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Abstract

We relate three-dimensional loop quantum gravity to the combina-
torial quantization formalism based on the Chern–Simons formulation
for three-dimensional Lorentzian and Euclidean gravity with vanishing
cosmological constant. We compare the construction of the kinematical
Hilbert space and the implementation of the constraints. This leads to an
explicit and very interesting relation between the associated operators in
the two approaches and sheds light on their physical interpretation. We
demonstrate that the quantum group symmetries arising in the combina-
torial formalism, the quantum double of the three-dimensional Lorentz
and rotation group are also present in the loop formalism. We derive
explicit expressions for the action of these quantum groups on the space
of cylindrical functions associated with graphs. This establishes a direct
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link between the two quantization approaches and clarifies the role of
quantum group symmetries in three-dimensional gravity.

1 Introduction

1.1 Motivation

One of the main motivations for the study of three-dimensional gravity is
its role as a toy model for quantum gravity. It allows one to investigate con-
ceptual questions of quantum gravity, serves as a testing ground for quan-
tization formalisms and has inspired approaches for the four-dimensional
case. This is due to the fact that Einstein’s theory of gravity simplifies
significantly in three dimensions: It has no local gravitational degrees of
freedom, but a finite number of global degrees of freedom arising for space-
times with non-trivial topology or with point particles. As the phase space
of the theory is finite dimensional, its quantization simplifies considerably
compared to the four-dimensional case. Important progress towards quan-
tization has been achieved within many approaches, for an overview see [1].
As in higher dimensions, two of the most prominent ones are loop quan-
tum gravity and spin-foam models. Further progress followed the discovery
that three-dimensional gravity can be formulated as a Chern–Simons gauge
theory [2, 3].

The Chern–Simons formulation of the theory gave rise to important
advances on the conceptual level as well as an improved understanding of
the mathematical structure of the theory. In particular, it relates the phase
space of the theory to moduli spaces of flat connections on two-dimensional
surfaces and establishes a relation with the theory of knot invariants [4] and
manifold invariants [5]. It also lead to the development of new and powerful
quantization approaches.

1.1.1 Combinatorial Quantization and the loop formalism

One of these approaches which will play a central role in this paper is the
combinatorial quantization formalism for Chern–Simons gauge theory. This
formalism, first established in [6–9] for Chern–Simons theories with compact,
semisimple gauge groups, has been generalized to the gauge groups arising
in three-dimensional gravity in [10,11]. It lead to important advances in the
quantization of the theory, specifically in the construction of the physical
Hilbert space. Moreover, it provides powerful mathematical tools, namely
the theory of Hopf algebras and quantum groups, which arise naturally in
this formalism.
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Despite these advances, many important issues related to the quantization
of three-dimensional gravity remain to be resolved: It is currently not clear
how different quantization formalisms for the theory are related and if they
lead to equivalent quantum theories. This question is especially relevant for
the relation between three-dimensional loop quantum gravity and the com-
binatorial quantization formalism, as these approaches follow a very similar
quantization philosophy. Both pursue a Hamiltonian quantization approach,
they are based on a (2+1)-decomposition of the underlying manifold, and
their fundamental variables are holonomies associated to graphs on the two-
dimensional spatial surface.

This suggests that the link between three-dimensional loop quantum grav-
ity and the combinatorial quantization formalism should be direct, and that
it should be possible to explicitly relate the resulting quantum theories.
Moreover, the main conceptual difference between these approaches is that
they are based, respectively, on the BF and the Chern–Simons formulation
of the theory. Understanding the relation between these approaches would
therefore not only contribute to the understanding of three-dimensional
quantum gravity itself but also shed light on issues surrounding the rela-
tion between three-dimensional gravity and Chern–Simons theory.

However, despite its relevance and its conceptual importance, the relation
between these two quantization approaches is currently not well-understood.
Its clarification is one of the core results of this paper. In the following, we
explicitly relate the construction of their kinematical and physical Hilbert
spaces. Moreover, we demonstrate how the associated quantum operators in
the combinatorial formalism can be expressed in terms of the operators in
loop quantum gravity and that the link between these variables has a clear
physical interpretation.

1.1.2 Quantum group symmetries

The other central result of our paper addresses the role of quantum group
symmetries in the two approaches. As powerful mathematical tools, they
are of practical relevance for the quantization of the theory. However,
quantum groups and, more generally, Hopf algebras are also discussed as
generic symmetries of quantum gravity and believed to reflect fundamental
properties of quantum spacetimes. The idea is that spacetimes loose their
smoothness near the Planck scale and instead acquire a fuzzy, discrete or
non-commutative structure. It has been argued that this corresponds to a
deformation of their local symmetry groups into a Hopf algebra symmetries.
Although such deformations via Hopf algebras have been investigated exten-
sively [12–16], their status in four dimensions remains largely heuristic due
to the difficulties in the quantization of the theory.
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In three-dimensional gravity, the situation is less involved and can be
investigated with more rigour. Quantum groups arise naturally in the
combinatorial quantization formalisms [10, 11] but also in other approaches
[5]. For three-dimensional gravity with vanishing cosmological constant,
the relevant quantum groups are the quantum (or Drinfeld) doubles D(G),
where, depending on the signature, G is the three-dimensional rotation
group SU(2) or the three-dimensional Lorentz group SU(1, 1) ∼= SL(2,R).
They are deformations of the local isometry groups of the classical space-
times, respectively, the three-dimensional Euclidean and Poincaré groups.
The deformation parameter is the Planck length �P = �GN, where GN is the
Newton constant in three dimensions. Classical observables, which are (by
definition) invariant under these classical symmetry groups become quan-
tum observables which form an algebra and are invariant under the action
of the quantum double D(G).

Although quantum groups arise in the combinatorial quantization of
Euclidean and Lorentzian three-dimensional gravity with vanishing cosmo-
logical constant [11], they are not readily apparent in three-dimensional
loop quantum gravity and in the Ponzano–Regge model [17]. The relation
between the Ponzano–Regge model and the evaluation of link invariants for
the quantum double D(SU(2)) has been investigated in [18], but only spe-
cific representations of D(SU(2)) are considered and the role of quantum
group symmetries remains implicit. For a more recent result concerning
the mathematical structure and the role of link invariants in the Ponzano–
Regge model see [19]. This absence of quantum group symmetries in the
loop and spin-foam formalisms raised the question if they are a generic fea-
ture of three-dimensional quantum gravity or merely a tool limited to the
combinatorial quantization formalism.

In this paper we show that quantum group symmetries are a generic
feature of three-dimensional gravity with vanishing cosmological constant
and that they are also present in three-dimensional loop quantum grav-
ity. We demonstrate that the quantum doubles D(SU(2)) and D(SU(1, 1))
act naturally on the Hilbert spaces of the theory, i.e., the space of cylin-
drical functions associated with graphs. As the cylindrical functions are
closely related to the spin network functions which are the fundamental
building blocks of the quantum theory in loop quantum gravity and the
spinfoam approach, this establishes the presence of quantum group symme-
tries in these formalisms. We show that each closed, non-self-intersecting
loop in the graph gives rise to a representation of the quantum double on
the space of cylindrical functions and derive explicit expressions for these
representations. Moreover, we demonstrate that these representations are
intimately related to the implementation of the constraints in the quantum
theory.
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1.2 Outline of the paper

Our paper is structured as follows: In Section 2 we summarize and contrast
the classical formulations of the theory underlying 3d loop quantum grav-
ity and the combinatorial quantization formalism. These are, respectively,
the BF formulation and the Chern–Simons formulation of three-dimensional
gravity with vanishing cosmological constant. We review the canonical anal-
ysis in the two formulations and discuss their gauge and physical symmetries.

In Section 3, we give a detailed discussion of the discretization of the
phase space which serves as the starting point for the two quantization
approaches. In both approaches, this discretization is based on a graph
embedded in the spatial surface and, in case of the combinatorial formalism,
equipped with additional structure [20]. We summarize the construction
of the discrete phase space variables and their Poisson structure as well
as implementation of the constraints and the description of the physical
phase space. This discussion motivates the different quantization approaches
and lays the foundation for the following sections in which we relate the
associated quantum theories.

In Section 4 we relate the associated quantum theories. In both for-
malisms the quantum states are cylindrical functions based on a graph.
However, the operators which act on these spaces differ, and there is a pri-
ori no direct link between the fundamental variables in the two approaches.
The core result of this section is an explicit formula relating the quantum
operators in the loop and the combinatorial formalism. Moreover, we show
that this relation has a clear physical interpretation and that it sheds light
on the role of the additional structures present in the combinatorial quanti-
zation formalism.

Section 5 is concerned with the other central aspect of our paper, the
role of quantum group symmetries. We show that the quantum doubles of
the three-dimensional rotation and Lorentz group arise naturally not only
in the combinatorial formalism but also in three-dimensional loop quantum
gravity. More specifically, we demonstrate that each non-self-intersecting
loop in the underlying graph gives rise to a representation of the quantum
double on the associated space of cylindrical functions. This establishes and
clarifies the role of quantum groups in three-dimensional quantum gravity.
Moreover, we find that these quantum group symmetries have a natural
interpretation and play an important role in the construction of the kine-
matical and physical Hilbert space.

The construction of the physical Hilbert space and the implementation
of the constraints in the two quantization formalism are the subject of
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Section 6. We show that the standard gauge fixing procedure via contrac-
tions of maximal trees has a natural interpretation in the combinatorial
formalism which arises from the classical graph operations defined by Fock
and Rosly [20]. Moreover, we demonstrate that the implementation of the
constraints is closely related to the representations of the quantum double
in Section 5, which unify the requirements of graph gauge invariance and
the projector on the physical Hilbert space.

Section 7 contains our conclusions and outlook. Appendix A summarizes
the formalism of Fock and Rosly [20] and its application to the phase space
of three-dimensional gravity. Appendix B summarises some aspects of from
the representation theory of the quantum doubles D(SU(2)), D(SU(1, 1)).

2 Classical 3d gravity in the BF formulation and in the
Chern–Simons formulation

2.1 Definitions and notation

In this paper, we consider three-dimensional gravity of Euclidean and
Lorentzian signature and with vanishing cosmological constant. We intro-
duce a “space–time” manifold M. Through most of the paper we assume it
to be of topologyM ≈ S × I where the spatial surface S is an orientable two-
surface of general genus and, possibly, with punctures representing massive
point particles. The interval I ⊂ R characterizes the “time” direction.

We choose a local coordinate system (xμ)μ=0,1,2 of M. In the follow-
ing, Greek letters μ, ν, . . . refer to space–time indices, Latin letters i, j, . . .
to space indices, and t is the time index. Latin letters a, b, . . . from the
beginning of the alphabet stand for indices associated with Lie groups and
Lie algebras. Throughout the paper we use Einstein’s summation con-
vention. Indices are raised and lowered with either the three-dimensional
Minkowski metric diag(1,−1,−1) or the three-dimensional Euclidean met-
ric diag(1, 1, 1), both of which are denoted by η. With that convention, all
formulas refer to both Lorentzian and Euclidean signature unless specified
otherwise.

Throughout the paper, we write G for both the three-dimensional rotation
group G = SU(2) and the three-dimensional Lorentz group G = SU(1, 1).
We fix a set of generators Ja, a = 0, 1, 2, of their Lie algebras g = LieG in
terms of which the Lie bracket takes the form

[Ja, Jb] = εabcJ
c. (2.1)
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Here, ε is the totally anti-symmetric tensor in three dimensions with the
convention ε012 = 1 and indices are raised and lowered with the three-
dimensional Minkowski and Euclidean metric. We denote by Ad the adjoint
action of G on its Lie algebra g ∼= R

3

u · (vaJa) · u−1 = Ad(u)b
av

aJb ∀u ∈ G,v ∈ R
3. (2.2)

We also introduce the left- and right invariant vector fields La and Ra on G,

Raf(g) = df(Ra) =
d

dt
|t=0f(g · etJa),

Laf(g) = df(La) =
d

dt
|t=0f(e−tJa · g) ∀g ∈ G, f ∈ C∞(G). (2.3)

The local symmetry groups of Euclidean and Lorentzian (2+1)-gravity
with vanishing cosmological constant are, respectively, the three-dimensional
Euclidean group and the three-dimensional Poincaré group. They have the
structure of a semidirect product G� R

3 and will be denoted by IG in the
following. With the parametrization

(u,a) = (u,−Ad(u)j), u ∈ G, j,a ∈ R
3, (2.4)

their group multiplication law reads

(u1,a1) · (u2,a2) = (u1u2,a1 + Ad(u1)a2). (2.5)

The associated Lie algebras g � R
3 are parametrized by the generators Ja,

a = 0, 1, 2, and an additional set of generators Pa, a = 0, 1, 2, which corre-
spond to the infinitesimal translations. In terms of these generators, the Lie
bracket takes the form

[Ja, Jb] = εabcJ
c, [Ja, Pb] = εabcP

c, [Pa, Pb] = 0, (2.6)

and an Ad-invariant, non-degenerate symmetric bilinear form on g � R
3 is

given by
〈Ja, Jb〉 = 0, 〈Ja, Pb〉 = ηab, 〈Pa, Pb〉 = 0. (2.7)

2.2 Classical gravity in three dimensions

2.2.1 First order gravity: the BF formulation and the
Chern–Simons formulation

It is well-known that solutions of pure general relativity in three dimensions
are locally trivial. This particularity is manifest when one writes the pure
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gravity action in the first-order formalism, where the dynamical variables
are g-valued one-forms: the triad e = eaμJadx

μ which defines the metric via

gμν = eaμe
b
νηab (2.8)

and the spin-connection ω = ωa
μJadx

μ, which is closely related to the Levi–
Civita connection. When expressed in terms of these variables, the Einstein–
Hilbert action reduces to a topological BF-type action

SBF[e, ω] = α

∫
M
d3x εμνρηab e

a
μ F

b
νρ[ω], (2.9)

where α = (4πGN)−1 is related to the-three-dimensional Newton constant
GN and will be set to one in the following. Fμν [ω] is the curvature of the
G-connection ω

Fμν [ω] = ∂μων − ∂νωμ + 1
2 [ωμ, ων ]. (2.10)

In fact, the first-order formulation of (2+1)-gravity gives rise to two equiv-
alent formulations of the classical theory, the BF formulation above which
underlies three-dimensional loop quantum gravity and the formulation as a
Chern–Simons gauge theory which is the starting point for the combinato-
rial quantization formalism. To obtain the Chern–Simons formulation of the
theory, one combines triad and spin connection into a Chern–Simons gauge
field

A = eaPa + ωaJa, (2.11)

which is a one-form with values in the three-dimensional Poincaré or
Euclidean algebra g � R

3. It is shown in [2,3] that the first-order action for
three-dimensional gravity can then be rewritten as a Chern–Simons action

SCS[A(e, ω)] =
∫
M
d3x εμνρ

(
〈Aμ, ∂νAρ〉 +

1
3
〈Aμ, [Aν , Aρ]〉

)
, (2.12)

where 〈, 〉 is the bilinear form (2.7). Using the formula for the Lie bracket
(2.6), it is easy to check that this action is equivalent to (2.9) up to a
boundary term for ∂M 
= ∅, which does not modify the equations of motion.

Varying the actions (2.9) and (2.12) with respect to the triad and spin
connection results in a flatness condition on the IG-valued Chern–Simons
connection A. This flatness condition combines the requirements of flatness
for the spin connection ω and of vanishing torsion (i.e., the requirement that
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the triad e is covariantly constant with respect to ω)

Fμν [A] = 0 ⇐⇒
{
Fμν [ω] ≡ ∂μων − ∂νωμ + 1

2 [ωμ, ων ] = 0,
Tμν [e, ω] ≡ ∂μeν − ∂νeμ + [ωμ, eν ] = 0 .

(2.13)

Among these six classical equations, only two involve time derivatives and
therefore can be interpreted as equations of motion. As we will see in the
following, the four remaining equations act as first class constraints in the
Hamiltonian framework and generate the gauge symmetries of the theory.

