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Abstract

We construct a surprisingly large class of new Calabi–Yau 3-folds X
with small Picard numbers and propose a construction of their mirrors
X∗ using smoothings of toric hypersurfaces with conifold singularities.
These new examples are related to the previously known ones via conifold
transitions. Our results generalize the mirror construction for Calabi–
Yau complete intersections in Grassmannians and flag manifolds via toric
degenerations. There exist exactly 198849 reflexive four-polytopes whose
two-faces are only triangles or parallelograms of minimal volume. Every
such polytope gives rise to a family of Calabi–Yau hypersurfaces with
at worst conifold singularities. Using a criterion of Namikawa we found
30241 reflexive four-polytopes such that the corresponding Calabi–Yau
hypersurfaces are smoothable by a flat deformation. In particular, we
found 210 reflexive four-polytopes defining 68 topologically different
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Calabi–Yau 3-folds with h11 = 1. We explain the mirror construction
and compute several new Picard–Fuchs operators for the respective one-
parameter families of mirror Calabi–Yau 3-folds.

1 Introduction

Toric geometry provides simple and efficient combinatorial tools [1] for the
construction of large classes of Calabi–Yau manifolds from generic hyper-
surfaces [2] and complete intersections [3,4] in toric varieties. An important
additional benefit of this construction is its invariance under mirror sym-
metry. In particular, it enables the computation of quantum cohomology
and instanton numbers using generalized hypergeometric functions [5, 6].
Calabi–Yau 3-folds obtained from hypersurfaces in four-dimensional (4D)
toric varieties have been enumerated completely [7, 8]. Some large lists of
Calabi–Yau 3-folds obtained from complete intersections have been compiled
and analyzed in [9,10]. Their fibration structures [8,11] and torsion in coho-
mology [12] are of particular interest for applications to string theory [10,13].
Thus, toric constructions provide by far the largest number of known exam-
ples, but they are, nevertheless, quite special in the zoo of all Calabi–Yau
3-folds about which little is known. Even finiteness of topological types of
Calabi–Yau 3-folds remains still an open question.

According to M. Reid [14] it is expected that an appropriate partial com-
pactification of the moduli space of all Calabi–Yau 3-folds, which allows
Calabi–Yau varieties with mild singularities, will be connected. Using this
idea, we can try to get new examples of Calabi–Yau 3-folds by studying
singular limits of Calabi–Yau 3-folds obtained by toric methods.

In the present work, we focus on Calabi–Yau 3-folds ̂Xf obtained from
generic hypersurfaces Xf in 4D Gorenstein toric Fano varieties PΔ corre-
sponding to 4D reflexive polytopes Δ because the complete list of these
polytopes is known [7, 8]. We classify all hypersurfaces Xf with at most
conifold singularities coming from the singularities of the ambient Goren-
stein toric Fano variety PΔ. Standard toric methods allow us to resolve
the conifold singularities of Xf by a toric resolution of PΔ and to obtain a
smooth Calabi–Yau 3-fold ̂Xf . However, in this paper we are interested in
smoothing Xf to a Calabi–Yau 3-fold Y by a flat deformation. Thus the
two Calabi–Yau 3-folds ̂Xf and Y are connected by a so-called conifold tran-
sition. Moreover, a similar conifold transition exists for the mirrors ( ̂Xf )∗
and Y ∗.
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The above approach was motivated by the previous work [15, 16], which
shows that all Grassmannians and Flag manifolds allow flat degenerations
to Gorenstein toric Fano varieties PΔ having at worst conifold singularities
in codimension 3. Therefore, smooth 3D Calabi–Yau complete intersections
Y in Grassmannians and Flag manifolds can be regarded as smoothings of
generic Calabi–Yau complete intersections X in the corresponding Goren-
stein toric Fano variety PΔ. It was observed in [15, 16] that the mirrors Y ∗
of Y are obtained by specializations of the complex structure of the mirrors
̂X∗ coming from the already known toric construction.

In Section 2, we explain the construction and present our results by
describing the lists of polytopes and Hodge data whose details are avail-
able on the internet. In Section 3, we discuss the conifold transition in
the mirror family (which is related to the transitions studied in [17]). This
enables the construction of non-toric mirror pairs and the computation of
quantum cohomologies. In Section 4, we focus on one-parameter models
for which we compute the topological data and also initiate the study of
the mirror map by direct evaluation of the principal period, which allows
us to find a number of new Picard–Fuchs operators. We conclude with a
discussion of open problems, generalizations, and work to be done.

