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Abstract

This is the first of a set of papers having the aim to provide a detailed
description of brane configurations on a family of noncompact three-
dimensional Calabi–Yau manifolds. The starting point is the singular
manifold defined by a given quotient C

3/Z6, which we called simply C
3
6

and which admits five distinct crepant resolutions. Here we apply local
mirror symmetry to partially determine the prepotential encoding the
GW-invariants of the resolved varieties. It results that such prepotential
provides all numbers but the ones corresponding to curves having null
intersection with the compact divisor. This is realized by means of a con-
jecture, due to S. Hosono, so that our results provide a check confirming
at least in part the conjecture.
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1 Introduction

We use (local) mirror symmetry to compute the Gromov–Witten invariants1

for a family of noncompact Calabi–Yau manifolds obtained resolving an
orbifold X = C

3/Z6. The main interest for this example is that it admit
five distinct crepant resolutions all birational to X, differing by flops. Going
from a resolution to another passing through the singular orbifold realizes a
geometrical transition. Geometrically, the transition is obtained by moving
the Kähler moduli t through an orbifold point, where the manifold becomes
singular with a curve which shrinks down and reemerges as a flopped curve.
As it is well known, in string theory such transition can correspond to smooth
physical processes. This can be understood for example by means of a
(physically equivalent) dual description using mirror symmetry. Because the
orbifold was obtained quotienting by an abelian group, the resulting smooth
manifold are indeed toric varieties, so that the powerful toric methods can
be employed to work out all details. Mirror symmetry for noncompact CY
varieties was developed quite recently in [26]. For toric varieties the mirror
manifold result to be defined as the zero locus

Yx = {(�u,�v) ∈ C
2 × C

2
∗|Fx(�u,�v) = 0},

where x determines a point in the complex structures moduli space of the
mirror, corresponding to the point t specifying the Kähler moduli of the
starting manifold Xt, and Fx(�u,�v) = u2

1 + u2
2 + fx(�v) is a certain polyno-

mial fully determined by the toric data describing the starting orbifold.
Thus varying the moduli t corresponds to varying the moduli x of the mir-
ror manifold. However, whereas Xt undergoes a flop transition, Yt simply
changes smoothly its complex moduli.

From the mathematical point of view, the noncompactness of the variety
and the particular structure of its cohomology ring introduce some ambigui-
ties in defining the GW invariants and in their interpretation, thus requiring
a deeper understanding of the geometrical structures living on a noncom-
pact manifold. From this point of view, a consistent step forward was made
by Chiang et al. [9], who gave an interpretation to the GW-invariants from
an enumerative point of view.

From the physical point of view, mirror symmetry looks like a gener-
alization of T-duality equivalence between different perturbative limits of
the, supposed to exist, unique M-theory. However, some nonperturbative
enhancements are provided by adding D-brane configurations. At a semi-
classical level, D-branes are described by closed cycles (with bundles) which

1More precisely, the lowest genus Gopakumar–Vafa invariants.
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the branes are supposed to wrap on. One may wonder if any possible cycle
is a good candidate as a wrapping locus. Indeed, this is actually a still open
question, even if many overcomes have been made in the last decade. A
consistence check must be stability, at first place perturbative stability. A
first step in favour of perturbative stability is supersymmetry. This gives
some strong constraint which can depend on the kind of strings to work
with. For IIB strings on a CY, supersymmetric configurations are rep-
resented by holomorphic (then evendimensional) cycles, whereas for type
IIA branes one finds Lagrangian submanifolds (with respect to the Kähler
form) as brane representatives, that are half-dimensional subvarieties. In
the case in our interest the lasts are three-dimensional surfaces. Thus, mir-
ror symmetry must be extended in order to take account of nonperturbative
brane configurations. An astounding advance in this direction has been pro-
posed by Kontsevich [39] who introduced the concept of homological mirror
symmetry. In this case type B branes are described in terms of bounded
derived categories of coherent sheaves whereas A branes are substituted by
derived Fukaya categories [19]. Such a description reconciles some apparent
asymmetry between A- and B-branes. Indeed, whereas A branes result to
be half-dimensional, the dimensions of B-branes are heterogeneous so that
to any A cycle it can correspond a B cycle of different dimension; on the
other hand, Lagrangian cycles can be linearly combined to compose new
Lagrangian cycles (monodromies), which, by mirror symmetry, must match
with combinations of holomorphic cycles having different dimensions. In the
B side, to monodromies correspond autoequivalences of derived categories.
In some sense homological mirror symmetry introduce some democracy since
all branes are described in terms of higher dimensional branes in an homo-
geneous way. From a more topological point of view, brane charges (central
charges or masses) are thus described in terms of K-theory groups (even if
there are many other indications for this beyond and independently from
mirror symmetry, see [25, 45]). From the physical point of view, some new
insight in this direction for the case of noncompact CY manifolds was done
by de la Ossa et al. [15] who were able to select a distinguished K-theory
basis for B-branes configurations adapted to support monodromy correspon-
dence, generalizing (at least at a conjectural level) the corresponding results
quite well established in the compact case.

On this side, further progress is due to Hosono [30] who found an ele-
gant way to describe local mirror symmetry in terms of cohomology valued
hypergeometric series. Mirror symmetry identifies the Kähler moduli of a
CY variety with the periods of its mirror, which as functions of the com-
plex structure moduli must satisfy a set of Picard–Fuchs equations, the
Gel’fand et al. [22] system. It results that a particular cohomology valued
hypergeometric series w arises naturally providing a basis of solutions for
the GKZ system [32–35]. Hosono was able to recognize such series as a
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formula identifying the BPS states of the associated physical theory, and
proposed an intriguing conjecture, which we dub “the Hosono conjecture,”
see Conjecture 6.3 in [30], which, beyond identifying the central charge of a
brane configuration F ∈ Kc(Xt) in terms of w, interprets the monodromy of
the periods via a naturally associated symplectic form on Kc(X). Hosono
checked very carefully his conjecture for the toric quotients C

2/G, and for
the examples C

3/Z3, C
3/Z5 in three complex dimensions. Among others, a

consequence of the Hosono conjecture is to provide a closed formulation of a
prepotential for noncompact quotients also. Indeed, at cohomological level,
mirror symmetry provides a map

mir : Kc(Xt)
∼−→ H3(Yx, Z),

transferring the symplectic form on Kc(X) to a symplectic structure on
H3(Y, Z). This is the noncompact analogue of the symplectic structure that,
combined with Griffiths transversality, ensures the existence of a prepoten-
tial in the compact cases. However, due to noncompactness, the symplectic
structure is generically degenerate. On the X side, it defines a correspon-
dence between H2(X, Q) and H4(X, Q) which permits a complete determi-
nation of the prepotential (and correspondingly of all GW-invariants) only
when it arises as a vector space isomorphism.

At homological level, mirror symmetry is conjectured to define a map

Mir : D�Coh(X) −→ D Fuko(Y, ω),

where the symplectic form ω is the Kähler form corresponding to the fixed
complex structure in X. In this way, monodromies of Lagrangian on Y corre-
spond to autoequivalences of derived categories on X described by opportune
Mukay transforms which are expected to realize a (quiver) representation of
the quotient group by the Mckay correspondence. This has been analysed
for example by Karp [38] and Canonaco [8]. The Hosono conjecture indeed
works to this higher level too, and gives some hints to get information on
the mirror map Mir.

In this paper we will work at the lower level, that is at K-theoretical level,
postponing the study of the higher (categorical) level mirror map to a future
paper. We apply the Hosono conjecture to compute the GW-invariants for a
family of noncompact toric CY varieties obtained as crepant resolutions of an
orbifold quotient C

3/Z6. We chosen this model because it has quite general
properties which make it very interesting to test the conjecture. To begin
with, the second and fourth Betti numbers are b2 = 4 and b4 = 1, so that the
symplectic structure result to be highly degenerate. Thus it defines a quite
poor correspondence between H2(X, Q) and H4(X, Q). Nevertheless, we



D-BRANES ON C
3
6 1375

will see that the Hosono procedure permits to define a partial prepotential
containing a lot of information about local geometry. Indeed, from it we
are able to read out almost all GW-invariants, leaving out only a three
dimensional subcone of the four-dimensional Mori cone.2 Indeed, it was
proposed by Forbes and Jinzenji [17,18], a possible way to extend the GKZ
system obtaining a complete determination of all GW-invariants. To such
extension we will devote a future paper. Here, we will only discuss the
possible origin for the ambiguity in defining the lacking GW-invariants. A
second interesting peculiarity of our model, yet anticipated at the beginning,
is that it admits five distinct crepant resolutions, which differ by flops. Thus
one expects monodromy to relate different resolution by means of different
Fourier Mukay transforms. This is indeed one of the main targets of this
starting studies, but as announced we will not tackle it here. We will limit
ourselves to compute the prepotentials and the computable GW-invariants
for all resolutions, comparing with themselves.

Thus in some sense this first paper can be thought as a preparatory one.
In this spirit we will try to be as much explicit as possible. In Section 2 we
include a short overview of the main steps which lead to the introduction of
local mirror symmetry to arrive to the Hosono conjecture.

In Section 3 we present a detailed analysis of the first resolution, that is
the G-Hilbert resolution. We will use the Hosono’s conjecture to construct
the cohomological hypergeometric series generating the periods of the mirror
manifold. Due to noncompactness, the structure of the cohomology ring does
not consent a full definition of the GW-invariants. However, as we will see,
the procedure proposed by Hosono permits to equally define a prepotential
which generates all GW-invariants associated to the curves in the Mori cone,
excluding a codimension one subcone.

In Section 4 we repeat the previous analysis for all the other resolutions,
deriving a partial determination of the GW-invariants for all of them.

The results will be commented in Section 5.

2 Local mirror symmetry and the Hosono conjecture

Here we will recall some main step leading to the conjectures we are testing
in this and following papers. The literature on the subject is quite huge, so
that we will mainly refer to [27] and references therein.

2We are grateful to Professor S. Hosono to give us explanations on this point.
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2.1 Dualities and mirror symmetry

Let us consider a string theory having a toric Calabi–Yau variety X as
target space. Thus, there is a nice interpretation of mirror symmetry as
a T-duality transformation. Indeed, string theory on X can be described
in terms of a two-dimensional U(1)m supersymmetric gauge theory, the so-
called “gauged linear sigma model” (see [27, Sections 7.3, 7.4]). It contains a
certain number n > m of complex scalar fields Z = {Zα}n

α=1 having charges
Qα,r r = 1, 2, . . . , m with respect to the gauge group U(1)m, and with poten-
tial energy

U(Z) =
1
2

m∑

r=1

g2
r

(
n∑

α=1

Qα,rZαZ̄α − rr

)2

.

Here gr and rr are the gauge couplings and the Fayet–Iliopoulos terms,
respectively. Supersymmetric ground states require the vanishing of the
potential energy:

n∑

α=1

Qα,rZαZ̄α = rr.

For a fixed choice of the F − I parameters, these equations define a toric
variety X associated to a fan, in an (n − m)-dimensional lattice N , generated
by an opportune set Σ(1) = v1, . . . , vn of vectors in N . From this it is
possible to conclude that the supersymmetric vacua are identified with the
points of a toric variety X. Each vector vα determines an invariant divisor,3

Dvα . It is not hard to show (see [27, Section 7.4]) that one can chose a
basis {Cr}m

r=1 of irreducible curves of H2(X, Z) (which indeed result to be
m-dimensional) such that the charges are given by the intersection numbers
Qα,r = Dvα · Cr. Also note that the F–I parameters rescale as |Z|2 so that,
if chosen to be positive, they indeed parameterize the points of the Kähler
cone. This means that the supersymmetric configurations are completely
characterized in geometrical terms.

At this point mirror symmetry can be realized as a T-duality transfor-
mation [27, Section 20]. Indeed, recall that roughly speaking T-duality on
a circle transforms a type A string theory on a circle of radius R in a type
B string theory on a circle of radius α′/R. If Zα are taking value on a com-
plex variety (indeed the toric variety in the vacuum configuration) then we
can T-dualize their phases which define circles in the target manifold. The

3T.i. invariant under the toric action.
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result [27, Section 13] is a Landau–Ginzburg theory with superpotential

W (Y, t) =
n∑

α=1

e−Yα ,

for a set of chiral superfields related by the set of constraints

n∑

α=1

Qα,rYα = tr,

where tr are the complexified Kähler parameters (Re(tr) = rr). In this way,
the mirror transformation applied to the two-dimensional sigma model gives
rise to a Landau–Ginzburg model with superpotential W (Y, t). To take con-
tact with the Batyrev’s geometric construction of mirror manifolds for toric
varieties, let us proceed as follows (see [26]) for the cases when the start-
ing linear sigma model describes strings on a crepant resolution of some
abelian quotient C3/G. Being crepant, it will be described by a set of
vectors v1, . . . , vn in a three-dimensional lattice such that for some isomor-
phism φ : N −→ Z

3 one has φ(vα) = (nα,1, nα,2, 1). The solutions of the con-
straints can thus be written in terms of three independent fields y0, y1, y2
as Yα = y0 + nα,1y1 + nα,2y2 + cα, where cα are some constant satisfying∑n

α=1 Qα,rYα = tr. These linear redefinitions do not affect the functional
measure, and setting wa = exp(−ya), a = 0, 1, 2 and aα = exp(−cα) we get
for the superpotential

W (w, a) = w0

n∑

α=1

aαw
nα,1
1 w

nα,2
2 , wa ∈ C∗.