2.2.2 Symmetries: gauge symmetries and diffeomorphisms

As the Chern–Simons formulation of three-dimensional gravity is a gauge
theory with local symmetry group IG, its action admits an infinite-
dimensional symmetry group G = C∞(M, IG) which acts on the connec-
tions according to

∀ g ∈ G , A �→ Ag = gAg−1 + gdg−1 . (2.14)

The invariance of the action SSC (2.12) with respect to these transforma-
tions is an immediate consequence of the Ad-invariance of the bilinear form
〈, 〉. It has been shown in [3] that they correspond to the infinitesimal dif-
feomorphism symmetries of gravity. This is most easily seen by rewriting
the infinitesimal transformation laws (2.14) in terms of the triad and spin
connection

δeμ = ∂μa + [ωμ,a] + [eμ, υ] and δωμ = ∂μυ + [ωμ, υ], (2.15)

where g−1 = (υ,a) ∈ C∞(M, g ⊕ R
3). Setting a = ξμeμ and υ = ξμωμ, one

can then express these transformations in terms of the Lie derivatives Lξ

along the vector field ξ = ξμ∂μ:

δeμ = Lξeμ + ξνTμν [e, ω] and δωμ = Lξωμ + ξνFμν [ω], (2.16)

where Fμν [ω] and Tμν [e, ω] are the curvature and torsion (2.13) which van-
ish on the space of classical solutions. This establishes the on-shell equiva-
lence of infinitesimal diffeomorphisms and infinitesimal Chern–Simons gauge
transformations. Note, however, that this equivalence applies only to gauge
transformations and diffeomorphisms which are connected to the identity,
whereas the status of large (i.e., not infinitesimally generated) diffeomor-
phisms and gauge transformations is more subtle [21–23].



1660 CATHERINE MEUSBURGER AND KARIM NOUI

2.2.3 Canonical analysis

On manifolds of topology M = S × I one can give a Hamiltonian formula-
tion of the theory. For simplicity, we focus on the case where S is an oriented
two surface of general genus. The case of a surface with punctures repre-
senting massive, spinning particles is a straightforward generalization which
is discussed extensively in the literature (see [1] and references therein).

Decomposing the gauge field A = Atdt+Aidx
i into a time component

At and a gauge field AS = Aidx
i on the spatial surface, we can rewrite the

action (2.9) as

SCS[A] =
∫

I

dt

∫
S
d2x εij (−〈Ai, ∂tAj〉 + 〈At, F [A]ij〉) , (2.17)

where εij = εtij . This implies that the phase space variables are the compo-
nents of the spatial gauge field AS = Aidx

i and that their canonical Poisson
brackets are given by

{Ai
α(x), Aj

β(y)} = εij δ(2)(x− y) 〈ξα, ξβ〉, (2.18)

where ξα ∈ {Ja, Pb}a,b=0,1,2 are the generators of the Lie algebra g � R
3 and

δ(2)(x− y) is the delta distribution on S. The time components At of the
gauge field act as Lagrange multipliers which impose the six primary con-
straints Fα(x) ≡ εijFα

ij [A(x)] = 0. It is easy to check that these primary
constraints are first class and that the system admits no more constraints.
They form a Poisson algebra, and they generate infinitesimal gauge symme-
tries.

When expressed in terms of the BF variables e and ω, the only non-trivial
Poisson brackets in (2.18) are the ones which pair the components of the
triad and spin connection

{eai (x), ωb
j(y)} = ηab εij δ

(2)(x− y). (2.19)

Roughly speaking, the triad e and the connection ω are canonically conju-
gated variables. Moreover, by considering this expression, one finds that the
first class constraints can be grouped into the two sets

F (x) ≡ εjkFjk[ω(x)] = 0 and T (x) ≡ εjkTjk[e(x), ω(x)] = 0, (2.20)
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which generate the infinitesimal gauge symmetries given by (2.15) and (2.16):

{aaF
a(x) + υaT

a(x), eμ(y)} = δ(2)(x− y) δeμ(x),

{aaF
a(x) + υaT

a(x), ωμ(y)} = δ(2)(x− y) δωμ(x). (2.21)

2.2.4 The physical phase space

To give a simple presentation of the physical phase space, it is advantageous
to work with the Chern–Simons formulation of the theory. Let us recall
that solutions of the constraints form an infinite-dimensional affine space,
the space of flat IG-connections on S denoted by F(IG, S). This space
inherits a Poisson bracket (2.18) from the Chern–Simons action and the
gauge symmetry action (2.14). The physical phase space, denoted P(IG, S),
is the moduli space of flat IG-connections modulo gauge transformations on
the spatial surface S:

P(IG, S) ≡ F(IG, S)/GS , GS = C∞(S, IG). (2.22)

It inherits a symplectic structure from the Poisson bracket on F(IG, S)
and, remarkably, is of finite dimension. More specifically, the physical phase
space P(IG, S) can be parametrized by the holonomies along curves on the
spatial surface S and is isomorphic to the space Hom(π1(S), IG)/IG, where
the quotient is taken with respect to the action of IG by simultaneous con-
jugation. The physical observables are, by definition, functions on P(IG, S).
A basis can be constructed using the notion of spin-networks on S. Alterna-
tively, one can work with conjugation invariant functions of the holonomies
along a set of curves on S representing the elements of its fundamental group
π1(S). The Poisson bracket between two such observables was first described
by Goldman [24].

3 Discretization of the phase space

3.1 Discretization via graphs

We are now ready to discuss the discrete descriptions of the phase space
underlying three-dimensional loop quantum gravity and the combinatorial
quantization formalism, the latter of which is due to Fock and Rosly [20].
In both cases, the phase space is discretized by means of graphs embedded
into the spatial two surface, and the resulting descriptions are equivalent.
However, as we will show in the following, there are important conceptual
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Figure 1: Illustration of the discretization of a genus two surface S by a
graph Γ. On the right, we focus on a particular part of Γ where the structures
of the graph have been highlighted: the edges are oriented and the vertices
are endowed with a cilium (the short thin lines) which defines a linear order-
ing of the incident edges. At the vertex v, we have we have S(v) = {λ1, λ4}
and T (v) = {λ2, λ3}; O(λ1, s) < O(λ2, t) < O(λ3, s) < O(λ4, t).

differences between the two discretizations which directly manifest them-
selves in the corresponding quantization approaches.

We start by introducing the graphs used in the discretization. In the
following, we consider an oriented two-surface S of general genus and with
a general number of punctures together with an oriented graph Γ embedded
into the surface. We do not restrict attention to graphs associated with
or dual to triangulations, but require that the graph is sufficiently refined
to resolve the surface’s topology. We denote by VΓ and EΓ, respectively,
the set of its vertices and the set of its oriented edges. For a given edge
λ ∈ EΓ we denote by s(λ) its starting vertex and by t(λ) its target vertex
and write −λ for the edge with the opposite orientation. For each vertex v,
we introduce the set S(v) = {λ ∈ EΓ | s(λ) = v} of edges starting at v and
the set T (v) = {λ ∈ EΓ | t(λ) = v} of edges ending at v, as shown in figure 1.

Such a graph is sufficient to define spin network functions and to formu-
late the three-dimensional version of loop quantum gravity. However, for
the combinatorial quantization, additional structures are required. More
precisely, we need a ciliated fat graph, which is obtained by adding a cilium
at each vertex of the oriented graph as shown in figure 1. As the orientation
of the surface S induces a cyclic ordering of the edges starting or ending
in each vertex, the addition of the cilium defines a linear ordering of these
edges.

In the following we write O(λ, s) < O(τ, s) (O(λ, s) < O(τ, t)) if λ is an
edge starting at v and of lower order than another edge τ starting (ending)
at the same vertex and, analogously O(λ, t) < O(τ, s) (O(λ, t) < O(τ, t)) for
edges λ that end at the vertex, as shown in figure 1. We denote by S+(s(λ)),
S−(s(λ)), respectively, the set of edges starting at the starting vertex of λ
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Figure 2: Illustrations of the sets S± and T± defined in (3.1): S+(t(λ1)) =
{λ2, λ4, λ5, λ6}, T+(t(λ1)) = {λ3, λ4}, T−(s(λ2)) = {λ1}, T−(t(λ2)) = {λ7}.

and of higher and lower order than λ and by T+(s(λ)), T−(s(λ)) the set
of edges ending at the starting vertex of λ and of higher and lower order
than λ

S+(s(λ)) = {η ∈ S(s(λ)):O(λ, s)<O(η, s)}
S−(s(λ)) = {η ∈ S(s(λ)):O(λ, s)>O(η, s)},
T+(s(λ)) = {η ∈ T (s(λ)):O(λ, s)<O(η, t)}
T−(s(λ)) = {η ∈ T (s(λ)):O(λ, s)>O(η, t)}.

Analogously, we define the sets S±(t(λ)), T±(t(λ)). Note that these defini-
tions are also valid for edges λ, η ∈ EΓ that are loops based at a vertex of
the graph. For instance, the set

S+(s(λ)) ∩ T+(s(λ)) = {η ∈ S(s(λ)) ∩ T (s(λ)) |O(η, s), O(η, t) > O(λ, s)}
(3.1)

denotes the set of loops η based at the starting vertex of λ for which both
ends are of higher order than λ. If λ is a loop, we write

S+(s(λ)) ∩ S−(t(λ)) = {η ∈ S(s(λ) |O(λ, s) < O(η, s) < O(λ, t)} (3.2)

for the set of edges that lie between the two ends of λ with respect to the
ordering at the vertex s(λ) = t(λ). These sets are illustrated in figure 2.

3.2 Phase space variables

In the discrete description of the phase space, the continuous dynamical
variables, the connection A(x) in the Chern–Simons formulation and the
triad e(x) and the spin connection ω(x) in the BF formulation of the theory,
are replaced by “non-local” variables associated to oriented paths on the
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spatial surface S. In three-dimensional loop quantum gravity, these variables
are obtained by integrating the G-connection ω and the triad e over general
paths γ : [0, 1] → S on the spatial surface. This amounts to assigning a
group element uγ ∈ G and a vector qγ ∈ R

3 to each path γ

uγ = P exp
∫

γ
ωμ dx

μ and qa
γ =

∫
γ
eaμ dx

μ. (3.3)

In the Chern–Simons formulation, triad and spin connection are combined
into a Chern–Simons gauge field. This makes it natural to work with IG-
valued phase space variables obtained by integrating the Chern–Simons
gauge field A along paths on S. Parametrizing elements of the three-
dimensional Euclidean and Poincaré groups as in (2.4), one assigns a
G-element uγ and a vector jγ ∈ R

3 to each path γ

Hγ = (uγ ,−Ad(uγ)jγ) = P exp
∫

γ
Aμ dx

μ. (3.4)

The variables obtained by reversing the orientation of the path γ are then
related to the original variables as follows:

u−γ = u−1
γ , j−γ = −Ad(uγ)jγ , q−γ = −qγ . (3.5)

From the definition of the gauge field A, it is easy to see that the G-valued
variables uγ agree with the ones used in loop quantum gravity and defined
in (3.3). Moreover, a short calculation shows that the vectors jγ are given
in terms of the triad and the spin connection by the relation

jγ =
∫

γ
Ad(u−1

γ (y)) eμ(y) dyμ, (3.6)

where uγ(y) denotes the path ordered exponential along γ from the starting
point s(γ) to y ∈ γ. We see that there is a priori no simple and explicit
relation between the vectors jγ and qγ at the classical level. However,
we will demonstrate in Section 4.2 that the associated operators on the
Hilbert spaces of the quantum theory exhibit a direct and physically intuitive
relation.

3.3 Poisson structure

In the description of the phase space underlying the loop quantum formal-
ism, the canonical Poisson structure (2.19) induces a bracket on functions of
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the group elements uγ and the vectors qτ associated to paths γ, τ : [0, 1] → S
which intersect transversally in a vertex. From the canonical Poisson bracket
(2.19) of the triad and spin connection, it follows that the bracket of func-
tions fγ , gτ of the G-elements uγ , uτ vanishes

{fγ , gτ} = 0. (3.7)

Similarly, one has for the bracket of the associated vectors qγ , qτ

{qa
γ , q

b
τ} = 0. (3.8)

The only non-trivial brackets are those of functions of the G-elements uγ

with vectors qτ . A standard calculation, see for instance [1], yields

{qa
γ , f}(uτ2uτ1) =

d

dt
|t=0f(uτ1e

tJauτ2), (3.9)

where τ = τ2 ◦ τ1 and t(τ1) = s(τ2) is the intersection point between τ and
γ. Note that this bracket is only defined for paths γ, τ which intersect
transversally, i.e., for which the oriented intersection number is well-defined.

In the combinatorial formalism, the issue of the Poisson structure is more
subtle. This is partly due to the fact that one works with IG-valued holo-
nomy variables, which combine the G-holonomies uλ ∈ G and the vectors
jλ ∈ R

3 and whose brackets are intrinsically more complicated. Moreover,
one cannot restrict attention to transversally intersecting paths but also
needs to consider paths which meet in their starting and end points. Expand-
ing the path ordered exponential (3.4) does not yield a well-defined
expression for the Poisson bracket of such variables due to the presence of
delta-distributions at the end points. This implies that the canonical Pois-
son structure associated to the action does not induce a Poisson structure
of these variables.

A regularization of these ill-defined Poisson brackets is provided by the
formalism of Fock and Rosly [20]. This regularization requires a graph Γ
endowed with a ciliation which induces a linear ordering of the edges incident
at each vertex of Γ as defined in Section 3.1. The other central ingredient is a
classical r-matrix for the gauge group IG, which is explained in Appendix A.
It has been shown by Fock and Rosly [20] that together with the ciliation
such a classical r-matrix allows one to define a consistent Poisson bracket
on the variables obtained by integrating the Chern–Simons gauge field along
the edges of the graph and that this auxiliary Poisson structure induces the
canonical Poisson structure on the physical phase space. A summary of Fock
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and Rosly’s Poisson structure [20] and its application to three-dimensional
gravity is given in Appendix A.

When applying Fock and Rosly’s Poisson structure to three-dimensional
gravity, one finds the Poisson bracket of the G-holonomies associated to
different paths on S vanish as they do in the loop formalism. More generally,
we have

{f, g} = 0 ∀f, g ∈ C∞(G|EΓ|), (3.10)

where the arguments of f and g are identified with the G-holonomies uλ

along the edges λ ∈ EΓ. The bracket of vectors jλ with functions f ∈
C∞(G|EΓ|) is given by certain vector fields Xλ on the manifold G|EΓ| which
will be described explicitly below:

{ja
λ, f} = Xa

λf ∀f ∈ C∞(G|EΓ|). (3.11)

The brackets between the vectors jλ are given by the Lie bracket of the asso-
ciated vector fields and can be determined explicitly via the Jacobi identity

{{ja
λ, j

b
τ}, f} = {ja

λ, {jb
τ , f}} − {jb

τ , {ja
λ, f}} = (Xa

λX
b
τ −Xb

τX
a
λ)f

= [Xa
λ, X

b
τ ]f. (3.12)

In order to give explicit expressions for the vector fields Xa
λ , we need to

introduce some notations. In the following, we write fλ ∈ C∞(G|EΓ|) for a
function that depends only on the group element uλ associated to a given
edge λ ∈ EΓ. We denote by La

λ and Ra
λ, respectively, the right- and left-

invariant vector fields (2.3) corresponding to the variable uλ:

Ra
λfτ = Rafτ if τ = λ, otherwise Ra

λfτ = 0,

La
λfτ = Lafτ if τ = λ, otherwise La

λfτ = 0. (3.13)

By applying Fock and Rosly’s prescription to the case at hand, we then
obtain expression for the Poisson brackets and the vector fields Xa

λ (3.11) in
terms of these right- and left-invariant vector fields

{ja
λ, f} = Xa

λf = −Ra
λf −

∑
τ∈S+(s(λ))

Ra
τf −

∑
τ∈T+(s(λ))

La
τf

+ Ad(u−1
λ )a

b

⎛
⎝ ∑

τ∈S+(t(λ))

Rb
τf +

∑
τ∈T+(t(λ))

Lb
τf

⎞
⎠ . (3.14)

Although the general formula is rather complicated, the action of the vector
fields Xa

λ on the group elements uτ , τ ∈ EΓ, corresponds to a simple and
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Figure 3: The four different configurations for two edges meeting at a vertex.

intuitive geometrical prescription:

1. Group elements uτ associated to edges τ which do not have a vertex
in common with λ are unaffected by the action of Xa

λ.
2. Group elements uτ associated to edges τ which do have a vertex in

common with λ but are of lower order at this vertex are unaffected.
3. Xa

λ acts on the group element uλ by right multiplication Xa
λfλ =

−Rafλ.
4. Xa

λ acts on the group elements uτ associated with edges τ ∈ S+(s(λ))
which start at the starting vertex s(λ) and are of higher order than λ
(case a in figure 3) by right multiplication: Xa

λfτ = −Rafτ .