2 Reflexive polytopes and conifold transitions

Let M ∼= Z
4 and N = Hom(M, Z) be a dual pair of lattices of rank 4 together

with the canonical pairing 〈∗, ∗〉 : N × M → Z and let MR = M ⊗ R, NR =
N ⊗ R be their real extensions. It is known [2] that the generic families of
Calabi–Yau hypersurfaces Xf in 4D Gorenstein toric Fano varieties PΔ and
their mirrors Xg ⊂ PΔ◦ are in one-to-one correspondence to the polar pairs
Δ ⊂ MR, Δ◦ ⊂ NR of reflexive four-polytopes. By definition reflexivity of
Δ and Δ◦ means that

Δ◦ = {y ∈ NR : 〈y, x〉 ≥ −1 ∀x ∈ Δ} (2.1)

and that both Δ and Δ◦ are lattice polytopes, i.e., all vertices of Δ (resp.
Δ◦) are elements of M (resp. N).

The hypersurfaces Xf ⊂ PΔ and Xg ⊂ PΔ◦ are the closures of the affine
hypersurfaces Xf and Xg defined by generic Laurent polynomials

f :=
∑

m∈Δ∩M

amtm and g :=
∑

n∈Δ◦∩N

bntn. (2.2)
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Denote by Σ (resp. by Σ◦) the fan of cones over simplices in ∂Δ (resp. in
∂Δ◦) in a maximal coherent triangulation of Δ (resp. Δ◦) [18]. Then the
projective toric variety PΣ◦ is a maximal partial projective crepant (MPPC)
desingularization of PΔ. Similarly, PΣ is a MPPC desingularization of PΔ◦ .
Denote by ̂Xf ⊂ PΣ◦ and ̂Xg ⊂ PΣ the closures of Xf and Xg in PΣ◦ and
PΣ, respectively. Then ̂Xf and ̂Xg are smooth Calabi–Yau 3-folds [2] and
for the Hodge numbers h1,1 and h2,1 one has

h1,1( ̂Xf ) = h2,1( ̂Xg) = l(Δ◦) − 5 −
∑

codim(θ◦)=1

l∗(θ◦) +
∑

codim(θ◦)=2

l∗(θ◦)l∗(θ),

(2.3)

h1,1( ̂Xg) = h2,1( ̂Xf ) = l(Δ) − 5 −
∑

codim(θ)=1

l∗(θ) +
∑

codim(θ)=2

l∗(θ)l∗(θ◦),

(2.4)

where l(Δ) denotes the number of lattice points of Δ and l∗(θ) denotes
the number of lattice points in the relative interior of θ. The faces θ ⊂ Δ
and θ◦ ⊂ Δ◦ denote polar sets of points satisfying the inequality in equa-
tion (2.1), so that dim(θ) + dim(θ◦) = 3.

The smoothness of generic hypersurfaces ̂Xf and ̂Xg follows from the fact
that the singularities of the MPPC resolutions PΣ◦ and PΣ have codimen-
tion at least 4, i.e., singular points in the 4D ambient spaces PΣ◦ and PΣ

can generically be avoided by the hypersurface equations f = 0 and g = 0.
For special values of the coefficients {am} and {bn} in equation (2.2) the
corresponding Calabi–Yau varieties ̂Xf and ̂Xg may of course be singular.

From now on we want to restrict the types of singularities of Xf ⊂ PΔ

under consideration and demand that all 2D faces θ◦ of the dual polytope
Δ◦ are either unimodular triangles (i.e., spanned by a subset of a lattice
basis) or parallelograms of minimal volume, whose two triangulations hence
are unimodular. This implies that all nonisolated singularities of PΔ are
one-parameter families of toric conifold singularities defined by an equa-
tion u1u2 − u3u4 = 0. These families Tθ of singularities are in one-to-one
correspondence to 1D faces θ ⊂ Δ such that the dual face θ◦ ⊂ Δ◦ is a
parallelogram.

The morphism PΣ◦ → PΔ induces a small crepant resolution ̂Xf → Xf ,
which replaces every conifold point in Xf by a copy of P

1. We remark
that every one-parameter family Tθ ⊂ PΔ (the 2D dual face θ◦ ⊂ Δ◦ is a
parallelogram) of toric conifold singularities has exactly l(θ) − 1 distinct
intersection points with the generic hypersurface Xf ⊂ PΔ. In order to
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analyse the possibility of smoothing Xf by a flat deformation we apply the
following criterion of Namikawa (we formulate it in a simplified version):

Theorem 2.1 (see [19]). Let X be a Calabi–Yau 3-fold with k-isolated
conifold singularities

{p1, . . . , pk} = Sing X

and f : Z → X be a small resolution of these singularities such that Ci :=
f−1(pi) ∼= P

1 and f an isomorphism over X \ {p1, . . . , pk}. Then X can be
deformed to a smooth Calabi–Yau 3-folds if and only if the homology classes
[Ci] ∈ H2(Z, C) satisfy a linear relation

k
∑

i=1

αi[Ci] = 0,

where αi 
= 0 for all i. It is easy to see that the last condition is equivalent
to the fact that the subspace in H2(Z, C) generated by the homology classes
[C1], . . . , [Ck] coincides with the subspace generated by {[C1], . . . , [Ck]} \ {[Ci]}
for all i = 1, . . . , k.