As discussed in [26], we can note that, for what concerns the BPS configu-
rations, this LG model is equivalent to another one, where w0 ∈ C and with
two extra chiral fields U, V ∈ C, whose superpotential is

W̃ (U, V ; w; a) = W (w, a) − w0UV.

Integrating the field w0 thus gives a delta function δ(
∑n

α=1 aαw
nα,1
1 w

nα,2
2 −

UV ) so that the mirror LG model is equivalent to a geometrical theory on
a Calabi–Yau manifold

Ya = {(�u, �w) ∈ C
2 × C

2
∗|Fa(�u, �w) = 0},

where

Fa(�u, �w) = u2
1 + u2

2 + fa(�u, �w) = u2
1 + u2

2 +
n∑

α=1

aαw
nα,1
1 w

nα,2
2 .
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The Kähler parameters t now parameterize the complex moduli of Y . This
is indeed local mirror symmetry as discovered for the first time at physical
level in [41,42].

2.2 Branes and homological mirror symmetry

The intuitive picture described above does not takes into account the pres-
ence of brane configurations. Because we are looking for supersymmetric
vacua, we need to know what kind of brane configurations are admitted on
a Calabi–Yau manifold X. In other words, one must search for boundary
condition compatible with supersymmetry. This is described for example
in [26, Section 3]. The answer depends on the type of string theory one con-
siders. For type A strings, supersymmetric branes are represented (at clas-
sical level) by halfdimensional subvarieties S, ι : S ↪→ X, where the Kähler
form ω of the C–Y manifold vanishes, ι∗ω = 0, and supporting flat vector
bundles. Thus A-branes are Lagrangian submanifolds with respect to the
symplectic structure ω. For type B strings one finds that supersymmetric
branes must wrap holomorphic cycles of X supporting holomorphic vec-
tor bundles. In our models it means that type B-brane configurations will
be described classically by compact divisors, curves of the Mori cone and
points. Thus mirror symmetry should map BPS states of a model into the
BPS states of the mirror model, converting A-branes to B-branes and vice
versa. However, there is an odd asymmetry between A and B configurations:
indeed all A-branes have the same dimensions, whereas this does not happen
for B-branes. Now, the point is that in the LG model description branes
configurations can change when moduli vary. In this picture, BPS states
will correspond to critical points of the superpotential. Essentially, they
determine the points of Yt around which the supersymmetric three cycles
are defined. Varying t, the critical points move on the W -plane; when some
of these points moves around a branch point, a monodromy transformation
can give rise to a new brane configuration [26]. The boundary states cor-
responding to the branes are described by the periods of the holomorphic
three-form Ω of Yt (in the geometric picture). The monodromy thus acts
on a basis of cycles recasting them in some linear recombination or equiv-
alently on the periods in the same linear recombination. On the mirror X
it should correspond to a recombination of the holomorphic cycles, hard
to understand in the näive geometrical picture where they have different
dimensions.

To solve this point a first aid comes from a K-theoretical description,
where lower dimensional branes can be described in terms of the top dimen-
sional branes and a tachyon field [45]. K-theory mainly captures topological
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aspects of the problem, carrying important information on the admissible
brane configurations, but it is quite poor from the geometrical point of view.
In [16] it was argued that a deeper geometrical understanding of (stable)
brane configuration in (topological) type B superstring can be understood in
terms of triangulated categories, in particular the derived category of coher-
ent sheaves on the manifold (see also [1], or [4] for a more mathematical point
of view). This provided a deep contact between physics and the “homolog-
ical mirror symmetry” conjectured by Kontsevich [39] who proposed that
the usual geometrical mirror symmetry should enhance to homological level
as an equivalence between triangulated categories: the derived category of
coherent sheaves on a CY manifold X with a fixed complex structure on one
side4 and the derived A∞ Fukaya’s category over the mirror manifold Y
on the other side, essentially generated by the Lagrangian submanifolds of
{Y, ω}, where the symplectic structure ω is given by the fixed Kähler form
on Y , dual to the complex form on X:

Mir : D�Coh(X) �−→ D Fuko(Y, ω).

2.3 The Hosono conjecture

As we said, BPS states in the mirror type A string model are described
by periods that are integrals of the holomorphic three form Ω on Y over
the Lagrangian cycles. For the noncompact quotients we are describing, the
holomorphic three form on the mirror Y is

Ω =
1

4π3 ResF=0

[
du1 ∧ du2 ∧ dw1 ∧ dw2

w1w2F (�u; �w; a)

]
.

Here we have fixed the Kähler form, however Ω depends explicitly on the
complex moduli of Y (as shown by the explicit dependence on a of the
polynomial F ) so that the periods

ΠCi(a) =
∫

Ci

Ω,

of any set of Lagrangian cycles Ci, will be locally holomorphic functions
of the moduli. Indeed, they are forced to satisfy a set of hypergeometric
differential equations known as the GKZ hypergeometric system, largely
studied in [22].

4For clarity we confine ourselves to the case of Calabi–Yau varieties.
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For compact varieties the knowledge of a complete set of solutions for the
GKZ system correspond to an exhaustive description of the set of BPS brane
configurations on the A side. Furthermore, the special Kähler geometry of
the complex structure moduli space of a C–Y manifold can be described in
terms of periods [44]. If x parameterizes the structure complex moduli of Y
then the Kähler potential of the moduli space can be written as

K(x, x̄) = − log

⎡

⎣i
h2,1(Y )∑

I=0

(
XI ∂̄G

∂X̄I
− X̄I ∂G

∂XI

)⎤

⎦ ,

where

XI(x) =
∫ I

A
Ω(x)

are the periods with respect to a canonical symplectic basis {AI , BI} of
H3(Y, Z). Finally G(x) is the prepotential

G(x) =
1
2

h1,2(Y )∑

I=0

∫

AI

Ω
∫

BI

Ω.

Mirror symmetry gives a correspondence between Kähler moduli ti of X and
complex moduli of Y so that

ti =
Xi

X0 , i = 1, . . . , h1,2(Y ) = h1,1(X).

On the other side, also the Kähler moduli space of X is a special Kähler
manifold which can thus be described in terms of a prepotential function
F (t). At classical level such geometry is described by the prepotential

F c(t) = 1
6dijkt

itjtk,

where dijk = Ji · Jj · Jk are the intersection numbers of the Kähler cone
generators. Physically, they determine the Yukawa couplings of the chiral
fields [7]. However these couplings receive quantum corrections which come
from worldsheet instantons. At lowest order they corresponds to wrapping
of the worldsheet on rational curves in X. The energy of such a wrapping is
given by the volume of the wrapped cycle as measured by the Kähler metric.
Any given (class of) rational curve of degree �d results to contribute to the
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prepotential with a term
n�d

Li3(e2πi�d·t),
n�d

being the number of classes of curves with the given degree, so that it
can be shown that the quantum corrected prepotential takes the form [9]

F (t) =
1
6
dijkt

itjtk − 1
24

c2(X) · Jit
i − i

ζ(3)
16π3 c3(X) +

∑

d∈Z
h1,1
>

n�d
Li3(e2πi�d·t).

More precisely n�d
are the Gromov–Witten invariant (in the Gopakumar–

Vafa [23, 24] interpretation). See [9] for a mathematical enumerative inter-
pretation. By means of the identification (making use of the Griffith
transversality, [9, 44])

{∫

AI

Ω;
∫

BI

Ω
}h2,1(Y )

I=0
=

⎧
⎨

⎩1, ti; ∂tiF, 2F −
h1,1(X)∑

j=1

tj∂tiF

⎫
⎬

⎭

h1,1(X)

i=1

mirror symmetry thus gives a simple way to compute the GW -invariants
of X.

In a series of papers (see for example [32–35]) it was provided an efficient
strategy to characterize a complete set of the GKZ system for a C–Y hyper-
surface, which is summarized in [29]. In particular, there was introduced a
cohomological valued power series whose expansion in the Chow ring

A∗(X) ⊗ C[[x]][log x]

gives a basis for the period integrals of the mirror manifold Y in the large
complex structure limit (LCSL) (see [29, Claim 5.11]). Thus the cohomo-
logical series encodes many geometrical information on both the manifolds
X and Y so summarizing several fundamental aspects of mirror symmetry.

In [30, 31] Hosono extended this picture to local mirror symmetry for
noncompact C–Y manifolds, in particular for resolutions of abelian
quotients C

k/G, with k = 2, 3. For convenience we will state the conjec-
ture in Section 3.6. In [30], Hosono verified his conjecture carefully for the
case k = 2 and reported the analysis for the cases C

3/Z3 and C
3/Z5, where

it was shown the existence of a prepotential for the noncompact cases also.

Here we use Hosono conjecture to analyze the geometry of a quotient
X = C

3/Z6, which we call for simplicity C
3
6. As stated in the introduc-

tion, this singular orbifold admits five distinct crepant resolutions. All these
resolutions are related by flop transformations. To noncompactness of the
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manifold X it corresponds the ambiguity in defining the GW-invariants. In
our model this reflects in the fact that the symplectic structure on the half
dimensional homology of the mirror Y is degenerate. On the mirror, such
structure should determine a pairing between two-dimensional and four-
dimensional cohomology, permitting the reconstruction of the prepotential,
but which now becomes degenerate. We determine the LCSL cohomological
series for all the resolutions. From each of them, using Hosono’s prescrip-
tions we will able to partially determine a prepotential which codifies all
the GW-invariants of the (four-dimensional) Mori cone excluding a three-
dimensional subcone.

3 The tri-dimensional orbifold C
3
6 and the G-Hilb resolution

3.1 Definition of C
3
6

We briefly review the homogeneous coordinates construction of toric vari-
eties [10]. The data of a d-dimensional toric variety X(Δ) can always be
specified in terms of a fan Δ in a lattice N isomorphic to Z

d. Let ρ1, . . . , ρr

be the one-dimensional cones of Δ and let vi ∈ Z
n denote the primitive ele-

ment of ρi, i.e., the generator of ρi ∩ Z
n. Then introduce variables xi for

i = 1, . . . , r in the affine complex space C
r. The homogeneous coordinates

construction represents X(Δ) as the quotient

X(Δ) = (Cr\Z)/G

for a certain variety Z and some abelian group G ⊂ (C∗)r.

Z is determined as follows. We say that a set of edge generators I =
{vi1 , . . . , vis} is primitive if they do not lie in any cone of Δ but every
proper subset does. Then

Z =
⋃

I primitive

{xi1 = 0, . . . , xis = 0}.

If {e1, . . . , ed} is the standard basis of the dual lattice M and <, >: M ×
N → Z is the natural pairing, the group G is defined as the kernel of the
following homomorphism:

Φ : (C∗)r → (C∗)d, (λ1, . . . , λr) 	→
(

r∏

i=1

λ
〈e1,vi〉
i , . . . ,

r∏

i=1

λ
〈en,vi〉
i

)
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and its actions on C
r\Z is by multiplication

(λ1, . . . , λr) · (x1, . . . , xr) := (λ1x1, . . . , λrxr).

In this paper, we study the three-dimensional orbifold C
3
6 defined as the

toric variety associated to the fan generated by the vectors:

v1 =

⎛

⎝
−1
−1
1

⎞

⎠ , v2 =

⎛

⎝
2

−1
1

⎞

⎠ , v3 =

⎛

⎝
−1
1
1

⎞

⎠ , (3.1)

in N 
 Z
3. In this case Z = Ø and the associated homomorphism is

Φ : (C∗)3 → (C∗)3, (λ1, λ2, λ3) 	→ (λ−1
1 λ2

2λ
−1
3 , λ−1

1 λ−1
2 λ3, λ1λ2λ3), (3.2)

which has kernel

G := ker Φ =< (ε, ε2, ε3) >⊂ (C∗)3, with ε = e
2πi
6 . (3.3)

Thus G 
 Z6 and C
3
6 = C

3/Z6 where the action on the coordinates is

ε · (x1, x2, x3) = (ε x1, ε
2 x2, ε

3 x3) . (3.4)

C
3
6 is a noncompact Calabi–Yau (K

C
3
6

is trivial) three-fold with non-isolated
singularities, because all vectors vi lie in the plane z = 1 (if (x, y, z) are the
coordinates on the lattice).5 In this way, all relevant information is included
in the two-dimensional intersection of the fan Δ with the plane z = 1. In
figure 1 we have drawn this section for the fan of C

3
6.

3.2 Crepant resolutions of C
3
6

A crepant resolution of a variety X is a smooth variety Y together with
a proper birational morphism τ : Y → X such that KY = τ∗KX . If X is
a Calabi–Yau variety this means that KY has to be trivial. Any crepant
resolution of a toric Calabi–Yau orbifold X(Δ) = C

3/G can be obtained in
two simple steps (see [21, 40]). First, add to Δ all possible edges ρi that
are generated by the integer vectors vi ∈ N intersecting the fan and lying
on the plane determined by v1, v2, v3. Next, let one completely triangulate
Δ, to obtain the regular fan Δ′ of the toric resolution X(Δ′). If there exist

5We refer to Section 3.3.1 for an explanation about this CY condition.
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Figure 1: C
3
6 fan.