These rules allow one to compute the action of the vector fields Xa
λ on

any function f ∈ C∞(G|EΓ|). In particular, its action on edges that end at
the starting vertex of λ or start or end at its target vertex (cases b, c, d
in figure 3, respectively) is obtained by using formula (3.5) to invert the
orientation of the edges. This yields

Xa
λfτ = −Lafτ , τ ∈ T+(s(λ)) (case b), (3.15)

Xa
λfτ = Ad(u−1

λ )a
bR

bfτ , τ ∈ S+(t(λ)) (case c), (3.16)

Xa
λfτ = Ad(u−1

λ )a
bL

bfτ , τ ∈ T+(t(λ)) (case d). (3.17)

Note that this prescription is also defined for loops that start and end
at the same vertex or for loops that have two vertices in common. In this
case, one simply applies the prescription above to both ends of the edges
and adds the resulting expressions.

Example 3.1. As an example, we consider the configuration with three
loops γ, κ, τ represented in figure 4. The linear ordering is such that
O(κ, s) < O(γ, s) < O(κ, t) < O(γ, t) < O(τ, s) < O(τ, t). Applying formula
(3.14), one finds that the Poisson brackets between the associated loop
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Figure 4: Examples of a ciliated graphs with edges that are loops.

variables jγ , jκ, jτ with functions of the holonomies uγ , uκ, uτ are given by

{ja
κ, fκ} = −(Ra + La)fκ,

Action of Xκ: {ja
κ, fγ} = −

(
(δa

b − Ad(u−1
κ ))a

bL
b +Ra

)
fγ , (3.18)

{ja
κ, fτ} = −((δa

b − Ad(u−1
κ ))a

b(L
b +Rb)fτ ,

{ja
γ , fκ} = −Lafκ,

Action of Xγ : {ja
γ , fγ} = −(Ra + La)fγ , (3.19)

{ja
γ , fτ} = −(δa

b − Ad(u−1
κ ))a

b(L
b +Rb)fτ ,

{ja
τ , fκ} = 0,

Action of Xτ : {ja
τ , fγ} = 0, (3.20)

{ja
τ , fτ} = −(Ra + La)fτ ,

where La, Ra are the right- and left-invariant vector fields (2.3) on G.
For functions fκ, fγ , fτ ∈ C∞(G|EΓ|) which are invariant under conjugation,
i.e., physical observables, the only non-vanishing brackets in (3.18) are

{ja
κ, fγ} = Ad(u−1

κ )a
bL

bfγ , {ja
γ , fκ} = −Lafκ. (3.21)

This agrees with the result derived from formula (3.9) and demonstrates
the dependence of the brackets on intersection points evident there. It is a
manifestation of the fact that the Fock and Rosly bracket of graph gauge
invariant functions is identical to the canonical bracket on the physical phase
space.
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3.4 Physical phase space

We are now ready to discuss the implementation of the constraints and the
construction of the physical phase space. In both formalisms, the construc-
tion of the physical Hilbert space requires the implementation of a discrete
version of the constraints (2.13). These are obtained by integrating (2.13)
along each closed, contractible loop γ on the spatial surface S and reflect
the topological nature of the theory

F [γ] = uγ ≈ 1, T a[γ] = Ad(uγ)a
bj

b
γ =

∫
γ
Ada

b(uγu
−1
γ (y))ebμ(y)dyμ ≈ 0.

(3.22)

The constraint F [γ] corresponds to the flatness condition Fμν [ω] = 0 and the
constraint T a to the Gauss constraint Tμν [e, ω] = 0 in (2.13). In the Chern–
Simons formulation of the theory, these conditions are combined into the
requirement that the IG-valued holonomy Hγ given by (3.4) is trivial for
any contractible loop γ on S.

In the loop formalism, the construction of the physical phase space is
usually not discussed separately on the classical level but follows from the
corresponding discussion for the quantum theory. The general idea is to
select certain paths γ on the spatial surface S which form a graph and
to consider the associated discretized variables uγ , qγ defined as in (3.3).
While both the Gauss constraint F [x] and the Hamiltonian constraints T a[x]
are discretized by integrating them along loops on the spatial surface as
in (3.22), different paths are chosen for this discretization: For the Gauss
constraint T a[γ] one selects small closed loops γ around the vertices of the
graph which intersect its edges transversally. The discrete version F [γ] of
the Hamiltonian constraint is obtained by integrating it along closed loops in
the graph itself. One then obtains a set of discrete constraints which generate
discrete gauge transformations acting on the variables uγ , qγ . The details
then depend on the choice of the paths and the choice of the discretization,
and there appears to be no standard convention in the literature. A detailed
investigation of these gauge transformations and the construction of the
physical Hilbert space for a particular choice of such a discretization is given
in [18].

In the combinatorial formulation, the situation is more involved, as one
works with IG-valued holonomies associated to a fixed graph. To dis-
cuss the constraints and the construction of the physical phase space, one
considers the space of graph connections AΓ ≡ C∞(G|EΓ|) ⊗ JΓ with JΓ =
{jλ|λ ∈ EΓ}, which consists of assignments of IG-valued holonomies Hτ to
each edge τ ∈ Γ and can be viewed as a discrete version of the space of
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IG-connections on the surface S. Similarly, the discrete version of the space
of flat connections FΓ is the space of flat graph connections and is obtained
from the space of graph connections by imposing the constraint of vanishing
IG-holonomy for all closed, contractible loops � = λn ◦ · · · ◦ λ1 of Γ

∏
λ∈�

(uλ,−Ad(uλ)jλ) ≈ 1, (3.23)

where the product runs over the edges λn, . . . , λ1 in the loop � in the order
in which they appear in the loop. The G-component and the translational
component of this constraint correspond to the variables (3.22) for γ = �
and are given by

F� = (uλn · · ·uλ1 , 0) ≈ 1 and T� =

(
1,

n∑
i=1

Ad((uλi−1 · · ·uλ1)
−1)jλi

)
≈ 0.

(3.24)

There is also a discrete version of the group of gauge transformations G:
the group GΓ of graph gauge transformations which is isomorphic to IG|VΓ|.
A graph gauge transformation is an assignment of an IG-element Gv =
(gv,−Ad(gv)xv) to each vertex v ∈ VΓ. Its action on the graph connections
is given by

Hλ �→ Gt(λ) ·Hλ ·G−1
s(λ) (3.25)

or, equivalently,

uλ �→ gt(λ) · uλ · g−1
s(λ), (3.26)

jλ �→ Ad(gs(λ))(jλ − xs(λ)) + Ad(gs(λ)u
−1
λ )xt(λ). (3.27)

For any sufficiently refined graph Γ, the phase space of the theory which
is the moduli space of flat IG-connections on the surface S modulo gauge
transformations is isomorphic to the quotient of the space FΓ of flat graph
connections modulo graph gauge transformations:

P(IG, S) � FΓ/GΓ . (3.28)

The central result of Fock and Rosly [20] is that the Poisson structure
given by equations (3.10)–(3.12) descends to this quotient and induces the
non-degenerate symplectic form on the moduli space of flat connections. In
other words, physical observables are represented by functions on FΓ which
are invariant under the graph gauge transformations GΓ, and the Poisson
bracket of such observables agrees with the one given by the Fock–Rosly
Poisson structure. As a result, the symplectic form depends neither on the
choice of the (sufficiently refined) graph Γ, nor on the choice of the cilia on
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the vertices. In that sense, the description by Fock and Rosly [20] is an exact
discretization of Chern–Simons theory. Moreover, it can easily be extended
to the case of surfaces with punctures representing massive point particles.
The only modification required is an additional set of constraints similar to
(3.23) which restrict the IG-holonomies of loops around particles to fixed
IG-conjugacy classes

∏
λ∈�

(uλ,−Ad(uλ)jλ) ∈ Ci, (3.29)

where � is a loop around the ith particle and Ci the IG-conjugacy class
associated to this particle.

These results allow one to choose a minimal simplicial decomposition of S
for the graph Γ, i.e., a set of generators of the fundamental group π1(S). This
is the starting point of the combinatorial quantization of three-dimensional
gravity. However, as the purpose of this paper is a comparison between the
combinatorial quantization and loop quantum gravity, the latter of which
is based on the space of cylindrical functions on general graphs, we will
not restrict attention to such graphs in the following. A detailed discus-
sion of the relation between general ciliated graphs and minimal simplicial
decompositions is given in Section 6.

4 Hilbert spaces and operators

4.1 Quantum states and kinematical Hilbert spaces

In both formalisms, the quantization proceeds in two steps. The first is
to promote the discrete graph variables to an algebra of operators and to
determine its unitary irreducible representations, which define the space of
quantum states. In both cases, the quantum states form the so-called space
of cylindrical functions on Γ which is the space C∞(G|EΓ|) of functions of
the G-valued holonomies assigned to the edges of the graph. Note that the
topological nature of the theory in three dimensions allows one to restrict
attention to a single graph as long as it is sufficiently refined to resolve the
topology of S. The resulting quantum theory will be independent of the
choice of the graph.

The second step is the construction of the kinematical and physical Hilbert
spaces. This is done by promoting the constraints to operators acting on the
space of cylindrical functions C∞(G|EΓ|). Schematically, kinematical states
are the kernel of the quantum operators associated to the discretized version
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of the torsion T (x). Physical states are kinematical states which are in the
kernel of the operators corresponding to the curvature F (x) (2.20).

In this section, we focus on the space of quantum states and the con-
struction of the kinematical Hilbert spaces in both approaches. We relate
the fundamental quantum operators acting on these spaces and show how
this relation provides a clear physical interpretation of the operators in the
combinatorial formalism from the viewpoint of loop quantum gravity. The
construction of the physical Hilbert space is discussed in Section 6.

4.1.1 Loop quantum gravity

In loop quantum gravity, a quantum state is a priori any function of the spin-
connection ω, and the two basic operators are the spin connection ω and
the triad e. The former acts by multiplication and the latter as a derivative
operator

eia(x) = −iεab η
ij δ

δωj
b(x)

. (4.1)

However, many arguments [25–27] lead to the conclusion that a quantum
state is in fact a function of theG- valued holonomies obtained by integrating
ω along the edges of the graph. The space of quantum states is thus the
space C∞(G|EΓ|) of cylindrical functions for Γ endowed with the L2(G|EΓ|)
norm

〈ψ, φ〉 =
∫
dμ(u1) · · · dμ(u|EΓ|) ψ(u1, . . . , u|EΓ|)φ(u1, . . . , u|EΓ|), (4.2)

where dμ is the Haar measure on G. The basic discrete variables of loop
quantum gravity (3.3) are cylindrical functions associated with Γ and the
quantum counterparts of the variables qγ in (3.3). The former act by multi-
plication, which can easily seen to be unitary with respect to the norm (4.2)

Π(F )ψ = F · ψ ∀F ∈ L2(G|EΓ|) . (4.3)

The action of the operators qγ is more subtle: As in the classical theory, the
action of qγ on a variable uγ′ is well-defined if and only if the paths γ and
γ′ admit a well-defined intersection number, i.e., they cross transversally.
Thus, the action of qγ is not well-defined when γ is a single edge of Γ; the
path γ has to be the composition of at least two edges. For instance, the
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Figure 5: Illustration of a case where the derivative operator qγ has a non-
trivial action on a quantum state whose support is a graph γ′: γ = λ2λ

′
2λ1

and γ′ = λ4λ3. The operator qγ acts schematically on the common vertex
γ ∩ γ′.

action of qλ2λ′
2λ1

on a state ψ(uλ4uλ3) where t(λ1) = s(λ2) = t(λ3) = s(λ4),
as illustrated in figure 5, is given by

Π(qa
λ2λ′

2λ1
)ψ (uλ3uλ4) = i

d

dt
|t=0ψ(uλ3e

tJauλ4) . (4.4)

This formula is a direct quantization of the Poisson bracket (3.9). Its exten-
sion to general paths is immediate, and it follows that the operators qγ act as
vector fields on the space of cylindrical functions. Together, (4.3) and (4.4)
provide an unitary representation Π of the algebra of quantum operators on
the space of cylindrical functions on the graph Γ.

The kinematical Hilbert space Hkin is obtained as the set of solutions
of the quantum Gauss constraint and its construction is well-understood.
Kinematical states are functions ψ ∈ C∞(G|EΓ|) of the G-holonomies along
the edges of Γ that satisfy the invariance condition

ψ(uλ1 , . . . , uλ|EΓ|) = ψ(g−1
s(λ1)uλ1gt(λ1), . . . , g

−1
s(λ|EΓ|)

uλ|EΓ|gt(λ|EΓ|)) ∀g
= (gv1 , . . . , g|VΓ|) ∈ G|VΓ|. (4.5)

Due to left and right invariance of the Haar measure on G, the norm (4.2)
is compatible with the quotient and induces a norm on Hkin. In the case
G = SU(2), a dense basis of Hkin is provided by the spin network functions.
Spin network functions are constructed by assigning a representation of G
to each edge e ∈ EΓ and an intertwiner to each vertex v ∈ VΓ. In the case
G = SU(1, 1) ∼= SL(2,R), the situation is more complicated due to the non-
compactness of the group. Firstly, finite-dimensional irreducible represen-
tations of SL(2,R) are never unitary unless they are trivial. Instead, there
are several series of infinite-dimensional irreducible unitary representations
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labelled by continuous parameters μ ∈ R. Moreover, the Peter Weyl theo-
rem, which implies for compact Lie groups G that the spin network func-
tions are dense on L2(G|EΓ|), does not hold. The definition of spin network
functions therefore has to be undertaken within the framework of harmonic
analysis. The presence of representations labelled by continuous parameters
then raises issues of convergence whenever sums over discrete representa-
tion labels in the compact case are replaced by integrals over continuous
parameters. Another source of divergences are integrals over the group
SU(1, 1) ∼= SL(2,R) such as the ones arising in the definition of the inner
product. The construction of spin networks for this group has been investi-
gated in [28,29].

The representation Π defined in (4.3), (4.4) provides a representation of
kinematical operators acting on Hkin. An important kinematical operator
is the quantum counterpart of the classical length of a path γ : [0, 1] → S

Lγ =
∫

γ
ds
√
|ηab ea eb|. (4.6)

The standard quantization [30] is such that spin-network states ψΓ are
eigenstates of the associated operator. It has been found in [30] that its
spectrum is discrete in the Euclidean case while it has discrete (for time-
like curves) and continuous (for spacelike curves) sectors in the Lorentzian
case.

4.1.2 Combinatorial formalism

In the combinatorial formalism, the particularly simple structure of the
classical Poisson algebra for vanishing cosmological constant allows one
to construct the kinematical Hilbert space and kinematical operators in a
straightforward way. This is due to the fact that the Poisson brackets of
functions f ∈ C∞(G|EΓ|) vanish while the vectors jλ are identified with cer-
tain vector fields acting on functions f ∈ C∞(G|EΓ|). The classical Poisson
algebra is therefore of the type considered in Section 3.1. in [11] and can be
quantized via the formalism established there, see in particular Theorems
3.1, 3.3 and 3.4.