In our situation, we can choose Z to be ̂Xf . Let P (Δ) be the set of all
1D faces θ of Δ such that the dual two-face θ◦ is a parallelogram of minimal
volume. We set kθ = l(θ) − 1. Then a generic Calabi–Yau hypersurface
Xf ⊂ PΔ contains exactly

k =
∑

θ∈P (Δ)

kθ

conifold points. Let {v1, . . . , vl} be the set of all vertices of the dual poly-
tope Δ◦. Then it can be shown that the homology group H2( ̂Xf , Q) can
be identified with the subgroup RΔ◦ ⊂ Q

l consisting of rational vectors
(λ1, . . . , λl) ∈ Q

l such that
l

∑

i=1

λivi = 0.

In order to determine the homology class [Ci] ∈ H2( ̂Xf , Q) we first remark
that locally for each conifold point pi ∈ Xf , there exist exactly two different
small resolutions fi and f ′

i of pi. The corresponding homology classes of
exceptional curves differ by their signs [f−1

i (pi)] = −[(f ′
i)

−1(pi)]. The next
step is to see that for any θ ∈ P (Δ) all kθ conifold points in the intersection
Tθ ∩ Xf define (up to signs) the same homology class in RΔ◦ ∼= H2( ̂Xf , Q)
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coming from the linear relation

ρθ : vi + vj − vs − vr = 0,

where vi, vj , vs and vr are vertices of the parallelogram θ◦ and [vi, vj ], [vs, vr]
are the two diagonals of θ◦. Therefore, the homology classes [C1], . . . , [Ck] ∈
H2( ̂Xf , Q) coincide (up to signs) with the elements ρθ for θ ∈ P (Δ). Each
element ±ρθ appears kθ = l(θ) − 1 times in the sequence [C1], . . . , [Ck]. Thus,
the smoothing criterion of Namikawa can be formulated for Xf as follows:

Smoothing criterion. Under the above assumption on Δ◦, a generic Calabi–
Yau hypersurface Xf ⊂ PΔ is smoothable to a Calabi–Yau 3-folds Y by a
flat deformation if and only if for any 1D face θ ∈ P (Δ) such that kθ = 1
the element ρθ is a linear combination of the remaining elements ρθ′ with
θ′ ∈ P (Δ), θ′ 
= θ.

Using the classification of 4D reflexive polytopes, one can show that there
exist exactly 198849 reflexive polytopes Δ such that all 2D faces of the
dual polytope Δ◦ are either basic triangles, or parallelograms of minimal
volume. Let p := |P (Δ)| and l be the number of vertices of Δ◦. We define
the matrix Λ(Δ) of size p × l whose rows are coefficients of the linear relation
ρθ (θ ∈ P (Δ)). Then a generic Calabi–Yau hypersurface Xf is smoothable
by a flat deformation if and only if for all θ ∈ P (Δ) such that kθ = 1 the
removing of the corresponding row Λθ(Δ) from Λ(Δ) does not reduce the
rank of the matrix. This smoothing condition reduces the number of relevant
polytopes from 198849 to 30241 as detailed according to Picard numbers h1,1

in table 1.

The Hodge numbers of the smoothed Calabi–Yau 3-folds Y can be com-
puted by the well-known formula (see e.g. [20])

h1,1(Y ) = h1,1( ̂Xf ) − rk, h1,2(Y ) = h1,2( ̂Xf ) + dp− rk, (2.5)

where rk is the rank of the matrix Λ(Δ) of linear relations and dp = k =
∑

θ∈P (Δ) kθ denotes the number of double points in Xf . For the smoothable
cases they are listed in table 2 and displayed as circles over the background of

Table 1: Numbers of polytopes for conifold Calabi–Yau spaces with Picard
number h1,1.

