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Abstract

We present a construction of self-dual Yang–Mills connections on the
Taub-NUT space. We illustrate it by finding explicit expressions for all
SU(2) instantons of instanton number one and generic monodromy at
infinity.
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1 Introduction

An instanton on a Taub-NUT space is a connection, given by a u(n)-valued
one form iA, on an n-dimensional Hermitian bundle E over the Taub-NUT
space with the curvature two form F = dA − iA ∧ A satisfying the self-
duality condition

F = ∗F. (1)

Here ∗ denotes the Hodge star operator taking a two form to its dual. We
require the connection A to have finite action S =

∫
trF ∧ ∗F.

Everywhere outside one point 0 the Taub-NUT space itself can be thought
of as being fibered by a circle S1 over a base R

3\0. Choosing τ ∼ τ + 4π to
be the periodic coordinate on the S1 fiber and �x = (x1, x2, x3), with x1, x2,
and x3 coordinates on R

3, the Taub-NUT metric1 is

ds2 =
1
4

⎛

⎝
(

l +
1
|�x|

)

d�x2 +
1

(
l + 1

|�x|

)(dτ + �ω · d�x)2

⎞

⎠ , (2)

where l is some fixed parameter determining the asymptotic size of the S1

and ∂
∂xi

1
|�x| = εijk

∂
∂xj

ωk. This metric degenerates to a flat metric on R
4 as

l → 0. Its noncompact cycle C : {(τ, �x)|x1 = x2 = 0, x3 ≥ 0} becomes a plane
in this limit.

The Taub-NUT space is equipped with a natural line bundle with a con-
nection a = 1

2V (dτ + ω). This connection has a self-dual curvature da. As a
matter of fact, it has a one parameter family of such line bundles with the
following Abelian connections:

as = sa =
s

2
dτ + ω

V
, (3)

parameterized by s ∈ [−l/2, l/2]. These connections are Abelian instantons,
as their curvature is self-dual in the orientation (τ, x1, x2, x3) and has a finite

1The factor of 1
4 in the metric is chosen for future convenience and the apparent

singularity at the origin of R
3 is merely a coordinate singularity.
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action. Note, that the relation between the left and right ends of this interval
is given by tensoring with a line bundle Ll, which is trivial since

∫

C
d(al/2 − a−l/2) = 2π. (4)

1.1 Background

There has been a lot of work exploring instantons in various backgrounds.
The Atiyah-Drinfeld-Hitchin-Manin (ADHM) original construction [1] pro-
vides all instantons on R

4. Nahm modified this construction in [2, 3] to
provide calorons, i.e., instantons on R

3 × S1. Orbifolding the ADHM con-
struction Kronheimer and Nakajima [4] obtained instantons on Asymptoti-
cally Locally Euclidean (ALE) spaces. In [5] Nekrasov and Schwarz modified
the ADHM construction to construct instantons on noncommutative R

4. All
of these constructions have string theory interpretations [6–8] and emerge
from the sigma model analysis of appropriate D-brane configurations.

Based on these general constructions some explicit solutions at a general
position were obtained in [9, 10] for a caloron and in [11] for instantons on
certain ALE spaces.

We would like to point out that in all these cases the underlying space is
flat, or it has a useful flat limit. Here, we aim to find a general construc-
tion for generic2 instantons on an essentially curved space. In particular,
building on the bow formalism introduced in [16] to study the moduli spaces
of instantons on the Taub-NUT space, we find expressions for the instan-
ton connection. As an illustration of our construction we find the explicit
general solution for a single instanton on a Taub-NUT space.

1.2 Instanton number and monopole charges

A generic self-dual U(n) configuration on the Taub-NUT space possesses
two types of topological charges: an instanton number k0 and n monopole
charges m1, m2, . . . , mn. The instanton number as well as the monopole
charges are given by integers. A detailed discussion of various charges of
instantons on muti-Taub-NUT spaces and their relation with the corre-
sponding brane configurations appeared recently in [17]. Here we define
charges in a somewhat different fashion.

2Some special instanton solutions on the Taub-NUT space were obtained in [12–15].
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For any given �x ∈ R consider the monodromy W (�x, τ) ∈ U(n) satisfy-
ing (∂τ − iAτ )W (�x, τ) = 0 and W (�x, 0) = 1, so that the monodromy around
the circle S1

�x is W (�x, 4π). The finite action condition implies that the con-
jugacy class of lim|�x|→∞ W (�x, 4π) is well defined and does not depend on
the direction in which we approach infinity. We write the eigenvalues of
lim|�x|→∞ W (�x, 4π) as

exp
(

2πiλ1

l

)

, exp
(

2πiλ2

l

)

, . . . , exp
(

2πiλn

l

)

.

Here we restrict our attention to the so-called “maximal symmetry breaking”
case presuming all λj are distinct and ordered: − l

2 < λ1 < λ2 < · · · <

λn < l
2 .

Consider a sphere S2
R = {�x||�x| = R} ∈ R

3 of large radius R. Any point on
this sphere determines a τ -circle in the Taub-NUT space, so that the union of
all these circles is a squashed three sphere S3

R. Thus, S3
R is fibered by circles

over the S2
R and, for a Taub-NUT space, this fibration is the Hopf fibration

S1 → S3
R → S2

R. Since the total action is finite there is a gauge transforma-
tion on S3

R such that for large radius R the connection A restricted to S3
R

approaches one with τ -independent components. Let us write this connec-
tion with τ -independent components in the form A = Â − Φ̂dτ+ω

V . Then,
the self-duality condition for A is equivalent [18] to the Bogomolny equation

F̂ = ∗3DÂΦ̂, (5)

for (Â, Φ̂). Here ∗3 is the three-dimensional Hodge star operator for the flat
metric dx2

1 + dx2
2 + dx2

3 and F̂ is the curvature form of Â. The asymptotic
eigenvalues of Φ̂ are determined by the eigenvalues of the monodromy oper-
ator W (�x, 4π). Moreover, since the asymptotic behavior of Φ̂ eigenvalues
is the same as for a Bogomol’nyi-Prasad-Sommerfield (BPS) monopole, the
eigenvalues of Φ̂ are

λ1 +
j1

x
+ O(x−2), λ2 +

j2

x
+ O(x−2), . . . , λn +

jn

x
+ O(x−2), (6)

with j1, j2, . . . , jn integers.

Let us describe this construction in different terms, making clear that j’s
are indeed integers. Considering the eigenspaces of the monodromy operator
W (�x, τ + 4π)W−1(�x, τ) we split the bundle E|S3

R
into k eigenline bundles

E|S3
R

= Lλ1 ⊕ Lλ2 ⊕ . . . ⊕ Lλn . Since each eigenvalue λ is independent of
the base, each of these line bundles can be trivialized on all S1 Hopf fibers
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simultaneously. Thus, we have a well-defined pushdown line bundles over
the base of the Hopf fibration S2

R. Chern classes of these are j1, j2, . . . , jn. We
now use these integers to define the monopole charges of the configuration.