By applying these results, one finds that the space of quantum states
is the same as in the loop formalism, the space C∞(G|EΓ|) of cylindrical
functions associated to the graph Γ equipped with the norm (4.2). The
basic quantum operators are the cylindrical functions F ∈ C∞(G|EΓ|) which
act by multiplication as in (4.3) and the quantum counterparts of the vectors
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jλ, λ ∈ EΓ, whose action on the states is given by

Π(ja
λ)ψ = i{ja

λ, ψ} = −iRa
λψ −

∑
τ∈S+(s(λ))

iRa
τψ −

∑
τ∈T+(s(λ))

iLa
τψ

+ Ad(u−1
λ )a

b

⎛
⎝ ∑

τ∈S+(t(λ))

iRb
τψ +

∑
τ∈T+(t(λ))

iLb
τψ

⎞
⎠ . (4.7)

In contrast to the situation in loop quantum gravity, the representation
Π(ja

λ) of these operators is well-defined when λ is a single edge of the graph Γ.

The kinematical Hilbert space Hkin is obtained by imposing invariance
under the graph gauge transformations (3.26) and hence characterized by
(4.5) as in the loop formalism. The basic kinematical operators are functions
F ∈ C∞(G|EΓ|) satisfying (4.5), which act by multiplication, and operators
J that are linear combinations of the variables jλ with cylindrical functions
as coefficients and preserve (4.5). The latter can be identified with the vector
fields on G|EΓ| whose flow commutes with the action of the constraints T�.

Two fundamental kinematical operators are the “mass” operator m� and
“spin” operator s� associated to closed loops � = λn ◦ · · · ◦ λ1 in Γ. Their
action on Hkin is given by

Π(m2
� )ψ = p2

� · ψ, Π(m�s�)ψ = pa
� · Π(ja

� )ψ, (4.8)

where pa
� are cylindrical functions and ja

� are operators associated with the
IG-valued holonomy H� as follows:

H� = Hλn · · ·Hλ1 = (u�,−Ad(u�)j�),

u� = uλn · uλn−1 · · ·uλ1 = epa
� Ja (4.9)

j� = jλ1
+ Ad(u−1

λ1
)jλ2

+ · · · + Ad(u−1
λ1

· · ·u−1
λn−1

)jλn
.

A detailed discussion of their action on quantum states and their physical
interpretation is given in the following subsections.

4.2 The link between combinatorial and loop quantum gravity
kinematics

4.2.1 Operators in loop quantum gravity and in the
combinatorial formalism

We are now ready to establish the relation between the kinematical operators
in the combinatorial formalism and in loop quantum gravity. As discussed
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in the last subsection, the spaces of quantum states and the kinematical
Hilbert spaces in the two approaches are identical. Moreover, in both cases
functions of the G-valued holonomies assigned to the edges of the graph Γ
act on these spaces by multiplication. However, it remains to clarify the
role of the additional structure in the combinatorial formalism, the ciliation
which establishes a linear ordering of the incident edges at each vertex, and
to relate the operators jλ and qλ. While formulas (3.3), (3.6) provide an
explicit expression of the associated classical variables in terms of the triad
e and the spin connection ω, there is a priori no direct link between these
variables. However, as we will see in the following, they exhibit a clear and
physically intuitive relation at the quantum level.

We start by determining how the operators jλ in the combinatorial for-
malism can be understood from the viewpoint of loop quantum gravity. For
that purpose, we consider the dual Γ̄ of the graph Γ and the associated
operators qλ̄ obtained by integrating the triad over the dual edges λ̄ as in
(3.3). We orient the dual graph in such a way that the intersection number
between λ and λ̄ is +1. As the edges λ and λ̄ generically cross at a point
of λ, this does not give rise immediately to a well-defined representation
of the operators qλ̄ on the space of cylindrical function C∞(G|EΓ|). How-
ever, such a representation is obtained if one considers the operators qλ̄ in
the limit where the intersection point of the edge λ and its dual edge λ̄ is
moved towards the starting point s(λ) or the endpoint t(λ), as illustrated
in figure 6.

Figure 6: Geometrical construction of the operators qλ,s and qλ,t. We con-
sider a graph (thick plain lines) and its dual (thin dashed lines): λ is the
edge between the two vertices. The operators qλ,s (resp. qλ,t) are obtained
by moving λ̄ towards the starting (resp. end) point of λ and are associated
to the dual edges λs (resp. λt).

Denoting the associated operators, respectively, by qλ,s and qλ,t and using
formula (3.9), we then find that their action on the space of cylindrical
functions is well-defined and given by the left and right-invariant vector
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fields on G|EΓ|:

Π(qa
λ,s)ψ = iRa

λψ, Π(qa
λ,t)ψ = −iLa

λψ. (4.10)

Comparing these formulae with expression (4.7) for the action of the oper-
ators jλ, we find that we can identify jλ with a certain linear combinations
of the operators qλ,s, qλ,t as follows:

jλ = −qλ,s −
∑

τ∈S+(s(λ))

qτ,s +
∑

τ∈T+(s(λ))

qτ,t + Ad(u−1
λ )

⎛
⎝ ∑

τ∈S+(t(λ))

qτ,s −
∑

τ∈T+(t(λ))

qτ,t

⎞
⎠ .

(4.11)

This identification will provide us with a clear geometrical interpretation of
the operators jλ and their relation to the loop quantum gravity variables
qλ. Moreover, it sheds light on the role of the cilia in the two quantization
formalisms. To see this, we consider the following path γλ in the union Γ ∪ Γ̄
of the graph Γ and depicted in figure 7:

(i) γλ starts at the cilium at the vertex s(λ) and goes along the edges of
the dual graph Γ̄ against the orientation at s(λ) until the path crosses
the edge λ;

(ii) it continues along λ to the vertex t(λ);
(iii) it goes along the edges of the dual graph in the sense of the orientation

at t(λ) until the path arrives at the cilium at t(λ);
(iv) it goes back along the edge λ to the cilium at the starting point s(λ)

and closes there.

Note that the resulting loop goes around the two vertices of λ with the asso-
ciated cilia, and that these cilia together with the orientation of S determine
which of the edges of the dual graph are contained in the loop γλ.

Let us now compute the IG valued holonomy Hγλ
of the path γλ. Using

the group multiplication law (2.5) and taking into account the orientation
of the dual edges, we find that this holonomy is given by

Hγλ
= (1, qγλ

) = (u−1
λ , 0) ·

⎛
⎝1,

∑
τ∈S+(t(λ))

qτ̄ +
∑

τ∈T+(t(λ))

q−τ̄

⎞
⎠ · (uλ, 0)

·
⎛
⎝1,−

∑
τ∈S+(s(λ))

qτ̄ −
∑

τ∈T+(s(λ))

q−τ̄

⎞
⎠ . (4.12)
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Figure 7: The construction of the path γλ: the edge λ is represented by a
black line. The four components of the path γλ are depicted by a dashed
line, the associated dual edges by solid black lines. Other edges incident at
the starting and target vertex of λ are drawn in grey. Cilia are represented
by thick dotted lines at the vertices, and the orientation of the surface is
anti-clockwise.

The result is given as the product of four terms associated to the different
components of the path γλ:

(i) the first one (on the right in (4.12)) corresponds to the sum over all
vectors qτ̄ associated to the duals of edges τ incident at the start-
ing point of λ and of higher order than λ, taking into account their
orientations;

(ii) the second term (uλ, 0) corresponds to the G-holonomy along λ;
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(iii) the third term corresponds to the sum over the vectors qτ̄ for the duals
of edges τ incident at the target vertex of λ and of higher order than λ;

(iv) the last term, (u−1
λ , 0), corresponds to the G-holonomy along −λ.

We now consider the operator associated to the translational part qγλ
of this

holonomy. After moving λ̄ and the duals of all other edges incident at the
starting point s(λ) towards s(λ) and the duals of all other edges incident at
the t(λ) towards t(λ) as shown in figure 7, formula (4.10) implies that the
action of this operator on the states is given by

Π(qa
γλ

)ψ = −iRa
λψ −

∑
τ∈S+(s(λ))

iRa
τψ −

∑
τ∈T+(s(λ))

iLa
τψ

+ iAd(u−1
λ )a

b

⎛
⎝ ∑

τ∈S+(t(λ))

Rb
τψ +

∑
τ∈T+(t(λ))

Lb
τψ

⎞
⎠ , (4.13)

which agrees with equation (4.7) for the action of jλ. Hence, we can identify
the operators jλ in the combinatorial formalism with the loop quantum
gravity operator qγλ

for the path γλ in the limit where the edges of the dual
graph are moved towards the starting and target vertex of Γ.

4.2.2 Physical interpretation

Equation (4.13) is one of the core results of our paper and provides a clear
geometrical interpretation of the kinematical operator jλ and its relation to
the loop quantum gravity variables qλ. The definition (3.3) of the classical
variables associated with the operators qγ suggests an interpretation of the
operators qγ as a relative position vector of the ends of the path γ. With
this interpretation the terms

qs =
∑

τ∈S+(s(λ))

qτ̄ +
∑

τ∈T+(s(λ))

q−τ̄ , qt =
∑

τ∈S+(t(λ))

qτ̄ +
∑

τ∈T+(t(λ))

q−τ̄ (4.14)

in (4.12) which are depicted in figure 7 can be viewed as the relative position
vectors of the intersection point λ ∩ λ̄ with respect to the cilia at the starting
and target vertex of λ.

In the limit where the dual edges are moved towards the starting and
target vertex of λ they can be interpreted as, respectively, the relative posi-
tion vectors of s(λ) and t(λ) with respect to the cilia at these vertices. The
G-valued holonomy uλ has the interpretation of a Lorentz transformation or
rotation relating the two reference frames associated with the starting and
target vertex of λ. Conjugating the relative position vector qt at t(λ) with
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the inverse of this holonomy therefore corresponds to transporting it into
the reference frame associated with the starting vertex s(λ). The operator
qγλ

is then obtained by subtracting qs from Ad(u−1
λ )qt. It can therefore be

viewed as a relative position vector of the edge ends s(λ) and t(λ) in the
reference frame associated with s(λ).

The relation between the operators qλ and jλ also sheds light on the role
of the cilium in the combinatorial and the loop formalisms: The addition
of cilia at each vertex corresponds to the choice of a reference point which
allows one to consistently assign a position vector to each edge incident at the
vertex. It therefore enters the definition of the variables jλ which give the
relative position of the starting point and the endpoint of λ in the reference
frame associated with its starting point. Note that this interpretation is also
supported by the transformation of the variables jλ, qλ under the reversal of
edges given in (3.5): While the position vectors qλ acquire a minus sign, the
operators jλ acquire a minus sign and are multiplied with a factor Ad(uλ),
which describes their transport in the reference frame associated with the
target vertex.

4.2.3 The case of a loop

To deepen the understanding of the relation between loop quantum gravity
operators and combinatorial operators and their physical interpretation, it
is instructive to consider the situation where λ is a loop as depicted in
figure 8. For notational convenience we assume its ends to be ordered such
that O(λ, s) < O(λ, t). The expression (4.11) for the associated operator jλ

then simplifies and can be written as a sum jλ = sλ + �λ with

sλ = −qλ,s −
∑

τ∈S+(s(λ))∩S−(t(λ))

qτ,s +
∑

τ∈T+(s(λ))∩T−(t(λ))

qτ,t, (4.15)

�λ = −(1 − Ad(u−1
λ ))

⎛
⎝ ∑

τ∈S+(t(λ))

qτ,s −
∑

τ∈T+(t(λ))

qτ,t

⎞
⎠ . (4.16)

By considering these two terms illustrated in figure 8 we find that the vector
sλ corresponds to the contribution of the edges “inside” the loop λ (the solid
black edges in figure 8 and �λ to the one of the edges “outside” the loop
λ and of higher order than t(λ) (the dotted black edges in figure 8). The
notions of “inside” and “outside” are provided by the cilium: the “outside”
of the loop is the component of the surface S which contains the cilium when
S is cut along the loop. We interpret these two contributions by relating
them to the kinematics of particles in three-dimensional gravity, which have
been discussed extensively by many authors [18, 23,31–40].
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Figure 8: Example of a loop λ attached to a vertex. The part that does
not contain the cilium defines the inside of λ. The solid black edges inside
(resp. the dotted black edges outside) the loop contribute to the spin-vector
(resp. orbital momentum) associated to the loop λ. The edges depicted in
grey do not contribute to the variable jλ.

At the kinematical level, a relativistic particle moving in three-
dimensional Euclidean or Minkowski space is characterized by a position
three-vector x and its momentum three-vector p. The kinematical observ-
ables are the momentum three-vector p together with the total angular
momentum three-vector j. They form a Poisson algebra which reproduces
the three-dimensional Euclidean or Poincaré algebra. The mass m and the
spin s of the particle are given by the Casimir functions of the Poisson alge-
bra p2 = m2 and p · j = ms. As a consequence, the total angular momentum
three-vector j decomposes naturally into its longitudinal component s with
respect to p and its orbital angular momentum �

j = s + � = s
mp + x ∧ p. (4.17)
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It has been shown that in the presence of gravitational interaction the
momenta of particle become group valued. Equation (4.17) is modified and
approaches the non-gravitational form (4.17) in the low-mass limit p2 → 0

j = s
mp + (1 − Ad(e−paJa))x = s

mp + p ∧ x +O(p2). (4.18)

To exhibit the link with the kinematics of a classical particle, we parametrize
the G-holonomy of the loop λ ∈ EΓ in terms of a three-vector pλ

uλ = epa
λJa , p2

λ = m2
λ. (4.19)

A short calculation involving (4.15), (4.16) then yields

pλ · jλ = pλ · sλ = mλsλ, pλ�λ = 0. (4.20)

This implies that only the inside edges between the two ends of the loop λ
(the solid black edges in figure 8) contribute to the spin of a loop λ. The
projection of the sum over the position vectors of these internal edges in
the direction of pλ can be viewed as an internal angle, which generalizes the
deficit angle arising in spacetimes with particles. The associated quantity
sλ therefore defines an internal angular momentum or spin. The component
�λ defined in (4.16) which arises from the external edges (dotted black in
figure 8) is necessarily orthogonal to the momentum pλ and therefore con-
tributes only to the orbital angular momentum in (4.18). The sum over the
position vectors of the external edges can therefore be viewed as an external
position vector for the loop with respect to the cilium at its vertex.

5 Quantum double symmetries

5.1 The quantum double D(G) in three-dimensional gravity

In this section we derive the second core result of our paper: We demonstrate
how quantum group symmetries arise in three-dimensional loop quantum
gravity and the combinatorial quantization formalism. The relevant quan-
tum groups are the quantum doubles D(G) of the three-dimensional Lorentz
and rotation group. The role of the quantum groups in the combinatorial
formalism is well-understood for the case where the graph Γ is a minimal
simplicial decomposition of the surface S, i.e., a set of generators of the
fundamental group π1(S) [6, 7, 10, 11,41].
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However, the situation is less clear when Γ is a general graph on the sur-
face S, which is the case generically in the loop formalism and in spinfoam
models. In three-dimensional gravity with vanishing cosmological constant,
no direct evidence of quantum group symmetry has been detected in the
loop and spin-foam approaches. The evaluation of link invariants for the
quantum double SU(2) and their relation to the Ponzano–Regge model are
investigated in [18, 19]. However, the role of quantum groups remains indi-
rect and implicit in these papers. In particular, they do not shed light on the
general relation between quantum groups and the generic building blocks of
these formalisms, graphs and spin network functions.

This raises the question if quantum group symmetries are generic features
of three-dimensional quantum gravity or rather mathematical tools within
the combinatorial approach based on a minimal simplicial decomposition.
In this section, we demonstrate that quantum group symmetries appear as
a generic feature of three-dimensional quantum gravity with vanishing cos-
mological constant and are also present in the loop formalism. We show
that the quantum double D(G) acts naturally on the space of cylindrical
functions for general graphs Γ. More concretely, we demonstrate that each
closed, non-self-intersecting loop in Γ gives rise to a representation of the
quantum double on the space of cylindrical functions and derive explicit
expressions for these representations in Section 5.3. Moreover, we show in
Section 5.4 that there is a remnant of these representations on the kinemat-
ical Hilbert space which is directly related to the fundamental kinematical
observables studied in the previous section.