Figure 2: Fan of the G-Hilbert resolution of C
3
6.

several complete triangulations this means that the orbifold admits multiple
crepant resolutions, all related by flops of curves.

Therefore, to obtain the resolutions of the C
3
6 singular variety we add to

Δ the four vectors

v4 =

⎛

⎝
0

−1
1

⎞

⎠ , v5 =

⎛

⎝
1

−1
1

⎞

⎠ , v6 =

⎛

⎝
−1
0
1

⎞

⎠ , v7 =

⎛

⎝
0
0
1

⎞

⎠. (3.5)

It is easy to show that we have five admissible complete triangulations.
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3.2.1 Toric G-Hilbert resolution

We start considering the G-Hilbert resolution (figure 2), which we call
G−C

3
6. Its general toric construction is given in [13] and we refer to it

for a detailed explanation. We can think to G-Hilb fan as the “more sym-
metric” triangulation. We try to illustrate this concept in our case. First,
we add to Δ the two-dimensional cones generated by (v2, v7) and (v3, v7),
that are necessary to obtain any complete triangulation. Then we extend
the line (v3, v7) to v5 so obtaining a subdivision of the fan into regular trian-
gles, three of them with edges of length one and the bigger one with edges
of length two. Finally, we complete the triangulation subdividing this last
triangle with a regular tessellation, obtained by drawing all possible internal
lines parallel to its edges.

3.2.2 G-Hilbert resolution as the moduli space of G-clusters of C
3

Given an algebraic variety M and a finite group G with an action on M , the
G-Hilb(M) is defined as the moduli space of G-clusters Z ⊂ M . A G-cluster
is a G-invariant zero-dimensional subscheme Z, with defining ideal IZ ⊂ OM

and structure sheaf OZ = OM/IZ isomorphic to the regular representation
of G, i.e., H0(Z,OZ) 
 R(G) with dim H0(Z,OZ) = |G|. The simplest
example of G-cluster is a general orbit of G consisting of N distinct point.

We will study the simple example of Z2-Hilb(C2). Let us consider C
2 =

Spec C[X, Y ] and the action of Z2, with generator ε = −1, defined on the
coordinates as

ε · (X, Y ) = (ε X, ε Y ). (3.6)

The orbits of Z2 are the sets of couple of points

{(p1, p2) ∈ C
2 × C

2 |X(p1) = −X(p2), Y (p1) = −Y (p2)}. (3.7)

If p1 has coordinates (a, b), on the open set X �= 0 the Z2-cluster Z with
support over (p1, p2) is defined by the equations

X2 = a, Y = b
aX =⇒ OZ = C[X, Y ]

(X2−a, Y − b
a
X)


 C ⊕ C · X, (3.8)

and on the open set Y �= 0 by

Y 2 = b, X = a
b Y =⇒ OZ = C[X, Y ]

(Y 2−b, X− a
b
Y ) 
 C ⊕ C · Y. (3.9)

It is easy to verify all the properties of the Z2-clusters. Thus we have a
bijective relation between generic orbits and Z2-cluster having support on
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them. On the set {X = 0, Y = 0} we have Z2-clusters Z of type

X2 = 0, X = β
αY =⇒ OZ = C[X, Y ]

(X2, X− β
α

Y )

 C ⊕ C · X, (3.10)

for any (α, β) with α �= 0, or, in alternative, of type

Y 2 = 0, Y = α
β X =⇒ OZ = C[X, Y ]

(Y 2, Y − α
β

X) 
 C ⊕ C · Y, (3.11)

for any (α, β) with β �= 0. It is evident that the Z2-Hilb(C2) has the structure
of the blow-up of C

2/Z2 at the origin and, with the map

τ : Z2-Hilb(C2) −→ C
2/G Z (p1, p2) 	−→ (p1, p2), (3.12)

it becomes the (crepant) resolution of the orbifold. Let us prove this fact
explicitly using toric geometry.

We will follow the construction of toric orbifold given in [21]. Let
L = Z

2 + 1
2(1, 1) be the lattice over Z

2; in L the fan of C
2/Z2 is the junior

simplex Δjunior generated by the standard base (e1, e2) of Z2.

Using the “old construction” of toric variety [21], we have

XΔjunior = Spec C[X2, XY, Y 2] = Spec
C[U, V, W ]
(UW − V 2)

. (3.13)

The toric resolution of XΔjunior is obtained adding to Δjunior the edge gener-
ated by 1

2(e1 + e2). In the right side of figure 3 we have drawn the toric fan
of the resolution marked with the coordinates related to the toric curves,
expressed as Z2-invariant ratios of monomials in the orbifold coordinates.

Figure 3: Fan for C2/Z2 and Z2-Hilb(C2) in L = Z
2 + 1

2(1, 1).



D-BRANES ON C
3
6 1387

Figure 4: Fan for Z6-Hilb(C3) in lattice L = Z
3 + 1

6(1, 2, 3).

Geometrically, this is the blow up of XΔjunior = C
2/Z2 in the origin. The

two affine open sets are

Uσa = Spec C[X2, Y/X], Uσb
= Spec C[Y 2, X/Y ]. (3.14)

Thus Uσa , for example, parameterizes equations of the form

X2 = ξa, Y = ηaX, (3.15)

which define the Z2-clusters (3.8). Similar Uσb
parameterizes clusters (3.9)

and their intersection Uσa∩σb
the clusters (3.10, 3.11). Therefore, the crepant

toric resolution of C
2/Z2 is exactly Z2-Hilb(C2).

In a similar way, it has been proved in [13,36] that the toric resolutions of
C

3/G defined in the previous section (for G ⊂ SL(3, C) abelian) are exactly
the G-Hilb(C3). In figure 4 we report the Z6-Hilb(C3) fan marked with the
Z6-invariant ratios associated to the curves of the resolution.

3.3 Intersection theory for G−C
3
6

We are interested in finding the Chow ring A∗(G−C
3
6), the module

Ac
∗(G−C

3
6) and the intersection pairing A∗(G−C

3
6) ⊗ Ac

∗(G−C
3
6) → Ac

∗
(G−C

3
6) (for this section we refer to [20,21,40]).
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3.3.1 Chow ring A∗(G−C
3
6)

On any variety X the Chow group Ak(X) is defined to be the free abelian
group on the k-dimensional irreducible closed subvarieties of X, modulo the
subgroup generated by the cycles of the form (f), where f is a nonzero
rational function on a (k + 1)-dimensional subvariety of X.6 For a toric
variety X = X(Δ), the Chow group Ak(X) is generated by the classes of
the closures V (σ) = O(σ) of orbits of the (n − k)-dimensional cones σ ∈ Δ
under the action of the torus C

n
∗ . If τ is a cone of Δ, we define Nτ := Z · τ

and N(τ) := N/Nτ . The relations in Ak(X) are generated by the cycles of
the form (χu) :=

∑
i〈u, vi〉 V (ρi), where u is an element in the dual lattice

M(τ) = N(τ)∗, ρi are the one-dimensional subcones of the projection of τ
in N(τ) with primitive vectors vi, 〈,〉 is the natural pairing between M(τ)
and N(τ), for any cone τ ∈ Δ of dimension n − k − 1.

We will study explicitly this construction for X = G−C
3
6.

Let us first decorate the fan in figure 5 with labels for the toric invariant
subvarieties related to the cones of Δ:

A3(X) has only one generator, corresponding to the unique zero-
dimensional cone of Δ, and obviously without relations.

A3(X) = Z · X, X = V (0) (3.16)

A2(X) has seven generators, related to the seven one-dimensional cones of
the fan. The relations are generated by the cycles (χu) for u in M(0) = M :

A2(X) =
⊕7

i=1 Z · Di

<(χu)>
, Di = V (ρi), ρi = R≥0 · vi. (3.17)

We choose as u the standard basis of the lattice M , e∗
1, e

∗
2, e

∗
3, so we obtain

these three independent relations

−D1 + 2D2 − D3 + D5 − D6 = 0, (3.18)
−D1 − D2 + D3 − D4 − D5 = 0, (3.19)
D1 + D2 + D3 + D4 + D5 + D6 + D7 = 0. (3.20)

6Recall that (f) is the cycle obtained as the sum of the zeros of f minus the poles of
f , each counted with its multiplicity.
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Figure 5: The toric invariant subvarieties of Z6 − Hilb(C3).

In A2(X) the divisors D5, D6, D7 can be expressed in terms of the others

D5 = −D1 − D2 + D3 − D4, (3.21)
D6 = −2D1 + D2 − D4, (3.22)
D7 = 2D1 − D2 − 2D3 + D4. (3.23)

It follows that

A2(X) =
4⊕

i=1

Z · Di 
 Z
4. (3.24)

Since the variety G−C
3
6 is nonsingular, we have

Pic(G−C
3
6) 
 A2(G−C

3
6) 
 Z

4. (3.25)

Let us make a remark about the canonical divisor. It is a standard fact in
toric geometry that the canonical divisor of a variety X is given by KX =
−
∑

i Di where the sum is over all toric invariant divisors. By relation (3.20)
it then follows that KG−C

3
6

= 0 in Pic(G−C
3
6) so that G−C

3
6 is a Calabi–Yau

variety. This is true for any toric variety with all integer vectors generating
the fan lying on the same (hyper)plane.
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Figure 6: Fan for D7 (Star(ρ7)).

A1(X) has twelve generators, the toric invariant curves. The relations are
generated by the cycles (χu) for u in M(ρi):

A1(X) =
⊕

Z · Cij

<(χu)>
. (3.26)

Therefore, to find the relations we have to study the geometry of any toric
invariant divisor. Recall that Di = V (ρi) is a toric variety for any i; its fan
is called Star(ρi) and is obtained by the projection of the cones containing ρi

into the quotient lattice N(ρi). As an example we plot Star(ρ7) in figure 6.
D7 has five toric invariant divisors and two relations between them

−C27 + C37 − C47 − C57 = 0, (3.27)
2C27 − C37 + C57 − C67 = 0. (3.28)

Doing the same for any divisor Di we obtain all relations between curves.
At the end we find that any two given curves are equivalent:

A1(X) = Z · C, C = [C46]. (3.29)

Any other invariant curve is related to C by the relations expressed in the
decorated fan of figure 7.

A0(X) is generated by the six toric invariant points of X. Every toric
variety contains only two kinds of toric curves: compact curves isomorphic
to P

1
C

and noncompact curves isomorphic to A
1
C
. Any compact curve gives a

rational relation between two invariant points, and in such way we find that
any two given points are rationally equivalent. Finally, linear equivalence on
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Figure 7: The rational equivalence between curves of Z6 − Hilb(C3).

affine curves says us that points are rational equivalent to zero. Therefore
A0(X) is the trivial group (this is true for any noncompact toric variety).

On a nonsingular n-dimensional variety X, one sets Ap(X) := An−p(X).
There is an intersection product Ap(X) × Aq(X) → Ap+q(X), making
A∗(X) :=

⊕
Ap(X) into a commutative graded ring. For a general toric

variety X(Δ), if σ and τ are cones in Δ, then

V (σ) ∩ V (τ) =

{
V (γ) if σ and τ span the cone γ,

∅ if σ and τ do not span a cone in Δ.

If X(Δ) is nonsingular and the intersection is proper, i.e., each component of
the intersection has codimension equal to the sum of the codimension of the
two subvarieties, or empty, then V (σ) and V (τ) meet transversally in V (γ)
(or ∅). In this case we define [V (σ)] · [V (τ)] = [V (γ)] (or 0). Otherwise if
V (σ) and V (τ) do not meet properly, we can always use rational equivalence
to replace in A∗(X) a subvariety (i.e., V (σ)) with another one in the same
class and such that it meets V (τ) in a proper way.

Again, let us apply these considerations to our example X = G−C
3
6.

First, note that the intersection between X and any subvarieties V (σ)
is obviously equal to V (σ). Therefore X is the multiplicative identity in
A∗(X).

Any divisor Di meets each other properly (or not at all), and so their
products give the curves Di · Dj = [Cij ] (or 0). We have to use the linear
equivalences (3.18) only to find the autointersections Di · Di.
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Table 1: Intersection product in A∗(X)

X D1 D2 D3 D4 C
X X D1 D2 D3 D4 C
D1 D1 0 0 0 0 0
D2 D2 0 0 C 0 0
D3 D3 0 C C 0 0
D4 D4 0 0 0 −C 0
C C 0 0 0 0 0

Finally, when we intersect divisors and curves we obtain a point (or ∅),
but, as we have seen, they are rational equivalent to zero. Any other inter-
section is always equivalent to the empty set.

The intersection products in A∗(X) are summarized in table 1.

We can see that the product is symmetric and respects the grading. If we
call R the set of relations given by the intersection product we find

A∗(X) = Z[X, D1, D2, D3, D4, C]/R. (3.30)

3.3.2 Group Ac
∗(G−C

3
6) of compactly supported subvarieties

On a noncompact variety X the group Ac
∗(X) is defined to be the direct limit

of the groups A∗(Z), where Z are the closed and compact subvarieties of X
ordered by inclusion. This means Ac

∗(X) =
⊕

A∗(Z)/R, where the direct
sum is over all compact subvarieties of X and the relations R say that two
elements [Z1] and [Z2] of

⊕
A∗(Z) must be identified if exists a compact

subvariety Z3 that contains them and such that in A∗(Z3) they represent
the same cycle class. As usual in toric geometry we can restrict our analysis
to compact toric invariant subvarieties V (σ); recall that X(Δ) is compact
in the classical topology if and only if its support |Δ| is the whole space NR.

