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Abstract

The problem of quantizing a symplectic manifold (M,w) can be for-
mulated in terms of the A-model of a complexification of M. This leads
to an interesting new perspective on quantization. From this point of
view, the Hilbert space obtained by quantization of (M,w) is the space
of (Bec, B') strings, where B.. and B’ are two A-branes; B’ is an ordinary
Lagrangian A-brane, and B is a space-filling coisotropic A-brane. B’ is
supported on M, and the choice of w is encoded in the choice of B... As
an example, we describe from this point of view the representations of the
group SL(2,R). Another application is to Chern—Simons gauge theory.
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1 Introduction
1.1 The Problem

According to textbooks, the passage from classical mechanics to quantum
mechanics is made by replacing Poisson brackets with commutators. How-
ever, this is an unrealistically simple description of the situation, even for
a basic example such as the classical phase space R?, with canonically con-
jugate variables x and p. One can associate a quantum operator Oy to a
classical function f(x,p), but not in a completely unique way, because of
what textbooks call the operator ordering problem. Regardless of how one
defines Oy, the map from classical functions f to quantum operators O;
does not map Poisson brackets to commutators. Only if one restricts one-
self to functions that are at most quadratic in x and p does one have the
simple relation

[Of, Og] = —ihO{ﬁg}. (1.1)

The notion of a function being at most quadratic in « and p is not invari-
ant under canonical transformations. Quantizations of R? with different
choices of what one means by linear or quadratic functions are not the
same. Omne cannot conjugate one such quantization to another by a uni-
tary map between the two Hilbert spaces that transforms the operators Oy
constructed in one quantization to their counterparts ) ¢ in another quan-
tization. The order A2 corrections to (1.1) are simply different in the two
quantizations.

The fact that quantization is ambiguous locally also means that it is
not clear how to carry out quantization globally. Suppose that M is a
2n-dimensional classical phase space that we wish to quantize. (And sup-
pose that we are given on M an additional structure known as a pre-
quantum line bundle [1,2]; this will enter our story shortly.) Even if one
can locally identify M with R?", this does not automatically tell us how
to quantize M, even locally, since the quantization of R?" is not unique,
as we have just explained. If we make random local choices in quantiz-
ing M, we cannot expect them to fit together to a sensible global quan-
tization. There is also no good framework for trying to fit the pieces
together, because there is no general notion of restricting a quantization
of M to a quantization of an open subset of M, which would be a prereg-
uisite for trying to quantize M by gluing together quantizations of open
subsets.
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One cannot expect to be able to quantize M without some additional
structure beyond its classical symplectic structure (and prequantum line
bundle). There is no known general recipe for what this additional structure
should be. As a result, there is no general theory of quantization of classical
phase spaces.

In practice, quantization is a somewhat informal notion, which refers to
a collection of loosely related procedures. The most important example in
which we know what quantization should mean is R?” with a given choice of
affine structure, that is, a choice of what one means by linear functions. This
can be quantized in a way that requires no further choices. (In the usual pro-
cedure, one splits the linear functions into coordinates and momenta, which
are then taken to act by multiplication and differentiation, respectively.
The resulting Hilbert space admits a natural action of the symplectic group
Sp(2n,R) or rather its double cover, and thus does not really depend on the
splitting between coordinates and momenta.) Another important example
is a cotangent bundle M = T*U (with the standard symplectic structure),
which can be quantized in a natural way in terms of half-densities on U;
similarly, there is a natural procedure for quantization of Kahler manifolds
by taking holomorphic sections of the appropriate line bundle. Finally, if
one knows how to quantize M, and G is a group that acts on M, then (under
some mild restrictions) one can define a quantization of the symplectic quo-
tient M //G by taking the G-invariant part of the quantization of M. There
are various ways to combine the procedures just mentioned.

There is no guarantee that the different procedures are equivalent. If
M is a cotangent bundle or a Kahler manifold in more than one way or a
symplectic quotient of one of these in more than one way, or can be realized
by more than one of these constructions, there is no assurance that the
different procedures lead to equivalent quantizations.

1.2 Quantization via branes

In this paper, we offer a new perspective on quantization, based on two-
dimensional sigma models. The goal is to get closer to a systematic theory
of quantization. However, it is not clear to what extent our perspective
helps in computing new formulas.

Our procedure is as follows. We start with a symplectic manifold M, with
symplectic form w, that we wish to quantize. As in geometric quantization
[1,2], we assume that M is endowed with a prequantum line bundle £; this
is a complex line bundle £ — M with a unitary connection of curvature w.
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For our purposes, saying that Y is a complexification of M simply means
that (1) Y is a complex manifold with an antiholomorphic involution!
7:Y =Y, such that M is a component of the fixed point set of 7; (2)
the symplectic form w of M is the restriction to M of a nondegenerate holo-
morphic two-form Q on Y, such that 7Q = Q; (3) the unitary line bundle
L — M can be extended to a unitary line bundle £ — Y with a connection
of curvature Re (2, and moreover the action of 7 on Y lifts to an action on
L, restricting to the identity on M. These data are regarded as part of the
definition of Y.

The case of most interest in the present paper is the case that Y is an
affine variety, which roughly means that it admits plenty of holomorphic
functions. More precisely, an affine variety is defined by a finite set of poly-
nomial equations for a finite set of complex variables x1, ..., x5, as opposed
to a more general algebraic variety which is obtained by gluing together
pieces that are each affine varieties. Our approach to quantization will be
based on the A-model associated with the real symplectic form wy = Im ).
So we need a further condition on Y, which ensures that this theory has
a good A-model. A good A-model is one in which the relevant correlation
functions and other observables are complex-valued, rather than being func-
tions of a formal deformation parameter. (For example, the most familiar
A-model observables are obtained from sums over worldsheet instantons of
different degrees. Having a good A-model means that such sums are not just
formal power series but converge to complex-valued functions.) Y will have a
good A-model if the supersymmetric sigma-model with target Y, which can
be twisted to give the A-model, is well-behaved quantum mechanically; this
in turn should be true if Y admits a complete hyper-Kahler metric, com-
patible with its complex symplectic structure. For instance, the example
considered below and in more detail in Section 3 corresponds to the Eguchi—
Hansen manifold, which is a complete hyper-Kahler manifold. Having a
good A-model should imply that deformation quantization of ¥ (which is
part of the A-model, as we discuss below) gives an actual deformation of the
ring of holomorphic functions on Y, with a complex deformation parameter;
a bad A-model merely leads to a formal deformation over a ring of formal
power series.