We start with a definition of the quantum double D(G), also called the
Drinfeld double. For a brief summary of its representation theory we refer
the reader to Appendix B. The quantum double D(G) is a quasi-triangular
ribbon Hopf algebra which can be identified (as a vector space) with the
tensor product

D(G) ≡ D(F (G)) = F (G) ⊗ C(G) (5.1)

of the space F (G) of functions on G and the group algebra C(G). Here
we follow the presentation in [11] and work with an alternative formulation
which is advantageous as it exhibits explicitly the close link between the
classical and quantized theory. In this description, first given in [42], the
quantum double D(G) is formulated in terms of continuous functions on
G×G. To exhibit its structure as a quasi-triangular ribbon-Hopf algebra
it is necessary to include certain Dirac delta-distributions f ⊗ δg, which are
not elements of the space of continuous functions C0(G×G) but can be
included by adjoining them. The Hopf algebra structure of D(G) is then
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given as follows:

Product : (F1 • F2)(u, v) :=
∫

G
F1(u, z)F2(z−1uz, z−1v) dz, (5.2)

Coproduct : (ΔF )(u1, v1;u2, v2) = F (u1u2, v1) δv1(v2), (5.3)

Antipode: (SF )(u, v) = F (v−1u−1v, v−1), (5.4)

Unit : 1(u, v) = δe(v), (5.5)

Counit : ε(F ) =
∫

G
F (e, v) dv, (5.6)

Star structure : F ∗(u, v) = F (v−1uv, v−1) . (5.7)

For the singular elements f ⊗ δg, expressions (5.2)–(5.7) take the form

Product : (f1 ⊗ δg1) • (f2 ⊗ δg2) = (f1 · f2 ◦ Adg−1
1

) ⊗ δg1g2 , (5.8)

Coproduct : Δ(f ⊗ δg)(u1, v1;u2, v2) = f(u1u2) δg(v1)δg(v2), (5.9)

Antipode: S(f ⊗ δg)(u, v) = f(v−1u−1v)δg−1(v), (5.10)

Counit : ε(f ⊗ δg) = f(e), (5.11)

Star structure : (f ⊗ δg)∗ = (f ◦ Adg−1) ⊗ δg−1. (5.12)

The Hopf algebraD(G) is quasi-triangular with R-matrices, R(±) ∈ D(G)⊗2,
which are the quantum counterparts, respectively, of the classical
r-matrix (A.5) and minus its flip

R(+)(u1, v1;u2, v2) = δe(v1)δe(u1v
−1
2 ),

R(−)(u1, v1;u2, v2) = δe(v2)δe(u2v1). (5.13)

Its ribbon element which satisfies the ribbon relation Δc = (R21 •R) • (c⊗
c
)

with the opposite R-matrix R21(u1, v1;u2, v2) := R(u2, v2;u1, v1) is
given by

c(u, v) = δv(u). (5.14)

It can be shown that D(G) is a deformation (in the sense of Drinfeld) of the
classical group algebra C(IG) with the Planck length �P as a deformation
parameter. In fact, as an algebra D(G) is included into C(IG) and the
deformation concerns only the co-algebra structures.
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5.2 Quantum double action on the space of cylindrical functions

The first indication that the quantum double arises as a symmetry of quan-
tum gravity is the Poisson bracket (3.9) of the loop variables. Using the
formula (5.9) for the coproduct, we can rewrite this Poisson bracket as

{qa
λ, f}(uτ2uτ1) =

d

dt
|t=0f(uτ1e

tJauτ2) = (id ⊗−La) ◦ Δf(uτ1 ⊗ uτ2)

= (Ra ⊗ id) ◦ Δf(uτ1 ⊗ uτ2). (5.15)

Hence, the coproduct of the quantum double is present already in the Poisson
structure of the classical theory and, consequently, also in the action of the
associated operators on the kinematical Hilbert space.

However, the role of quantum double symmetries is not limited to this
rather indirect manifestation. We will now demonstrate that the quantum
double D(G) arises naturally as a quantum symmetry also in the loop for-
mulation of the theory and acts on the Hilbert space of the theory. More
specifically, we will show that each closed, non-self-intersecting loop in the
graph Γ gives rise to a representation of the quantum double on the space
of cylindrical functions C∞(G|EΓ|). As this is one of the core results of our
paper and technically rather involved, we will proceed in two steps: We start
by illustrating the general structure of these representations. In Section 5.3
we then derive explicit expressions for these representations and discuss
their physical interpretation. In Section 5.4 we show how a remnant of this
quantum group symmetry manifests itself on the kinematical Hilbert space.

To exhibit the general structure of these representations, we consider a
closed loop � = λn ◦ λn−1 ◦ · · · ◦ λ1 in Γ which is composed of one or several
links λ1, . . . , λn ∈ EΓ and based at a vertex v = s(λ1) = t(λn) ∈ VΓ. We
assume O(λ1, s) < O(λn, t). For notational convenience we also impose that
all edges arising in the loop are oriented in the sense of the loop as pictured
in figure 9. Moreover, we require that the loop � does not have any self-
intersections, i.e., that we have

λj ∩ λk = ∅ for |k − j| ≥ 2, {k, j} 
= {1, n},
λj ∩ λj−1 = s(λj) = t(λj−1), j = 2, . . . , n (5.16)

and that none of the edges λi is a loop unless n = 1.

We use the notation H� = (u�,−Ad(u�)j�) with u�, j� as in (4.9). While
the action of u� on the space of cylindrical functions is multiplicative, the
operator j� is derivative. Moreover, as we will show in the next subsection,
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Figure 9: Illustration of the group action ρ� associated to the closed, non-
self-intersecting loop � = λn · · ·λ1. The oriented loop � is represented by
a solid black line and the cilia at its vertices by thin black lines. Edges
whose variables transform trivially under ρ� are depicted as thin grey lines.
Dashed and dotted edges correspond to the non-trivial transformations in,
respectively, (5.26) and (5.27). The variables associated with the dash-
dotted edges at the starting vertex of � transform according to the last line
in (5.28).

it generates a group action ρ� : G×G|EΓ| → G|EΓ|:

Π�(ja
� )ψ = i{ja

� , ψ} = i
d

dt
|t=0ψ ◦ ρ�(etJa) ∀ψ ∈ C∞(G|EΓ|). (5.17)

It is shown in [43], see in particular Lemma 4.2, that a group action ρ of G
on a manifold M together with a map φ : M → G satisfying the covariance
condition Φ(ρ(g)m) = g · Φ(m) · g−1 ∀m ∈M, g ∈ G gives rise to a represen-
tation of D(G) on C∞(M) defined by

Π(F )ψ(m) =
∫

G
dμ(z)F (Φ(m), z) · ψ ◦ ρ(z−1) ∀ψ ∈ C∞(M). (5.18)

In the case at hand, this group action is ρ�, the manifold M = G|EΓ| is
given by the G-holonomies assigned to the edges of the graph Γ, and the
map Φ : G|EΓ| → G expresses the loop holonomy u� as a product of the edge
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holonomies uλi

Φ : (u1, . . . , u|EΓ|) �→ u� = uλn · · · uλ1 . (5.19)

The covariance condition then takes the form

ρ�(g)u� = g · u� · g−1. (5.20)

Hence, to demonstrate that the loop � in Γ gives rise to a representation
of the quantum double on the space of cylindrical functions, we need to
construct a group action ρ� : G×G|EΓ| → G|EΓ| that satisfies (5.17) and acts
on the holonomy u� by conjugation. It then follows directly from expression
(4.2) for the scalar product and expression (5.12) for the star structure that
this representation is unitary. Moreover, formula (5.18) implies that the
action of the elements f ⊗ δg in (B.2) takes the particularly simple form

Π�(f ⊗ δg)ψ = f(u�) · ψ ◦ ρ�(g−1). (5.21)

In particular, we see that elements f ⊗ 1 represent the multiplicative action
of functions of the holonomy u� on the space of quantum states, while the
elements 1 ⊗ g, g ∈ G, exponentiate the action of the operators j�.

5.3 Explicit expressions for the action of the quantum double

We will now construct the group action ρ� for a general non-self-intersecting
loop � = λn · · ·λ1. Due to the close link between the classical and quantum
theories, it is clear that this amounts to exponentiating the Poisson brack-
ets of jλ with functions f ∈ C∞(G|EΓ|), expressed in terms of the left- and
right-invariant vector fields (3.13) and hence will be defined via a graphical
procedure similar to the one introduced after (3.14). However, this requires
replacing sums of vector fields with products of elements of G|EΓ| and one
has to demonstrate that there exists an appropriate ordering which gives
rise to a group action with the required properties.

To do this, we define explicitly a map ρ� : G×G|EΓ| → G|EΓ| that satisfies
(5.17) and then demonstrate that it is a group action, i.e., satisfies ρ�(gh) =
ρ�(g) · ρ�(h), and that it acts on the holonomy u� by conjugation. For clarity,
we consider separately the following cases:

(i) the action on edges which have no vertex in common with the loop �;
(ii) the action on the edges λ1, . . . , λn which form the loop;
(iii) the action on edges which have at least one vertex in common with

the loop but do not belong to the loop themselves.
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Case (i): It follows directly from (4.7), (4.9) that the operator j� acts
trivially on the variables uτ of all edges τ that do not have a vertex in
common with �. This suggests that these group elements should transform
trivially under ρ�.

Case (ii): To determine the action of ρ� on the edges λ1, . . . , λn in the
loop, we start by considering the extreme edges λ1 and λn. Using expression
(4.7) together with (4.9), we find

− iΠ(ja
� )fλ1 =

{
0 if O(λ1, t) > O(λ2, s),
−Rafλ1 if O(λ1, t) < O(λ2, s),

− iΠ(ja
� )fλn =

{
−Lafλn if O(λn, s) > O(λn−1, t),
−(1 − Ad(u−1

l ))a
bL

bfλn if O(λn, s) < O(λn−1, t).

(5.22)

While exponentiating the first three terms is straightforward, the last
involves an ordering ambiguity for the factors. Supposing that identity
(5.20) is satisfied, we see that in order to have the group action property
ρ�(gh) = ρ�(g) · ρ�(h) the holonomies uλ1 , uλn have to transform as

uλ1 �→
{
uλ1 if O(λ1, t) > O(λ2, s),
uλ1 · g−1 if O(λ1, t) < O(λ2, s),

uλn �→
{
g · uλn if O(λn, s) > O(λn−1, t),
[g, u�] · uλn if O(λn, s) < O(λn−1, t),

(5.23)

where [a, b] = a · b · a−1 · b−1 is the group commutator of G. An analogous
reasoning for the other edges λk, k = 2, . . . , n− 1 yields

uλk

�→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uλk
if O(λk, s) > O(λk−1, t) and
O(λk+1, s) > O(λk, t),

uλk
if O(λk, s) < O(λk−1, t) and
O(λk+1, s) < O(λk, t),

uλk
· (uλk−1

· · ·uλ1)g(uλk−1
· · ·uλ1)

−1 if O(λk, s) > O(λk−1, t) and
O(λk+1, s) < O(λk, t),

uλk
· (uλk−1

· · ·uλ1)g
−1(uλk−1

· · ·uλ1)
−1 if O(λk, s) < O(λk−1, t) and

O(λk+1, s) > O(λk, t).
(5.24)
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It can then be shown by a straightforward calculation that the map ρ�

defined by (5.23), (5.24) acts on ordered products of the edge holonomies
uλi according to

u� �→ g · u� · g−1,

uλk
· · ·uλ1

�→
{
uλk

· · ·uλ1 if O(λk+1, s) < O(λk, t),
uλk

· · ·uλ1 · g−1 if O(λk+1, s) > O(λk, t),
k = 1, . . . , n− 1.

(5.25)

Case (iii): We distinguish two cases: edges that start or end at the starting
vertex of � and edges that start or end at other vertices s(λk+1) = t(λk),
k 
= n. While the relative order of the incident edges in the loop is fixed in
the former, it is not in the latter, and we have to consider separately the
situation where O(λk+1, s) > O(λk, t) and O(λk+1, s) < O(λk, t).

We start by considering an edge τ starting at the vertex s(λk+1) = t(λk)
with k 
= n, where the order of the edges λk+1, λk is O(λk, t) > O(λk+1, s).
Using again formulas (4.7), (4.9), we determine the action of j� on uτ and
find that the map ρ� should act on these holonomies according to

uτ �→

⎧⎪⎨
⎪⎩
uτ if O(τ, s)<O(λk+1, s) or

O(τ, s)>O(λk, t),
uτ · (uλk

· · ·uλ1)g
−1(uλk

· · ·uλ1)
−1 if O(λk+1, s)<O(τ, s)<O(λk, t).

(5.26)

Analogously, we find for an edge τ starting at the vertex s(λk+1) = t(λk)
with k 
= n, where the order of the incident edges in the loop is O(λk, t) <
O(λk+1, s)

uτ �→

⎧⎪⎨
⎪⎩
uτ if O(τ, s) < O(λk, t) or

O(τ, s) > O(λk+1, s),
uτ · (uλk

· · ·uλ1)g(uλk
· · ·uλ1)

−1 if O(λk, t) < O(τ, s) < O(λk+1, s).
(5.27)

The corresponding expressions for an edge τ starting at the vertex s(λ1) =
t(λn) are analogous but involve an additional contribution for the edges of
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higher order than λn:

uτ �→

⎧⎪⎨
⎪⎩
uτ O(τ, s) < O(λ1, s),
uτ · g−1 O(λ1, s) < O(τ, s) < O(λn, t),
uτ · [u�, g] O(τ, s) > O(λn, t).

(5.28)

The action of ρ� on the holonomies associated to edges that end at the
vertices in the loop is obtained by exchanging right multiplication with group
elements a ∈ G with left multiplication by a−1 in expressions (5.26) to (5.28).
The corresponding expressions for loops based on these vertices are then
obtained by applying this prescription to both ends of the loop.

This concludes our discussion of the different cases. Equations (5.23)–
(5.28) provide an explicit definition of ρ� through its action on the holonomies
of all edges in Γ. Formula (5.25) demonstrates that it satisfies the covariance
condition. By differentiating (5.23)–(5.28) and comparing the result with
the action of the loop operator j� given by (4.9), (4.7) we verify (5.17) and
find that the action of j� on the cylindrical functions is indeed the infinitesi-
mal version of the map ρ�. It remains to show that ρ� is a group action. This
can be shown by a straightforward but somewhat lengthy calculation using
expressions (5.23)–(5.28). Hence, we have demonstrated that the action
of the loop operator j� gives rise to a group action ρ� : G×G|EΓ| → G|EΓ|
with the required invariance properties and defines a representation of the
quantum double D(G).

This demonstrates that each closed, non-self-intersecting loop � in the
graph Γ gives rise to a representation of the quantum double D(G) on the
space of cylindrical functions for Γ defined by (5.18) and (5.21). Moreover,
these representations have a clear geometrical interpretation which encodes
the topology and the orientation of the graph Γ: Holonomies uλ transform
trivially if the associated edges λ do not intersect the loop. The holonomies
associated with the edges λ1, . . . , λn in the loop transform non-trivially if and
only if the relative order of consecutive edges at the starting and endpoint
changes, i.e., if the associated cilia point in different directions with respect
to the orientation of the loop. Expressions (5.26) and (5.27) imply that
holonomies of edges τ which are not part of the loop but have a vertex
s(λk) = t(λk−1), k 
= 1 in common with it, transform non-trivially if and
only if they lie between the two edges of the loop touching this vertex with
respect to the ordering. Defining the “inside” and “outside” of a loop with
respect to the cilium at each vertex as in the paragraph following (4.16),
we find again that only the inner edges at each vertex are affected by the
loop operator j� and the associated group action ρ�. At the starting vertex
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s(λ1) = t(λn) there is an additional contribution for edges of higher order
than λn. These cases are illustrated in figure 9.