Our example has one compact invariant divisor D7, six compact curves
(C27, C37,C47, C57,C67, C46) and six points Pi. It is easy to see that (as a
group)

A∗(Pi) = Z · P c
i , A∗(Cij) = Z · Cc

ij ⊕ Z · P c
ij , (3.31)

where P c
ij represents the point class in the curve Cc

ij .
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The divisor D7 is the toric variety associated to the fan of figure 6,
therefore

A∗(D7) = Z · Dc
7 ⊕ Z · Cc

47 ⊕ Z · Cc
57 ⊕ Z · Cc

67 ⊕ Z · P c
7 (3.32)

and the relations with other curves are

Cc
27 = Cc

47 + Cc
67, (3.33)

Cc
37 = 2Cc

47 + Cc
57 + Cc

67. (3.34)

Now we have to sum all these groups and find relations between different
generators. It results that all point classes have to be identified, exactly as
the classes of the same curve. The group of compact subvarieties of G−C

3
6

is then isomorphic to Z
6:

Ac
∗(X) = Z · Dc

7 ⊕ Z · Cc
46 ⊕ Z · Cc

57 ⊕ Z · Cc
67 ⊕ Z · Cc

47 ⊕ Z · P c. (3.35)

3.3.3 Intersection pairing

There is a well-defined intersection pairing A∗(X) ⊗ Ac
∗(X) → Ac

∗(X). For
any two generators [Z1] ∈ A∗(X) and [Z2] ∈ Ac

∗(X) it is possible to find two
representatives which meet properly. Their intersection is a compact sub-
variety and defines the above pairing [Z1].[Z2] := [Z1 ∩ Z2] ∈ Ac

∗(X), which
is extendable by linearity to all elements in A∗(X) ⊗ Ac

∗(X). This product
gives the group Ac

∗(X) the structure of an A∗(X)−module.

For X = G−C
3
6 we obtain the intersection pairing of table 2:7

3.4 Homology, cohomology, Mori and Kähler cones

For any compact smooth variety X we have two natural homomorphisms

clX : A∗(X) → H∗(X, Z), clX : A∗(X) → H∗(X, Z).

The map clX sends the representant V of an algebraic cycle to the homolog-
ical cycle [V ]; it is well-defined because algebraic equivalence implies homo-
logical equivalence. The map clX is defined by composition of clX with

7We can quickly obtain the product between divisors and curves which do not intersect
properly in this way: suppose v1, v2 are the minimal lattice points on the edges of σC and
let v′, v′′ be the minimal lattice points of the three-dimensional cones containing σC , then
v′ + v′′ = a1v1 + a2v2 and Dk · C = −akP c.
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Table 2: Intersection pairing A∗(X) ⊗ Ac
∗(X) → Ac

∗(X)

Dc
7 Cc

46 Cc
57 Cc

67 Cc
47 P c

X Dc
7 Cc

46 Cc
57 Cc

67 Cc
47 P c

D1 0 P c 0 0 0 0
D2 Cc

27 0 P c 0 0 0
D3 Cc

37 0 0 P c 0 0
D4 Cc

47 −P c P c P c −P c 0
C P c 0 0 0 0 0

Poincaré duality, which associate to an homological k-cycle V the (n − k)-
form ηV such that

∫

V
θ =

∫

X
θ ∧ ηV .

In the case of crepant resolutions of toric orbifolds, it is possible to prove [11]
that there exists the following module isomorphism:

Ac
∗(X) 
 Hc

∗(X, Z), A∗(X) 
 H∗(X, Z)

which respects the intersection product8

H∗(X, Z) ⊗ Hc
∗(X, Z) → Hc

∗(X, Z).

We are interested in determining the Kähler cone of X, which is the set
of all forms J in H2(X, Q) such that

∫

C
J ≥ 0

for all effective cycles in Hc
2(X, Q). We describe the Kähler cone using

the module isomorphism of the previous paragraph. We begin defining the
Mori cone, i.e., the polyhedral cone in Ac

2(X) ⊗ Q generated by effective
toric invariant compact curves of X, which are the compact algebraic cycles∑l

i=1 aijC
c
ij where all the aij are nonnegative. Now we can think at the

Kähler cone of X as the dual polyhedral cone in A2(X) ⊗ Q of the Mori
cone with respect to the intersection pairing.

8The restriction to compact homology is necessary because of the problem in defining
integration over noncompact cycles.
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For X = G−C
3
6, in view of relations (3.33) and (3.34), the Mori cone is

generated by

C1 := Cc
46, C2 := Cc

57, C3 := Cc
67, C4 := Cc

47. (3.36)

Then the Kähler cone has the following dual generators, that satisfied Ta ·
Cb = δab P c:

T1 := D1, T2 := D2, T3 := D3, T4 := −D1 + D2 + D3 − D4. (3.37)

For completeness we report in table 3 the products between the Ti in the
Chow ring A∗(X):

If we call Ji the Kähler generators in H2(X, Q) corresponding to the Ti,
then we find the cohomology ring

H∗(X, Q) = Q[J1,J2,J3,J4]
(J2

1 ,J1J2,J1J3,J1J4,J2
2 ,J2J4−J2J3,J2

3−J2J3,J3J4−2J2J3,J2
4−2J2J3) . (3.38)

3.5 K -theory

3.5.1 Preliminaries

The K-theory ring of a variety X is related to the cohomology via the
Chern character map. More precisely, this is an injective homomorphism of
rings from K(X) to the Chow ring with rational coefficients A∗(X)Q. Then
composition with clX gives the homomorphism with H∗(X, Q):

ch : K(X) → A∗(X) ⊗ Q 
 H∗(X, Q).

Here we summarize some general properties of Chern map that will be useful
in the next sections. The Chern class ci is a map from K(X) to Ai(X) ⊗ Q;

Table 3: Products between the Kähler generators in A∗(X)

T1 T2 T3 T4

T1 0 0 0 0
T2 0 0 C C
T3 0 C C 2C
T4 0 C 2C 2C
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the total Chern class is defined as the sum of all Chern class

c(F) := c0(F) + c1(F) + · · · + cn(F),

where n is the dimension of X. A divisorial OX(D) sheaf has a very simple
total Chern class

c(OX(D)) = X + D

and, using multiplicative properties of the Chern classes, this implies

F =
r⊕

i=1

OX(Di) =⇒ c(F) =
r∏

i=1

(X + Di).

The Chern character is defined for such sheaf as

ch(F) :=
r∑

i=1

eDi = r X + c1(F) +
1
2
(c1(F)2 − 2c2(F)),

where the expansion is stopped to second order in view of the cohomology
ring structure of our non compact threefold varieties. In particular for a
divisorial sheaf we have

ch(OX(D)) = X + D + 1
2D2.

We recall also the definition of the Todd class:

td(F) :=
r∏

i=1

Di

1 − e−Di
= X +

1
2
c1(F) +

1
12

(c1(F)2 + c2(F)).

In particular, we need the Todd class of the tangent bundle TX ; for a toric
variety its total Chern class is

c(TX) =
∑

σ∈Δ

[V (σ)]

and so if X is a Calabi–Yau noncompact toric three-fold we have

c(TX) = X +
∑

[Cij ] ⇒ td(X) = td(TX) = X +
1
12

∑
[Cij ], (3.39)

where the sum is over all (compact and non compact) toric curves in X.

In the context of noncompact varieties we also have to work with the
compactly supported K-theory group Kc(X). This group is related to the
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compactly supported Chow group with rational coefficients Ac
∗(X)Q, and

therefore to Hc
∗(X, Q), via the local Chern character map [37]:

chc : Kc(X) → Ac
∗(X) ⊗ Q 
 Hc

∗(X, Q).

Let us briefly review its definition and properties. Any element S of Kc(X)
can be represented by coherent sheaves SV on a compact subvariety V of X.
If i : V ↪→ X is the embedding of V in X, we can define the local Chern
character of S by

chc(S) = ch(i∗SV ).

Actually, we can compute the local Chern characters with the help of the
Grothendieck–Riemann–Roch theorem:

i∗(ch(SV )td(V )) = ch(i∗SV )td(X)

for any compact subvarieties V of X, which implies

chc(S) = td(X)−1 i∗(ch(SV )td(V )).

The local Chern classes of the divisorial sheaves over the compact subvari-
eties in a Calabi–Yau noncompact toric threefold X are:

chc(Opc) = pc, chc(OCc(n)) = Cc + (n + 1)pc,

chc(ODc(C)) = i∗

(
Dc +

(
C + 1

2c1(Dc)
)

+1
2

(
C2 + c1(Dc) C + 1

6

(
c1(Dc)2 + c2(Dc)

)))

− 1
12c2(X) Dc. (3.40)

In the last character, C is a divisor in Dc and the ci(Dc) are the Chern classes
ci(TDc), which naturally live in A∗(Dc) and that can be calculated using
formula (3.39). Moreover all the products excepted the last are in A∗(Dc).

3.5.2 K -theory generators

Let G be an abelian subgroup of SL(3, C) which acts on the affine space
C

3. We write π : C
3 → Y = C

3/G for the quotient, X = G-Hilb(C3) for the
Hilbert scheme with crepant resolution τ : X → Y and the universal scheme
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Z = {(Z(x), x) ∈ X × C
3} where Z(x) is the G-cluster over x (see Section

3.2.2). Thus we have the commutative diagram

Z q−−−−→ C
3

⏐⏐%p

⏐⏐%π

X
τ−−−−→ Y

Let us consider the sheaf R := p∗OZ on the resolution X. Over any point
x ∈ X the fibre of R is H0(Z(x),OZ(x)) which supports the regular repre-
sentation of G. In particular, the rank of R is equal to the order of the
group G. The decomposition of the regular representation into irreducible
submodules induces the decomposition

R =
⊕

k

Rk ⊗ ρk for Rk = HomG(ρk,R)

into locally free sheaves of rankRi = dim ρi = 1. We called Rk the tauto-
logical line bundle on X associated to the irreducible representation ρk of
G. At the level of K-theory the McKay correspondence states the equiva-
lence of the G-equivariant K-theory of C

n and the K-theory of the crepant
resolutions. In [36] it has been determined the ring isomorphism

ϕ : KG(C3) ∼−→ K(X)

showing that ϕ(ρi ⊗ OC3) = Ri and therefore, that the tautological line
bundles form a Z-basis of K(X).

In Section 3.2.2 we studied the orbifold C
2/Z2 and its crepant resolution

Z
2-Hilb(C2). We have given a description of R and its decomposition into

line bundles on the two open sets Uσa and Uσb
. In figure 8 we report the

monomial generators of Ri on the affine pieces.

With the same procedure we can give the generators of Ri on G-Hilb(C3)
for any abelian G ⊂ SL(3, C). We report in figure 9 the monomial generators
for Z6-Hilb(C3).

The action of Z6 on the coordinate ring of C
3 is

ε · (X, Y, Z) = (εX, ε2Y, ε3Z), ε = e
2πi
6 . (3.41)

Therefore, it is simple to verify that each Ri supports the irreducible
representation ρi of Z6.
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Figure 8: Monomial generators of R0 and R1 for Z2-Hilb(C2).

Figure 9: Monomial generators of Ri for Z6-Hilb(C3).

Any line bundle on a smooth algebraic variety is a divisorial bundle.
We briefly sketch the standard procedure to find the divisor related to the
Ri defined by Reid and proved by Craw, and refer to [11] for a detailed
explanation.

The first step consists in decorating the G-Hilb fan with the characters of
the group. Any curve has to be marked with the character of the monomials
in its associated ratio. For any internal vertex v there exists a recipe to
associate one or two characters of G, depending primarily on the valency of
v (i.e., the number of lines meeting at v). For a G-Hilb fan this is always
3, 4, 5 or 6. There are the following cases:

• A vertex v of valency 3 defines an exceptional P
2. A single character

χk marks all three lines meeting at v. Mark the vertex v with the
character χm := χk ⊗ χk.
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• A vertex v of valency 4 defines an exceptional Hirzebruch surface Fr.
There are distinct characters χk and χl each one marking a pair of lines
meeting at v. Mark the vertex v with the character χm := χk ⊗ χl.

• A vertex v of valency 5 or 6 (excluding three straight lines meeting at a
point) defines an Hirzebruch surface Fr blown-up in one or two points.
There are uniquely determined characters χk and χl each one marking
a pair of lines meeting at v. Mark the vertex v with χm := χk ⊗ χl.

• A vertex v at the intersection of three straight lines defines an excep-
tional Del Pezzo surface of degree six, denoted dP6. The monomials
defining the pair of morphisms dP6 → P

2 lie in uniquely determined
character spaces χl and χm satisfying

χl ⊗ χm = χi ⊗ χj ⊗ χk,

where χi, χj and χk mark the straight lines through the vertex v.
Mark the vertex v with both χl and χm.

Each character of G appears once on the fan Δ.

By analysing of the monomial generators of the tautological line bundles
Ri, in [11] the author proved that:

• If χk marks the line defining the compact curve Ck ∈ Hc
2(X, Z) on

the resolution X, the first Chern class c1(Rk) is the dual to Ck in
H2(X, Z):

∫

Cl

c1(Rk) = δlk.