We require an actual deformation of the ring of functions, not just a
formal one, for our approach to quantization to make sense. Interestingly,
the conditions [3] under which deformation quantization of an affine variety
gives an actual deformation of the ring of functions on Y are very similar
to the conditions for Y to admit a complete hyper-Kahler metric along the
lines of the complete Calabi-Yau metrics constructed in [4].

! An involution is simply a symmetry whose square is the identity.
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The most familiar A-branes are Lagrangian A-branes, supported on a
Lagrangian submanifold of Y; such a submanifold is of middle dimension.
In general [5], however, the A-model can also admit A-branes whose support
has a dimension greater than one-half the dimension of Y. The support
of such a brane is a coisotropic submanifold of Y with certain somewhat
special properties. In particular, the choice of the line bundle £ — M with
curvature Re () determines, in the language of [6], a canonical coisotropic
brane in the A-model of Y. Its support is all of Y and it will be one of the
main ingredients in the present paper.

Suggestions that the A-model is related to deformation quantization
(whose relation to quantization is discussed in Section 1.4) go back to [7]
and [8] and have been extended and made more precise in [9, 10], partly
in the framework of generalized complex geometry [11,12]. The canonical
coisotropic A-brane was used in [6] to elucidate some of these matters. For
a related approach to the A-model, see [13].

We will also make use of ordinary Lagrangian A-branes. M itself is a
Lagrangian submanifold, so (if M obeys a mild topological condition) we
can define a rank 1 A-brane supported on M. Let us pick such a brane
(there are inequivalent choices if M is not simply connected) and call it B'.
In this paper, we write Bc. for the canonical coisotropic A-brane, B’ for a
Lagrangian A-brane, and B for an A-brane of unspecified type.

Quantization of M is now achieved by declaring that the Hilbert space
associated to M is the space H of (B, B') strings. This definition certainly
gives a vector space associated to the choice of A-brane B’. That the explicit
construction of this vector space is similar to quantization was originally
shown by Aldi and Zaslow in examples [14], and will be further discussed in
Section 2.

To justify calling this process quantization, we need more structure. For
one thing, we want to associate to B’ not just a vector space but a Hilbert
space. It is unusual to get a Hilbert space structure in the topological
A-model, but in the present context, as explained in Section 2.4, H can be
given a hermitian metric by making use of the antiholomorphic involution
7. The space H, with its hermitian metric, depends only on the choices of
Y, £, and B, and not on any additional data (such as a metric on Y') that is
used in defining the A-model. We do not have a general proof that the her-
mitian metric on H is positive definite, though this is true near the classical
limit. (A generalization of the construction, involving an antiholomorphic
involution that maps M to itself but does not leave M fixed pointwise, leads
to a hermitian metric on H that is not positive-definite near the classical
limit.)
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If our procedure is reasonably to be called quantization, we also want
to have a natural way to quantize a large class of functions on M, that
is to realize them as operators on H. The functions on M that can be
naturally quantized, in our approach, are the functions that are restrictions
of holomorphic functions on Y that have a suitable behavior at infinity. The
details of what is suitable behavior at infinity are tied to the question of
what spaces have good A-models. However, for Y an affine variety (defined
by a finite set of polynomial equations for a finite set of complex variables
Z1,...,Ts), a reasonable condition is to allow only functions of polynomial
growth (that is, polynomials in the x;). This gives a very large class of
holomorphic functions on such a variety, and it is for this class of functions
that (under certain restrictions on Y') deformation quantization gives an
actual rather than formal deformation. So this is the right class of functions
to consider. For reasonable M C Y, the restrictions of these functions are
dense in the space of smooth functions on M, and our procedure leads to
quantization in the sense of constructing a Hilbert space H with a map from
a large class of functions on M to operators on H. At the opposite extreme,
if Y is compact, the definition of the Hilbert space H still makes sense, but
we get no operators acting on this Hilbert space; one might not want to call
this quantization.

To make this discussion a little more concrete, we will consider an example
(which will be explored more fully in Section 3). Let M = S? be a two-
sphere, and let w be a symplectic form on M with | yw=2mn,necz We
expect quantization to give a Hilbert space H of dimension n. The infinite-
dimensional group Adiff S? of area-preserving diffeomorphisms of S? acts on
the classical phase space (M,w). The group that acts on H is U(n). There
is no natural way to map Adiff S? to U(n), so any approach to quantization
will involve some arbitrary choices.

One standard approach in this problem (which in geometric quantiza-
tion [1,2] is known as picking a complex polarization) is to pick a complex
structure J on S?, such that w is of type (1,1). The subgroup of Adiff 52
that preserves J is at most SO(3), and it is convenient to pick J so that
this subgroup is actually SO(3). If so, with some choice of coordinates, the
Kahler metric on S? is a multiple of the round metric on the two-sphere
z? +y? + 22 = 1. Quantization is now straightforward: one defines H to be
H°(S2, L), the space of holomorphic sections of £ in complex structure .J.
Since the procedure of quantization was SO(3)-invariant, the group SU(2)
(the universal cover of SO(3)) acts naturally on H, as does its Lie alge-
bra. The functions x,y, and z generate via Poisson brackets the action
of this Lie algebra, so in this approach to quantization, these functions
naturally map to quantum operators. One can then in a fairly natural
way take polynomial functions in z,y, and z to act on H by mapping a
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monomial %°z¢ to the corresponding symmetrized polynomial in the so(3)
generators.

Clearly, we could have embedded SO(3) in Adiff S? in many (conjugate)
ways, so this approach to quantization depends on an arbitrary choice. Now
let us discuss how one would quantize the same example in our approach.
We are supposed to pick a suitable complexification Y of S?. We do this by
again picking coordinates in which S? is defined by the equation

2 y? 22 =1, (1.2)

and we introduce Y by simply regarding x,y, and z as complex variables.
Thus Y is an affine variety; it admits a complete hyper-Kahler metric (the
Eguchi-Hansen metric), so we expect it to have a good A-model (the relevant
deformation of the ring of functions on Y is explicitly described in Section
3.1, and involves a complex parameter, not a formal variable). The allowed
holomorphic functions are polynomials in x,y, and z subject to the relation
(1.2). On 'Y, there is a holomorphic two-form 2 which restricts on M to the
properly normalized symplectic form w; it is simply 2 = ndxz A dy/2z. The
holomorphic functions on Y with polynomial growth at infinity are simply
the polynomials in z,y, and z, so the functions that we can quantize are
those polynomials, just as in the previous and more standard approach. In
the standard approach, the special role of z,y, and z is that they generate
via Poisson brackets symmetries of the complex structure that is used in
quantization. In our approach, what is special about x,y, and z is that they
generate the ring of holomorphic functions on Y with polynomial growth at
infinity.