Let M = min(j1, j1 + j2, . . . , j1 + j2 + · · · + jn). The monopole charges of
an instanton on a Taub-NUT are defined as

(m1, m2, . . . , mn) = (j1 − M, j1 + j2 − M, . . . , j1 + j2 + · · · + jn − M).

Note, that from the way they are defined, one of these charges, say mp,
must vanish. Nevertheless, we keep it among the charges and its position p
is significant as will be clear momentarily.

Intuitively, since the total action is finite, the asymptotic connection can
be put into a form independent of the τ coordinate. Then, asymptotically,
it can be reduced to a monopole on the base R

3 [18]. It is the charges of
this monopole that we defined above.

The instanton number is less straightforward to define. One can write an
explicit expression given by the Chern number minus the contributions of
the monopole charges. To make clear that it is integer, we define it here as
an index of the Weyl operator for the connection A + 1

2(λp + λp+1)a:

k0 = Ind \DA+ 1
2 (λp+λp+1)a. (7)

Thus a general U(n) instanton on a Taub-NUT has an instanton number k0
and monopole charges (m1, m2, . . . , mn).

Kronheimer [18] demonstrated equivalence of the “pure monopole” case,
i.e., the case with k0 = 0, to singular monopoles studied in [19, 20]. In
particular, explicit solutions for k0 = 0 and m = 1 (that is (1, 0) monopole
charges) are equivalent to singular monopole solutions presented in [21,22].
In this paper we focus our attention on the pure instanton case of vanishing
monopole charges, and obtain explicit solutions with k0 = 1, i.e., a single
SU(2) instanton on the Taub-NUT space with no monopole charge. The
explicit metric on the moduli space of such solutions was found in [16].

2 Ingredients

The data specifying an instanton on a Taub-NUT space will be encoded in
terms of a bow diagram. There are two basic ingredients in our construction:
arrows and strings.
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Figure 1: Components of bow diagrams.

2.1 Arrows and limbs

Figure 1(a) represents a pair of complex vector spaces V = C
v and W = C

w

with maps J : V → W and I : W → V. The linear space formed by the pair
of maps (I, J) has a natural hyperkähler structure, which is respected by
the action of U(v) and U(w). The hyperkähler moment map of the U(v)
action gv : (I, J) 
→ (g−1

v I, Jgv) is given by

μC
V = μ1

V + iμ2
V = IJ, μR

V = μ3
V = 1

2(J†J − II†), (8)

while for the U(w) action gw : (I, J) 
→ (Igw, g−1
w J) the moment map is

μC
W = μ1

W + iμ2
W = −JI, μR

W = μ3
W = 1

2(I†I − JJ†). (9)

It is convenient to assemble the pair (I, J) into

Q =
(

J†

I

)

and

Q

=
(

cI†

−J

)

, (10)

(pronounced “kyu” and “yuk”) so that Q : W → S ⊗ V and

Q

: V → S ⊗ W
with the three complex structures ej = −iσj acting on Q’s. S ≈ C

2 is a two
dimensional space of spinors providing the representation of quaternions,
with the quaternionic units ej = iσj , i.e.,

e1 = −i
(

0 1

1 0

)

, e2 = −i
(

0 −i

i 0

)

, e3 = −i
(

1 0

0 −1

)

.

The natural metric on the linear space of all pairs of maps is

ds2 = trW dQ†dQ = trW (dJdJ† + dI†dI). (11)

The tree symplectic forms

ωj ≡ g(·, ej ·) = 1
2trW (dQ† ∧ ejdQ), (12)
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can be combined into \ω ≡ ωjσj = iVec trV dQ ∧ dQ†. Here we introduce a
“vector operation” Vec defined by

Vec(12×2 ⊗ M0 + σj ⊗ M j) = σj ⊗ M j . (13)

Since −iσj represent the quaternionic imaginary units, this operation basi-
cally amounts to taking the imaginary part of a quaternion.

With this notation the moment maps are

\μV = μi
V σi = Vec(QQ†) and \μW = μi

W σi = Vec(

QQ†
). (14)

2.2 The string

Figure 1(b) represents an interval I parameterized by s with a bundle E → I
endowed with a Hermitian structure, a connection Ds = d/ds + iT0, and
a triplet �T = (T1, T2, T3) of endomorphisms of E. In other words for a
given trivialization of E, we have a quadruplet of Hermitian matrix valued
functions (T0(s), T1(s), T2(s), T3(s)). These also form a linear space with a
natural flat metric ds2 =

∫
trE

(
dT 2

0 + dT 2
1 + dT 2

2 + dT 2
3
)

and a hyperkähler
structure all invariant with respect to the following gauge group action:

g(s) :

⎛

⎜
⎜
⎝

T0(s)
T1(s)
T2(s)
T3(s)

⎞

⎟
⎟
⎠ 
→

⎛

⎜
⎜
⎝

g−1T0g − ig−1 d
dsg

g−1T1g
g−1T2g
g−1T3g

⎞

⎟
⎟
⎠ . (15)

The corresponding moment maps are

μ1 =
d

ds
T1 + i[T0, T1] + i[T2, T3], (16)

μ2 =
d

ds
T2 + i[T0, T2] + i[T3, T1], (17)

μ3 =
d

ds
T3 + i[T0, T3] + i[T1, T2]. (18)

It is convenient to introduce \T = σ1 ⊗ T1 + σ2 ⊗ T2 + σ3 ⊗ T3 so that the
moment map \μ =

[
d
ds + iT0, \T

]
+ Vec \T\T .

Assembling the Nahm data into a quaternion T = T0 + Tj ⊗ ej = T0 − i\T
we write the above metric on the linear space of all the Nahm data in
the form

ds2 =
1
2

∫
trS trE δT †δTds. (19)
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The three symplectic forms ωj = g(·, ej ·) are encoded in

\ω =
i
2

∫
trEδT ∧ δT †ds. (20)

Note that the moment maps can be written in terms of the Weyl operator
\D = −Ds + \T and its conjugate \D† = Ds + \T as

\μ = Vec(Ds + \T )(−Ds + \T ). (21)

3 The Taub-NUT as a hyperkähler quotient

This section contains a description of the Taub-NUT space using the ingredi-
ents we have defined in the previous section. This description will naturally
lead us to a family of self-dual harmonic forms3 which are essential for the
instanton construction that follows. Our exposition in this section is close
to that of Gibbons and Rychenkova [23]. Just as for the construction [4]
of instantons on ALE spaces it was essential to know the realization of the
underlying ALE space as a hyperkähler quotient of linear spaces [24], this
section contains the realization of the Taub-NUT space as a hyperkähler
quotient setting the groundwork for the construction of instantons on it.