Picard number 1 2 3 4 5 6 7 8 9 10 11 12 15

Polytopes 8871 43080 74570 50863 17090 3540 646 124 41 17 2 4 1
Smoothable 210 3470 11389 10264 3898 815 140 35 9 8 1 1 1
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Table 2: Hodge data (h1,1, h2,1) for the 30241 smoothed conifold Calabi–Yau
spaces.

h1,1 No.(Δ) h2,1

1 210 25,28–41,45,47,51,53,55,59,61,65,73,76,79,89,101,103,129
2 3470 26,28–60,62–68,70,72,74,76,77,78,80,82–84,86,88,90,96,100,

102,112,116,128
3 11389 25,27–73,75–79,81,83,85,87,89,91,93,95,99,101,103,

105,107,111,115
4 10264 24,28,30–76,78–82,84,86,88–98,100,102,104,106,112
5 3898 27,29,30–83,85–93,97
6 815 28,30–32,34–56,58–70,72–76,80,82
7 140 27,29–31,33–35,37–41,43,45,47,49–51,53,55,57,59,61,62,64,76
8 35 30,32–34,36,38,40,42,44,52
9 9 31,33,37
10 8 26,30,34,36
11 1 27
12 1 28
15 1 23

h11

h21

Figure 1: Smoothed conifolds (circles) and toric hypersurfaces (dots) with
h1,1 ≤ 16, h2,1 ≤ 130.

toric hypersurface data in figure 1. The complete data, which was computed
using the software package PALP [21], is available on the internet [22].

The enumeration of the polytopes Δ and of the Hodge data is, of course,
only the first step and further work is required to compute the additional
data like intersection form, Chern classes and quantum cohomology of Y .
This program will be initiated for the 210 examples of Y with Picard number
1 in Section 4.

3 Mirror families

Let us discuss the explicit construction of mirrors of Calabi–Yau 3-folds Y

from the previous section. As we have seen Y is obtained from ̂Xf by a
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conifold transition. It turns out that the mirror family Y ∗ of Y is also
obtained by a conifold transition from the mirrors ̂Xg = ( ̂Xf )∗.

For this we have to specialize the generic family of Laurent polynomials

g =
∑

n∈Δ◦∩N

bntn,

to a special one by imposing additional conditions on the coefficients bn: for
every θ ∈ P (Δ) we demand

bvibvj = bvrbvs , (3.6)

where vi, vj , vr and vs are vertices of the parallelogram θ◦ satisfying the
equation

vi + vj = vs + vr.

We denote the specialized Laurent polynomial by g̃.

Our main observation is that the hypersurfaces ̂Xg̃ from the specialized
family should have the same number k =

∑

θ∈P (Δ) kθ of conifold singulari-

ties so that we could consider ̂Xg̃ as a flat conifold degeneration of smooth
Calabi–Yau 3-folds ̂Xg.

Let us explain this observation in more detail. For any θ ∈ P (Δ), we can
choose a basis e1, . . . , e4 of the lattice M and the dual basis e◦1, . . . , e◦4 of the
dual lattice N in such a way that −e3 and −e3 − kθe4 are vertices of the 1D
face θ ⊂ Δ and

e◦3, e◦3 + e◦1, e◦3 + e◦2, e◦3 + e◦2 + e◦1

are vertices of the dual (parallelogram) face θ◦ ⊂ Δ◦. We put wj := −e3 −
je4 ∈ θ ∩ M (0 ≤ j ≤ kθ). Then

θ ∩ M = {w0, . . . , wkθ
}.

Every pair of lattice points wj , wj−1 (1 ≤ j ≤ kθ) generates a 2D cone σj

in the fan Σ. Since e1, e2, wj , wj−1 is a Z-basis of M the cone σj defines
an affine open torus invariant subset Uσj ⊂ PΣ such that Uσj

∼= (C∗)2 × C
2.

Denote w
(j)
3 := (j − 1)e◦3 − e◦4 and w

(j)
4 := −je◦3 + e◦4. Then e◦1, e◦2, w

(j)
3 , w

(j)
4

is a Z-basis of N dual to e1, e2, wj , wj−1. We use this basis in order to define
the local coordinates t1, t2, t

(j)
3 , t

(j)
4 on Uσj . Then the equation of ̂Xg̃ in Uσj
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can be written as follows:

g̃j(t) = b + bt1 + bt2 + bt1t2 + t
(j)
3 t

(j)
4

∑

n∈Aj

bntn ∈ C[t±1
1 , t±1

2 , t
(j)
3 , t

(j)
4 ],

where Aj ⊂ N is a finite number of lattice points n = (n1, n2, n3, n4) ∈ N
satisfying the conditions n3 ≥ 0, n4 ≥ 0. Therefore, the polynomial

g̃j(t) = b(1 + t1)(1 + t2) + b0t
(j)
3 t

(j)
4 + t

(j)
3 t

(j)
4

∑

n∈Aj\{0}
bntn

has a conifold singularity at the point qj = (−1,−1, 0, 0) ∈ Uσj (1 ≤ j ≤ kθ).
By repeating this computation for every 1D face θ ∈ P (Δ), we obtain k =
∑

θ∈P (Δ) kθ conifold points in ̂Xg̃.