It is illuminating to consider an alternative complexification of S? that
does not work well. We can define the two sphere by the equation? z* + §* +
z4 = 1, for real variables Z, §, Z, so one can define a complexification Y of 52
by letting z, 9, and Z be complex variables obeying the same equation. But
deformation quantization of YV is only a formal procedure according to [3],
and the construction of [4] does not endow Y with a complete Calabi-Yau
metric. Rather, Y admits an incomplete Calabi—Yau metric, which can be
compactified to give a K3 surface. We expect that to give Y a good A-model,
one must compactify it and consider the A-model of the K3-surface; then
there are no holomorphic functions and no natural interpretation in terms
of quantization.

2To show that this equation defines a two sphere, observe that if Z, §j, and # are real num-
bers obeying ! + 7% 4+ 2 = 1, there is a unique positive ¢ such that (z,v,2) = t(&, 7, %)
obey z2 + 3% + 22 = 1. This map gives an isomorphism between the space of solutions of
z? + y? + 2% = 1 and the space of solutions of #* + §* + 2* = 1.
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1.3 Comparison to geometric quantization

Here and in Section 1.4, we will compare our approach to some standard
approaches to quantization.

In geometric quantization [1,2], the first step, given (M,w), is to pick
a prequantum line bundle £ — M, that is, a unitary line bundle with a
connection of curvature w. This is also an initial step in our approach, as
explained above, and probably (explicitly or implicitly) in any approach
to quantization. The second step is then to pick a polarization (typical
examples being a realization of M as a cotangent bundle T*U for some U,
or a choice of Kahler structure on M), after which quantization is carried
out via half-densities on U or holomorphic sections of £ ® K'/2 — M (K1/?
is a square root of the canonical bundle of M).

This second step has some drawbacks. A global polarization may not
exist, even for phase spaces that should be quantizable. Moreover, if a
polarization exists, there are many possible polarizations. It is not clear
when quantization carried out with two different polarizations gives equiv-
alent results.

Our approach has analogous drawbacks. Given (M,w), it is not clear
whether a suitable Y exists, or whether different choices of Y will give
equivalent results. (We do not know of any examples in which this is the
case.) Our approach is therefore particularly useful if there is a natural
Y (or at least a natural class of Y’s with some special relationship), while
geometric quantization is particularly useful if there is a natural polarization.

The problem of when geometric quantization with two different polar-
izations gives equivalent results is vexing. The most important example is
quantization of R?". Once one picks an affine structure on R?" (a notion of
what one means by linear functions), a polarization can be picked by choos-
ing a maximal Poisson-commuting set of linear functions ¢',...,¢", which
we declare to be the coordinates (as opposed to the momenta). Quantiza-
tion is then carried out by introducing a Hilbert space of functions (actually
half-densities) ¥ (¢, ..., q"). We may call a choice of this kind a linear polar-
ization. It is a classic result that quantizations with different linear polar-
izations (compatible with the same affine structure) are equivalent. The
usual proof uses the action of the symplectic group Sp(2n,R) (or rather
its double cover), generated by quadratic functions of the coordinates and
momenta.

This fundamental example has others as corollaries. For G a subgroup
of the symplectic group, consider the quantization of the symplectic quotient
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M = R?"//G. Any G-invariant polarization of R?" descends to a polarization
of M, and geometric quantization of M with two polarizations that descend
from G-invariant linear polarizations of R?" will be equivalent. This state-
ment, which follows from the equivalence of linear polarizations of R?", also
has an analog for n = oo in the case of Chern—Simons gauge theory [15].

An example of a well-motivated procedure of quantization that is awkward
to describe in geometric quantization is the case that M = R*"//G is the
symplectic quotient of R?" (or some other space that can be quantized by
geometric quantization) by a subgroup G C Sp(2n,R) such that there is no
G-invariant polarization of R?". It is natural to define quantization of M by
taking the G-invariant part of the quantization of R?", but this definition
is not related in any obvious way to what one can get from a polarization
of M.

In our approach to quantization via branes, near the semiclassical limit,
one may define the A-model of Y by picking a suitable metric on Y. This is
the analog of a polarization in our approach. One illuminating and impor-
tant case is that the metric on Y is a complete hyper-Kahler metric and M
is a complex submanifold in one of the complex structures, which we will call
J. We will say that a metric of this kind gives a hyper-Kahler polarization
of the pair (Y, M). In this case, J defines a complex polarization of M in the
sense of geometric quantization, and the vector space H that is defined in
our procedure (but not in general its hermitian inner product) agrees with
what one would naturally define in geometric quantization, as we explain in
Section 2.3.

The main advantage of our approach may be that the question of what
can be varied without changing the quantization is perhaps clearer than it is
in geometric quantization. As we have stressed, our answer to the question
“Upon what additional data does a quantization of (M,w) depends?” is
“It depends on the choice of the complexification Y with antiholomorphic
involution 7, holomorphic two-form €2 and line bundle L.”

The fact that different linear polarizations of R?" lead to equivalent quan-
tizations is a special case of our statement. Given R?" with real-valued lin-
ear coordinates 2!, ..., 2%" and symplectic structure w = Yic j wijd:ni A da?,
we define Y, Q2 without breaking the Sp(2n,R) symmetry by complexifying
the z¢ and setting Q = ZKJ- wijdz’ A dx?. We define 7 to act by 2 — z'.
Since Y is contractible, £ exists and is unique up to isomorphism, so in
our approach, quantization of R?” endowed with an affine structure is nat-
ural. The group Sp(2n,R) of symmetries of the structure (and in fact, its
inhomogeneous extension to include additive shifts of the coordinates) must
therefore act, at least projectively.
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1.4 Comparison to deformation quantization

Deformation quantization [16] is another matter. Unlike quantization, defor-
mation quantization is a systematic procedure. Starting with a symplectic
manifold M — or more generally, any Poisson manifold — deformation
quantization produces a deformation of the ring of functions on M, depend-
ing on a formal parameter A. This can be done in a way that, up to a
natural automorphism, does not depend on any auxiliary choice (such as
the choices that are needed in quantization). The theory of deformation
quantization has led to beautiful results [17] that can be expressed in terms
of two-dimensional quantum field theory [18], somewhat like our approach
to quantization.