3.1 Taub-NUT bow data

The bow diagram in figure 2 represents Nahm data of rank 1 associated
with a Hermitian line bundle e → I on an interval [−l/2, l/2] of length l,
as well as maps b10 and b01 between the one-dimensional complex vector
spaces e0 = e|s=−l/2 and e1 = e|s=l/2 at the ends of the interval. A gauge
transformation h(s) acts on these data as follows:

⎛

⎜
⎜
⎝

t0
tj
b01
b10

⎞

⎟
⎟
⎠ 
→

⎛

⎜
⎜
⎜
⎝

h−1t0h + ih−1 d
dsh

h−1tjh

h−1(− l
2)b01h( l

2)
h−1( l

2)b10h(− l
2)

⎞

⎟
⎟
⎟
⎠

(22)

3A description of these in terms of the hyperkähler reduction recently appeared in [17].
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Figure 2: A Taub-NUT bow diagram.

Introducing t = t1 + it2 and D = d/ds − it0 − t3 the vanishing of moment
maps can be written in complex notation as

[D, t] − δ(s+ l
2 )b01b10 + δ(s− l

2 )b10b01 = 0, (23)

[D†, D] + [t†, t] + δ(s+ l
2 )(b†

10b10 − b01b
†
01) + δ(s− l

2 )(b†
01b01 − b10b

†
10) = 0.

Let us distinguish some point s0 on the Nahm interval. Say this point
divides this interval into two intervals of lengths lL and lR, i.e., lL + lR = l
and at this distinguished point s = s0 = lL − l/2 = l/2 − lR. Let us assume
s0 > 0. We shall perform the hyperkähler quotient step-by-step, so that the
last step is the quotient with respect to the U(1) at the distinguished point4

s0. This will allow us to associate with any point s0 a natural line bundle over
the Taub-NUT space and its natural connection corresponding to this U(1).

3.2 The family of connections

First we perform hyperkähler reduction on each open interval separately.
The intervals are of lengths lL and lR. Since the computations are identical,
we focus on the interval of length lR to the right of s0. As the Nahm data
is Abelian, the vanishing of the moment maps implies dtj/ds = 0, thus, the
vector �t = (t1, t2, t3) is constant. The connection t0 can be made constant
using gauge transformations that are trivial at the ends of the interval. There
is a large gauge transformation g = exp(2πi(s − s0)/lR) satisfying g(s0) =
g(l/2) = 1. This gauge transformation takes t0R to t0R + 2π/lR. Thus, the
result of this hyperkähler reduction is R

3 × S1 with coordinates t1R, t2R, t3R

4To be exact, this U(1) is the quotient of the group of all gauge transformation on the
interval by the subgroup formed by the gauge transformation that equal to identity at s0.
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and t0R ∼ t0R + 2π/lR and the metric

ds2 =
∫ l

s0

(
dt20R + d�t 2

R

)
ds = lR

(
dt20R + d�t 2

R

)
. (24)

The resulting metric on the Nahm data on the left interval is given by the
same expression with lR replaced by lL.

Now we perform the hyperkähler reduction with respect to the U(1) at
s = l/2, which can be realized by h = exp(iφ s−s0

lR
). Exploiting the fact that

all the data are Abelian, we assemble the linear data (b01, b10) into a quater-
nion

q = q0 + qiei = (b−, b+) =
(

b̄01 b̄10
−b10 b01

)

. (25)

Here b− and b+ play the roles of

Q

and Q. The natural metric is

ds2 = 1
2trSdq†dq = db†

−db− = db†
+db+, (26)

and the resulting symplectic forms are given by \ω = iVec dq ∧ dq†. A gauge
transformation h(s) with h(−l/2) = exp(iφL) and h(l/2) = exp(iφR) sends q
to q exp

(
e3(φR − φL)

)
. The resulting moment maps are \μL = −1

2qσ3q
† and

\μR = 1
2qσ3q

†.

The rightmost U(1) acts as

exp
(

iφ
s − s0

lR

)

: (q, t0R,�tR) 
→ (qee3φ, t0R − φ/lR,�tR), (27)

with the moment map μ1e1 + μ2e2 + μ3e3 = 1
2qe3q̄ = t1e1 + t2e2 + t3e3. Let

q = aee3ψ/2 where a is a pure imaginary quaternion, and let �x = (x1, x2, x3)
be such that x1e1 + x2e2 + x3e3 = qe3q̄. The periodic coordinate ψ ∼ψ + 4π
and the components of �x provide new coordinates on R

4. Then the flat
metric on the set of octuplets (t0R,�t0R, b01, b10) is

ds2 =
1
2
trSdq†dq + lR

(
dt20R + d�tR

2)
(28)

=
1
4

(
1
|�x|d�x2 + |�x|(dψ + ω)2

)

+ lR

(
dt20R + d�tR

2
)

, (29)
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where

i|�x|(ω + dψ) =
i
2
tr
(
qe3dq† − dqe3q

†) = db†
−b− − b†

−db− = −db†
+b+ + b†

+db+.

(30)

One can easily verify that ω = ωjdxj satisfies εijk∂jωk = ∂i
1
|�x| .

The U(1) is acting by eiφ : (ψ, t0R) 
→ (ψ + 2φ, t0R − φ/lR). The invariant
of this action is σ = ψ + 2lRt0R and the vanishing of the moment maps
implies �tR = −1

2�x. One can readily verify that the above metric becomes

ds2 =
1
4

((

lR +
1
|�x|

)

d�x2 +
(dσ + ω)2

lR + 1/|�x|

)

+ lRr

(

lR +
1
|�x|

)

×
(

dt0R +
1
2

dσ + ω

lR + 1/|�x|

)2

. (31)

After factoring out the eiφ action the result is

ds2 =
1
4

((

lR +
1
|�x|

)

d�x2 +
(dσ + ω)2

lR + 1/|�x|

)

. (32)

The last step in the hyperkähler reduction procedure is the hyperkähler
quotient with respect to the U(1) at the distinguished point s = s0. In order
to represent this action we use the gauge transformation

h(s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

exp
(

i
s

s0
ε

)

for s ≤ s0,

exp
(

i
l/2 − s

l/2 − s0
ε

)

for s > s0

(33)

that is continuous and equals identity at s = 0 and at s = l/2. At s = s0
this gauge transformation is h(s0) = eiε. It has the following action:

h(s) :

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

t0L

�tL

t0R

�tR

q

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠


→

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

t0L − ε/s0

�tL

t0R + ε/lR

�tR

q exp
(

e3
l

2s0
ε

)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (34)
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The corresponding moment map is \μ = lL
s0

\tL − \tR + l
2s0

1
2\x. Since the vanish-

ing of the moment maps of the first stage of the reduction implies \tR = −1
2\x,

it follows that \μ = lL
s0

(
\tL + 1

2\x
)
. Putting \μ equal to zero we have \tL = −1

2\x
as well, so �t is constant on I.

