

We shall use the fact that the constraint on the space-like scalar curvature,
which is given by

R = |k|2 + R00,

differs from the constraint in the vacuum case only by the term R00, which
is a quadratic in F .

Building on the results of Christodoulou and Klainerman in [7] as well as
the results of Zipser in [9] (i.e., [8]), we can now prove the following results.

Theorem 2.7. As t → ∞ we obtain on any null hypersurface Cu

r = t − 2M(∞) log t + O(1).

Proof. We recall from [7, p. 503], with φ′ = φ − 1,

dr

dt
=

r

2
φtrχ′

=
r

2
(1 + φ′)

(
2
r

+
(

trχ′ − 2
r

))

= 1 + φ′ + O(r−2).

In the last equality, we use equation (2.14).
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From [9, p. 465]

R00 =
1
2
(| α(F ) |2 + | α(F ) |2) + ρ(F )2 + σ(F )2 (2.39)

with α(F ), α(F ), ρ(F ), σ(F ) the components of the electromagnetic field.
Moreover, the lapse equation in our situation is given by


φ = (| k |2 +R00)φ. (2.40)

We integrate the lapse equation (2.40) on Ht in the interior of St,u′ to obtain

∫
St,u

∇Nφ′ =
∫ u

u0

du′
∫

St,u′
aφ(| k |2 +R00).

In view of (2.39) and the fact that all the terms on the right-hand side
of (2.39) except α(F ) are of lower order, we estimate

∫
St,u

∇Nφ′ =
∫ u

u0

du′
∫

St,u′
aφ(| k |2 +

1
2
| α(F ) |2) + l.o.t.

We see that
∫

St,u′
aφ(| k |2 +

1
2
| α(F ) |2) →

∫
S2

| Ξ |2 +
1
2
| AF |2 .

Consider the Bondi mass loss formula in Theorem 2.4. Then, as t → ∞ we
conclude

∫
St,u

∇Nφ′ − 8πM(u) = O(r−1) (2.41)

on each Cu. In view of φ′ we compute

φ′ =
1

4πr2

∫
St,u

φ′ = − 1
4π

∫
B

div(r−2φ′N)

=
1
4π

∫
B

⎛
⎝− 1

a(r(t, u′))2
atr θNφ′ +

1
(r(t, u′))2

φ′ (divN)︸ ︷︷ ︸
=trθ

+
1

(r(t, u′))2
∇Nφ′

⎞
⎠
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= − 1
4π

∫ ∞

u

1
(r(t, u′))2

du′
(∫

St,u′
a∇Nφ′ + (atr θ − a tr θ)φ′

)

= − 1
4π

∫ ∞

u

1
(r(t, u′))2

du′
(∫

St,u′
∇Nφ′

)
+ O(r−2),

where B denotes the exterior of St,u. Therefore, from (2.41) it follows on
Cu as t → ∞,

φ′(t, u) = −2
∫ ∞

u

1
(r(t, u′))2

M(u′)du′ + O(r−2) = −2
r
M(∞) + O(r−2).

Thus, we obtain on any cone Cu for t → ∞,

dr

dt
= 1 − 2

r
M(∞) + O(r−2). (2.42)

Thus, the statement of our theorem follows, which closes the proof. �

3 Wave experiments

We are now going to show how the results above relate to experiment. In
[5] Christodoulou established his breaking result on the nonlinear memory
effect. The idea of the gravitational-wave experiment and setup is given
in [5], discussing a laser interferometer gravitational-wave detector. There
Christodoulou explained how the theoretical result on Σ+ − Σ− leads to
an effect measurable by such detectors. This effect manifests itself in a
permanent displacement of the test masses of the detector after a wave train
has passed. In the present EM case, we find a result on the displacement of
test masses which is two-fold. Considering the Jacobi equation (see (3.10)),
the highest order term remains unchanged. However, there is an extra term
at highest order from the electromagnetic field in the formula for Σ+ − Σ−,
the permanent displacement of test masses, as we have shown in the proof of
Theorem 2.6. In the present section, we shall show how the electromagnetic
field enters the experiment and we will derive results for this case.

We will follow the lines of argumentation by Christodoulou in [5, 6].

Let us briefly review the setup of a laser interferometer experiment: Three
test masses are suspended by pendulums of equal length. Denote by m0

the reference mass, which is also the location of the beam splitter. For time-
like scales much shorter than the period of the pendulums, the motion of
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the masses in the horizontal plane can be considered free. By laser interfer-
ometry the distance of the masses m1 and m2 from the reference mass m0

is measured. Whenever the light travel times between m0 and m1 and m2,
respectively, differ, this shows in a difference of phase of the laser light at m0.

The masses m0, m1, m2 move along geodesics γ0, γ1, γ2 in spacetime.
Let T be the unit future-directed tangent vectorfield of γ0 and t the arc
length along γ0. For each t denote by Ht the space-like, geodesic hyperplane
through γ0(t) orthogonal to T .