This means that Rk = OX(Tk), where Tk is the generator of the Kähler
cone dual to Ck.

• In Pic(X) all relations between tautological line bundles are of the
following forms:
– Rm = Rk ⊗ Rk when χm = χk ⊗ χk marks a vertex v of valency 3;
– Rm = Rk ⊗ Rl when χm = χk ⊗ χl marks a vertex v of valency 4;
– Rm = Rk ⊗ Rl when χm = χk ⊗ χl marks a vertex v of valency 5

or 6 (excluding three straight lines meeting at a point);
– Rl ⊗ Rm = Ri ⊗ Rj ⊗ Rk when the pair of characters χl and χm

satisfying χl ⊗ χm = χi ⊗ χj ⊗ χk marks the intersection point v of
three straight lines.

As usual we apply these considerations to our case X = Z6-Hilb(C6
3) and

we summarize them in the decorated fan of figure 10.
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Figure 10: Fan for Z6-Hilb(C3) decorated with Reid’s recipe.

The resulting tautological line bundles, that give a Z-basis of K(X), are:

R0 = OX , R1 = OX(D1), R2 = OX(D2), R3 = OX(D3),
R4 = OX(−D1 + D2 + D3 − D4), R5 = R2 ⊗ R3 = OX(D2 + D3).

(3.42)

3.5.3 K (X ) and K c(X )

Chosen a base of generators for K(X) we can find the dual basis for the
compact K-theory Kc(X) as in [36] using the perfect pairing

( | ) : K(X) × Kc(X) −→ Z, (R,S) 	−→ (R|S) =
∫
X ch(R)chc(S)td(X),

so that

(Ri|Sj) = δij . (3.43)

As usual, the integral is by definition the coefficient of the point class. Using
this fact, the standard computations of Chern and Todd characters and the
intersection product table 2, from condition (3.43) we find

chc(S0) = Dc
7 −

(
Cc

46 + Cc
57 + 3

2Cc
67 + 2Cc

47
)

+ 7
6P c,

chc(S1) = Cc
46,
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chc(S2) = −Dc
7 +

(
Cc

57 + 1
2Cc

67 + Cc
47
)

− 1
6P c,

chc(S3) = −Dc
7 +

(3
2Cc

67 + Cc
47
)

− 1
6P c,

chc(S4) = Cc
47,

chc(S5) = Dc
7 −

(1
2Cc

67 + Cc
47
)

+ 1
6P c. (3.44)

In the spirit of the paper [30] we now express the elements Si in terms of a
symplectic D-brane basis of Kc(X). Such basis can be constructed starting
from the generators of the compact Chow ring. We choose

B0 := Oc
P , Ba := OCc

a
(−Ta), B5 := ODc

7
(−T2 − T3), (3.45)

with a = 1, . . . , 4 and OCc
a
(−Ta) := OCc

a
⊗ OX(−Ta), ODc

7
(−T2 − T3) :=

ODc
7
⊗ OX(−T2 − T3). To express the basis Si in terms of Bj we can com-

pare their compact Chern characters. Using (3.40) and the multiplicative
property of Chern character we find

chc(B0) = P c, chc(Ba) = Cc
a, chc(B5) = Dc

7 −
(

1
2
Cc

67 + Cc
47

)

+
1
6
P c (3.46)

and then

S0 = B0 − B1 − B2 − B3 − B4 + B5,

S1 = B1,

S2 = B2 − B5,

S3 = B3 − B5,

S4 = B4,

S5 = B5, (3.47)

Finally, we write the Bi basis of Kc(X) in terms of the Si and its dual basis
Φi of K(X) in term of Ri:

B0 = S0 + S1 + S2 + S3 + S4 + S5, Φ0 = R0,

B1 = S1, Φ1 = −R0 + R1,

B2 = S2 + S5, Φ2 = −R0 + R2,

B3 = S3 + S5, Φ3 = −R0 + R3,

B4 = S4, Φ4 = −R0 + R4,

B5 = S5. Φ5 = R0 − R2 − R3 + R5. (3.48)
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3.6 The Hosono conjecture

We will restate shortly here the Hosono conjecture [30], for convenience.
The main point is that the periods for the mirror manifold are solutions of
a set of Picard–Fuchs equations, and the general solution can be expressed
in terms of an hypergeometric function with value in the cohomology of X:

w = w

(
x1, . . . , x4;

J1

2πi
, . . . ,

J4

2πi

)
.

Then the conjecture (adapted to our case) states as follows.

3.6.1 Hosono conjecture

Define the basis for H∗(X, Q)

Qi := ch(Φi), i = 0, . . . , 5

and expand the cohomology-valued hypergeometric series w with respect to
this basis:

w

(
x1, . . . , x4;

J1

2πi
, . . . ,

J4

2πi

)
=

5∑

i=0

wi(x1, . . . , x4)Qi.

Thus

(1) the coefficient hypergeometric series wi(x1, . . . , x4) may be identified
with the period integrals over the cycles mir(Bi),

wi(x1, . . . , x4) =
∫

mir(Bi)
Ω(Yx);

(2) the monodromy of the hypergeometric series is integral and symplectic
with respect to the symplectic form defined in Kc(X)

χ(Bi, Bj) =
∫

X
ch(B∨

i )ch(Bj)td(X);

(3) the central charge of an element F ∈ Kc(X) is expressed in terms of
the cohomology valued hypergeometric w as

Z(F ) =
∫

X
ch(F )w

(
x1, . . . , x4;

J1

2πi
, . . . ,

J4

2πi

)
td(X).
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The symplectic form of point 2 can be easily computed with respect to
the basis S−

i following the paper of Ito–Nakajima [36]. Let Q be the three-
dimensional representation given by the inclusion G ⊂ SL(3, C) and {ρi}r

i=0
be the irreducible representations. The decomposition

Q ⊗ ρj =
⊕

k

aijρi

is related to the symplectic form by

χ(Si,Sj) = aji − aij .

In our example

χ(Si,Sj) =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 1 1 0 −1 −1
−1 0 1 1 0 −1
−1 −1 0 1 1 0
0 −1 −1 0 1 1
1 0 −1 −1 0 1
1 1 0 −1 −1 0

⎞

⎟⎟⎟⎟⎟⎟⎠
, (3.49)

and then, for our chosen basis,

χ(Bi, Bj) =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 0 −1
0 −1 0 1 1 0

⎞

⎟⎟⎟⎟⎟⎟⎠
. (3.50)

This matrix gives a symplectic correspondence between the space H4(X, Q)
and a one-dimensional subspace of H2(X, Q). There is an obvious ambiguity
in such a correspondence, but we will turn back to it later.

3.6.2 The cohomological hypergeometric series

The vectors �a, a = 1, . . . , 4 are given by the intersection numbers between
the Mori cone generators and the invariant divisors of X, so that we find

C1 : �1 = (1, 0, 0,−1, 0,−1, 1),
C2 : �2 = (0, 1, 0, 1,−2, 0, 0),
C3 : �3 = (0, 0, 1, 1, 0,−1,−1),
C4 : �4 = (0, 0, 0,−1, 1, 1,−1). (3.51)
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The hypergeometric series is then

w =
∑

�m∈Z
4
≥0

xm1+ρ1
1 xm2+ρ2

2 xm3+ρ3
3 xm4+ρ4

4∏7
i=1 Γi(�m + �ρ)

∣∣∣∣∣∣∣
�ρ= �J

2πi

, (3.52)

Γ1(�m) = Γ(1 + m1),
Γ2(�m) = Γ(1 + m2),
Γ3(�m) = Γ(1 + m3),
Γ4(�m) = Γ(1 − m1 + m2 + m3 − m4),
Γ5(�m) = Γ(1 − 2m2 + m4),
Γ6(�m) = Γ(1 − m1 − m3 + m4),
Γ7(�m) = Γ(1 + m1 − m3 − m4). (3.53)

We need to expand this function in power series in �J . Because of the ring
relations for H∗(X, Q), we see that the expansion stops at order two. The
coefficient functions, with respect to the basis {1, �J, C} of H∗(X, Q), are
computed in the appendix.

However we chosen the basis Bi in Kc(X) so that we need to rewrite the
expansion in terms of the dual basis Qi = ch(Φi):

Q0 = 1, Q1 = J1, Q2 = J2, Q3 = J3 + 1
2C, Q4 = J4 + C, Q5 = C. (3.54)

If we make this change of basis and use the mirror symmetry identification

w

(
�x,

�J

2πi

)
= Q01 +

4∑

a=1

Qata + Q5g(t1, . . . , t4), (3.55)

then we find

2πit1 = log x1 + Ψ(x1x3) + Φ(x2, x1x4) + ℵ(�x),
2πit2 = log x2 − Φ(x2, x1x4) + 2Φ(x1x4, x2),
2πit3 = log x3 − Φ(x2, x1x4) + Ψ(x1x3) − ℵ(�x),
2πit4 = log x4 − Φ(x1x4, x2) + Φ(x2, x1x4) − Ψ(x1x3) − ℵ(�x), (3.56)
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and

(2πi)2g(�t ) = −π2

3
− πi(log x3 − Φ(x2, x1x4) + Ψ(x1x3) − ℵ(�x))

−2πi(log x4 − Φ(x1x4, x2) + Φ(x2, x1x4) − Ψ(x1x3) − ℵ(�x))

+7ℵ(1)(�x) − 3ℵ(2)(�x) − 2ℵ(3)(�x) − ℵ(4)(�x) − ℵ(5)(�x)
−Ψ1(x2, x1x4) + Ψ2(x2, x1x4) − Ψ1(x1x4, x2) + Ψ2(x1x4, x2)
−Ψ1(x1x4, x2) + Ψ3(x1x4, x2) − Ψ4(x1x3) + Ψ5(x1x3) + Ψ6(x2, x4)
+Λ1(�x) − Λ2(�x) − Λ3(�x)
+1

2(log x3)2 + log x3[Ψ(x1x3) − Φ(x2, x1x4) − ℵ(�x)]

+(log x4)2 + 2 log x4[Φ(x2, x1x4) − Φ(x1x4, x2) − Ψ(x1x3) − ℵ(�x)]
+ log x2 log x3 + log x2[Ψ(x1x3) − Φ(x2, x1x4) − ℵ(�x)]
+ log x3[2Φ(x1x4, x2) − Φ(x2, x1x4)] + log x2 log x4

+ log x2[Φ(x2, x1x4) − Φ(x1x4, x2) − Ψ(x1x3) − ℵ(�x)]
+ log x4[2Φ(x1x4, x2) − Φ(x2, x1x4)] + 2 log x3 log x4

+2 log x3[Φ(x2, x1x4) − Φ(x1x4, x2) − Ψ(x1x3) − ℵ(�x)]
+2 log x4[Ψ(x1x3) − Φ(x2, x1x4) − ℵ(�x)]. (3.57)

Using the above expressions we find

g(�t ) = P2(�t ) +
1

(2πi)2
φ(�t ), (3.58)

where P2 is the degree two polynomial part

P2(�t ) = 1
12 − 1

2 t3 − t4 + 1
2 t23 + t24 + t2t3 + t2t4 + 2t3t4, (3.59)

and

φ(�t ) = 7ℵ(1)(�x) − 3ℵ(2)(�x) − 2ℵ(3)(�x) − ℵ(4)(�x) − ℵ(5)(�x)

− Ψ1(x2, x1x4) + Ψ2(x2, x1x4) − Ψ1(x1x4, x2) + Ψ2(x1x4, x2)

− Ψ1(x1x4, x2) + Ψ3(x1x4, x2) − Ψ4(x1x3) + Ψ5(x1x3) + Ψ6(x2, x4)

+ Λ1(�x) − Λ2(�x) − Λ3(�x)

+ 1
2Ψ2(x1x3) + 1

2Φ2(x2, x1x4) + Φ2(x1x4, x2) − 7
2ℵ2(�x)

− Ψ(x1x3)ℵ(�x) − Φ(x2, x1x4)ℵ(�x)

− Φ(x2, x1x4)Ψ(x1x3) − Φ(x2, x1x4)Φ(x1x4, x2), (3.60)

with �x expressed as a function of �t by inverting system (3.56), is the part
corresponding to instantonic contributions. Following Hosono and using
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(3.50) we find

(∂t1 − ∂t3 − ∂t4)F (�t ) = g(�t ), (3.61)

where F is the prepotential. To integrate this equation we must expect
for the prepotential to be as usual the sum of a classical term, a cubic
polynomial in �t and a quantum instantonic contribution. Setting

qk := e2πitk , (3.62)

we then find

F (�t ) = − t4
12

+
t24
4

+
t3t4
2

− t34
6

− t3t4
2

(t3 + t4 + 2t2) + Finst(�q )

+ Pclass(t2, t1 + t3, t1 + t4) + Qinst(q2, q1q3, q1q4), (3.63)

where Finst are the instantonic corrections, obtained integrating φ, Pclass
is an arbitrary cubic polynomial of three variables and Qinst an arbitrary
function of three variables which we assume analytic in (0, 0, 0). Pclass and
Qinst represent the contributions which are undetermined by the equation
(3.61).