So far, including the data on the left interval, we have the metric

ds2 =
1
4

((

lR +
1
|�x|

)

d�x2 +
(dσ + ω)2

lR + 1/|�x|

)

+ lL
(
dt20L + d�t2L

)
. (35)

Under the above gauge transformation the angle σ = ψ + 2lRt0R 
→ σ + 2 lL
s0

ε.
The invariant coordinate is τ = σ − 2lLt0L = ψ + 2lRt0R − 2lLt0L, and we
choose ε ∼ ε + 2π instead of σ as a coordinate along the circle of the gauge
transformation. In these coordinates the above metric can be rewritten as

ds2 =
1
4

[(

l +
1
|�x|

)

d�x2 +
1

l + 1/|�x|(dτ + ω)2
]

+
lL

(
l + 1

|�x|

)

s2
0
(
lR + 1/|�x|

)

(

dε +
s0

2
dτ + ω

(
l + 1/|�x|

)

)2

. (36)

The first part of the expression (36) is the resulting hyperkähler metric of
the Taub-NUT space

4 ds2
TN =

(

l +
1
|�x|

)

d�r2 +
1

l + 1/|�x|(dτ + ω)2, (37)

here the one form ω satisfies dω = ∗3d
1
|�x| . The second part of the expression

in equation (36) provides the natural connection D = d + is0a with the one
form s0a, where

a =
1
2

dτ + ω

l + 1
|�x|

. (38)

3.3 A basis of self-dual two forms

Let V = l + 1/|�x|, so that a = dτ+ω
2V . Here we observe the following relation:

(
1
2
d\x − ia

)†
∧
(

1
2
d\x − ia

)

=
i
2
σk

(
dτ + ω

V
∧ dxk +

1
2
εijkdxidxJ

)

. (39)
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The components of the right-hand side are self-dual two forms in the orienta-
tion (τ, x1, x2, x3) providing a basis of self-dual two forms on the Taub-NUT.
Let us note for future use that since 1

2d\x − ia = −(d\t + ia), in terms of the
τ and �t coordinates the combination (d\t + ia)† ∧ (dt + ia) is self-dual.

4 Instanton data

Instanton data for an SU(2) instanton with no monopole charges is repre-
sented by the bow diagram in figure 3. It consists of

• a rank k0 vector bundle E → [−l/2, l/2] with the Nahm data (T0, �T )
on the intervals [−l/2,−λ], [−λ, λ], and [λ, l/2] (we do not presume
two-sided continuity at s = ±λ across different intervals),

• linear maps B10 : E−l/2 → El/2 and B01 : El/2 → E−l/2,
• linear maps IL : WL → E−λ, JL : E−λ → WL, IR : WR → Eλ, and JR : Eλ → WR.

The group of gauge transformations acts on these data as follows:

g :

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

T0

Tj

B01

B10

Iα

Jα

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠


→

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

g−1(s)T0g(s) − ig−1(s)
d

ds
g(s)

g−1(s)Tjg(s)

g−1
(

− l

2

)

B01g

(
l

2

)

g−1
(

l

2

)

B10g

(

− l

2

)

g−1(λα)Iα

Jαg(λα)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (40)

where the index α takes values L and R and we introduced λL = −λ and
λR = λ.

Introducing the complex notation D = d
ds + iT0 − T3 and T = T1 + iT2,

the moment maps are written as

[D, T ] + δ(s+ l
2)B01B10 − δ(s− l

2)B10B01 +
∑

α∈{L,R}
δ(s−λα)IαJα = 0, (41)

[D†, D] + [T †, T ] + δ(s+ l
2)(B

†
10B10 − B01B

†
01) + δ(s− l

2)(B
†
01B01 − B10B

†
10)

+
∑

α∈{L,R}
δ(s−λα)(J†

αJα − IαI†
α) = 0.
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Figure 3: The bow diagram for an SU(2) instanton on the Taub-NUT.

These conditions can be written compactly if we introduce

B− =
(

B†
10

−B01

)

, B+ =
(

B†
01

B10

)

, (42)

and \D = − d
ds − iT0 + \T =

(−D T †

T D†

)
. Then the moment maps are given by

\μ=Vec

(

\D†\D+
∑

α

δ(s−λα)QαQ†
α + δ

(

s+
l

2

)

B−B†
− + δ

(

s− l

2

)

B+B†
+

)

.

(43)

5 The Nahm transform

5.1 The Weyl operator

A central role in the ADHM-Nahm transform [1, 2] is played by a certain
linear operator. In the case at hand it is a modification of the Weyl operator.
The details of similar construction can be found in [3, 25] for the case of
calorons.

Let H be the space of L2 sections of S ⊗ E that are continuous on I and
have L2 derivatives on I\{λL, λR}. Let H̃ be the direct sum of the space
of L2 sections of S ⊗ E with spaces WL, WR, E−l/2, and El/2. Given the
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instanton data of the bow diagram in figure 3 we introduce the operator
D : H → H̃ acting by

D : f 
→

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(
− d

ds − iT0 + \T
)
f

(JL, I†
L)f(−λ)

(JR, I†
R)f(λ)

(
B01, B

†
10
)
f(l/2)

(
−B10, B

†
01
)
f(−l/2)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (44)

Let us denote by ψ an L2 section of the restriction of S ⊗ E to I\{λL, λR},
χα ∈ Eλα , v− ∈ E−l/2 and v+ ∈ El/2. Integrating by parts we find that the
cokernel of D is given by (ψ(s), χL, χR, v−, v+) ∈ H̃ satisfying

(
d

ds
+ iT0 + \T

)

ψ = 0, on I\{αL, αR}, (45)

ψ(λα+) − ψ(λα−) = −Qαχα, (46)

ψ(l/2) =

(
B†

01

B10

)

v−, (47)

ψ(−l/2) = −
(

−B†
10

B01

)

v+. (48)

In other words, the dual operator takes the form

D
† =

(
−D† T †

T D

)

⊕
(

⊕
α∈{L,R}

δ(s−λα)

⎛
⎝J†

α

Iα

⎞
⎠
)

⊕
(

δ(s+ l
2)
(

B†
10

−B01

)

, δ(s− l
2)
(

B†
01

B10

))

,

= \D† ⊕ δ(s − λα)Qα ⊕
(
δ (s+ l

2) B−, δ (s− l
2) B+

)
. (49)

In terms of D and D† the moment map conditions of equation. (41) can be
written as

Vec(D†
D) = 0. (50)

For a given point of the Taub-NUT space in figure 2, corresponding to
(t0,�t, b10, b01) satisfying equation (23), we can twist the above operator as
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follows:

D
†
t =

(
−D† − t3 T † − t†

T − t D + t3

)

⊕
(

⊕
α∈{L,R}

δ(s − λα)
(

J†
α

Iα

))

⊕
(

δ(s+ l
2)
(

B†
10 −b†

10
−B01 −b01

)

+ δ(s− l
2)
(

−b†
01 B†

01
b10 B10

))

. (51)

To be exact, whenever adding two operators with one of them belonging
to the instanton bow and another to the Taub-NUT bow data we under-
stand both operators to be tensored with identity so that they act on the
tensor product of the corresponding spaces. For example, T − t stands as a
shorthand for T ⊗ 1 − 1 ⊗ t. Unfortunately, in this case using the rigorous
notation would make the formula above much harder to read. We also allow
this shorthand since for a case of a single instanton the vector spaces are one
dimensional and the bow data are Abelian, so, conveniently, the expression
in equation (51) makes perfect sense as it is written.