By differentiating expressions (5.23)–(5.28), one obtains a pattern similar
to the one for a single-edge loop in Section 4.2. Expressing the operator
j� in terms of the operators qλ associated to the edges of the dual graph
and moving these dual edges towards the starting and target vertices of the
edges λi, we find that j� is given as a sum j� = s� + �� with

�� = −(1 − Ad(u−1
� ))

⎛
⎝ ∑

τ∈S+(t(λn))

qτ,s −
∑

τ∈T+(t(λn))

qτ,t

⎞
⎠ , (5.29)

s� =
n−1∑
i=0

εi Ad(u−1
λi

· · ·u−1
λ1

)

⎛
⎝ ∑

τ∈S(inti)

qτ,s −
∑

τ∈T (inti)

qτ,t

⎞
⎠ , (5.30)

where we identified n = 0 and S(inti), T (inti) denote, respectively, the set
of edges starting and ending at the vertex s(λi+1) = t(λi) and between λi

and λi+1 with respect to the ordering. The factor εi in (5.30) is εi = 1
if O(λi+1, s) > O(λi, t) (i.e., the cilium at t(λi) = s(λi+1) points to the left
with respect to the direction of the loop) and εi = −1 if O(λi+1, s) < O(λi, t)
(i.e., the cilium at t(λi) = s(λi+1) points to the right with respect to the
direction of the loop). The two edges λi, λi−1 are included in these sets if
and only if their relative ordering at s(λi+1) = t(λi) changes with respect to
the previous vertex.

These quantities are visualized in figure 9. Edges, which transform triv-
ially and which therefore do not contribute to (5.29), (5.30) correspond to
thin grey lines. The edges λ1, . . . , λn in the loop are solid black lines. Edges
in S(inti) ∪ T (inti) are depicted by dotted lines if εi = −1 and by dashed
lines for εi = 1. The dash-dotted edges in figure 9 are the ones which con-
tribute to ��.

Setting u� = ep
a
� Ja , we find again that the operator �� is orthogonal to

p� while the total spin or internal angular momentum of the loop takes the
form s� = 1

mp� · s�. Following the discussion in Section 4.2, we can view the
vectors qτ,s, qτ,t as position vectors of the edge τ shifted towards its starting
and target vertex. This implies that the terms

si = Ad(u−1
λi

· · ·u−1
λ1

)

⎛
⎝ ∑

τ∈S(inti)

qτ,s −
∑

τ∈T (inti)

qτ,t

⎞
⎠ (5.31)
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Figure 10: Example of a loop � = λ6λ5λ4λ3λ2λ1 (black edges). The variables
associated with thin grey edges transform trivially under ρ�. The transfor-
mation of the other edge variables is given in (5.32) and (5.33)–(5.38).

in (5.30) have the interpretation of a relative position vector of the two
edges λi+1, λi expressed in the reference frame associated with the starting
vertex v = s(λ1) = t(λn) of the loop. The projection of this relative position
into the direction of p� therefore describes an internal angle associated with
the vertex s(λi+1) = t(λi). The total angle associated with the loop which
generalizes the deficit angles arising in particle spacetimes is obtained by
summing over the internal angles of all vertices in the loop. In this sum,
one has to take into account their relative position (to the left or right) with
respect to the orientation of the loop which is given by the factors εi.

We conclude this section with the discussion of a concrete example based
on figure 10.

Example 5.1. We consider a loop � such as the one depicted in figure 10
whose cilia at the different vertices are chosen such that the ordering is
given by

O(λ1, s) < O(λ6, t), . . . , O(λ2, s) < O(λ1, t), . . . , O(λk, s)

< O(λk−1, t), . . . , O(λ6, s) < O(λ5, t).
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Expressions (5.23) and (5.24) then imply that the group action ρ� acts on
the holonomies of edges in the loop according to

ρ�(g) : uλ6 �→ [g, uλ6uλ5uλ4uλ3uλ2uλ1 ] · uλ6 ,

uλk
�→ uλk

k = 1, . . . , 5. (5.32)

For the other edges depicted in figure 10, the transformation of the
holonomies under the group action ρ�(g) is given by (5.26), (5.28) and
we obtain

ρ�(g) : uα �→ uα · [uλ6uλ5uλ4uλ3uλ2uλ1 , g], (5.33)

uκ �→ g · uκ · g−1, (5.34)

uη �→ (uλ1gu
−1
λ1

) · uη · (uλ1g
−1u−1

λ1
), (5.35)

uγ �→ uγ · (uλ2uλ1)g
−1(uλ2uλ1)

−1, (5.36)

uτ �→ (uλ4uλ3uλ2uλ1)g(uλ4uλ3uλ2uλ1)
−1 · uτ , (5.37)

uβ �→ uβ · (uλ5uλ4uλ3uλ2uλ1)g
−1(uλ5uλ4uλ3uλ2uλ1)

−1. (5.38)

5.4 The quantum double and the kinematical Hilbert space

The action of the quantum double D(G) associated with each closed, non-
self-intersecting loop in Γ on the space of cylindrical functions C∞(G|EΓ|)
does not induce an action of D(G) on the kinematical Hilbert space. This is
due to the fact that multiplication of kinematical states with general func-
tions of the G-holonomy along the loop and composition with the associated
group action according to (5.21) does not map kinematical states to kine-
matical states. However, the kinematical Hilbert space inherits a remnant
of these quantum group symmetries which corresponds to a subalgebra of
D(G) generated by two sets of elements.

The first are elements of the form f ⊗ δe ∈ D(G), where f is conjugation
invariant. They act on the kinematical states by multiplication

Π�(f ⊗ δe)ψ = f(u�) · ψ. (5.39)

Since any conjugation invariant function of the G-valued holonomy u� is a
function of its trace, they are functions of the mass operator m2

� = p2
� which

acts according to

Π(m2
� )ψ = p2

� · ψ. (5.40)
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The second are powers of the ribbon element (5.14), which act on cylindrical
functions as

Π�(ck)ψ = ψ ◦ ρ�(u−k
� ) ∀k ∈ Z. (5.41)

To demonstrate that the action of these elements does map kinematical
states to kinematical states, we note that the group action ρ� satisfies

ρ�(hvu
t
�h

−1
v ) ◦Gh = Gh ◦ ρ�(ut

�) ∀t ∈ R, h = (h1, . . . , h|VΓ|) ∈ G|VΓ|,
(5.42)

where Gh : G|EΓ| → G|EΓ| is the graph gauge transformation (3.25) defined
by h, hv is the component of h associated to the starting and target vertex
v of u� and ut

� = etpa
� Ja . This identity can be verified by direct calculation

for each of the cases considered in Section 5.3: One considers the action
of graph gauge transformations on the edges that share a vertex with the
loop and sets g = ut

� in (5.23) and (5.28). Applying this identity to (5.41),
one then deduces that the action Π�(ck) commutes with the graph gauge
transformations and hence maps kinematical states to kinematical states

(Π�(ck)ψ) ◦Gh = Π�(ck)(ψ ◦Gh) = Π�(ck)ψ ∀ψ ∈ Hkin. (5.43)

Moreover, one finds that this action of the ribbon is intimately related to the
operator s� defined in (5.30) which encodes the internal angular momentum
of the loop. Using the results from Section 5.3, in particular the discussion
after (5.30), we find that the total internal angular momentum of the loop
acts on the kinematical Hilbert space via the infinitesimal version of the
action (5.41)

Π(m�s�)ψ = Π(p�j�)ψ = i
d

dt
|t=0ψ ◦ ρ�(ut

�). (5.44)

Hence, for each closed, non-self-intersecting loop in the graph Γ, the associ-
ated action of the quantum doubleD(G) on the space of cylindrical functions
gives rise to two sets of operators acting on the kinematical Hilbert space:
the mass operator m� which acts by multiplication and the product m�s�

of mass and spin which acts via the group action ρ�. As discussed in the
previous sections, these are the two fundamental physical observables asso-
ciated to each loop � in the graph. They correspond to the two Casimir
operators of the three-dimensional Euclidean and Poincaré groups and have
a clear physical interpretation through the analogy with the corresponding
variables for particles.
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6 Construction of the physical Hilbert space

In this section, we discuss the implementation of the remaining constraints
and the construction of the physical Hilbert space in the loop and the com-
binatorial formalism. As exhibited in the previous sections, the absence
of local gravitational degrees of freedom implies that no refinements of
the graphs are required to capture the local geometry of the space-time.
The Hamiltonian constraint therefore a priori does not act by adding edges
around vertices as in the four-dimensional case. Instead, it takes the form of
a flatness condition F� ≈ 0 (3.24) on the graph connections, which requires
the G-valued holonomy around each contractible loop in the graph to be
trivial.

6.1 The physical Hilbert space in the loop formalism

The construction of the physical Hilbert space of three-dimensional loop
quantum gravity has been investigated extensively as a toy model for the
four-dimensional case [44–48]. For reasons of simplicity, much of the previous
work in this context focussed on the Euclidean case with a torus as the
spatial surface S. Here, we adopt the presentation given in [49] which is
more general and presents a convenient starting point for the comparison
with the combinatorial quantization formalism.

In [49], the discrete version of the flatness constraint F� (3.24) is imple-
mented by means of a “projector” P : Hkin → Hphys on the physical Hilbert
space1 . Formally, this projector acts on the kinematical states associated
with a graph Γ according to

P : ψ �→
∏

� closed,
contractible loop in Γ

δe(u�) · ψ ∀ψ ∈ HΓ
kin, (6.1)

where u� = uλn · · ·uλ1 is the G-holonomy along the contractible loop � =
λn ◦ · · · ◦ λ1 and the product runs over all contractible loops in Γ. As
this expression involves a product of delta-distributions, it is a priori ill-
defined and requires a regularization. In the case G = SU(2), a regular-
ization scheme was proposed and lead to an explicit relation between the
Ponzano–Regge model and three-dimensional loop quantum gravity [49].
Given a suitable regularization of the projector P , one can construct the

1Although this map does not have the property P ◦ P = P associated with the notion
of a projector, we refer to it as “projector” in the following, since this is the prevalent
convention in the literature.
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physical Hilbert space Hphys as the image of the kinematical Hilbert space
Hkin under P up to zero norm vectors. Identifying these zero norm vectors
amounts to identifying gauge equivalent states or gauge fixing the symme-
tries which are generated by the curvature constraint F (x) = 0.

In practice, this gauge fixing procedure proceeds in two steps. The first
is to remove most of the redundant degrees of freedom encoded in the kine-
matical states HΓ

kin by contracting the underlying graph Γ along a maxi-
mal connected tree [49] (see [18] for a detailed discussion in the spin-foam
approach). This results in a graph, with only one vertex and with edges
that are loops based at that vertex, which we will refer to as “flower graph”
in the following. The second step is to remove the residual gauge degrees of
freedom associated with the flower graph by imposing the flatness condition
on each contractible loop and by imposing the mass and spin constraint for
each loop around a particle. For the details of this procedure we refer the
reader to [39, 40, 49], for a discussion in the context of spin-foam models
see also [18]. In the following we will focus on the general picture and its
relation to the combinatorial approach.

6.2 The physical Hilbert space in the combinatorial formalism

In the combinatorial formalism, the implementation of the constraint F = 0
is intimately related to the representations of the quantum double D(G) in
Section 5 and their remnants on the kinematical Hilbert space in Section 5.4.
To understand this point, we recall the formula (5.39) for the representation
of the quantum double associated with the loop �. Applying this formula to
the delta-distribution δCμ on the space of G-conjugacy classes Cμ, we find

Π�(δCμ ⊗ δe)ψ = δCμ(u�) · ψ. (6.2)

In the case G = SU(2) the conjugacy classes are labelled by an angle μ ∈
[0, 2π] and the unitary irreducible representations by a spin J = 1

2 , 1, . . ..
The delta-distribution can then be realized as the familiar sum over the
characters χJ as follows:

δCμ(u�) =
∑

J=
1
2 ,1,

3
2 ,...

χJ(u�)χJ(eμJ0). (6.3)

In the case G = SU(1, 1) the situation is more complicated due to its non-
compactness. However, we note that in both cases the restriction to the fixed
conjugacy class implemented by this delta-distribution projects on the space
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of eigenstates of the mass operator m2
� (5.40) with eigenvalue μ2, i.e., on the

subspace of kinematical states satisfying

Π(m2
� )ψ = μ2 · ψ. (6.4)

The projector (6.1) on the physical Hilbert space corresponds to projecting
on states for which the holonomy along � is trivial. It is therefore imple-
mented by the remnant of the quantum double representations on the kine-
matical Hilbert space

P : ψ �→
∏

� closed,
contractible loop in Γ

Π�(δC0 ⊗ δe) · ψ, (6.5)

where C0 = {e} is the conjugacy class containing the identity element. The
other kinematical operator associated with a closed loop in the graph is the
ribbon element which acts via (5.41) and corresponds to the product of mass
and spin (5.44). Imposing invariance under the action of these kinematical
operators amounts to requiring that the kinematical states are invariant
under the associated one-parameter group of transformations ρ�(u−t

� ) for all
contractible loops � in Γ or, equivalently, that the product of its mass and
spin vanishes

Π�(ct)ψ = ψ ◦ ρ�(u−t
� ) = ψ ∀t ∈ R ⇔ Π(m�s�)ψ = 0. (6.6)

The constraints associated with loops around particles are implemented
analogously, only that in this case the group elements are restricted to a
fixed conjugacy class with μ 
= 0, such that the projector implementing this
condition is given by

ψ �→ Π�(δCμ ⊗ δe) · ψ. (6.7)

Similarly, the states are no longer required to be invariant under the associ-
ated group action ρ� but to transform covariantly, i.e., to be eigenstates of
the operator m�s� with eigenvalue μs, where s is the spin of the particle

π�(ct)ψ = eitμs · ψ ⇔ Π(m�s�)ψ = μs · ψ. (6.8)

6.3 Gauge fixing via contracting a maximal tree and graph
contractions

After discussing the general formalism for the imposition of the constraints
in the loop and in the combinatorial formalism, we will now focus on the
two steps in its practical implementation, the gauge fixing procedure via
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Figure 11: Illustration of the contraction operation of a graph Γ to a graph
Γ′. The contraction reduces the number of vertices and edges of the graph
by one.

contractions of maximal trees and the imposition of the residual constraints
on the resulting flower algebra. In this subsection, we demonstrate that the
gauge fixing procedure via contraction of a maximal tree in the graph Γ is
intimately related to the graph operations in Fock and Rosly’s description
of the phase space [20] and their quantum counterparts.

We start by outlining the notion of graph contractions as defined in [20].
Given a graph Γ and an edge λ ∈ EΓ one can contract λ either towards its
starting point or endpoint. Contracting the edge λ towards the starting ver-
tex s(λ) amounts to performing a gauge transformation at its endpoint t(λ)
that sets the group element Hλ = (uλ,−Ad(uλ)jλ) equals to one, remov-
ing the edge λ and the cilium at t(λ) and inserting all edges incident at
t(λ) at the former starting point of λ as shown in figure 11. Contraction
towards the target vertex is defined analogously. The result is a graph Γ′
with |EΓ′ | = |EΓ| − 1 edges and |VΓ′ | = |VΓ| − 1 vertices.

From (3.25) it follows that this procedure introduces a map Φλ : IG|EΓ| →
IG|EΓ|−1 between the IG-valued holonomies associated to the edges of the
graphs Γ, Γ′. For the contraction towards the starting vertex of λ, it acts
on the IG-valued holonomies Hτ , τ ∈ Γ \ λ according to

Φλ : Hτ �→ H ′
τ =

⎧⎪⎨
⎪⎩
H−1

λ ·Hτ for τ ∈ T (t(λ)),
Hτ ·Hλ for τ ∈ S(t(λ)),
Hτ otherwise.

(6.9)

The corresponding map for contraction towards the starting vertex is
obtained by replacing t(λ) by s(λ) in (6.9) and by exchanging left multi-
plication by Hλ and right multiplication with H−1

λ .
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The map (6.9) commutes with the graph gauge transformations (3.25)
in the following sense: Consider the graph gauge transformation GΓ

h for Γ
defined by an element h = (h1, . . . , h|VΓ|) ∈ IG|VΓ|. Denote by h′ the element
of IG|VΓ|−1 obtained by omitting the entry ht(λ) for the target vertex of λ
and by GΓ′

h′ the associated graph gauge transformation for Γ′. Then

GΓ′
h′ ◦ Φλ = Φλ ◦GΓ

h. (6.10)

Moreover, it has been shown by Fock and Rosly [20] that the map (6.9) is a
Poisson map between the spaces of graph connections associated to Γ and
Γ′, i.e., that it maps the Poisson structure for the graph Γ to the one for Γ′

{f ◦ Φλ, g ◦ Φλ}Γ = {f, g}Γ′ ◦ Φλ ∀f, g ∈ C∞(IG)|EΓ|−1. (6.11)

Due to the close link between classical and quantum theory apparent in
(5.17), these results translate immediately into analogous statements for
operators acting on the cylindrical functions and the associated kinematical
Hilbert spaces.