As an example, let us compute the Gromov–Witten (GW) invariants up
to degree six. Here we use the Gopakumar–Vafa (G–V) reinterpretation,
so that by GW-invariants we mean the G–V integral invariants for ratio-
nal curves, in place of the original fractional GW-invariants.9 We will use
[d1, d2, d3, d4] to indicate the degree of the curves in the Mori cone, corre-
sponding to the generators J1, . . . , J4. Thus we consider the curves with
degree d1 + d2 + d3 + d4 ≤ 6. The curves with degree in the integer cone
generated by [0, 1, 0, 0], [1, 0, 1, 0], [1, 0, 0, 1] must be excluded, because cor-
responding to the undetermined part of the prepotential. The only nonva-
nishing invariants in the considered range are

GW[0,0,0,1] = GW[0,0,1,0] = GW[1,0,0,0]

= GW[1,0,1,1] = GW[0,1,0,1] = GW[1,1,1,1] = 1;
GW[0,0,1,1] = GW[0,1,1,1] = GW[1,1,1,2] = −2;
GW[0,1,1,2] = GW[1,1,2,2] = 3;

GW[0,1,2,2] = −4; GW[0,1,2,3] = 5. (3.64)

9See [3] for a nice introduction to GW invariants and their interpretation in physics
and in mathematics.
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4 The flopped resolutions

In this section, we study the remaining four crepant resolutions X of the
orbifold C

3
6.

4.1 Intersection theory

For any resolution we have

A0(X) = Z · X,

A1(X) =
4⊕

i=1

Z · Di 
 Z
4,

A2(X) = Z · C,

A3(X) = 0. (4.1)

In A2(X) the divisors D5, D6, D7 can be expressed in terms of the others

D5 = −D1 − D2 + D3 − D4, (4.2)
D6 = −2D1 + D2 − D4, (4.3)
D7 = 2D1 − D2 − 2D3 + D4. (4.4)

The curve C depends on the resolution, as well as the intersection product
in A∗(X). If we call R the set of relations given by the intersection product,
we have

A∗(X) = Z[X, D1, D2, D3, D4, C]/R. (4.5)

Ac
∗(X) is an A∗(X)-module, it is generated as group by the compact divisor

Dc
7, the four compact curves depending on the resolution and the point class

P c. Finally, the intersection pairing A∗(X) ⊗ Ac
∗(X) → Ac

∗(X) depends on
the resolution.

Resolution X = R2−C
3
6 (figure 11): This resolution differs from the

G-Hilb by the flop

C46 −→ C17. (4.6)

We define C = [C14] and we report the relations between any other toric
curve and C in the decorated fan of figure 12.
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Figure 11: The toric invariant subvarieties of R2-(C3
6).

Figure 12: The rational equivalence between curves of R2-(C3
6).

In table 4 we summarize the intersection products, which give the relations
R in the Chow ring A∗(X) = Z[X, D1, D2, D3, D4, C]/R.

The group of compact subvarieties of X is

Ac
∗(X) = Z · Dc

7 ⊕ Z · Cc
17 ⊕ Z · Cc

57 ⊕ Z · Cc
67 ⊕ Z · Cc

47 ⊕ Z · P c, (4.7)

with relations to other compact curves

Cc
27 = 2C17 + Cc

67 + Cc
47, (4.8)

Cc
37 = 3C17 + Cc

57 + Cc
67 + 2Cc

47. (4.9)
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Table 4: Intersection product in A∗(X)

X D1 D2 D3 D4 C
X X D1 D2 D3 D4 C
D1 D1 C 0 0 −C 0
D2 D2 0 0 −C 0 0
D3 D3 0 −C −C 0 0
D4 D4 −C 0 0 2C 0
C C 0 0 0 0 0

Table 5: Intersection pairing A∗(X) ⊗ Ac
∗(X) → Ac

∗(X)

Dc
7 Cc

17 Cc
57 Cc

67 Cc
47 P c

X Dc
7 Cc

17 Cc
57 Cc

67 Cc
47 P c

D1 Cc
17 −P c 0 P c P c 0

D2 Cc
27 0 P c 0 0 0

D3 Cc
37 0 0 P c 0 0

D4 Cc
47 P c P c 0 −2P c 0

C P c 0 0 0 0 0

In table 5 we summarize the intersection pairing.

The Mori cone generators are Ca, a = 1, . . . , 4, with

C1 = C17, C2 = C57, C3 = C67, C4 = C47. (4.10)

The Kähler cone is generated by the dual elements Ta, a = 1, . . . , 4 with

T1 = −2D1 + D2 + 2D3 − D4, T2 = D2,
T3 = D3, T4 = −D1 + D2 + D3 − D4. (4.11)

If we call Ja the Kähler generators in H2(X, Q) corresponding to the Ta

then the cohomology ring is

H∗(X, Q) = Q[J1, . . . , J4]/ ∼, (4.12)

with ∼ given by table 6.
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Table 6: Intersection between Kähler generators

T1 T2 T3 T4

T1 6C 2C 3C 4C
T2 2C 0 C C
T3 3C C C 2C
T4 4C C 2C 2C

Resolution X = R3−C
3
6 (figure 13): This resolution differs from the

G-Hilb by the flop

C67 −→ C34. (4.13)

We set C = [C34] and we report the relations between any other toric curve
and C in the decorated fan of figure 14.

In table 7 we summarize the intersection products, which give the relations
R in the Chow ring A∗(X) = Z[X, D1, D2, D3, D4, C]/R.

The group of compact subvarieties of X is

Ac
∗(X) = Z · Dc

7 ⊕ Z · Cc
46 ⊕ Z · Cc

57 ⊕ Z · Cc
67 ⊕ Z · Cc

47 ⊕ Z · P c, (4.14)

with relations to other compact curves

Cc
27 = Cc

47, (4.15)
Cc

37 = C57 + 2Cc
47. (4.16)

Figure 13: The toric invariant subvarieties of R3-(C3
6).
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Figure 14: The rational equivalence between curves of R3-(C3
6).

Table 7: Intersection product in A∗(X)

X D1 D2 D3 D4 C

X X D1 D2 D3 D4 C
D1 D1 0 0 0 0 0
D2 D2 0 0 C 0 0
D3 D3 0 C 2C C 0
D4 D4 0 0 C 0 0
C C 0 0 0 0 0

Table 8: Intersection pairing A∗(X) ⊗ Ac
∗(X) → Ac

∗(X)

Dc
7 Cc

46 Cc
57 Cc

34 Cc
47 P c

X Dc
7 Cc

46 Cc
57 Cc

34 Cc
47 P c

D1 0 P c 0 0 0 0
D2 Cc

27 0 P c 0 0 0
D3 Cc

37 P c 0 −P c P c 0
D4 Cc

47 0 P c −P c 0 0
C P c 0 0 0 0 0

In table 8 we summarize the intersection pairing.
The Mori cone generators are Ca, a = 1, . . . , 4, with

C1 = C46, C2 = C57, C3 = C34, C4 = C47. (4.17)
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Table 9: Intersection between Kähler generators

T1 T2 T3 T4

T1 0 0 0 0
T2 0 0 0 C
T3 0 0 0 0
T4 0 C 0 2C

The Kähler cone is generated by the dual elements Ta, a = 1, . . . , 4 with

T1 = D1, T2 = D2,
T3 = D2 − D4, T4 = −D1 + D2 + D3 − D4. (4.18)

If Ja are the Kähler generators in H2(X, Q) corresponding to the Ta then
the cohomology ring is

H∗(X, Q) = Q[J1, . . . , J4]/ ∼, (4.19)

with ∼ given by table 9.

Resolution X = R4−C
3
6 (figure 15): This resolution differs from the

G-Hilb by the flop

C47 −→ C56. (4.20)

We set C = [C56] and we report the relations between any other toric curve
and C in the decorated fan of figure 16.

Figure 15: The toric invariant subvarieties of R4-(C3
6).
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Figure 16: The rational equivalence between curves of R4-(C3
6).

Table 10: Intersection product in A∗(X)

X D1 D2 D3 D4 C

X X D1 D2 D3 D4 C
D1 D1 0 0 0 0 0
D2 D2 0 0 C 0 0
D3 D3 0 C C 0 0
D4 D4 0 0 0 0 0
C C 0 0 0 0 0

In table 10 we summarize the intersection products, which give the
relations R in the Chow ring A∗(X) = Z[X, D1, D2, D3, D4, C]/R.

The group of compact subvarieties of X is

Ac
∗(X) = Z · Dc

7 ⊕ Z · Cc
46 ⊕ Z · Cc

57 ⊕ Z · Cc
67 ⊕ Z · Cc

56 ⊕ Z · P c, (4.21)

with relations to other compact curves

Cc
27 = Cc

67, (4.22)
Cc

37 = Cc
57 + Cc

67. (4.23)

In table 11 we summarize the intersection pairing.
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Table 11: Intersection pairing A∗(X) ⊗ Ac
∗(X) → Ac

∗(X)

Dc
7 Cc

46 Cc
57 Cc

67 Cc
56 P c

X Dc
7 Cc

46 Cc
57 Cc

67 Cc
56 P c

D1 0 P c 0 0 0 0
D2 Cc

27 0 P c 0 0 0
D3 Cc

37 0 0 P c 0 0
D4 0 −2P c 0 0 P c 0
C P c 0 0 0 0 0

The Mori cone generators are Ca, a = 1, . . . , 4, with

C1 = C46, C2 = C57, C3 = C67, C4 = C56. (4.24)

The Kähler cone is generated by the dual elements Ta, a = 1, . . . , 4 with

T1 = D1, T2 = D2, T3 = D3, T4 = 2D1 + D4. (4.25)

If Ja are the Kähler generators in H2(X, Q) corresponding to the Ta then
the cohomology ring is

H∗(X, Q) = Q[J1, . . . , J4]/ ∼, (4.26)

with ∼ given by table 12.

Resolution X = R5−C
3
6 (figure 17): This resolution differs from the G-Hilb

by the flops

C47 −→ C56, C57 −→ C26. (4.27)

We set C = [C56] and we report the relations between any other toric curve
and C in the decorated fan of figure 18.

Table 12: Intersection between Kähler generators

T1 T2 T3 T4

T1 0 0 0 0
T2 0 0 C 0
T3 0 C C 0
T4 0 0 0 0
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Figure 17: The toric invariant subvarieties of R5-(C3
6).

Figure 18: The rational equivalence between curves of R5-(C3
6).

In table 13 we summarize the intersection products, which give the
relations R in the Chow ring A∗(X) = Z[X, D1, D2, D3, D4, C]/R.

The group of compact subvarieties of X is

Ac
∗(X) = Z · Dc

7 ⊕ Z · Cc
46 ⊕ Z · Cc

26 ⊕ Z · Cc
67 ⊕ Z · Cc

56 ⊕ Z · P c, (4.28)

with relations to other compact curves

Cc
27 = Cc

67, (4.29)
Cc

37 = Cc
67. (4.30)
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Table 13: Intersection product in A∗(X)

X D1 D2 D3 D4 C
X X D1 D2 D3 D4 C
D1 D1 0 0 0 0 0
D2 D2 0 C C 0 0
D3 D3 0 C C 0 0
D4 D4 0 0 0 0 0
C C 0 0 0 0 0

Table 14: Intersection pairing A∗(X) ⊗ Ac
∗(X) → Ac

∗(X)

Dc
7 Cc

46 Cc
26 Cc

67 Cc
56 P c

X Dc
7 Cc

46 Cc
26 Cc

67 Cc
56 P c

D1 0 P c 0 0 0 0
D2 Cc

27 0 −P c P c P c 0
D3 Cc

37 0 0 P c 0 0
D4 0 −2P c 0 0 P c 0
C P c 0 0 0 0 0

In table 14 we summarize the intersection pairing.

The Mori cone generators are Ca, a = 1, . . . , 4, with

C1 = C46, C2 = C26, C3 = C67, C4 = C56. (4.31)

The Kähler cone is generated by the dual elements Ta, a = 1, . . . , 4 with

T1 = D1, T2 = 2D1 − D2 + D3 + D4,
T3 = D3, T4 = 2D1 + D4. (4.32)

If we call Ja the Kähler generators in H2(X, Q) corresponding to the Ta

then the cohomology ring is

H∗(X, Q) = Q[J1, . . . , J4]/∼, (4.33)

with ∼ given by table 15.

4.2 K -theory generators

We have seen that G-Hilb is the moduli space of G-cluster in C
3. The

natural generalization of G-cluster is G-constellation. For a finite group
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Table 15: Intersection between Kähler generators

T1 T2 T3 T4

T1 0 0 0 0
T2 0 0 0 0
T3 0 0 C 0
T4 0 0 0 0

G ⊂ GL(n, C), a G-constellation is a G-equivariant coherent sheaf F on Cn

with global sections H0(F ) isomorphic as a C[G]-module to the regular
representation R of G. Set

Θ := {θ ∈ HomZ(R(G), Q)|θ(R) = 0},

where R(G) is the representation ring of G. This is an hyperplane in
Q

r, where r is the order of G. For θ ∈ Θ, a G-constellation F is said to
be θ-stable (or θ-semistable) if every proper G-equivariant coherent sub-
sheaf 0 ⊂ E ⊂ F satisfies θ(E) > 0 (or θ(E) ≥ 0). The moduli space Mθ of
θ-stable constellation is constructed using GIT (cf. [43]). The space Θ is
subdivided into polyhedral convex cones C called GIT chamber. Given θ
and θ′ in the same chamber C the moduli spaces Mθ and Mθ′ are isomor-
phic, so we write MC in place of Mθ for any θ ∈ C. Ito and Nakajima [36]
observed that G-Hilb =MC0 for some chamber C0 ⊂ Θ and more generally
the method of [5] shows that for any chamber C ⊂ Θ there is a crepant
resolution τ : MC → C

3/G and an equivalence of ΦC : D(MC) → DG(C3)
between derived categories of coherent sheaves on MC and derived cat-
egories of G-equivariant sheaves on C

3. Craw and Ishii [12] proved that
in the Abelian case every crepant resolution may be realized as a moduli
space MC for some chamber. Moreover, they uncovered explicit equiva-
lence between the derived categories of moduli Mθ for parameters lying in
adjacent GIT chambers. Therefore starting from G-Hilb and by analysing
the chamber structure of Θ, we can define the tautological bundles Rρ that
generate K(X) on every flopped resolution X and that are the Fourier–
Mukay transforms of the original tautological bundles on G-Hilb.