Take (E1, E2, E3) to be an orthonormal frame for H0 at γ0(0), and paral-
lelly propagate it along γ0 to obtain the orthonormal frame field (T, E1, E2,
E3) along γ0. It follows that (E1, E2, E3) at each t is an orthonormal frame
for Ht at γ0(t). Then one assigns to a point p in spacetime, lying in a
neighborhood of γ0, the cylindrical normal coordinates (t, x1, x2, x3), based
on γ0, if p ∈ Ht and p = expX with X =

∑
i x

iEi ∈ Tγ0(t)Ht. Denote by d

the distance of p from the center γ0(t) on Ht, that is, d =| X |=√∑i(xi)2.
The difference between the metric and the Minkowski metric ημν in these
coordinates is

gμν − ημν = O(R d2). (3.1)

As usual, we put c = 1. Now, let τ be the time scale in which the curvature
varies significantly. Then, the displacements of the masses from their initial
positions will be O(Rτ2). Assume that

d

τ
<< 1. (3.2)

Then we can read off from the differences in phase of the laser light differ-
ences in distance of m1 and m2 from m0. Further, in view of (3.2) one can
replace the geodesic equation for γ1 and γ2 by the Jacobi equation (geodesic
deviation from γ0):

d2xk

dt2
= −RkT lT xl (3.3)

with RkT lT = R (Ek, T, El, T ). One is free to assume that the source is in
the E3-direction. This was derived by Christodoulou for the EV case in [5],
and can also be found in his [6].

We now investigate the formula (3.3) for the EM situation. If we assume
the test masses not to be charged, then formula (3.3) stays the same, but
through the EM equations and in view of (1.10) the electromagnetic field
comes in. We shall see that it enters at lower order though. From (1.10)
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one can write

Rk0l0 = Wk0l0 +
1
2
(gklR00 + g00Rkl − g0lRk0 − gk0R0l). (3.4)

As there is from the EM equations:

R00 = 8πT00,

and in particular, we have

R00 =
1
2
(| α(F ) |2 + | α(F ) |2) + ρ(F )2 + σ(F )2, (3.5)

we can investigate the components of the Ricci curvature on the right-hand
side of (3.4). The component R00 includes the term | α(F ) |2. Recall that
α(F ) is the part of the electromagnetic field with worst decay behavior.
However it enters as a quadratic the formula for R00.

To proceed, we consider L = T − E3, L = T + E3. The leading compo-
nents of the curvature are

αAB(W ) = R(EA, L, EB, L), (3.6)

αAB(W ) =
AAB(W )

r
+ o (r−2). (3.7)

And the leading components of the electromagnetic field are

αA(F ) = F (EA, L), (3.8)

αA(F ) =
AA(F )

r
+ o (r−2). (3.9)

In the following the kth Cartesian coordinate of the mass mA for A = 1, 2
will be denoted by xk

(A). Then the Jacobi equation becomes

d2 xk
(A)

d t2
= −1

4
r−1AAB xl

(B) −
1
8
r−2 | AF |2 xl

(B) + O (r−2), (3.10)

that is

d2 x3
(C)

d t2
= 0, (3.11)

d2 xA
(C)

d t2
= −1

4
r−1 AAB xB

(D) −
1
8
r−2 | AF |2 xB

(D) + O (r−2). (3.12)
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From the Jacobi equation (3.10) we see that the electromagnetic field enters
on the right-hand side at order (r−2) only. Thus, we have shown that the
electromagnetic field does not contribute at leading order to the deviation
measured by the Jacobi equation. Therefore, at leading order, we can rely
on the results for the EV case, derived by Christodoulou in [5]. Instead of
(3.10) he obtained

d2 xk
(A)

d t2
= −1

4
r−1 AAB xl

(B) + O(r−2). (3.13)

As in [5] one obtains that in the vertical direction there is no acceleration
to leading order (r−1). Initially, m1 and m2 are at rest at equal distance d0

and at right angles from m0. This implies the following initial conditions, as
t → −∞: x3

(A) = 0 , ẋ3
(A) = 0 , xB

(A) = d0δ
B
A , ẋB

(A) = 0. The right-hand
side being very small, one can substitute the initial values on the right-hand
side. Then the motion is confined to the horizontal plane. One has to leading
order

··
x

A

(B)= −1
4

r−1 d0 AAB. (3.14)

One obtains

ẋA
(B) (t) = −1

4
d0 r−1

∫ t

−∞
AAB(u) du. (3.15)

In the following, let us revisit the result (3.19) from [5]. In view of equation
(2.5), i.e., ∂Ξ

∂u = −1
4 A and lim|u|→∞ Ξ = 0 we obtain

−
∫ t

−∞
AAB(u) du = Ξ(t) (3.16)

and

ẋA
(B)(t) =

d0

r
ΞAB(t). (3.17)

As Ξ → 0 for u → ∞, the test masses return to rest after the passage of the
gravitational wave. Taking into account (2.4), i.e., ∂Σ

∂u = −Ξ, and integrating
again:

xA
(B)(t) = −

(
d0

r

)
(ΣAB(t) − Σ−). (3.18)

The limit t → ∞ is taken and it follows that the test masses experience
permanent displacements. Thus Σ+ − Σ− is equivalent to an overall dis-
placement of the test masses:


 xA
(B) = −

(
d0

r

)
(Σ+

AB − Σ−
AB). (3.19)
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The right-hand side of (3.19) includes terms from the electromagnetic field
at highest order as given in our Theorem 2.6. Even though the form of (3.19)
is as in the EV case investigated by Christodoulou in [5, 6], the nonlinear
contribution from the electromagnetic field is present in Σ+

AB − Σ−
AB.
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