Since deformation quantization is a formal procedure, it makes sense for
complex manifolds. In other words, if Y is a complex symplectic manifold
(such as an affine variety) that admits many holomorphic functions, one
can apply deformation quantization to deform the ring of holomorphic func-
tions on Y to an associative but noncommutative algebra [3]. Deformation
quantization of the ring of holomorphic functions on Y requires no arbitrary
choices (beyond the structure of Y as a complex symplectic manifold) but
quantization does.

However, deformation quantization is not quantization. Generically, it
leads to a deformation over a ring of formal power series (in the formal
variable %), not a deformation with a complex parameter. It does not lead
to a natural Hilbert space 7 on which the deformed algebra acts. In our
earlier example of quantizing a two-sphere whose area is 2mn, quantum
mechanics requires that n (which becomes the dimension of H) should be
an integer, while in deformation quantization, i = 1/n is treated as a formal
variable and there is no special behavior when 2! is an integer.

Generally speaking, physics is based on quantization, rather than defor-
mation quantization, although conventional quantization sometimes leads to
problems that can be treated by deformation quantization. For a well-known
example, see [19]. Our approach to quantization does have a relationship
to deformation quantization. The relation is that deformation quantiza-
tion of Y produces an algebra that then acts in the quantization of a real
symplectic submanifold M C Y. (See [20-22] for a similar perspective in
the context of representation theory.) This will be explained in the next
subsection.

As already noted, in our framework, the existence of a good A-model for
Y is supposed to ensure that deformation quantization of Y produces an
actual deformation of the algebra of holomorphic functions, depending on a
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complex parameter £ (or 1/n), not just a formal deformation depending on
a formal parameter .

1.5 The inverse problem

In describing our approach to quantization, we followed tradition and began
with a symplectic manifold (M, w) that one wishes to quantize. The solution
to the problem involves picking a suitable complexification (Y, ).

There is an alternative approach in which the starting point is a complex
symplectic manifold (Y, €2), together with a unitary line bundle £ — Y of
curvature Re ). The following discussion is most interesting if Y has plenty
of holomorphic functions. This is so if Y is an affine variety, such as the
variety a2 + 4% + 22 =1 that featured in the example that we discussed
previously.

Then one considers the A-model of Y in symplectic structure wy = Im 2.
The choice of £ enables us, following [5] and [6], to define a coisotropic
A-brane B, whose support is all of Y. For any A-brane B, the space
of (B,B) strings is a Z-graded associative algebra. In the present case,
additively, the space of (Bec, Bec) strings is just the space of holomorphic
functions on the complex manifold Y. However, in the A-model, the com-
mutative ring of holomorphic functions is deformed. The first-order defor-
mation is by the Poisson bracket, and the higher order corrections (which
can be computed in sigma-model perturbation theory, somewhat as in [18])
are controlled by associativity. Thus the space of (Bec, Bec) strings is an
associative but noncommutative algebra A that we can think of as aris-
ing from deformation quantization of Y. As we have stressed, if Y has
a good A-model, this deformation involves an actual complex parameter,
not a formal one. Moreover, if Y admits a good A-model, its symmetries
that preserve a coisotropic A-brane B.. will act on A as automorphisms.
In our approach, these are precisely the symplectomorphisms of the com-
plex symplectic manifold (Y, ). This is closely related to what one finds in
deformation quantization of Y when it produces an actual deformation of
the algebra of holomorphic functions, not just a formal deformation (see [23]
for a detailed discussion of the affine space).

If we are interested in quantization, as opposed to deformation quantiza-
tion, we need something smaller that A acts on. For this, we note first that
if B is any other A-brane, then by general principles A acts on the space
of (Bee, B) strings. Now, pick B to be a conventional Lagrangian A-brane,
supported on a Lagrangian submanifold M C Y. We denote this brane as
B'. Then the space H of (Bec,B’) strings admits a natural action of the
algebra A.
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Now suppose further that M has been chosen so that Re {2 remains non-
degenerate when restricted to M. Analysis of the (B, B') strings, as first
considered in examples in [14], relates H to quantization of M with symplec-
tic structure Re 2. But how can we get in this framework a hermitian inner
product — usually understood as one of the main points of quantization?
For this, we need one more piece of data: an antiholomorphic involution
7:Y — Y that obeys 7Q = Q, maps M to itself, and lifts to an action on
L. With the help of 7 (and more standard ingredients, such as CPT sym-
metry), one can define a hermitian inner product on #, with the property
that holomorphic functions on Y that obey 7(f) = f act on H as hermitian
operators. Near the classical limit, the hermitian inner product is positive
definite if and only if 7 leaves M fixed pointwise.

A noteworthy point here is that the algebra A only depends on the input
data Y, 2, £, and not on 7. If 7 does not exist (or M is not a component of
the fixed point set of any 7), then everything that we have said goes through,
except that H is not endowed with a natural hermitian metric.

Alternatively, Y may admit several different antiholomorphic involutions,
say 7 and 7. Let M and M’ be components of the fixed points sets of 7 and
7' (and suppose that Re (2 is nondegenerate when restricted to either one).
Then we can quantize either M or M’ by the above procedure, giving Hilbert
spaces H and H’. The same algebra A will act in either case. Functions
that are real when restricted to M will be hermitian as operators on H, and
functions that are real when restricted to M’ will be hermitian as operators

on H'.

There are far more choices if we are not interested in a hermitian metric.
Then M can be the support of any rank 1 A-brane, and the same algebra
A acts on the space H that we obtain by quantizing M, regardless of what
M we pick.

The A-model
So far we have emphasized two points of view about this subject.

In the first approach, the starting point is the real symplectic manifold
(M,w) that we wish to quantize. The problem is solved by complexifying
M to a complex symplectic manifold (Y, ) that has a good A-model for
symplectic structure wy = Im €.

In the second approach, the starting point is the complex symplectic
manifold (Y, ). Picking a suitable coisotropic brane B, assumed to be an
A-brane with respect to wy = Im 2, we deform the algebra of holomorphic
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functions on Y to a noncommutative algebra A. Then picking another
A-brane, we get a module for A.

A third approach, and the most natural one from the point of view of two-
dimensional topological quantum field theory, is to emphasize the A-model
of Y, regarded as a real symplectic manifold with symplectic structure wy .
There may be many inequivalent choices of space-filling coisotropic A-brane
Bee on Y — corresponding to different choices of a complex structure I on
Y for which there is a holomorphic two-form €2 with wy = Im . For each
choice of such a brane B.., we get a noncommutative algebra A that acts on
the space of (Bee, B') strings, for any other A-brane B'. If M is the support
of B, the space of (B, B') strings gives a quantization of M whenever Re Q2
is nondegenerate when restricted to M. Thus, the same A-model can lead
to quantization of M in different symplectic structures.