Here we summarize how calculate the chamber structure of Θ and the
transformation induced by crossing the walls W of the chambers C. We refer
to [12, 14] for detailed explanations. The derived equivalence ΦC induces a
Z-linear isomorphism

ϕC : Kc(MC) → R(G),
∑

aiSi 	−→
⊕

aiρi, (4.34)
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where as usual Si is the element of the basis of Kc(MC) dual of the tauto-
logical bundle Ri and ρi is the irreducible representation of character i. Let
C ⊂ Θ be a chamber. Then θ ∈ C if and only if

• for every exceptional curve �, we have θ(ϕC(O�))=
∑

i θ(ρi) deg
(Rρi |�) > 0;10

• for every compact reduced divisor D11 and irreducible representation
ρ, we have

θ(ϕC(R−1
ρ ⊗ ωD)) < 0 and θ(ϕC(R−1

ρ |D)) > 0,

where ωD is the canonical bundle of D.12

These inequalities determine the walls of the chamber C, but we have to
pay attention that some of them may be redundant.

Let θ ∈ Θ be a generic parameter, C the chamber containing it and θ0 a
parameter on its wall W . The wall is said to be of type 0, I, II or III as
follows:

• type 0 if Mθ0 isomorphic to Mθ,
• type I if Mθ0 is obtained from Mθ by the contraction of a curve to a

point,
• type II if Mθ0 is obtained from Mθ by the contraction of a divisor to

a point,
• type III if Mθ0 is obtained from Mθ by the contraction of a divisor to

a curve.

The inequalities coming from curves determine walls of type I or III, while
the others determine walls of type 0. There are no walls of type II.

If C ′ is the chamber behind the wall W , the relatione between MC′ and
MC and their tautological bundles depends on the type of the wall.

• W of type 0: Mθ′ is isomorphic to Mθ; the wall W ⊂ Θ is the zero
locus of an equation of the form
R(θ0(ρ1), . . . , θ0(ρr)) = a1θ0(ρ1) + . . . + arθ0(ρr) = 0 and, if D is the
divisor defining the wall, the tautological bundles Ri and R′

i are related

10Recall that if Rρ = OX(D′) then deg(Rρ|�) = D′ · �
11I.e., D =

∑
aiDi where Di are compact invariant divisors and the coefficient

ai ∈ {0, 1, −1}.
12If Rρ = OX(D′) and ωD = OD(KD) then R−1

ρ ⊗ ωD = OD(−D′ · D + KD) and
R−1

ρ |D = OD(−D′ · D). Then we calculate the inequalities with the help of (3.40) and
(4.38).
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as follows:
– Case +: if R(θ(ρ1), . . . , θ(ρr)) > 0 then

R′
i =

{
Ri if ai = 0,
Ri ⊗ OMθ′ (D) if ai �= 0;

– Case −: if R(θ(ρ1), . . . , θ(ρr)) < 0 then

R′
i =

{
Ri if ai = 0,
Ri ⊗ OMθ′ (−D) if ai �= 0.

• W of type I: Mθ′ is the variety obtained from Mθ by the flop of
the curve � determining the wall; the tautological bundles R′

i are the
proper transform of Ri.

• W of type III: Mθ′ is isomorphic to Mθ; if D is the divisor contracted
in Mθ0 , the tautological bundles Ri and R′

i are related as follows:
– Case +: if {deg(Ri|�)} = {0, 1} then

R′
i =

{
Ri if deg(Ri|�) = 0,
Ri ⊗ OMθ′ (D) if deg(Ri|�) = 1;

– Case −: if {deg(Ri|�)} = {0,−1} then

R′
i =

{
Ri if deg(Ri|�) = 0,
Ri ⊗ OMθ′ (−D) if deg(Ri|�) = −1.

Thus, crossing walls of type I induces flops, while walls of type 0 and III
induce self-equivalence of the derived category of the resolved variety. One
can start from the chamber of the G-Hilb resolution, follow the change of
the tautological bundles crossing the walls and reconstruct the chamber
structure of Θ.

In our example the tautological bundles for the Z6-Hilb are

R0 = OX , R1 = OX(D1), R2 = OX(D2), R3 = OX(D3),
R4 = OX(−D1 + D2 + D3 − D4),
R5 = R2 ⊗ R3 = OX(D2 + D3). (4.35)
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We write parameters θ as (θ0, . . . , θ5), where θi := (θ(ρi)). The inequalities
defining the Z6-Hilb chamber are

θ1 > 0 wall of type I related to the flop of the curve C1;
(4.36)

θ2 + θ5 > 0 wall of type III+ related to the contraction of the

divisor D5; (4.37)

θ3 + θ5 > 0 wall of type I related to the flop of the curve C3;
(4.38)

θ4 > 0 wall of type I related to the flop of the curve C4;
(4.39)

θ5 > 0 wall of type 0+ defined by θ(ϕC(R−1
5 |D7)) > 0;

(4.40)

θ2 + θ3 + θ4 + θ5 > 0 wall of type 0+ defined by θ(ϕC(R−1
5 ⊗ ωD7)) < 0.

(4.41)

Any other inequality is redundant. As it is proven in Section 9 of [12], the
flop of any single curve in the G-Hilb is achieved by crossing a wall of the
chamber (generally if we are in a chamber different from the G-Hilb’s it may
be necessary first cross a type 0 wall to realize a flop).

Resolution R2−C
3
6: Starting from the G-Hilb chamber we obtain this

resolution by crossing the wall (4.36). The tautological bundles are
again

R0 = OX , R1 = OX(D1), R2 = OX(D2), R3 = OX(D3),

R4 = OX(−D1 + D2 + D3 − D4),

R5 = R2 ⊗ R3 = OX(D2 + D3). (4.42)

while the pure D-brane basis is

B0 := Op; Ba := OCa(−Ta); B5 := OD7(−T2 − T3), (4.43)
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with a = 1, . . . , 4. In terms of the Ri and their duals Si, the Bi-basis of
K(X) and its dual Φ-basis of Kc(X) are thus:

B0 = S0 + S1 + S2 + S3 + S4 + S5, Φ0 = R0,

B1 = −S1, Φ1 = −R0 − R1 + R3 + R4,

B2 = S2 + S5, Φ2 = −R0 + R2,
(4.44)

B3 = S1 + S3 + S5, Φ3 = −R0 + R3,

B4 = S1 + S4, Φ4 = −R0 + R4,

B5 = S5. Φ5 = R0 − R2 − R3 + R5.

The symplectic form in the selected basis is

χ(Bi, Bj) =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠
. (4.45)

Resolution R3−C
3
6: Starting from the G-Hilb chamber we obtain this

resolution by crossing the wall (4.38). The tautological bundles are again

R0 = OX , R1 = OX(D1), R2 = OX(D2), R3 = OX(D3),
R4 = OX(−D1 + D2 + D3 − D4), R5 = R2 ⊗ R3 = OX(D2 + D3).

(4.46)

while the pure D-brane basis is

B0 := Op; Ba := OCa(−Ta); B5 := OD7(−T1 − T2 + T3 − T4), (4.47)

with a = 1, . . . , 4. In terms of the Ri and their duals Si, the Bi-basis of
K(X) and its dual Φ-basis of Kc(X) are thus:

B0 = S0 + S1 + S2 + S3 + S4 + S5, Φ0 = R0,

B1 = S1 + S3 + S5, Φ1 = −R0 + R1,

B2 = S2 + S5, Φ2 = −R0 + R2, (4.48)
B3 = −S3 − S5, Φ3 = −R0 + R1 − R3 + R4,

B4 = S3 + S4 + S5, Φ4 = −R0 + R4,

B5 = S5. Φ5 = R0 − R2 − R3 + R5.
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The symplectic form in the selected basis is

χ(Bi, Bj) =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 −2
0 0 0 −1 2 0

⎞

⎟⎟⎟⎟⎟⎟⎠
. (4.49)

Resolution R4−C
3
6 : Starting from the G-Hilb chamber we obtain this

resolution by crossing the wall (4.39). The tautological bundles are again

R0 = OX , R1 = OX(D1), R2 = OX(D2), R3 = OX(D3),
R4 = OX(−D1 + D2 + D3 − D4), R5 = R2 ⊗ R3 = OX(D2 + D3).

(4.50)

while the pure D-brane basis is

B0 := Op; Ba := OCa(−Ta); B5 := OD7(−T2 − T3), (4.51)

with a = 1, . . . , 4. In terms of the Ri and their duals Si, the Bi-basis of
K(X) and its dual Φ-basis of Kc(X) are thus:

B0 = S0 + S1 + S2 + S3 + S4 + S5, Φ0 = R0,

B1 = S1 + S4, Φ1 = −R0 + R1,

B2 = S2 + S4 + S5, Φ2 = −R0 + R2, (4.52)
B3 = S3 + S4 + S5, Φ3 = −R0 + R3,

B4 = −S4, Φ4 = −R0 + R1 − R4 + R5,

B5 = S4 + S5. Φ5 = R0 − R2 − R3 + R5.

The symplectic form in the selected basis is

χ(Bi, Bj) =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 0 −2
0 0 0 0 0 1
0 0 1 2 −1 0

⎞

⎟⎟⎟⎟⎟⎟⎠
. (4.53)

Resolution R5−C
3
6: Starting from the above chamber of the resolution

R4−C
3
6 we obtain this resolution by crossing a single wall of type I. The



1424 SERGIO LUIGI CACCIATORI AND MARCO COMPAGNONI

tautological bundles are again

R0 = OX , R1 = OX(D1), R2 = OX(D2), R3 = OX(D3),
R4 = OX(−D1 + D2 + D3 − D4), R5 = R2 ⊗ R3 = OX(D2 + D3).

(4.54)

while the pure D-brane basis is

B0 := Op; Ba := OCa(−Ta); B5 := OD7(T2 − 2T3 − T4), (4.55)

with a = 1, . . . , 4. In terms of the Ri and their duals Si, the Bi-basis of
K(X) and its dual Φ-basis of Kc(X) are thus:

B0 = S0 + S1 + S2 + S3 + S4 + S5, Φ0 = R0,

B1 = S1 + S4, Φ1 = −R0 + R1,

B2 = −S2 − S4 − S5, Φ2 = −R0 +R1 −R2 +R3 − R4 + R5,

B3 = S2 + S3 + 2S4 + 2S5, Φ3 = −R0 + R3,

B4 = S2 + S5, Φ4 = −R0 + R1 − R4 + R5,

B5 = S4 + S5. Φ5 = R0 − R2 − R3 + R5.
(4.56)

The symplectic form in the selected basis is

χ(Bi, Bj) =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 −3
0 0 0 0 0 0
0 0 −1 3 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠
. (4.57)

4.3 The cohomological hypergeometric series and GW -invariants

The hypergeometric series are specified by the � vectors corresponding to
large Kähler parameters and the hypergeometric coefficients are determined
expanding them with respect to the basis Qi = ch(Φi) of H∗(X, Q).