5.2 The connection

From now on we understand ψ to be a section of C
2 ⊗ E ⊗ e → I\{−λ, λ},

v− ∈ E−l/2 ⊗ el/2 and v+ ∈ El/2 ⊗ e−l/2. We combine v+ and v− into a
spinor v =

( v+
v−

)
and denote the data (ψ(s), χL, χR, v) by ψ. The twisted

operator D
†
t acts on the linear Hermitian space formed by such data. For

ψ1 = (ψ1(s), χL1, χ
+
R1, v1) and ψ2 = (ψ2(s), χL2, χR2, v2)

the natural Hermitian product is given by (ψ1,ψ2) = v†
1v2 + (χL1)†χL2 +

(χR1)†χR2 +
∫ l/2
−l/2 ψ†

1(s)ψ2(s)ds. We also define the operator s acting on ψ

as follows:

s : (ψ(s), χL, χR, v) 
→
(

sψ(s),−λχL, λχR,
(−l/2 0

0 l/2

)
v

)

. (52)

Once we find the orthonormal basis of solutions of D
†
tψ = 0 we arrange

them as columns of the matrix Ψ, then the orthonormality condition reads
(Ψ, Ψ) = I. The instanton connection ∇μ = ∂μ − iAμ is induced on the ker-
nel of D

†
t by the connection Dμ = ∂μ + isaμ, thus, ∇μ = (Ψ, DμΨ) and the
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associated su(2)-valued one form A = A0dτ + Ajdxj is given by

A =
(

Ψ,
(
i
∂

∂τ
− s

V

)
Ψ
)

dτ +
(

Ψ,
(
i

∂

∂xj
− ωj

s
V

)
Ψ
)

dxj (53)

6 The ADHM limit

To compare with the ADHM construction we solve D
†
tΨ = 0 at the ends of

the interval s = ± l
2 to find

ψ(− l
2) = −

(
B†

10 −b†
10

−B01 −b01

)(
cv+
v−

)

, ψ( l
2) =

(
−b†

01 B†
01

b10 B10

)(
v+
v−

)

, (54)

The Nahm equations imply that �t is constant on [−l/2, l/2].

It is illustrative to consider first the case of a single instanton. In this
case �T is constant on each of the three intervals of I\{−λ, λ}. Moreover,
the values on the left and on the right intervals are equal, thus for some
constant vectors �T1 and �T2

�T (s) =

{
�T1 for −l/2 < s < −λ or λ > s > l/2,
�T2 for −λ < s < λ.

(55)

Let �z1 = �t − �T1 and �z2 = �t − �T2, then the Weyl equation D
†
tΨ = 0 becomes

equivalent to
[

e−\z1( l
2−λ2)

(
−b†

01 B†
01

b10 B10

)

+ e\z2(λ2−λ1)e\z1(λ1+ l
2)
(

B†
10 −b†

10

−B01 −b01

)](
v+
v−

)

+ e�σ·�z2(λ2−λ1)
(

J†
L

IL

)

χL +
(

J†
R

IR

)

χR = 0. (56)

Clearly in the limit of l → 0 (and since λ < l/2, we have λ → 0) the above
expression reduces to the ADHM linear equation.

For the case of instantons of general charge the exponentials in the above
equation become path-ordered exponentials involving the corresponding non-
abelian data T . Each of these represents parallel transport along an interval.
In the l → 0 limit, however, all of the intervals in the bow diagram contract
to a point and the exponential factors all become identities. Therefore, for a
general case, equation (56) for the kernel of Dt reduces to the ADHM linear
equation.
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7 Proof of self-duality

The core of this proof is close to the original argument of Nahm [2], but
requires some adjustments. We shall need the following relations:5

(d + ila)b− = − 1
2t

(
d\t + ia

)
b− and (d − ila)b+ =

1
2t

(
d\t + ia

)
b+. (57)

We also use the fact that D
†
tDt = 1 ⊗ Δ, with Δ positive definite (except

for some (τ,�t) corresponding to a finite number of isolated points on the
Taub-NUT). Thus, it has a well defined inverse G =

(
D

†
tDt

)−1
, given by

the Green’s function of Δ, that commutes with the quaternions and the
σ-matrices.

As expressed by equation (53), the connection induced by Dμ on the kernel
of D† is the instanton connection Aμ, therefore, the covariant differential is
dtμ∇μ ≡ dtμ(∂μ − iAμ) = PdtμDμP = P (d + isa)P = P

(
d + isdτ+ω

2V

)
P . So

the connection is Aμ = i(Ψ, DμΨ), then

∂[μAν] = i
(
D[μΨ, Dν]Ψ

)
− (Ψ, sΨ)∂[μaν], (58)

[Aμ, Aν ] =
(
D[μΨ, Ψ

)(
Ψ, Dν]

)
. (59)

It follows that the curvature is

Fμν = i[∇μ,∇ν ] =
(
D[μΨ, (1 − P )Dν]Ψ) − (Ψ, sΨ

)
∂[μaν], (60)

where 1 − P ≡ 1 − ΨΨ† = DtGD
†
t . The second term in the curvature expres-

sion is self-dual since da is, while for the first term we have

(DμΨ, (1 − P )DνΨ) =
(
[D†

t , Dμ]Ψ, G[D†
t , Dν ]Ψ

)
. (61)

Since

D
†
t =

(
d

ds
+ iT0 + \T − \t

)

⊕ δ(s − λα)Qα

⊕
(
δ(s + l/2)(B−,−b+) + δ(s − l/2)(−b−, B+)

)
. (62)

5These follow from equation (30) and b±b†
± = t ± \t. Namely, (30) implies 4itV ab− =

2b−(db†
−)b− − b−d(b†

−b−) = 2(d(b−b†
−))b− − 2(db−)(b†

−b−) − b−d(b†
−b−) = 2(dt − d\t)b− −

4tdb− − 2dtb− = −4tdb− − 2d\t b−, thus, 2t(db− + ilab−) = −(d\t + ia)b−.
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The commutator dtν [D†
t , Dν ] is given by

[D†
t , d + isa] = (d\t+ia) ⊕ 0 ⊕

(
δ(s − l/2)(d + ila)b−, δ(s + l/2)(d − ila)b+

)

= (d\t + ia)
(

1 ⊕ 0 ⊕
(
− 1

2t
δ(s − l/2)b−,

1
2t

δ(s + l/2)b+

))

.

(63)

As the Green’s function G = (D†D)−1 is scalar, that is, it commutes with
the σ-matrices, and

(
d\t − ia

)
∧
(
d\t + ia

)
=
(1

2d\x + ia
)

∧
(1

2d\x − ia
)

is self-
dual according to equation (39), the curvature two form F = Fμνdxμdxν is
self-dual as well due to equations (60),(61) and (63).