1.6 Organization of this paper

In Section 2, we will describe in more detail our A-model approach to quan-
tization.

Section 3 is devoted primarily to analyzing in more depth the example
related to M = S2. This example is surprisingly rich and related to repre-
sentation theory of SL(2,R) as well as SU(2). In this paper, we consider
primarily the case of those groups, but actually, as we explain at the end of
Section 3, the example has a generalization in which M is a coadjoint orbit of
a semi-simple real Lie group of higher rank, and Y is the corresponding orbit
of its complexification. This leads to a perspective on the representations of
semi-simple real Lie groups, similar to that of Brylinski [20-22].

Finally, in Section 4, we discuss from the present point of view one
of the few known examples in which the subtleties of quantization are
actually important for quantum field theory. This is three-dimensional
Chern—Simons gauge theory.

2 Basic construction
2.1 The A-model and the canonical coisotropic brane

We begin with a complex symplectic manifold Y, that is, a complex manifold
endowed with a nondegenerate holomorphic two-form 2. Though we will
not assume that Y has a hyper-Kahler structure, it is convenient to use a
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notation that is suggested by the hyper-Kahler case. We write I for the
complex structure of Y, and we denote the real and imaginary parts of ) as
wy and wi:

O =wy+iwg. (2.1)
Since Q is of type (2,0), we have I'Q = i), or
ItLUJ = —WK, ItwK =Wwj. (2.2)

(We regard I as a linear transformation of tangent vectors; I' is the transpose
map acting on one-forms. Q and I'Q) are maps from tangent vectors to one
forms.)

In this paper, we view Y as a real symplectic manifold with symplectic
structure wy = wg, and we study the associated A-model. The most familiar
branes of the A-model are Lagrangian branes, supported on a Lagrangian
submanifold that necessarily is of middle dimension. However [5], in general
it is also possible to have an A-brane supported on a coisotropic submanifold
Z C 'Y whose dimension exceeds half the dimension of Y. For our purposes,
we are interested in a rank 1 coisotropic A-brane whose support is simply
Z =Y. Like any rank 1 brane, such a brane is endowed with a unitary
line bundle £ with a connection whose curvature we call F'. The necessary
condition for such a brane to be an A-brane is that I = w;lF should square
to —1, in which case one can show that I is an integrable complex structure.

This is a rather special condition, but there is a simple way to obey it
that was important in [6] and will also be important in the present paper.
We simply set F' = wy, in which case w;,lF = wl}lw 7, which coincides with
I according to equation (2.2).

Thus, starting with the complex symplectic manifold (Y, 2), for any choice
of a unitary line bundle £ with a connection of curvature w; = Re {2, we get
an A-brane in the A-model of symplectic structure wy. We call this A-brane
the canonical coisotropic brane and denote it as Bec.

To make the A-model of symplectic form wy concrete, it is usual to intro-
duce an almost complex structure with respect to which wy is positive and
of type (1,1). This enables one to develop a theory of pseudoholomorphic
curves in Y, leading to an A-model that depends only on wy and not on
the chosen almost complex structure. There is no need for the almost com-
plex structure to be integrable. In the present case, since the symplectic
structure of the A-model is wy = wg, it is natural to write K for the almost
complex structure that is used to define the A-model.



1460 SERGEI GUKOV AND EDWARD WITTEN

To write the sigma-model action, one also uses the associated metric
g = —wg K. Furthermore, it is always possible to pick K so that IK = — K1,
implying that J = K1 is also an almost complex structure. J will be useful
in the quantization.

We stress that we make no assumption that J and K are integrable. A
K with the stated properties (wk is of type (1,1), and IK = — K1) always
exists, and moreover the space of choices for K is contractible. To see
this, let Y be of real dimension 4n. Let Sp(2n) be the compact form
of the symplectic group acting on C?", and Sp(2n)c its complexification.
The choice of I, reduces the structure group of Y from GL(4n,R) to
Sp(2n)c. The further choice of K reduces this group to Sp(2n). (We have
Sp(2n) = U(2n) N Sp(2n)c, where U(2n) is the subgroup of GL(4n,R) that
commutes with K.) As the quotient space Sp(2n)c/Sp(2n) is contractible,
a global choice of K can be made, and there is no topology in the choice
of K.

Though J and K need not be integrable, certainly the nicest case is
that Y admits a complete hyper-Kahler metric in which the three com-
plex structures are I, J, and K and the metric is ¢ = —wg K. (We call
this a hyper-Kahler polarization.) In general, we cannot assume this, but
many standard facts about the hyper-Kahler case are true in greater gen-
erality. For instance, it follows from IK = — KT that wy is of type (2,0) ®
(0,2) with respect to K. Indeed, the fact that wg is of type (1,1) with
respect to K can be written Klwx K = wg, which by (2.2) is the same
as —K'I'wjK! = wg, or I'K'w;K = wg. With I? = —1 and using (2.2)
again, this is K'w;K = —w;, which is equivalent to saying that w; is of
type (2,0) @ (0,2) with respect to K. It now follows from J = KT that wy
is of type (1, 1) with respect to J. (We have Jlw;J = I'K'w;KI = wy, since
wy is of type (2,0) @ (0,2) with respect to both I and K.)

The relation between J and K is completely symmetrical; instead of
beginning with K, and then defining J, we could have begun by introduc-
ing an almost complex structure .J, constrained so that IJ = —JI and wjy
is of type (1,1) with respect to J. The same argument as above would
show existence of J, and then we could define K = IJ, arriving at the
same picture. As an example of this viewpoint, suppose we are given
a middle-dimensional submanifold M C Y such that w; is nondegenerate
along M, and such that the tangent space TY to Y, when restricted to
M, has a decomposition TY = TM @& I(TM), where TM is the tangent
space to M. Then we can constrain J along M so as to preserve the
decomposition TY =TM @© I(T'M); we simply define J on T'M by pick-
ing an almost complex structure on M such that wy is of type (1,1), and
then define J on I(T'M) to ensure IJ = —JI. Having defined J along M,
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there is no topological obstruction to extending it over Y, again because
Sp(2n)c/Sp(2n) is contractible.

2.2 Space of (Bcc, Bcc) Strings

Our next problem is to identify the algebra A of (Bec, Bec) strings.