Remark. Unfortunately, these above arguments do not show that we have
found all singular points of ̂Xg̃. We hope that this is true in many cases.

Now we are going to obtain the mirrors Y ∗ using small resolutions of
singularities of ̂Xg̃. By a result of Smith et al. [23, Theorem 2.9], in order that
̂Xg̃ admits a projective small resolution, the homology classes [L1], . . . , [Lk] ∈
H3( ̂Xg, Z) of the vanishing cycles Li

∼= S3 must satisfy a linear relation

k
∑

i=1

ci[Li] = 0, ci 
= 0 ∀i.

This condition can be considered as “mirror” to the criterion of Namikawa.

In the case when h1,1(Y ) = 1 the specialization equations (3.6) show that
we can put b0 = 1 and bn = −z ∀n 
= 0, so that we obtain a one-parameter
family of Laurent polynomials g̃ depending only on z.

4 One-parameter manifolds

We now focus on the list of the 210 polytopes that lead to one-parameter
families with smoothable conifold singularities. According to a theorem by
Wall [24] the diffeomorphism type of a Calabi–Yau is completely character-
ized by its Hodge numbers, intersection ring and second Chern class. For
Calabi–Yau 3-folds with the Picard number one the latter two amount to
the triple intersection number H3 and the number Hc2. The resulting 68
different topological types are listed in table 3.



888 VICTOR BATYREV AND MAXIMILIAN KREUZER

Table 3: Topological data with multiplicities NΔ of polytopes and N�0 of
principal periods. The last column, denoted PF , refers to the Picard–Fuchs
operator, either by equation number (in parentheses) or (in boldface) by the
reference number in the tables of [27].

No. h12 H3 c2H c3 NΔ N�0 No. h12 H3 c2H c3 NΔ N�0 PF

1 25 79 94 −48 1 1 35 36 92 104 −70 5 3
2 28 99 102 −54 1 1 36 36 107 110 −70 16 5
3 28 104 104 −54 2 1 37 37 117 114 −72 12 1 (4.16)
4 29 74 92 −56 2 2 38 38 102 108 −74 2 1
5 29 88 100 −56 1 1 39 39 96 108 −76 2 1
6 29 93 102 −56 4 3 40 39 152 116 −76 1 1 (4.15)
7 29 98 104 −56 1 1 41 40 91 106 −78 2 1
8 30 98 104 −58 5 4 42 41 86 104 −80 2 1
9 30 103 106 −58 2 2 43 41 116 116 −80 13 1 (4.14)
10 30 108 108 −58 4 2 44 45 144 120 −88 2 2 (4.17) ,214
11 31 78 96 −60 1 1 45 47 144 120 −92 2 1 289
12 31 83 98 −60 2 2 46 47 176 128 −92 3 1 (4.13)
13 31 98 104 −60 6 4 47 51 168 132 −100 1 1 218
14 31 103 106 −60 3 1 48 51 200 140 −100 3 2 (4.19) , (4.20)
15 31 108 108 −60 1 1 49 53 168 132 −104 2 1 287
16 31 118 112 −60 5 2 50 53 232 148 −104 4 1 (4.12)
17 31 124 112 −60 2 1 51 55 136 124 −108 1 1 209
18 32 83 98 −62 2 2 52 59 24 72 −116 2 1 29
19 32 98 104 −62 3 1 53 59 28 76 −116 3 1 26
20 32 108 108 −62 4 3 54 59 32 80 −116 4 1 42
21 32 113 110 −62 1 1 55 61 20 68 −120 1 1 25
22 32 118 112 −62 4 3 56 61 36 84 −120 4 1 185
23 33 78 96 −64 1 1 57 65 16 64 −128 1 1 3
24 33 97 106 −64 1 1 58 65 44 92 −128 1 1 (4.11)
25 33 108 108 −64 4 1 59 73 9 54 −144 1 1 4
26 34 97 106 −66 3 3 60 73 12 60 −144 2 1 5
27 34 102 108 −66 6 3 61 73 32 80 −144 1 1 10
28 34 123 114 −66 1 1 62 76 15 66 −150 2 1 24
29 35 87 102 −68 1 1 63 79 48 96 −156 1 1 11
30 35 92 104 −68 7 5 64 79 432 192 −156 1 1 12
31 35 97 106 −68 5 3 65 89 8 56 −176 2 1 6
32 35 102 108 −68 8 4 66 101 80 128 −200 1 1 51
33 35 112 112 −68 13 3 67 103 648 252 −204 1 1 8
34 36 82 100 −70 1 1 68 129 108 156 −256 1 1 14
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The entries in table 3 have been computed combinatorially with the for-
mulas