8 Instantons for the U(n) gauge group

Generalizing our construction to instantons with the gauge group U(n) is
fairly straightforward. The corresponding bow diagram is given in figure 4.
The positions of the marked points λ1, . . . , λn partitioning the interval [−l/2,
l/2] are given by the asymptotic of the eigenvalues of the instanton connec-
tion monodromy around the Taub-NUT circle. All of our previous discussion
including the proof of the self-duality and the ADHM limit remains valid.

Figure 4: Bow diagram for U(n) instanton on Taub-NUT.
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9 The geometric meaning of the Nahm transform for
curved manifolds

The conventional Nahm transform [26] of some self-dual configuration (or
of a dimensional reduction of a self-dual configuration) on a flat manifold
M = R

4/Λ results in some data on a dual space N of flat connections on
M . The kernel of the Nahm transform is the Poincaré bundle P → M × N.
Let us denote the two projections of the product M × N on M and N by
pM and pN respectively, so that we have the following diagram:

P

��
M × N

pM

�����������
pN

�����������

M N. (64)

Then for an instanton bundle E → M its Nahm transform is pN∗
(
P ⊗ p∗

ME
)
.

Thus, the Poincaré bundle P plays the role of the kernel of this transform.

For example, for the case of a caloron, flat connections on R
3 × S1 have

the form η = sdt0, where t0 is the coordinate parameterizing the S1 factor.
The space of such connections forms the dual circle Ŝ1 parameterized by s.
The Poincaré bundle over the product (R3 × S1) × Ŝ1 has a natural connec-
tion η with curvature F = ds ∧ dt0, and it can be trivialized on either one
of the two base components, making both pushforward operations pN∗ and
pM∗ simple and well defined.

P

��

F = dη = ds ∧ dt0

(
R

3 × S1
)

× Ŝ1

pM

�������������
pN

��������������

�t, t0

R
3 × S1 η = sdt0

s

Ŝ1 . (65)

For a curved manifold M without flat connections, such as the Taub-NUT
space, a generalization of the Nahm transform is less straightforward. In
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order to have a version of the Nahm transform in the diagram (66) below,
one has to answer two questions: (1) What is the correct choice of the
“dual” manifold N? and (2) What is the kernel M generalizing the Poincaré
bundle?

M

��
(Taub-NUT) × I

pM

����������������
pN

���������������

Taub-NUT η = sdτ+ω
2V I. (66)

We propose that for the Taub-NUT space the appropriate choice of N is
the space I of self-dual Abelian connections on the Taub-NUT (or rather,
in order to have a hyperkähler space, the direct product of I and R

3). In
order to answer the second question, we digress to discuss a generalization
of instantons in four dimensions to instantons on higher-dimensional spaces.

Instantons on higher-dimensional hyperkähler manifolds were defined
in [27] in the following manner. Consider the operator ℵ = I ⊗ I + J ⊗
J + K ⊗ K acting on two forms. Due to the defining quaternionic identities
it satisfies

ℵ2 = 2ℵ + 3, (67)

and can have eigenvalues 3 or −1. On a four-dimensional hyperkähler man-
ifold this operator is related to the Hodge star operation by ∗ = 1

2(ℵ − 1),
thus on a general hyperkähler manifold the equations

ℵF = 3F and ℵF = −F , (68)

respectively, generalize the self-duality and anti-self-duality conditions to
higher dimensions.

Before we proceed, let us observe, that the complex structures I, J, and
K act on the vierbein eμ̂ of the Taub-NUT

e0̂ =
1

2
√

V
(dτ + ω), eĵ = 1

2

√
V dxĵ , (69)

by acting with the left multiplication on the quaternionic combination
e0̂ + Ie1̂ + Je2̂ + Ke3̂.
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Just as the four-dimensional self-duality equations become Bogomolny
equations under the reduction to three dimensions, we reduce an eight-
dimensional self-duality condition 3F = ℵF to five dimensions producing
the following system of equations on I × Taub-NUT:

3F0̂s = D̂1Φ1 + D̂2Φ2 + D̂3Φ3,

3F1̂s = −D̂0Φ1 − D̂3Φ2 + D̂2Φ3,

3F2̂s = D̂3Φ1 − D̂0Φ2 − D̂1Φ3, (70)

3F3̂s = −D̂2Φ1 + D̂1Φ2 − D̂0Φ3,

2Fμ̂ν̂ = εμ̂ν̂ρ̂σ̂Fρ̂σ̂.

Here Φ1, Φ2, Φ3 are the components of the eight-dimensional connection
in the reduced three directions of R

3. We used the curvature vierbein
components F = Fsρ̂ds ∧ eρ̂ + Fμ̂ν̂eμ̂ ∧ eν̂ and D̂0 = 2

√
V D0 and D̂j = 2√

V
Dj − 4ωjD0, which appear in the covariant differential decomposition
D = dτD0 + dxjDj = e0̂D̂0̂ + eĵD̂ĵ .

Since equations (9) emerge via a dimensional reduction of higher-
dimensional self-duality equations, one might call an object satisfying these
equations an Instapole or a Monotone.6

In our case F = dη = d
(
sdτ+ω

2V

)
= ds ∧ a + sda = 1√

V
ds ∧ e0 + sda as dic-

tated by relation (65) between I and the Taub-NUT. We observe that
Φ1 = t1 = −1

2x1, Φ2 = t2 = −1
2x2, Φ3 = t3 = −1

2x3 augment F to produce a
solution to the system of equation (9). This is exactly the solution defining
the object generalizing the Poincaré bundle in diagram (66) that leads to
the twisting that we used in equation (51). It plays the role of the kernel in
this generalization of the Nahm transform.

10 Example of one instanton

Let us now focus on a single SU(2) instanton on the Taub-NUT, i.e., a self-
dual curvature configuration with k0 = 1 and m = 0. For a single instanton
the T ’s in the Nahm data are Abelian and the Nahm equations are solved by

�T (s) =

{
�T1 for −l/2 < s < −λ or λ > s > l/2,
�T2 for −λ < s < λ.

. (71)

6We hope someone will come up with a more poetic name for it.
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We interpret �x = −2�T1 and �x = −2�T2 as the locations of the instanton con-
stituents. Let �z1 = �t − �T1 and �z2 = �t − �T2 denote the position relative to the
two constituents and let �y = �T2 − �T1 = �z1 − �z2 be the displacement between
them. The τ coordinate of the instanton position is proportional to T0.
Since the Taub-NUT metric is invariant with respect to shifts of τ, without
loss of generality T0 can be put to zero. We also gauge away t0 in favor
of the phase of b±. Let the two-component spinors Q+ and Q− be such
that Q±Q†

± = y ± \y. Using the component expressions for the spinors we
introduced earlier

b− =

(
b†
01

−b10

)

, b+ =

(
b†
10

b01

)

, B− =

(
B†

10

−B01

)

, B+ =

(
B†

01

B10

)

, (72)

and, since in this case all of the components are simply complex numbers,
it is straightforward to verify that

b†
−B− = B†

+b+ = eiτ/2P, b†
+B+ = B†

−b− = e−iτ/2P, (73)

where

P =
√

(T1 + t)2 − z2
1 . (74)

The moment maps at s = ±l/2 imply that

b±b†
± = |�t | ± \t , B±B†

± = |�T1| ± \T 1, (75)

and the vanishing of the moment maps at s = ±λ implies QR = Q+ and
QL = Q−.