First we describe the space of (Bcc, Bec) strings additively. The space of
(Bce, Bee) strings in the A-model is the same as the space of operators that
can be inserted in the A-model on a boundary of a string world-sheet X that
ends on the brane B... So let us determine this.

We write X for the bosonic fields in the sigma-model with target Y, and
_, P4 for left- and right-moving fermionic fields. A boundary operator
must be invariant under the supersymmetry (or BRST) symmetry of the
A-model. The general A-model transformation law of X is

0X = (1 —iK)yq + (1 +iK)y—. (2.3)

Here we use an arbitrary almost complex structure K (relative to which
wg is of type (1,1) and positive) in defining the A-model of symplectic
structure wg. A simple type of local operator is an operator f(X) derived
from a complex-valued function f:Y — C. For such an operator, inserted
at an interior point of ¥, to be invariant under (2.3), f must be constant.

However, we are interested in boundary operators, rather than bulk oper-
ators, and for this we must consider the boundary condition obeyed by the
fermions. For a general space-filling rank 1 brane, this boundary condition is

Yy =(g—F) g+ F)y_. (2.4)

In the present case, with F' =w;, we have (g — F)"'(g+ F)=J. So
for boundary operators, (2.3) collapses to 60X = ((1 —i¢K)J + (1 +iK)) ¢,
which is equivalent to

§X = (1+iD)(1+ J)y_. (2.5)

If we decompose 6.X as §70X + §%1 X, where the two parts of the variation
are of type (1,0) and type (0, 1) with respect to I, then

50X =0

Sy, (2.6)
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where p = (1 +4l)(1+ J)y—. Clearly, since the square of the topological
symmetry of the A-model vanishes, (2.6) implies that

5p=0. (2.7)

From (2.6), we see that for a string ending on the canonical coisotropic
brane, a boundary operator f(X) preserves the topological symmetry of
the A-model if and only if the function f is holomorphic in complex struc-
ture I. More generally, all boundary observables of the A-model can be
constructed from X and p, which have dimension 0, since other fields have
strictly positive dimension or vanish at the boundary. If we pick local com-
plex coordinates on Y corresponding to fields X ¢ then a general operator
of gth order in p takes the form p'p® .. .piLIf;ng__;q (X, X) and has charge
g under the ghost number symmetry of the A-model. By interpreting 0
as dX', we can interpret such an operator as a (0, ¢)-form on Y. Then it
follows from (2.6) and (2.7) that the topological supercharge of the A-model
corresponds to the d operator of Y.

So the observables of the A-model correspond additively to the graded
vector space Hg’*(Y) (where Y is viewed as a complex manifold with com-
plex structure I). For our purposes in this paper, we are mainly interested
in the ghost number zero part of the ring of observables. Additively, this
corresponds simply to the holomorphic functions on Y. However, the mul-
tiplicative structure is different. Classically, the holomorphic functions on
Y generate a commutative ring, but in the A-model, in the special case of a
brane of type Bec, this ring is deformed to a noncommutative ring that we
call A. The deformation corresponds to deformation quantization using the
Poisson brackets derived from the holomorphic symplectic two-form 2. One
explanation of how this deformation comes about is given in Section 11.1

of [6].

2.3 Lagrangian brane and quantization

So far, we have obtained an algebra A of (Bec, Bec) strings. Now we want to
find something (other than itself) that A can act on. The immediate answer
is to introduce a second A-brane B’. Then A acts naturally on the space of
(Bec, B') strings (Figure 1).

For this paper, we will consider B’ to be an A-brane of the simplest
possible kind: a Lagrangian A-brane of rank 1. Thus, B’ is supported on
a Lagrangian submanifold M and endowed with, roughly speaking, a flat
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Figure 1: An open string with (B, B’) boundary conditions.

line bundle £’. The natural objects of study in what follows are branes, and
it is important to bear in mind some subtleties about the relation between
Lagrangian submanifolds and branes. First, because of disc instanton effects,
not every pair (M, L’) defines an A-brane. Second, in the absence of such
effects, if two pairs (M, L") and (M’, £) differ by Hamiltonian isotopy, then
the associated A-branes are equivalent. Finally, the interpretation of £’ as
a flat line bundle is oversimplified, because of the relation of branes to K-
theory and the role of the B-field. Each of these effects will play some role
later.

To relate branes to quantization, we will impose a condition on M that
has no analog in the usual theory of the A-model. We assume that wy is
nondegenerate when restricted to M. This is a mild condition in the sense
that, acting on the tangent space to a given point in Y, w; is nondegenerate
when restricted to a generic even-dimensional plane. Hence if the condition
is true for a submanifold M, it is true for any sufficiently nearby submanifold.
(The opposite case that wy is zero when restricted to M was investigated in
Section 11 of [6], and leads to D-modules. We return to this in Section 3.9.)

If wy is nondegenerate when restricted to M, then the pair (M,wy) is
a symplectic manifold, and this is the symplectic manifold that we will
quantize.

As explained in Section 2.1, to define the A-model, we pick an almost
complex structure K, with respect to which wg is of type (1,1), and such
that I, K, and J = K1 obey the algebra of quaternions. Once M is given,
it is convenient to further constrain K such that the tangent bundle T'M is
J-invariant. (That one can do so was explained at the end of Section 2.1.)

We now want to show that quantization of (B, B') strings leads to quan-
tization of the symplectic manifold (M,wy). To see this, we describe the
sigma-model on a Riemann surface ., as in section 2.2, by bosonic fields X
that describe the sigma-model map ¢ : ¥ — Y, and left and right-moving
fermionic fields ¥_ and ¥. In general, the boundary conditions for fermions
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at the end of an open string are ¢y = Ry _, for some matrix R. In the case
of a space-filling brane of rank 1, such as B,

R=(g9—F)"'(g+F). (2.8)

Here g is the metric of Y and F' is the curvature of the Chan—Paton line
bundle. For the brane B.., we have F = w; and R = J, so the boundary
condition is

RS (2.9)

For a Lagrangian brane, supported on a submanifold M, F' = 0 but this
does not mean that R = 1. Rather, the boundary condition is

Ve =Ry, (2.10)

where R : TY |y — TY|ar is a reflection that leaves fixed the tangent bundle
TM to M, and acts as —1 on the normal bundle to M (here TY |y is the
tangent bundle of Y restricted to M).