H3 = Vol(Δ)/(Ind)3, c2 · H = (12 |∂Δ ∩ M | )/Ind, (4.7)

where Vol denotes the lattice volume, |∂Δ ∩ M | is the number of boundary
lattice points of Δ and Ind is the index of the affine sublattice of M that is
generated by the vertices of Δ. There is one exception to this rule, namely
the convex hull of the Newton polytope of1

g = t1 + t1t
2
2 + t1t

2
2t

4
3 + t1t

2
2t

4
4 + t−3

1 t−2
2 t−4

3 + t−3
1 t−2

2 t−4
4 + t−3

1 t−2
2 , (4.8)

which is one of the two polytopes that lead to the entry no. 65 with h12 = 89
in the table. For this variety the divisor H has multiplicity two so that
effectively Ind has to be doubled in equation (4.7).

A glance at figure 1 shows that we constructed a surprisingly rich new
set as compared to toric hypersurfaces, and also when compared to other
know constructions of one-parameter examples [10,15,16,25]. Observe that
in all instances in table 3 with given Hodge numbers each of the intersection
numbers H3 and c2 ·H uniquely determines the other.

Denote by Vert(Δ◦) the set of vertices of the polytope Δ◦. For the com-
putation of the quantum cohomology we start with the computation of the
principal period

�0(z) =
∮

dt1
t1

dt2
t2

dt3
t3

dt4
t4

(

1 − z
∑

v∈V ert(Δ◦)

tv

)−1

, (4.9)

where all coefficients of the relevant non-constant monomials can be set
to bj = −z because mirror symmetry amounts to the restriction bj1bj2 =
bj3bj4 if the corresponding vertices form a parallelogram with vj1 + vj2 =
vj3 + vj4 and h2,1( ̂Xg) − rk = 1 implies that rescalings of the homogeneous
coordinates can be used to identify the corresponding coefficients with the
complex structure modulus −z. The function �0(z) is the unique regular
power series solution in the kernel of the Picard–Fuchs operator

O = θ4 +
d

∑

n=1

zn
4

∑

i=0

cniθ
i, θ = z

d

dz
. (4.10)

This operator can then be used to compute the periods with logarithmic
singularities and the instanton numbers via the mirror map as explained,

1This is one of the five polytopes for which a facet of Δ has an interior point.
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for example, in [6]. Our method for the computation of O is direct evaluation
of the period by expansion of the last term in equation (4.9) in z up to (at
least) degree 5d and determination of the coefficients cni from O (�0) = 0
for the ansatz equation (4.10).

We have computed all Picard–Fuchs operators for the manifolds with
h12 ≥ 45, which are the cases No. 44–No. 68 in table 3. They have been
determined independently by Duco van Straten [26] and Gert Almkvist et
al. [27]. Most of these operators were known before [27]. Here, we only list
three examples that are needed, in addition to equations (4.17), (4.19) and
(4.20) below, as references in table 3:

No. 58 X65
44,92

θ4 − 4 z θ(θ + 1)(2θ + 1)2 − 32 z2 (2θ + 1)(2θ + 3)(11θ2 + 22θ + 12)

− 1200 z3 (2θ + 1)(2θ + 3)2(2θ + 5)

− 4864 z4 (2θ + 1)(2θ + 3)(2θ + 5)(2θ + 7) (4.11)

No. 50: X53
232,148

θ4 − 2
29

z (1318θ4 + 2336θ3 + 1806θ2 + 638θ + 87)

− 4
841

z2 (90996θ4 + 744384θ3 + 1267526θ2 + 791584θ + 168345)

+
100
841

z3 (34172θ4 + 77256θ3 − 46701θ2 − 110403θ − 36540)

+
10000
841

z4 (2θ + 1)(68θ3 + 1842θ2 + 2899θ + 1215)

− 5000000
841

z5 (θ + 1)2(2θ + 1)(2θ + 3). (4.12)

No. 46: X47
176,128

θ4 − 4
11

z (432θ4 + 624θ3 + 477θ2 + 165θ + 22)

+
32
121

z2 (12944θ4 + 4736θ3 − 15491θ2 − 12914θ − 2860)
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− 80
121

z3 (10688θ4 − 114048θ3 − 159132θ2 − 83028θ − 15455)

− 51200
121

z4 (2θ + 1)(4θ + 3)(76θ2 + 189θ + 125)

+
2048000

121
z5 (2θ + 1)(2θ + 3)(4θ + 3)(4θ + 5). (4.13)

The calculations become quite expensive when the number of vertices of
Δ◦ becomes large, as is mostly the case for manifolds with small h12. Nev-
ertheless we could determine, so far, the operators for three more examples:

No: 43: X41
116,116:

θ4 +
2
29

z θ(24θ3 − 198θ2 − 128θ − 29)