10.1 Solving the Weyl equation

On each interval Dt = −∂s + \T − \t = −∂s − \z and D
†
t = ∂s + \T − \t = ∂s −

\z, with \z = \z1 or \z2 in accordance with equation (55). It follows therefore,
that ψ(s) has the form

ψ(s) =

⎧
⎪⎨

⎪⎩

e\z1(s+l/2)ψL for −l/2 < s < −λ,

e\z2sΠ for −λ < s < λ,

e\z1(s−l/2)ψR for λ < s < l/2,

(76)

for some constant ψL, ψR, and Π. As we shall soon verify, the kernel of D
†
t

is two dimensional, so from now on we shall understand ψ(s), χL, χR and
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v to be two-column matrices, so that their first columns deliver one of the
solutions and their second columns deliver the second, linearly independent,
solution of D

†
tψ = 0.

Let AL = (B−,−b+) and AR = (−b−, B+) then the D
†
tΨ = 0 conditions

read

ψR − ARv = 0 at s =
l

2
, (77)

e−\z1(l/2−λ)ψR − e\z2λΠ + QRχR = 0 at s = λ, (78)

e−\z2λΠ − e\z1(l/2−λ)ψL + QLχL = 0 at s = −λ, (79)

ψL + ALv = 0 at s = − l

2
. (80)

It is useful to note the following relations:

ALA†
L = T1 + t + \z1, A†

RAL = ALA†
R = −eiτ/2P,

ALA−1
R = −eiτ/2

P (T1 + t + \z1), ARA†
R = T1 + t − \z1,

A†
LAR = ARA†

L = −e−iτ/2P, ARA−1
L = −e−iτ/2

P (T1 + t − \z1),

and define μ+ and μ− to be such that μ2
+ = ALA†

L and μ2
− = ARA†

R namely

μ± =

√
T1 + t + P

2
±
√

T1 + t − P
2

\z1
z1

, (81)

then μ+μ− = P.

We choose

v = −eiτ/4A†
L

μ−
P = e−iτ/4A†

R

μ+

P , (82)

so that now ψL = eiτ/4μ+, ψR = e−iτ/4μ−. From the matching conditions
equations (78) and (79) at s = ±λ it follows that

Π =
1
2g

(
e−iτ/4eλ\z2(y − \y)e−(l/2−λ)\z1μ− + eiτ/4e−λ\z2(y + \y)e(l/2−λ)\z1μ+

)
,

(83)
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where the function g is given by

g = y cosh 2z2λ − �z2 · �y
z2

sinh 2z2λ =
1
2

(
e2\z2λQ−Q†

− + Q+Q†
+e−2\z2λ

)
, (84)

and that
(

χR

χL

)

=

(
Q†

+e−λ\z2

Q†
−eλ\z2

)

Υ, (85)

with

Υ =
eiτ/4eλ\z2e(

l
2−λ)\z1μ+ − e−iτ/4e−λ\z2e−( l

2−λ)\z1μ−
2g

. (86)

10.2 Normalization

Let us now check the orthogonality and the normalization of the solution
Ψ delivered by equations (76), (82) and (85). To simplify our notation let
us introduce α = 1

4z1
ln T1+t+z1

T1+t−z1
, so that μ2

− = T1 + t − \z1 = Pe−2α\z1 , and
in particular that sinh 2αz1 = z1/P and cosh 2αz1 = (T1 + t)/P. Introduce
Δ = l

2 − λ + α and let

c1 = cosh 2Δz1 =
(T1 + t) cosh(l − 2λ)z1 + z1 sinh(l − 2λ)z1

P , (87)

s1 = sinh 2Δz1 =
z1 cosh(l − 2λ)z1 + (T1 + t) sinh(l − 2λ)z1

P , (88)

c2 = cosh 2λz2, s2 = sinh 2λz2. (89)

In these terms g = yc2 + y2+z2
2−z2

1
2z2

s2. Then we find that (Ψ, Ψ) = N2
I2×2

with the normalization factor

N2 = (Ψ, Ψ) =
P
g

(
c1c2 +

y

z1
s1c2 +

y

z2
c1s2 +

z2
1 + z2

2 + y2

2z1z2
s1s2 − cos

τ

2

)
.

(90)

Let us also observe that both Π and Υ appearing in the solution are scalar
multiples of unitary matrices, since

Π†Π =
P
g

(

yc1 +
�y · �z1

z1
s1

)

, Υ†Υ =
P

2g2

(

c1c2 + s1s2
�z2 · �z1

z1z2
− cos

τ

2

)

.

(91)
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10.3 Connection

We rewrite equation (53) as A = A(0)dτ + A(3) − Φ 1
2V (dτ + �ω · d�x), where

Φ = (ΨN , sΨN ), A(0) = i
(

ΨN ,
∂

∂τ
ΨN

)

, A(3) = i
(

ΨN ,
∂

∂xj
ΨN

)

dxj ,

(92)
for an orthonormalized solution ΨN satisfying (ΨN , ΨN ) = I2×2. Here we
observe that for any Ψ = NΨN , with N any nowhere vanishing scalar func-
tion, we have

(

ΨN ,
∂

∂xμ
ΨN

)

=
1
2

((

ΨN ,
∂

∂xμ
ΨN

)

−
(

∂

∂xμ
ΨN , ΨN

))

=
1

2N2

((

Ψ,
∂

∂xμ
Ψ
)

−
(

∂

∂xμ
Ψ, Ψ

))

. (93)

Thus for the solution of Section 10.1 which satisfies (Ψ, Ψ) = N2
I2×2 we

have

Φ =
1

N2 (Ψ, sΨ), (94)

A(0) =
i

N2

(

Ψ,
∂

∂τ
Ψ
)

=
i

2N2

((

Ψ,
∂

∂τ
Ψ
)

−
(

∂

∂τ
Ψ, Ψ

))

, (95)

A(3) =
i

N2 (Ψ, dΨ) =
i

2N2

(
Ψ, (d − ←−

d )Ψ
)

≡ i
2N2

(
(Ψ, dΨ) − (dΨ, Ψ)

)
,

(96)

where we introduced the three-dimensional differential d = dxj ∂
∂xj = dtj ∂

∂tj
.