For our problem, we are principally interested in (B, B) strings, that is
strings that couple to B on the left and to B’ on the right. The boundary
conditions are thus

¥+(0)
Yy ()

Jb—(0)

Rib_ (), (2.11)

where 0 and 7 are the endpoints of the string. These boundary conditions
do not allow ¥ to be constant along the string. For example, if 1) is tangent
to M and also constant, the combination of the two boundary conditions
gives ¢ = Jab,, which since 1), is real and J? = —1 implies that ¢, = 0.
Similarly, if ¢ is normal to M and constant, we get ¥, = —Jv, again
implying that ¥, = 0.

Now let us discuss the bosonic fields X (o, 7), where o and 7 are the world-
sheet space and time coordinates. The bosonic fields do have zero modes,
because the boundary condition *dX = RdX is consistent with constant X;
likewise the classical equations of motion are obeyed if X is constant. The
usual zero mode structure of the bosonic string is X = x + p7 + ..., where
x is the zero mode, p is its canonical momentum, and ... are the nonzero
modes. Here, usually x is canonically conjugate to p. In the present case,
there is a constant x term, but there is no pr term in the expansion, because
as soon as X becomes T-dependent, the boundary condition *dX = RdX at
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o = 0 does not permit X to be independent of o. Usually, in sigma-model
perturbation theory, this effect can be treated perturbatively because R
is close to 1; but for a boundary associated with the brane B.., we have
R? = —1, so there is no way to expand around R = 1. The result is that the
p7 term is missing in the expansion, which reads

X=z+..., (2.12)

where the omitted terms are nonzero modes. The nonzero modes are, of
course, related by worldsheet supersymmetry to the nonzero modes of .
For a detailed explanation of this expansion in an example, see [14].

In the context of quantizing the (Be., B) strings, in addition to the bound-
ary condition at o = 0, there is also a boundary condition X (7) € M at the
other end. Because of this boundary condition, the zero modes in (2.12)
take values in M.

So it must be that the components of x are canonically conjugate to
each other. The reason that this happens is that the action of a string
ending on a brane with Chan—Paton connection A contains a boundary
term [y A, dX*. In the case of (Be,B’) strings, the Chan-Paton bundle
L' of the brane B’ is flat, while the Chan—Paton bundle of B, is the unitary
line bundle £ of curvature w;. We write A and A’ for the connections
on these two line bundles. Classically, the action for the zero modes is
Jdr(A, — Al)dz /dr, where the two terms come from the left and right
endpoints of the string. We define a line bundle N’ = £ ® (£')~! over M.
N is a unitary line bundle with a connection B = A — A’ of curvature w;.
The action for the zero modes is, in this approximation,

dxH
/Bu;dr (2.13)

Formally speaking, to quantize the zero modes with this action (which
actually has an important “quantum” correction that we will describe
shortly) amounts to quantizing M with prequantum line bundle N. Just
knowing this does not give any general solution to the problem of quan-
tization. All we learn is that, if the A-model of Y exists, then the space
of (Bee, B') strings can be understood as the result of quantizing M with
prequantum line bundle N. If the A-model exists, and the two boundary
conditions associated with branes B.. and B’ also exist, then the space of
(Bee, B') strings exists even if it is hard to describe this space explicitly.

Usually, given two A-branes or B-branes By and Bs, one can go to a large
volume limit and describe the space of (By, B3) strings in terms of classical
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geometry. The delicate structure of the coisotropic brane B, prevents us
from doing this successfully for the (B, B') strings, in general.

But we can use general properties of the A-model to learn general prop-
erties of quantization. One can also get some information from classical
geometry, as we explain next.

Branes of type (A, B, A)

There is an important special case in which we can describe explicitly the
space of (Bec, B') strings. This is the case that we are given a hyper-Kahler
polarization of (Y, M). This is a hyper-Kahler structure on Y, extending its
complex symplectic structure (I, ), such that M is a complex submanifold
in complex structure J.

Under these conditions, the branes (B, B’) are both branes of type
(A, B, A), that is, A-branes for the A-models with symplectic forms w; or
wpg, and B-branes for the B-model of complex structure J. For example,
Be is a B-brane of type J because the curvature form wj of its Chan—
Paton line bundle is of type (1,1) in complex structure J. Similarly, B’ is a
B-brane because M is a complex submanifold and the Chan—Paton bundle
of B’ is flat.

We can now look at the space of (B, B') strings in two different ways.
We defined H to be the space of (B, B') strings in the A-model of wy = wg.
Similarly, we can define # to be the space of (Bec, B) strings in the B-model
of complex structure J. As long as M is compact or wavefunctions are
required to vanish sufficiently rapidly at infinity, the two spaces are the
same, since they both can be described as the space of zero energy states of
the sigma-model with target Y (compactified on an interval with boundary
conditions at the two ends determined by B.. and B').

One qualification is that the equivalence of H and H does not respect their
grading. # and H are both Z-graded, because the A-model of type wx and
the B-model of type J are both Z-graded by “ghost number.” The gradings
are different, but conjugate. In fact, the sigma-model of target Y, with
boundary conditions set by two branes of type (A, B, A), has an SU(2) group
of R-symmetries that we call SU(2)g; the two ghost number symmetries are
conjugate but different U(1) subgroups of SU(2)g. In practice, however, one
usually studies quantization in a situation in which the grading is trivial;
this is so if N is very ample as a line bundle in complex structure .J.

To use the equivalence between H and #H, we need to have a way to
determine H. For this, we simply observe that in the B-model, the choice
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of Kahler metric is irrelevant. So we can rescale the metric of Y by a factor
t > 1, reducing to a situation in which sigma-model perturbation theory is
valid. In this limit, by a standard argument, we describe H by 0 cohomology:

H =M (M, KV 0 N). (2.14)

Since H = H, we can express this as a statement about #:

H =M Myi(M, KY?2 o N). (2.15)

Here, roughly speaking, K/2 is the square root of the canonical line bun-
dle K of M. (A more precise explanation is given presently.) For very ample
N, the cohomology vanishes except for ¢ = 0 and its Z-grading is trivial.

The description (2.15) of H has an important limitation, beyond the prob-
lem with the grading. It describes H as a vector space, but it does not lead
to a natural description of the Hilbert space structure of H, when there is
one. In Section 2.4, we will describe the conditions under which H has a
hermitian inner product that can be defined in the A-model. Analogous
but different conditions® lead to a natural hermitian inner product on # in
the B-model. The two hermitian structures are different (when they both
exist) and the equivalence between H and H does not map a natural hermit-
ian structure of the A-model to a natural structure of the B-model. (This
identification does preserve a third hermitian product, the one that H and
H get from their interpretation as the space of physical ground states in
the sigma-model with hyper-Kahler metric. This one is not natural in the
A-model or the B-model and is not visible in the large volume limit that
leads to (2.14).) Hence, when applicable, (2.15) describes H as a vector
space, not as a vector space with a hermitian inner product.