− 4
841

z2 (44284θ4 + 172954θ3 + 248589θ2 + 172057θ + 47096)

− 4
841

z3 (525708θ4 + 2414772θ3 + 4447643θ2 + 3839049θ + 1275594)

− 8
841

z4 (1415624θ4 + 7911004θ3 + 17395449θ2 + 17396359θ + 6496262)

− 16
841

z5 (θ + 1)(2152040θ3 + 12186636θ2 + 24179373θ + 16560506)

− 32
841

z6 (θ + 1)(θ + 2)(1912256θ2 + 9108540θ + 11349571)

− 10496
841

z7 (θ + 1)(θ + 2)(θ + 3)(5671θ + 16301)

− 24529152
841

z8 (θ + 1)(θ + 2)(θ + 3)(θ + 4). (4.14)

No: 40: X39
152,116:

θ4 − 1
19

z (4333θ4 + 6212θ3 + 4778θ2 + 1672θ + 228)

+
1

361
z2 (4307495θ4 + 7600484θ3 + 6216406θ2 + 2802424θ + 530556)

− 1
361

z3 (93729369θ4 + 213316800θ3 + 236037196θ2

+ 125748612θ + 25260804)
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+
4

361
z4 (240813800θ4 + 778529200θ3 + 1041447759θ2

+ 631802809θ + 138510993)

− 1636
361

z5 (θ + 1)(2851324θ3 + 10035516θ2 + 11221241θ + 3481470)

+ 6022116 z6 (θ + 1)(θ + 2)(2θ + 1)(2θ + 5). (4.15)

No: 37: X37
117,114:

θ4 − 1
13

z θ(56θ3 + 178θ2 + 115θ + 26)

− 1
169

z2 (28466θ4 + 109442θ3 + 165603θ2 + 117338θ + 32448)

− 1
169

z3 (233114θ4 + 1257906θ3 + 2622815θ2 + 2467842θ + 872352)

− 1
169

z4 (989585θ4 + 6852298θ3 + 17737939θ2 + 19969754θ + 8108448)

− 1
169

z5 (θ + 1)(2458967θ3 + 18007287θ2 + 44047582θ + 35386584)

− 9
169

z6 (θ + 1)(θ + 2)(393163θ2 + 2539029θ + 4164444)

− 297
169

z7 (θ + 1)(θ + 2)(θ + 3)(8683θ + 34604)

− 55539
13

z8 (θ + 1)(θ + 2)(θ + 3)(θ + 4). (4.16)

The largest degree of a coefficient that we computed so far is degree 65,
which we did for the conifolds Nos 17 and 28, so that in these cases the
Picard–Fuchs operators would have at least degree 14. Further results will
be put on our data supplement web page at [22] as they become available.

4.1 Fractional transformations and instanton numbers

Even though we do not yet know the Picard–Fuchs operators in many cases
it can be seen already from the first terms in the power series expansion
of the principal period, which polytopes will yield identical operators. In
addition to the degeneracy of up to 13 different polytopes yielding the same
Picard–Fuchs operator, we thus observe that the same diffeomorphism type
can yield up to five different Picard–Fuchs operators, as indicated in table 3.
Among the operators that we know this phenomenon occurs twice:
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For no. 44: X45
144,120 we find

θ4 − 2 z (102θ4 + 204θ3 + 155θ2 + 53θ + 7)

+ 4 z2 (θ + 1)2(396θ2 + 792θ + 311)

− 784 z3 (θ + 1)(θ + 2)(2θ + 1)(2θ + 5), (4.17)

for fΔ = t1t4
t3

+ t2t4
t1

+ t1t4
t2t3

+ t1t4 + t2
t1

+ 1
t1t4

+ 1
t1

+ t1
t2t3

+ t1
t2t4

+ t3
t1t4

+ t2t3
t1t4

+
t1
t2

+ t2t3
t1

+ t1 and

θ4 − 2 z (90θ4 + 188θ3 + 141θ2 + 47θ + 6)

− 4 z2 (564θ4 + 1520θ3 + 1705θ2 + 934θ + 192)

− 16 z3 (2θ + 1)(286θ3 + 813θ2 + 851θ + 294)

− 192 z4 (2θ + 1)(2θ + 3)(4θ + 3)(4θ + 5), (4.18)

for fΔ = 1
t1

+ t4
t1

+ t2t4
t1

+ t2
t1

+ t2t3
t1

+ t2t3t4
t1

+ t3t4
t1

+ t3
t1

+ t1
t2t4

+ t1
t2

+ t1
t4

+ t1
t3t4

+
t1
t3

+ t1
t2t3

.