We start by considering the cylindrical functions associated to the graphs
Γ and Γ′. Via its restriction φλ : G|EΓ| → G|EΓ|−1 to the G-components of
the holonomies, Φλ induces a map from the space of cylindrical functions
for Γ′ to the space of cylindrical functions for Γ which acts on cylindrical
states as follows:

ψΓ′ �→ ψΓ′ ◦ φλ. (6.12)
The fact that Φλ is a Poisson map then implies via (4.7) that the representa-
tions of the operators jτ , τ ∈ Γ and the operators jτ ′ , τ ′ ∈ Γ′ are compatible
in the following sense

(ΠΓ′(ja
τ ′)ψΓ′) ◦ φλ = ΠΓ(ja(H ′

τ ))(ψΓ′ ◦ φλ) ∀ψΓ′ ∈ C∞(G|EΓ|−1), (6.13)

where j(H ′
τ ) is the angular momentum vector of the holonomy H ′

τ given by
(6.9)

j(H ′
τ ) =

⎧⎪⎨
⎪⎩

jτ − Ad(u−1
τ uλ)jλ, τ ∈ T (t(λ)),

Ad(u−1
λ )jτ + jλ, τ ∈ S(t(λ)),

jτ otherwise.
(6.14)

Similarly, we have for the representation of functions associated with Γ,Γ′

(ΠΓ′(fΓ′)ψΓ′) ◦ φλ = ΠΓ(fΓ′ ◦ φλ)(ψΓ′ ◦ φλ) ∀ψΓ′ ∈ C∞(G|EΓ|−1)
(6.15)

Hence, contracting an edge towards a vertex induces an homomorphism
from the algebra of quantum operators acting on the cylindrical functions
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for Γ′ to the algebra of quantum operators acting on the cylindrical functions
for Γ.

We will now demonstrate that these graph contractions give rise to an
isomorphism of the kinematical Hilbert spaces HΓ

kin, H
Γ′
kin with the corre-

sponding inner products. For this, we note that (6.10) implies that the
map Φλ preserves invariance under graph gauge transformations and hence
induces a map

φkin
λ : HΓ′

kin → HΓ
kin, ψΓ′ �→ ψΓ′ ◦ φλ ∈ HΓ

kin. (6.16)

To show that this map is an isomorphism, we need to define its inverse. For
this we introduce a map Ξλ : IG|EΓ|−1 → IG|EΓ| which inserts the identity
element for the holonomy of the contracted edge λ

Ξλ : (H1, . . . , H|EΓ|−1) �→ (H1, . . . , 1, . . . , H|EΓ|−1), (6.17)

and denote by ξλ : G|EΓ|−1 → G|EΓ| the associated map acting on the
G-valued holonomies. To show that Ξλ commutes with graph gauge trans-
formations and satisfies a relation analogous to (6.10), we consider a general
graph gauge transformation for Γ′ given by an element h = (h1, . . . , h|VΓ| −
1) ∈ IG|VΓ|−1. We denote by hλ the entry associated to the vertex obtained
by contracting λ. We define the associated element h′ ∈ IG|VΓ| by inserting
the entry hλ for both the arguments s(λ) and t(λ). It then follows from
the definition (6.17) of Ξλ and (3.25) that the associated graph gauge trans-
formations GΓ′

h GΓ
h′ satisfy a relation analogous to (6.10) and thus preserve

graph gauge invariance

Ξλ ◦GΓ′
h = GΓ

h′ ◦ Ξλ. (6.18)

They therefore induce a map between the associated Hilbert spaces HΓ
kin,

HΓ′
kin

ξkin
λ : HΓ

kin → HΓ′
kin, ψΓ �→ ψΓ ◦ ξλ ∈ HΓ′

kin, (6.19)

and (6.9), (6.17) imply Φλ ◦ Ξλ = 1. This proves that the maps φkin
λ , ξkin

λ are
isomorphisms from Hkin

Γ′ to Hkin
Γ and vice versa. The condition (6.11) which

states that graph contractions are Poisson maps ensures that the action of
the kinematical observables associated with the edges of Γ, Γ′ on Hkin

Γ′ , Hkin
Γ

are obtained as the images of the corresponding actions on Hkin
Γ , Hkin

Γ′ .

Moreover, it follows directly from the definition of the maps (6.9), (6.17)
that these isomorphisms preserve the scalar product (4.2). Applying a graph



HILBERT SPACE OF 3D GRAVITY 1701

gauge transformation analogous to the one in (6.9) that sets the group ele-
ment uλ to one and using the left- and right invariance of the Haar measure
on G, one obtains after a redefinition of the integration variables

〈ψΓ′ ◦ φλ, χΓ′ ◦ φλ〉Γ =
∫

G|EΓ|
dμ(u1, . . . , u|EΓ|) ψΓ′ ◦ φλ(u1, . . . , u|EΓ|)

× χΓ′ ◦ φλ(u1, . . . , u|EΓ|)

= vol(G)
∫
|G|EΓ|−1

dμ(u1, . . . , ûλ, . . . , u|EΓ|)

× ψΓ′(u1, . . . , ûλ, . . . , u|EΓ|)χΓ′(u1, . . . , ûλ, . . . , u|EΓ|)
= vol(G) · 〈ψΓ′ , χΓ′〉Γ′ , (6.20)

where ûλ denotes omission of the argument associated to the edge λ. For
the case G = SU(2), this reflects the familiar invariance of the Ashtekar–
Lewandowski measure in the context of loop quantum gravity while the
expression diverges forG = SU(1, 1) ∼= SL(2,R) due to its non-compactness.
This demonstrates a need for regularization. Alternatively, the problem
could be addressed by eliminating this gauge symmetry via a gauge fixing
procedure in the classical theory following Dirac’s method and attempting
to quantize the resulting gauge fixed theory.

By selecting a maximal tree in the graph Γ and repeatedly applying the
contraction procedure to the edges of this tree, one obtains a flower graph
with a single vertex and edges that are loops as depicted in figure 12. Hence,
the familiar gauge fixing procedure in the loop formalism via contraction of
trees has a canonical interpretation in the combinatorial formalism based on
the description of the phase space of Fock and Rosly [20]. It arises as the
quantum counterpart of the edge contractions on the phase space of the the-
ory which act on the IG-holonomies of the edges. The G-component of these

Figure 12: A flower graph consisting of a single vertex and edges that are
loops attached to the vertex. Depending on the topology of the underlying
surface, each loop can be either contractible or non-contractible.
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graph contractions defines their action on the cylindrical functions and the
kinematical states associated with the graphs Γ, Γ′. Their translational part
relates the operators jτ , jτ ′ for edges τ ∈ Γ, τ ′ ∈ Γ′ and the corresponding
kinematical operators. The fact that edge contractions are Poisson maps [20]
ensures that the action of the operators jτ ′ , τ ′ ∈ Γ′ is obtained as the image
of the action of jτ , τ ∈ Γ and that the action of the kinematical operators
for the two graphs commutes with the graph contractions.

6.4 Residual gauge freedom and the construction of the physical
Hilbert space

After the contraction of a maximal tree, in both formalism the resulting
graph is a flower graph as depicted in figure 12. The residual graph gauge
transformations act by simultaneous conjugation of the G-holonomies asso-
ciated to all edges, and there are three classes of residual constraints:

1. A flatness constraint u� ≈ 1 for each contractible petal.
2. A particle constraint which restricts the petals around particles to a

fixed conjugacy classes determined by mass and spin of the particle.
3. An additional constraint uk ≈ 1 implementing the condition that the

curve k depicted in figure 13 is contractible.

Figure 13: The flower graph associated to a surface S of genus 2 punctured
with one particle. The loops, denoted A1, A2, B1, B2 and M , are in corre-
spondence with the generators of the fundamental group π1(S). The loop k
depicted on the right is defined algebraically in (6.21).

The first set of constraints is implemented by simply removing the con-
tractible petals from the flower graph. The edges of the resulting graph
then define a set of generators of the spatial surface’s fundamental group
π1(S) as illustrated in figure 13. For a surface S of genus g with n punc-
tures, this set of generators consists of loops Mi, i = 1, . . . , n, around each
puncture and two curves Aj , Bj , j = 1, . . . , g for each handle as shown in fig-
ure 13. It is subject to a single defining relation which amounts to imposing
that the curve k in figure 13 is contractible

k = Bg ◦A−1
g ◦B−1

g ◦Ag ◦ · · ·B1 ◦A−1
1 ◦B−1

1 ◦A1 ◦Mn ◦ · · · ◦M1 = 1.
(6.21)
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The associated cylindrical functions depend on the G-holonomies uM1 , . . . ,
uMn , uA1 , uB1 , . . . , uAg , uBg ∈ G along these generators. The kinemat-
ical states are functions of these G-holonomies which are invariant under
simultaneous conjugation with G

Hkin
π1

= {ψ ∈ C∞(Gn+2g) | ψ(huM1h
−1, . . . , huBgh

−1) = ψ(uM1 , . . . , uBg)}.
(6.22)

The Hamiltonian constraint reduces to the requirement that theG-holonomy
along the curve k in figure 13 vanishes and implements the defining relation
of the fundamental group π1(S). This implies that the projector on the
physical Hilbert space Hphys takes the form

P : ψ ∈ Hkin �→ δe([uBg , u
−1
Ag

] · · · [uB1 , u
−1
A1

]uMn · · ·uM1) · ψ. (6.23)

In the combinatorial formalism, the requirement of graph gauge invariance
(6.22) and the constraint implemented by the projector (6.23) are combined
into the requirement that the physical states transform trivially under the
representation of the quantum double D(G) associated with the curve � = k.
As shown in [11], see in particular Section 4.2. there, but also directly
apparent from the explicit expressions for the group action in Section 5.3,
this representation acts on the cylindrical functions according to

Πk(f ⊗ δh)ψ(uM1 , . . . , uBg)

= f([uBg , u
−1
Ag

] · · ·uM1) · Ψ(huM1h
−1, . . . , huBgh

−1) (6.24)

such that the combined action of the Hamiltonian constraint operator (6.23)
and the graph gauge transformations takes the form

Πk(δe ⊗ δh)ψ(uM1 , . . . , uBg)

= δe([uBg , u
−1
Ag

] · · ·uM1) · Ψ(huM1h
−1, . . . , huBgh

−1). (6.25)

The remaining gauge freedom is the one associated to the particle con-
straints, which are given by the action of the mass and spin operators of the
loops around each particle

Π(m2
i )ψ = μ2

i · ψ, Π(misi)ψ = μisi · ψ, i = 1, . . . , n. (6.26)

The canonical way of implementing these conditions (6.26) in the combi-
natorial formulation is discussed in [11]. It consists in parametrizing the
corresponding G-holonomies as

uMi = vMie
μiJ0v−1

Mi
, vMi ∈ G, i = 1, . . . , n (6.27)

and working with cylindrical functions that depend on the variables vMi

instead of uMi . The implementation of the spin constraints in (6.26) is then
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directly related to the representation theory of the quantum double summa-
rized in Appendix B. Denoting by Nμi the centralizer of the conjugacy class
Cμi as defined in (B.1) and by πsi its irreducible unitary representation intro-
duced labelled by si, one finds that the spin constraints (6.26) take the form

ψ(vM1 , . . . , vMini, . . . , uA1 , . . . , uBg)

= πsi(n
−1
i )ψ(vM1 , . . . , vMn , uA1 , . . . uBg) ∀ni ∈ Nμi . (6.28)

Moreover, it is shown in [11], that the representation Πk of the quantum
double which implements the residual constraints then takes the form

Πk(f ⊗ δh)ψ(vM1 , . . . , vMn , . . . , uAg , uBg)

= f(uk) · Ψ(hvM1 , . . . , hvMn , . . . , huBgh
−1). (6.29)

This expression for the action of the Hamiltonian constraint and the graph
gauge transformations establishes a direct link between the construction of
the physical Hilbert space of the theory and the representation theory of
the quantum double D(G). Using the formulas (B.3) and (B.4) for the irre-
ducible representations of the quantum double D(G) and the formula (B.5)
for the adjoint action of D(G) on itself, one can rewrite (6.29) as

Πk(f ⊗ δg)ψ = (Πμ1s1⊗· · ·⊗Πμnsn⊗ad⊗· · ·⊗ad)

× ((Δ⊗1⊗· · ·⊗1) ◦ · · · ◦ (Δ⊗1)) ψ, (6.30)

where Δ is the coproduct (5.9) of D(G) [11]. Hence, the implementation of
the constraints is intimately related to the construction of the tensor prod-
uct of certain irreducible and adjoint representations of the quantum double
D(G). This is a further manifestation of the role of the quantum double
D(G) as a quantum symmetry of the theory and its role in the construction
of the physical Hilbert space. Note also that it does not only involve the alge-
bra structure of the quantum double which encodes the underlying Poincaré
or Euclidean symmetry of the classical theory but also its coproduct, which
differs from the trivial coproduct of the universal enveloping algebras of the
three-dimensional Lorentz and Poincaré algebras. In this sense, the quan-
tum double D(G) appears naturally as a deformation of the IG-symmetry
in the classical theory.

The presence of quantum double symmetries in the quantum theory is not
only of conceptual importance but also provides concrete advantages in the
construction of the physical Hilbert space and the quantization of the theory.
Equation (6.30) reduces the implementation of the Hamiltonian constraint
and the construction of the physical scalar product to a mathematical prob-
lem from the representation theory of the quantum double D(G): It states
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that the implementation of the constraints amounts to the construction of
the invariant subspace in the tensor product of certain representations of
D(G).

For the case G = SU(2), the decomposition of a tensor product of two
irreducible representations of D(G) is given in [50]. While the general case
and the decomposition for the non-compact group G = SU(1, 1) present
considerable technical challenges, the link between the implementation of
the constraints and the quantum double D(G) makes the construction of
the physical Hilbert space amenable to techniques from the representation
theory of quantum groups. In particular, it provides a canonical set of phys-
ical states in the framework of representation theory, namely the characters
of the quantum double. For the case of Chern–Simons theory with gauge
group SL(2,C) which corresponds to Lorentzian and Euclidean 3d gravity
with, respectively, positive and negative cosmological constant, these states
have been constructed and investigated in [10]. For the case of vanishing
cosmological constant, these physical states are constructed in [51].

7 Outlook and conclusions

In this paper we clarified the relation between three-dimensional loop quan-
tum gravity and the combinatorial quantization formalism based on the
Chern–Simons formulation of the theory. We related the construction of the
kinematical and physical Hilbert space in the two approaches and established
an explicit relation between the associated quantum operators. Although
the (extended) Hilbert spaces in the two formulations are identical, the basic
operators acting on these spaces differ in the two approaches. While the
operators in the loop formalism are defined generically, the definition of the
operators in the combinatorial formalism requires an additional structure
associated with the graph. This additional structure is a ciliation, which
defines a linear ordering of the incident edges at each vertex and enters
already in the description of the classical theory [20].

This ciliation manifests itself also in the explicit relation between these
operators, which we derived in this paper, and in their physical interpreta-
tion: The operators in the loop formalism can be viewed as position vectors
for the edges with respect to a fixed reference frame. In contrast, the opera-
tors in the combinatorial formalism correspond to a relative position vector
of two edge ends with respect to a reference frame associated with its start-
ing vertex. Defining this relative position vector requires the choice of a
reference point at each edge or, equivalently, the choice of a ciliation. In the
case of edges which are loops, the corresponding combinatorial operator



1706 CATHERINE MEUSBURGER AND KARIM NOUI

gives rise to an internal angle variable and an external reference angle
associated with the loop. In this case, the ciliation is required to establish
the notion of “internal” and “external” and to define the corresponding
angles.