Given our solution for Ψ of equations (76), (82) and (85) one can apply the
above formulas, performing some elementary integrals over s. A straightfor-
ward if tedious calculation gives

N2A(0) =
1
4

(2t − c1P)
\z1
z2
1

+
1

2P

(

\T 1 −
�T1 · �z1

z1

\z1
z1

)

+
i

2
s2

z2
Π†(∂τ − ←−

∂ τ )Π + igΥ†(∂τ − ←−
∂ τ )Υ, (97)

N2Φ =
(

1 + 2lt −
(
2λc1 +

s1

z1

)
P
)

\z1
2z2

1
+

l

P

(

\T 1 − \T 1 · \z1
z1

\z1
z1

)

+
(

2λc2 − s2

z2

)

Π† \z2
2z2

2
Π + 2λΥ†

(
{
(c2 − 1)�y · �z2 − s2yz2

}\z2
z2
2

+ \y
)

Υ,

(98)
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N2A(3) =
i
2

{
z1

P2

[

\T 1, d
\z1
z1

]

+
1

P3

(
T1 + t

z1

�z1 · d�t

z1
−

�t · d�t

t

)

[\T 1, \z1]

−
(

1 + P
(

l − 2λ − s1

z1

)

− 2
T1(T1 + t − P)

P2

)
[\z1, d\t]

2z2
1

+ Π†
(

s2

z2
d − ←−

d
s2

z2
−
(
2λ − s2

z2

) [\z2, d\t]
2z2

2

)

Π

+ Υ†
(

2gd − ←−
d 2g − 2λ

�z2 · d�t

z2
2

[\y, \z2]

−s2

[

\y, d
\z2
z2

]

+ (c2 − 1)
y

z2
2
[\z2, d\t]

)

Υ
}

, (99)

where the functions P and g are defined in equations (74) and (84), the
hyperbolic functions c1, s1, c2 and s2 are in equations (74), (88) and (89),
and Π and Υ are given in equations (83) and (86). The normalization factor
N2 is read from equations (90).

11 Conclusions

We discussed topological charges of an instanton configuration on the Taub-
NUT space with the maximal symmetry breaking by the monodromy at
infinity. These are given by integer monopole charges and an integer instan-
ton number. Solutions with vanishing instanton number correspond to sin-
gular monopoles [18]. In their three-dimensional interpretation these have
infinite energy, while as configurations on the Taub-NUT space they are
smooth and have finite action. Thus one can regard the Taub-NUT back-
ground as a regularization. A simplest solution with zero instanton number
was constructed in [21] and its physical properties were explored in [22].

In this manuscript we focussed on the case with vanishing monopole
charges. We presented the ADHM-Nahm data for this case. These data
are conveniently encoded in a bow diagram, such as in figures 3 or 4. We
used the bow diagram description earlier in [16] to study the moduli spaces
of instantons on the Taub-NUT. Here we give the details of the Nahm trans-
form leading to the explicit instanton connection.

As an example illustrating this construction we find a single SU(2) instan-
ton on the Taub-NUT space in equations (97)–(99).

The bow diagram formalism we presented is not limited to the case of the
Taub-NUT background. Rather, we chose to limit the scope of this paper to
this case to simplify our presentation. In the forthcoming paper [28] we will
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give the bow-diagrammatic description of instantons with arbitrary charges
on a general ALF spaces of either Ak- or Dk-type.
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Appendix A.

A.1 Metric conventions and moment maps

The Nahm data on an interval of length l can be organized into a quaternion
t = t0e0 + �t · �e with the metric and the symplectic forms

ds2 = g(·, ·) = l
1
2
trdtdt†, ωj(A, B) := g(A, ejB) = − l

4
trej(AB† − BA†),

ωj = g(·, ej ·) = − l

4
tr
(
dt ∧ dt†ej

)
. (100)

With respect to t 
→ t + ε the moment maps are μj = − l
4tr(t† − t)ej = ltj .

For q = (b−, b+) the metric is ds2 = 1
2trdqdq† = db†

−db− = db†
+db+. The

moment map with respect to q 
→ q eεe3 is μj = −1
4trqe3q

†ej .

Coordinates on Taub-NUT are either b+, b− or �t, 2lt0 = τ ∼ τ + 4π. The
instanton moduli are �T1, θ1 = (2l − 4λ)TL

0 (or B+, B−) and �T2, θ2 = 4λTM
0 .

The relative coordinates are �z1 = �t − �T1, �z2 = �t − �T2, and the relative posi-
tion is �y = �T2 − �T1 = �z1 − �z2.

We also collect the bifundamental data as

b− =

(
b†
01

−b10

)

, b+ =

(
b†
10

b01

)

, B− =

(
B†

10

−B01

)

, B+ =

(
B†

01

B10

)

, (101)
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and the fundamental data as

Q− =

(
J†

L

IL

)

, Q+ =

(
J†

R

IR

)

. (102)

A.2 Vanishing moment map conditions

For the Taub-NUT

d

ds
\t + Vec

{

δ

(

s +
l

2

)

b−b†
− + δ

(

s − l

2

)

b+b†
+

}

= 0, (103)

and for the instanton Bow data

[ d

ds
+ iT0, \T

]
+ Vec

{

\T\T + δ

(

s +
l

2

)

B−B†
− + δ

(

s − l

2

)

B+B†
+

+ δ(s + λ)Q−Q†
− + δ(s − λ)Q+Q†

+

}

= 0. (104)

These imply that �T is constant on each interval and equals �T1 for |s| > λ

and �T2 for |s| < λ. The conditions at s = l/2,−l/2, λ, −λ are respectively

T1 + \T 1 = B+B†
+, T1 − \T 1 = B−B†

−, y + \y = Q+Q†
+, y − \y = Q−Q†

−.

(105)

A.3 The Weyl equation

( d

ds
− \z1,2

)
ψ(s) = 0, (106)

ψ(λ+) − ψ(λ−) = −Q+χR, ψ(l/2) = (−b−, B+)v, (107)

ψ(−λ+) − ψ(−λ−) = −Q−χL, ψ(−l/2) = −(B−,−b+)v. (108)
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A.4 Solution of the Weyl equation

v =
1
P

(
−ei τ

4 B†
−μ−

e−i τ
4 B†

+μ+

)

,

(
χR

χL

)

=

(
Q†

+e−λ\z2

Q†
− eλ\z2

)

Υ, (109)

ψ(s) =

⎧
⎪⎪⎨

⎪⎪⎩

e−i τ
4 e(s− l

2)\z1μ− for λ < s < l/2,

es\z2Π for −λ < s < λ,

ei τ
4 e(s+ l

2)\z1μ+ for −l/2 < s < −λ.

(110)

Here

2g = 2
(
y cosh 2λz2 − �y · �z2

z2
sinh 2λz2

)
, P =

√
(T1 + t)2 − z2

1 , (111)

μ± =

√
T1 + t + P

2
±
√

T1 + t − P
2

\z1
z1

, (112)

and

Υ =
1
2g

{
ei τ

4 eλ\z2e\z1dμ+ − e−i τ
4 e−λ\z2e−\z1dμ−

}
, (113)

Π =
1
2g

(
ei τ

4 e−λ\z2(y + \y)e\z1dμ+ + e−i τ
4 eλ\z2(y − \y)e−\z1dμ−

)
. (114)
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