For no. 48: X51
200,140 the two operators, with three respective polytopes, are

θ4 − z(113θ4 + 226θ3 + 173θ2 + 60θ + 8) − 8 z2 (θ + 1)2(119θ2 + 238θ + 92)

− 484 z3 (θ + 1)(θ + 2)(2θ + 1)(2θ + 5), (4.19)

for fΔ = t1t2 + t3
t2

+ t3t4
t2

+ t2
t4

+ 1
t2

+ t2
t3

+ t4
t2

+ t3
t1t2

+ 1
t1t2

+ t4
t1t2

+ t2
t3t4

+ t2
t1t3t4

as well as for the Newton polytope of fΔ = t2t4
t1

+ t2
t1

+ t3
t1

+ t3t4
t1

+ 1
t1

+ t4
t1

+
t2t3
t1

+ t1
t4

+ t1
t2t3

+ t1
t2t3t4

+ t1
t2t4

+ t1
t3

and

θ4 − z (137θ4 + 258θ3 + 201θ2 + 72θ + 10)

+ 4 z2 (387θ4 + 1016θ3 + 1151θ2 + 642θ + 135)

− 4 z3 (2θ + 1)(758θ3 + 2137θ2 + 2269θ + 820)

+ 2000 z4 (θ + 1)2(2θ + 1)(2θ + 3), (4.20)

for fΔ = t1
t2t3

+ t1t4
t2t3

+ t2t3
t1

+ t2t3
t1t4

+ t2t4
t1

+ t2
t1

+ t3
t1t4

+ 1
t1

+ 1
t1t4

+ t1
t2

+ t1
t2t4

+ t1t4
t3

.

It is, of course, an interesting question whether the symplectic Gromov–
Witten invariants can give a finer classification than the diffeomorphism
type. We do, however, not know a single example of such a situation. We
hence expect that the Picard–Fuchs operators (4.17 and 4.18) and (4.19 and
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4.20) are related by rational changes of variables that do not change the
instanton numbers (cf. appendix A of [10]). This is indeed the case.

For the diffeomorphism type X45
144,120 the differential operator (4.17) is

transformed into (4.18) by the change of variables

z → z

1 + 4z
, (4.21)

and the instanton numbers are, for both cases,

n(0) = {3744, 50112, 1656320, 77726016, 4505800320,

298578230016, 21713403010176, . . .}. (4.22)

For the diffeomorphism type X51
200,140 the differential operator (4.19) is

transformed into (4.20) by the change of variables

z → z

1 − 4z
, (4.23)

and the instanton numbers are, again for both cases,

n(0) = {2600, 25600, 530000, 15880000, 584279000,

24562482400, 1132828485400, . . .}. (4.24)

It will be interesting to check whether this phenomenon continues to hold
for the cases with a smaller Hodge number h1,2 for which there are up to
five different Picard–Fuchs operators for the same diffeomorphism type.

5 Outlook

We have constructed a surprisingly rich set of new Calabi–Yau manifolds
using conifold transitions from toric Calabi–Yau hypersurfaces. Small reso-
lutions dual to the flat deformations of the conifold singularities have been
used to construct the mirror families and to compute quantum cohomologies
via mirror symmetry.

The Picard–Fuchs operators have been determined for 28 of the 68 dif-
ferent diffeomorphism types of one-parameter families. In addition to the
(computationally expensive) completion of this calculation it will be inter-
esting to also enumerate the diffeomorphism types for the large number of
cases with h11 > 1 and to work out respective Picard–Fuchs operators. For
this, generalizations of the combinatorial formulas for the intersection rings
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and for integral cohomologies should to be derived. It would also be inter-
esting to extend the calculations of higher-genus topological string of [28] to
our new one-parameter families and to check integrality of BPS states as a
test for our proposed mirror construction.

Since already the case of toric hypersurfaces turned out to be a rich source
of new Calabi–Yau 3-folds it would also be interesting to generalize our con-
struction to complete intersections. Such transitions, however of a different
type, have already be studied in [17], where a specialization of the quin-
tic equation and a blow-up of the resulting conifold singularity was used
to arrive at the two-parameter bi-degree (4, 1)(1, 1) complete intersection in
P

4 × P
1. In this construction the conifold transition relates complete inter-

sections of different codimension, but one stays in the realm of toric ambient
spaces.2

Another interesting example of codimension two has been discussed in
Appendix E.2 of [10], where a toric realization of the hypergeometric func-
tion related to degrees (2,12) with weights (1,1,1,1,4,6), as derived in [29],
is found along a singular one-parameter subspace of the complex structure
moduli space of a toric complete intersection. It is tempting to speculate
that a flat deformation of that singularity may exist, which could define a
smooth Calabi–Yau family with the desired monodromy.
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