The second core result of our paper is our clarification of the role of quan-
tum group symmetries, more specifically the quantum doubles D(SU(2)),
D(SU(1, 1)), in the two formalisms. We showed that these symmetries
are present naturally also in the loop formalism: Each closed non-self-
intersecting loop in the graph gives rise to a representation of the quantum
double on the space of cylindrical functions. The explicit expressions for
these representations, which we derived in this paper, depend again on the
choice of a ciliation. This result demonstrates that quantum group symme-
tries are a generic feature of three-dimensional quantum gravity with van-
ishing cosmological constant which are also present in the loop formalism.
Moreover, we showed that they play an important role in the implementation
of the constraints and the construction of the physical Hilbert space. The
explicit determination of the physical states will be investigated in [51] for
the case where the spatial surface is a torus.

While our results clarify the relation between three-dimensional loop
quantum gravity and the combinatorial quantization formalism as well as
the role of quantum group symmetries in the theory, many other aspects
remain to be investigated. Specifically, it would be interesting to determine
how our results are related to the constraint implementation in [52] and to
the work [53, 54]. The former studies the implementation of constraint by
adding edges around each vertex as in the four-dimensional case. The latter
is also concerned with the relation between quantization approaches based
on the Chern–Simons formulation and quantization approaches based on the
BF formulation of three-dimensional gravity. However, it appears that the
basic variables investigated in this work are different and quantum group
symmetries are not apparent there.

It would be also instructive to investigate the relation between the combi-
natorial quantization formalism and other quantization approaches for three-
dimensional gravity with a non-vanishing cosmological constant. However,
we expect these cases to be more subtle. The direct relation between the
Hilbert space in the combinatorial formalism and cylindrical and spin net-
work functions based on the groups SU(2), SU(1, 1) for vanishing cosmo-
logical constant is a consequence of the semidirect product structure of the
associated symmetry groups. Generically, quantum states are constructed
from the irreducible representations of the associated quantum groups. For
non-vanishing cosmological constant, the relevant quantum groups are not
the quantum doubles of groups but the quantum doubles of q-deformed
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universal enveloping algebras whose Hopf algebra structure and representa-
tion theory are more involved.

In the loop formalism, the cosmological constant does a priori not affect
the construction of the kinematical Hilbert space and enters the formalism
only in the implementation of the Hamiltonian constraint. Hence, if quan-
tum group symmetries are present in the loop formalism for non-vanishing
cosmological constant, their emergence should be the result of the imple-
mentation of the Hamiltonian constraint. It would be very interesting to
understand if and how such quantum group symmetries arise. A prelimi-
nary study of this question is given in [55] and a more concrete one in [56],
but many issues remain to be clarified. It can therefore be anticipated
that the relation between combinatorial quantization, loop quantum grav-
ity and spinfoam models will be less direct for non-vanishing cosmological
constant.
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Appendix A Fock and Rosly’s Poisson structure in Chern–
Simons theory and three-dimensional gravity

In this appendix, we summarize Fock and Rosly’s description [20] of the
phase space of Chern–Simons theory and its application to three-dimensional
gravity with vanishing cosmological constant. We start by considering the
formalism for a general Chern–Simons theory with gauge group H and
denote by h the associated Lie algebra.

The two central ingredients in Fock and Rosly’s description of the phase
space are an oriented graph Γ with a cilium added at each vertex as explained
in Section 3.1 and a classical r-matrix for the group H which is compatible
with the Chern–Simons action. The latter is an element r ∈ h ⊗ h which
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satisfies the following two conditions:

1. It is a solution of the classical Yang Baxter equation

[[r, r]] ≡ [r12, r13] + [r12, r23] + [r13, r23] = 0,

r12 ≡ rαβξα ⊗ ξβ ⊗ 1, r13 := rαβξα ⊗ 1 ⊗ ξβ ,

r23 := rαβ1 ⊗ ξα ⊗ ξβ , (A.1)

where r = rαβ ξα ⊗ ξβ is the expression for r in a fixed basis
{ξα}α=1,...,dim h of the Lie algebra h = LieH.

2. Its symmetric part rs = 1
2(rαβ + rβα)ξα ⊗ ξβ is dual to the Ad-

invariant symmetric form 〈, 〉 in the Chern–Simons action or, in other
words, it is given by the associated Casimir operator of h.

It has been shown by Fock and Rosly that, together with a ciliated graph
Γ as in Section 3.1, such classical r-matrices define a Poisson structure on
the manifold H |EΓ|. The different copies of H correspond to the H-valued
holonomies obtained by integrating the gauge field along the edges of Γ, and
after imposition of the discretised flatness constraints, the Poisson structure
agrees with the canonical symplectic structure on the moduli space of flat
H-connections modulo gauge transformations.

Fock and Rosly’s Poisson structure is most easily expressed in terms of a
Poisson bivector

{F,G} = (dF ⊗ dG)(BFR) ∀F,G ∈ C∞(H), (A.2)

which takes the form

BFR =
∑
v∈VΓ

rαβ(v)

⎛
⎝1

2

∑
λ∈S(v)

ξR,λ
α ∧ ξR,λ

β + 1
2

∑
λ∈T (v)

ξL,λ
α ∧ ξL,λ

β

+
∑

λ∈S(v)

ξR,λ
α ∧

⎛
⎝ ∑

τ∈S+(s(λ))

ξR,τ
β +

∑
τ∈T+(s(λ))

ξL,τ
β

⎞
⎠

+
∑

λ∈T (v)

ξL,λ
α ∧

⎛
⎝ ∑

τ∈S+(t(λ))

ξR,τ
β +

∑
τ∈T+(t(λ))

ξL,τ
β

⎞
⎠
⎞
⎠ (A.3)

Here, rαβ(v) stands for components of the classical r-matrices assigned to
the vertices of the graph and satisfying the two conditions above2 . All

2As these conditions do not necessarily define the r-matrix uniquely, different r-matrices
can be assigned to different vertices as long as they satisfy these conditions.



HILBERT SPACE OF 3D GRAVITY 1709

notations referring to the graph Γ are defined as in Section 3.1, and ξL,λ
α ,

ξR,λ
β denote the right- and left-invariant vector fields associated to the basis

elements ξα ∈ h and the different copies of H. Their action on functions
F ∈ C∞(H |EΓ|) is given by

ξL,λ
α F (h1, . . . , h|EΓ|) =

d

dt
|t=0F (h1, . . . , e−tξα · hλ, . . . , h|EΓ|),

ξR,λ
α F (h1, . . . , h|EΓ|) =

d

dt
|t=0F (h1, . . . , hλ · etξα , . . . , h|EΓ|). (A.4)

We are now ready to discuss the application of Fock and Rosly’s descrip-
tion to three-dimensional gravity with vanishing cosmological constant. In
this case, we have H = IG, and the associated Lie algebras h are the three-
dimensional Euclidean and Poincaré algebra with generators {ξα} = {Ja,
Pa}a=0,1,2 and Lie bracket (2.6). It has been shown in [23, 40, 41] that
the relevant classical r-matrix for the Chern–Simons formulation of three-
dimensional gravity takes the form

r = Pa ⊗ Ja. (A.5)

To derive an expression for Fock and Rosly’s Poisson structure in terms of
functions f ∈ C∞(G|EΓ|) of the G-valued holonomies uλ and the vectors jλ

associated to the edges λ ∈ EΓ, one needs to determine the action of the
right- and left-invariant vector fields JR,λ

a , JL,λ
a , PR,λ

a , PL,λ
a on these vari-

ables. This has been done in [11,23,41], but can also be inferred directly from
their definition and the group multiplication law (2.5). With the notations
introduced above, one finds that their action on functions f ∈ C∞(G|EΓ|) is
given by

Ja
L,λf(u1, . . . , u|EΓ|) = La

λf(u1, . . . , u|EΓ|)

=
d

dt
|t=0f(u1, . . . , e−tJa · uλ, . . . , u|EΓ|), (A.6)

Ra
L,λf(u1, . . . , u|EΓ|) = Ra

λf(u1, . . . , u|EΓ|)

=
d

dt
|t=0f(u1, . . . , e−tJa · uλ, . . . , u|EΓ|), (A.7)

P a
L,λf(u1, . . . , u|EΓ|) = P a

R,λf(u1, . . . , u|EΓ|) = 0, (A.8)

and that their action on the variables variables ja
τ , τ ∈ EΓ, takes the form

Ja
L,λ j

b
τ = 0, Ja

R,λ j
b
τ = δλ,τ ε

ab
c j

c
λ, (A.9)

P a
L,λ j

b
τ = −δλ,τ η

ab, P a
R,λ j

b
τ = δλ,τ Ad(uλ)ab, (A.10)
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where δλ,τ = 1 if τ = λ and vanishes otherwise. By inserting the classical
r-matrix (A.5) and expressions (A.6)–(A.10) into the general formulae (A.2),
(A.3), one then obtains the Poisson brackets of the variables jλ, λ ∈ EΓ and
f ∈ C∞(G|EΓ|). As the vector fields P a

L,λ, P a
R,λ act trivially on functions

f ∈ C∞(G|EΓ|), the Poisson bracket of the latter vanishes

{f, g} = 0 ∀f, g ∈ C∞(G|EΓ|). (A.11)

A short calculation shows that the Poisson brackets of the variables ja
λ with

functions f ∈ C∞(G|EΓ|) are given by (3.14)

{ja
λ, f} = −Ra

λf −
∑

τ∈S+(s(λ))

Ra
τf −

∑
τ∈T+(s(λ))

La
τf

+ Ad(u−1
λ )a

b

⎛
⎝ ∑

τ∈S+(t(λ))

Rb
τf +

∑
τ∈T+(t(λ))

Lb
τf

⎞
⎠ . (A.12)

This implies that one can identify the variables ja
λ with certain vector fields

Xa
λ on G|EΓ| and that their Poisson brackets are given by the Lie brackets

of these vector fields via

{{ja
λ, j

b
τ}, f} = [Xa

λ, X
b
β ]f ∀f ∈ C∞(G|EΓ|). (A.13)

Appendix B The representation theory of the quantum
double D(G)

In this appendix, we give a brief summary of the representation theory of
the quantum double D(G). For a detailed treatment we refer the reader
to [42,50].

We start by recalling the observation that the quantum double D(G)
is a Drinfeld deformation of the group algebra C(IG) and that D(G) is
included into C(IG) as an algebra. This inclusion of C(IG) into D(G)
implies that the irreducible unitary representations of D(G) give rise to
representations to the three-dimensional Poincaré and Euclidean group IG.
The latter are labelled by two parameters (μ, s) where the μ is a real number
usually interpreted as a mass and s is an integer when G = SU(2) or a real
number when G = SU(1, 1) and stands for an internal angular momentum
or spin. the products μ2 and μs are, respectively, the eigenvalues of the
Casimir P 2 and P · J + J · P in the associated representations of the Lie
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algebras (2.6). Hence, the mass μ defines a G-conjugacy class Cμ and the
spin s an irreducible representation πs : Nμ → End(Vs) of its centraliser

Nμ = {n ∈ G | ngn−1 = g ∀g ∈ Cμ}. (B.1)

In the case where G = SU(2), conjugacy classes μ are angles in the interval
[0, 2π[. The centralizers Nμ are isomorphic to the group U(1) when μ > 0
and to G otherwise. Generically (when μ > 0), representations πs of the
centralizer are therefore labelled by an integer s.

The Hilbert spaces of the representations (μ, s) are

Vμs = {ψ : G→ Vs | ψ(vn) = πs(n−1)ψ(v), ∀n ∈ Nμ, ∀v ∈ G,

and ‖ψ‖2 :=
∫

G/Nμ

‖ψ(z)‖2
Vs
dm(zNμ) <∞}/ ∼, (B.2)

where ∼ denotes division by zero-norm states and dm is an invariant measure
on G/Nμ. The quantum double D(G) acts on these spaces according to

Πμs(F )ψ(v) =
∫

G
dμ(z)F (vgμv

−1, z)ψ(z−1v), (B.3)

where gμ is a fixed element of the conjugacy class Cμ and dμ(z) denotes
the Haar measure on G. For the singular elements f ⊗ δg this expression
simplifies to

Πμs(f ⊗ δg)ψ(v) = f(vgμv
−1)ψ(g−1v). (B.4)

Another representation which plays an important role in the quantization of
three-dimensional gravity is the adjoint representation obtained by letting
D(G) act on itself via the adjoint action

ad(F )φ(w1, w2) =
∫

G
dμ(z) F (w1w

−1
2 w−1

1 w2, z)φ(z−1w1z, z
−1w2z),

F, φ ∈ D(G), (B.5)

ad(f ⊗ δg)φ(w1, w2) = f(w1w
−1
2 w−1

1 w2)φ(g−1w1g, g
−1w2g). (B.6)

As an illustration, let us consider once again the example G = SU(2). In
that case, the vector space Vμs is simply {f ∈ F (G)|f(xh(θ)) = eisθf(x),
∀θ ∈ [0, 2π[, x ∈ G} where h(θ) is the diagonal representative of the conju-
gacy class θ. The Hilbert structure is given by the Haar measure of SU(2).
The action of D(SU(2)) can be deduced immediately from (B.3). Of par-
ticular relevance are the representations of the ribbon element (5.14) and
of the character χ in the fundamental representation of SU(2), which are
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diagonal and can be viewed as the “deformed” (or exponentiated) version
of the classical Casimir elements of the Euclidean algebra

Πμs(c)ψ(v) = e−iμs · ψ(v) and Πμs(χ⊗ 1)ψ(v) = 2 cosμ · ψ(v). (B.7)

References

[1] S. Carlip, Quantum gravity in 2+1 dimensions, Cambridge University
Press, Cambridge, 1998.

[2] A. Achucarro and P. K. Townsend, A Chern–Simons action for three-
dimensional anti-de Sitter supergravity theories, Phys. Lett. B180
(1986), 85–100.

[3] E. Witten, 2+1 dimensional gravity as an exactly soluble system, Nucl.
Phys. B311 46–78, Nucl. Phys. B339 (1988), 516–32.

[4] E. Witten, Quantum field theory and the Jones polynomial, Comm.
Math. Phys. 121 (1989), 351.

[5] V. G. Turaev and O. V. Viro, State sum invariants of 3 manifolds and
quantum 6j symbols, Topology 31 (1992), 865.

[6] A. Y. Alekseev, H. Grosse and V. Schomerus, Combinatorial quanti-
zation of the Hamiltonian Chern–Simons theory, Comm. Math. Phys.
172 (1995), 317–58.

[7] A. Y. Alekseev, H. Grosse and V. Schomerus, Combinatorial quantiza-
tion of the Hamiltonian Chern–Simons Theory II, Comm. Math. Phys.
174 (1995), 561–604.

[8] A. Y. Alekseev and V. Schomerus, Representation theory of Chern–
Simons observables, Duke Math. J. 85 (1996), 447–510.

[9] E. Buffenoir and P. Roche, Two dimensional lattice gauge theory based
on a quantum group, Comm. Math. Phys. 170 (1995), 669–698.

[10] E. Buffenoir, K. Noui and P. Roche, Hamiltonian quantization of
Chern–Simons theory with SL(2,C) group, Classical Quantum Grav-
ity 19 (2002), 4953–5016.

[11] C. Meusburger and B. J. Schroers, The quantisation of Poisson struc-
tures arising in Chern–Simons theory with gauge group G� g∗, Adv.
Theor. Math. Phys. 7 (2003), 1003–1042.

[12] J. Madore, An introduction to noncommutative differential geometry &
its applications, Cambridge University Press, Cambridge, 2000.

[13] M. R. Douglas and N. A. Nekrasov, Noncommutative field theory, Rev.
Mod. Phys. 73 (2001), 977–1029.

[14] M. Chaichian, P. P. Kulish, K. Nishijima and A. Tureanu, On a Lorentz-
invariant interpretation of noncommutative spacetime and its applica-
tions on noncommutative QFT, Phys. Lett. B604 (2004), 98–102.



HILBERT SPACE OF 3D GRAVITY 1713

[15] E. Joung and J. Mourad, QFT with twisted Poincaré invariance and
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