The description of H that we have just given has an obvious resemblance
to a standard statement in geometric quantization. In that context, the
choice of an integrable complex structure J on M, such that the symplectic
form of M becomes a Kahler form, is known as a complex polarization.
Equation (2.15) then defines quantization with a complex polarization.

A hyper-Kahler polarization of the pair (Y, M), which we used in the
above derivation, plays an analogous role in our approach. Our statement
is that for any choice of hyper-Kahler polarization, the space of (B, B’)
strings can be described as in (2.15).

3To define a hermitian metric in the B-model, one uses an involution 7 of ¥ that maps
M to itself and reverses the sign of J, while in the A-model, T reverses the sign of wy, as
explained in Section 2.4.
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There are two primary differences between our statement and the analo-
gous statement in geometric quantization:

(1) In our framework, the space of (B, B') strings is an A-model invariant
and therefore is independent of the choice of a hyper-Kahler polariza-
tion. In geometric quantization, there is no general statement about
when the right-hand side of (2.14) is independent of the choice of
complex polarization J.

(2) In our framework, (2.14) is a statement about vector spaces, while
in geometric quantization, one usually endows the right-hand side of
(2.14) with a hermitian structure. For example, in the very ample
case, one defines a Hilbert space norm by [¢|? = [, (w™/n!)Yy, where
w is the symplectic form of M, 2n is the real dimension of M, and
¢ € HY (M, KY? @ N). This is certainly a natural formula in Kahler
geometry (it describes the hermitian metric that arises in the sigma-
model after rescaling the metric of Y by a factor ¢t > 1), but it is not
a natural A-model inner product. A somewhat related statement is
that in our framework, (2.14) does not describe the natural Z-grading
of H, but a conjugate one.

Relation to K -theory

A point that still remains to be clarified is the meaning of the symbol
K2 in the above analysis. In general, M may not be a spin manifold, so
a line bundle K1/2 may not exist, and M may not be simply connected, so
that if K/2 exists, it may not be unique up to isomorphism.

The resolution of this point depends upon the relation of branes to K-
theory. The following are general statements about branes, independent of
any specialization to an A-model or a B-model. Consider a brane supported
on a submanifold N C Y and endowed with a rank 1 Chan—Paton bundle 7.
Naively, T is a complex line bundle, but actually, because of an anomaly in
the sigma-model [24], 7 can be more precisely described as a Spin, structure
on the normal bundle to N in Y.

For the space-filling brane B, N is equal to Y, so the normal bundle to N
is trivial. Hence the Chan—Paton bundle £ of B.. is an ordinary complex line
bundle. For the Lagrangian A-brane B’, N is the Lagrangian submanifold
M. The tangent bundle and normal bundle to a Lagrangian submanifold
are naturally isomorphic (under multiplication by wy = wg ), so the Chan—
Paton “line bundle” £’ of B’ is really a choice of Spin, structure on M.
If £’ were actually a line bundle, there would be no natural line bundle
(L 1o K /2 since K1/2 may not exist and may not be unique. However,
for £’ a Spin, structure, there is a natural line bundle (£')~' ® K'/2; the
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two factors in this tensor product are not naturally defined as complex line
bundles, but the tensor product is.

Now the meaning of (2.14) is clear. With N =L ® (£)~!, and £ an
ordinary complex line bundle, there is no problem in defining N’ ® K 1/2 a5
a complex line bundle, though the two factors separately do not have this
status.

In this discussion, we did not assume that the rank 1 brane supported
on N is supposed to be an A-brane or a B-brane. If this brane is supposed
to be an A-brane supported on a Lagrangian submanifold M, then £ must
be a flat Spin, structure on M. There is a topological obstruction to hav-
ing a Spin, structure on M, and there is a further obstruction to having a
flat Spin, structure. In general, Spin, structures on M are classified topo-
logically by the choice of a way of lifting the second Stieffel-Whitney class
wo(M) € H?(M,Zs) to an integral cohomology class ¢ € H?(M,Z). Flat
Spin,. structures are classified by a choice of a lift ¢ such that ¢ is a torsion
element of H?(M,Z). In general, even if M is Spin., it may not admit a
flat Spin, structure, since it may be impossible to pick the lift ¢ to be a tor-
sion class. A symplectic manifold that does not admit a flat Spin, structure
cannot be quantized in our sense.

This obstruction to quantization has been encountered in the literature
on representations of a semi-simple noncompact real Lie group G. In that
context, M is a coadjoint orbit of G, and one aims to obtain a representation
of G by quantization of M. (See Section 3 for more on this.) This problem
has been approached from many different points of view. In [20], which is
perhaps the closest to the approach in the present paper, a preliminary step
to quantizing M is to, in effect, endow M with a flat Spin. structure. For
example, the minimal orbit of SO(p, q) with p + g odd and p, g > 4 does not
admit such a structure and cannot be quantized by the methods of [20] or
of the present paper.

General shift by K1/?

Now let us return to the zero mode action (2.13),

dx*
/Bu;dr, (2.16)

dropping the assumption of a hyper-Kahler polarization. In the original
derivation, B emerged as a connection on the “complex line bundle” N =
L ® (L)L, However, as we have just explained, in general " does not make
sense as a complex line bundle.
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Simply to make sense of the formula, there must be a correction that
shifts N to N = L ® (L)™' @ K2 (or something similar to this), where K
is the canonical line bundle* of M. The connection that appears in the
action must be a connection on N

The way that this correction arises is as follows. As a step toward quan-
tizing the open strings with (B, B’) boundary conditions, one quantizes
the worldsheet fermions, expanding around a map from the string world-
sheet to Y that consists of a constant map to a point p € M. In expanding
around such a constant map, there are no fermion zero modes, since they are
all removed by the boundary condition (2.11). Hence, the space of ground
states in the fermion Fock space is a one-dimensional vector space W,,. As
p varies, W), varies as the fiber of a complex “line bundle” W — M. W and
the induced connection on it must be included as an additional factor in
quantizing the bosonic zero modes.

In fact, W is isomorphic to K1/2 (and is not quite well-defined as a line
bundle because of an anomaly in the relevant family of fermion Fock spaces).
One can show that W = K'/2 by using standard methods to determine the
quantum numbers of the Fock space ground