Invariants for R2−C
3
6 : The vectors �a, a = 1, . . . , 4 are

C1 : �1 = (−1, 0, 0, 1, 0, 1,−1),
C2 : �2 = (0, 1, 0, 1,−2, 0, 0),
C3 : �3 = (1, 0, 1, 0, 0,−2, 0),
C4 : �4 = (1, 0, 0,−2, 1, 0, 0). (4.58)
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The selected basis of the cohomology is

Q0 = 1, Q1 = J1 − 2C, Q2 = J2,
Q3 = J3 − 1

2C, Q4 = J4 − C, Q5 = −C. (4.59)

If we make this change of basis and use the mirror symmetry identification

w

(
�x,

�J

2πi

)
= Q01 +

4∑

a=1

Qata + Q5g(t1, . . . , t4), (4.60)

then we find

2πit1 = log x1 − Ψ(x3) + Φ(x2, x4) − ℵ(�x),
2πit2 = log x2 + Φ(x2, x4) − 2Φ(x4, x2),
2πit3 = log x3 + 2Ψ(x3),
2πit4 = log x4 − 2Φ(x2, x4) + Φ(x4, x2), (4.61)

and

g(�t ) = P2(�t ) +
1

(2πi)2
φ(�t ), (4.62)

where P2 is the degree two polynomial part

P2(�t ) = −2t1 − 1
2 t3 − t4 + 3t21 + 1

2 t23 + t24

+ 2t1t2 + 3t1t3 + 4t1t4 + t2t3 + t2t4 + 2t3t4, (4.63)

and

φ(�t ) = 6ℵ(1)(�x) − 3ℵ(2)(�x) − 2ℵ(3)(�x) − ℵ(6)(�x) − Λ4(�x) − Λ5(�x)

+ Ψ6(x2, x4) − 2Ψ4(x3) + 2Ψ5(x3) + 2Ψ1(x2, x4) + 2Ψ1(x4, x2)

− Ψ2(x2, x4) − Ψ2(x4, x2) − Ψ3(x2, x4) − Ψ3(x4, x2)

− 3ℵ2(�x) + Ψ2(x3) + Φ2(x2, x4) + Φ2(x4, x2)

− Φ(x2, x4)Φ(x4, x2), (4.64)

with �x expressed as a function of �t by inverting system (4.61), is the part
corresponding to instantonic contributions. Following Hosono and using
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(4.45) we find

(−∂t1)F (�t ) = g(�t ), (4.65)

where F is the prepotential. Setting

qk := e2πitk , (4.66)

we then find

F (�t ) = t21 + 1
2 t1t3 − t1t4 − t31 − 1

2 t1t
2
3 − t1t

2
4 − t21t2 − 3

2 t21t3 − 2t21t4

− t1t2t3 − t1t2t4 − 2t1t3t4 + Finst(�q ) + Pclass(t2, t3, t4)

+ Qinst(q2, q3, q4). (4.67)

P and Q are the undetermined parts. We list the Gromov–Witten invari-
ants for rational curves up to degree six. The curves with degree in the
integer cone generated by [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1] must be excluded,
because corresponding to the undetermined part of the prepotential. The
only nonvanishing invariants in the considered range are

GW[1,0,0,0] = GW[1,0,1,0] = GW[1,0,0,1]
= GW[1,0,1,1] = GW[1,1,0,1] = GW[1,1,1,1] = 1;

GW[2,0,1,1] = GW[2,1,1,1] = GW[2,1,1,2] = −2. (4.68)

Invariants for R3−C
3
6: The vectors �a, a = 1, . . . , 4 are

C1 : �1 = (1, 0, 1, 0, 0,−2, 0),
C2 : �2 = (0, 1, 0, 1,−2, 0, 0),
C3 : �3 = (0, 0,−1,−1, 0, 1, 1),
C4 : �4 = (0, 0, 1, 0, 1, 0,−2). (4.69)

The selected basis of the cohomology is

Q0 = 1, Q1 = J1, Q2 = J2, Q3 = J3, Q4 = J4 + C,
Q5 = C. (4.70)

Making use of the mirror symmetry identification

w

(
�x,

�J

2πi

)
= Q01 +

4∑

a=1

Qata + Q5g(t1, . . . , t4), (4.71)
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then we find

2πit1 = log x1 + 2Ψ(x1),
2πit2 = log x2 − Φ(x2, x1x

2
3x4) + 2Φ(x1x

2
3x4, x2),

2πit3 = log x3 − Ψ(x1) + ℵ(�x),
2πit4 = log x4 − Φ(x1x

2
3x4, x2) − 2ℵ(�x), (4.72)

and

g(�t ) = P2(�t ) +
1

(2πi)2
φ(�t ), (4.73)

where P2 is the degree two polynomial part

P2(�t ) = 1
6 − t4 + t24 + t2t4, (4.74)

and

φ(�t ) = 8ℵ(1)(�x) − 4ℵ(2)(�x) − 2ℵ(3)(�x) − ℵ(4)(�x) + Λ6(�x) − 2Λ7(�x) + Λ8(�x)

+ Ψ3(x2, x1x
2
3x4) + Ψ2(x1x

2
3x4, x2) + Ψ3(x1x

2
3x4, x2)

− 2Ψ1(x1x
2
3x4, x2) − 4ℵ2(�x) − 2ℵ(�x)Φ(x2, x1x

2
3x4)

− Φ(x2, x1x
2
3x4)Φ(x1x

2
3x4, x2) + Φ2(x1x

2
3x4, x2),

(4.75)

with �x expressed as a function of �t by inverting system (4.72), is the part
corresponding to instantonic contributions. Using (4.49) we find

(∂t3 − 2∂t4)F (�t ) = g(�t ), (4.76)

where F is the prepotential. Setting

qk := e2πitk , (4.77)

we then find

F (�t ) = 1
6 t3 + 1

4 t24 − 1
6 t34 − 1

4 t2t
2
4 + Finst(�q ) + Pclass(t1, t2, 2t3 + t4)

+Qinst(q1, q2, q
2
3q4). (4.78)

P and Q are the undetermined parts. We list the GW -invariants up to degree
six. The curves with degree in the integer cone generated by [1, 0, 0, 0],



1428 SERGIO LUIGI CACCIATORI AND MARCO COMPAGNONI

[0, 1, 0, 0], [0, 0, 2, 1] must be excluded, because corresponding to the unde-
termined part of the prepotential. The only nonvanishing invariants in the
considered range are

GW[0,0,1,0] = GW[0,0,1,1] = GW[0,1,1,1]
= GW[1,0,1,0] = GW[1,0,1,1] = GW[1,1,1,1] = 1;

GW[0,0,0,1] = GW[0,1,0,1] = GW[1,1,2,2] = −2;
GW[0,1,1,2] = GW[1,1,1,2] = 3;
GW[0,1,0,2] = −4; GW[0,1,1,3] = GW[1,1,1,3] = GW[0,2,1,3] = 5;
GW[0,1,0,3] = GW[0,2,0,3] = −6; GW[0,1,1,4] = 7; GW[0,1,0,4] = −8;
GW[0,1,0,5] = −10; GW[0,2,0,4] = −32. (4.79)

Invariants for R4−C
3
6: The vectors �a, a = 1, . . . , 4 are

C1 : �1 = (1, 0, 0,−2, 1, 0, 0),
C2 : �2 = (0, 1, 0, 0,−1, 1,−1),
C3 : �3 = (0, 0, 1, 0, 1, 0,−2),
C4 : �4 = (0, 0, 0, 1,−1,−1, 1). (4.80)

The selected basis of the cohomology is

Q0 = 1, Q1 = J1, Q2 = J2,
Q3 = J3 + 1

2C, Q4 = J4, Q5 = C. (4.81)

Via the mirror symmetry identification

w

(
�x,

�J

2πi

)
= Q01 +

4∑

a=1

Qata + Q5g(t1, . . . , t4), (4.82)

we get

2πit1 = log x1 + 2Φ(x1, x2x4) − Φ(x2x4, x1),
2πit2 = log x2 + Φ(x2x4, x1) − Ψ(x1x3x

2
4) − ℵ(�x),

2πit3 = log x3 − Φ(x2x4, x1) − 2ℵ(�x),
2πit4 = log x4 + Ψ(x1x3x

2
4) − Φ(x1, x2x4) + Φ(x2x4, x1) + ℵ(�x), (4.83)

and

g(�t ) = P2(�t ) +
1

(2πi)2
φ(�t ), (4.84)

where P2 is the degree two polynomial part

P2(�t ) = 1
6 − 1

2 t3 + 1
2 t23 + t2t3, (4.85)
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and

φ(�t ) = 8ℵ(1)(�x) − 3ℵ(2)(�x) − 2ℵ(3)(�x) − 2ℵ(5)(�x) − ℵ(7)(�x)
−Λ9(�x) + Λ10(�x) − 2Λ11(�x)
−Ψ1(x2x4, x1) + Ψ2(x2x4, x1) + Ψ5(x1x3x

2
4)

−4ℵ2(�x) − 2ℵ(�x)Ψ(x1x3x
2
4) − ℵ(�x)Φ(x2x4, x1)

−Ψ(x1x3x
2
4)Φ(x2x4, x1) + 1

2Φ2(x2x4, x1) (4.86)

with �x expressed as a function of �t by inverting system (4.83), is the part
corresponding to instantonic contributions. Using (4.53) we find

(∂t4 − ∂t2 − 2∂t3)F (�t ) = g(�t ), (4.87)

where F is the prepotential. Setting

qk := e2πitk , (4.88)

we then find

F (�t ) = 1
6 t4 + 1

8 t23 − 1
12 t33 − 1

2 t22t3 + 1
3 t32

+Finst(�q ) + Pclass(t1, t4 + t2, 2t4 + t3)
+Qinst(q1, q4q2, q

2
4q3), (4.89)

P and Q being the undetermined parts. We list the GW -invariants up
to degree six. The curves with degree in the integer cone generated by
[0, 1, 0, 1], [0, 0, 1, 2], [1, 0, 0, 0] must be excluded, because corresponding to
the undetermined part of the prepotential. The only nonvanishing invariants
in the considered range are

GW[0,0,0,1] = GW[0,0,1,1] = GW[0,1,0,0]
= GW[1,0,0,1] = GW[1,0,1,1] = GW[1,1,1,2] = 1;

GW[0,0,1,0] = GW[0,1,1,1] = GW[1,1,1,1] = −2;
GW[0,1,1,0] = GW[1,1,2,2] = 3;
GW[0,1,2,1] = GW[1,1,2,1] = −4;
GW[0,1,2,0] = GW[0,2,2,1] = GW[1,2,2,1] = 5;
GW[0,1,3,1] = GW[0,2,2,0] = GW[1,1,3,1] = −6; GW[0,1,3,0] = 7;
GW[0,1,4,1] = −8; GW[0,1,4,0] = 9; GW[0,1,5,0] = 11;
GW[0,3,3,0] = 27;
GW[0,2,3,0] = −32; GW[0,2,3,1] = 35; GW[0,2,4,0] = −110. (4.90)

Invariants for R5−C
3
6: The vectors �a, a = 1, . . . , 4 are

C1 : �1 = (1, 0, 0,−2, 1, 0, 0),
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C2 : �2 = (0,−1, 0, 0, 1,−1, 1),
C3 : �3 = (0, 1, 1, 0, 0, 1,−3),
C4 : �4 = (0, 1, 0, 1,−2, 0, 0). (4.91)

The selected basis of the cohomology is

Q0 = 1, Q1 = J1, Q2 = J2,
Q3 = J3 + 1

2C, Q4 = J4, Q5 = C. (4.92)

If we make this change of basis and use the mirror symmetry identification

w

(
�x,

�J

2πi

)
= Q01 +

4∑

a=1

Qata + Q5g(t1, . . . , t4), (4.93)

we get

2πit1 = log x1 + 2Φ(x1, x4) − Φ(x4, x1),
2πit2 = log x2 + Ψ(x1x

3
2x3x

2
4) − Φ(x4, x1) − ℵ(�x),

2πit3 = log x3 − Ψ(x1x
3
2x3x

2
4) + 3ℵ(�x),

2πit4 = log x4 − Φ(x1, x4) + 2Φ(x4, x1), (4.94)

and

g(�t ) = P2(�t ) +
1

(2πi)2
φ(�t ), (4.95)

where P2 is the degree two polynomial part

P2(�t ) = 1
4 − 1

2 t3 + 1
2 t23, (4.96)

and

φ(�t ) = 9ℵ(1)(�x) − 3ℵ(2)(�x) − 3ℵ(3)(�x) − 3ℵ(5)(�x) + Λ12(�x) + Λ13(�x)
+Ψ4(x1x

3
2x3x

2
4) + Ψ5(x1x

3
2x3x

2
4)

−1
2Ψ2(x1x

3
2x3x

2
4) − 9

2ℵ2(�x) + 3Ψ(x1x
3
2x3x

2
4)ℵ(�x) (4.97)

with �x expressed as a function of �t by inverting system (4.94), is the part
corresponding to instantonic contributions. Using (4.57) we find

(∂t1 − 3∂t3)F (�t ) = g(�t ), (4.98)
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where F is the prepotential. Setting

qk := e2πitk , (4.99)

we then find

F (�t ) =
1
4
t1 +

1
12

t23 − 1
18

t33

+Finst(�q ) + Pclass(3t1 + t3, t2, t4) + Qinst(q3
1q3, q2, q4). (4.100)

We list the GW -invariants up to degree six. The curves with degree in the
integer cone generated by [0, 3, 1, 0], [1, 0, 0, 0], [0, 0, 0, 1] must be excluded,
because corresponding to the undetermined part of the prepotential. The
only nonvanishing invariants in the considered range are

GW[0,1,0,0] = GW[0,1,0,1] = GW[1,2,1,1] = GW[1,2,1,2] = GW[1,1,0,1] = 1;
GW[0,1,1,0] = GW[1,1,1,1] = −2; GW[0,0,1,0] = 3;
GW[0,2,2,1] = GW[1,2,2,1] = −4;
GW[0,1,2,0] = GW[0,1,2,1] = GW[1,1,2,1] = 5;
GW[0,0,2,0] = GW[0,1,2,0] = −6; GW[0,2,3,0] = 7; GW[0,0,3,0] = 27;
GW[0,1,3,0] = GW[0,1,4,1] = GW[0,1,4,0] = −32; GW[0,2,3,1] = 35;
GW[0,2,4,0] = −110; GW[0,0,4,0] = −192;
GW[0,1,4,0] = GW[0,1,4,1] = 286;
GW[0,0,5,0] = 1695; GW[0,1,5,1] = 3038; GW[0,0,6,0] = −17,064. (4.101)

5 Conclusions

As stated in the introduction, this paper is the first one of a short series
devoted to a detailed analysis of some aspects of local (homological) mirror
symmetry in relation to its physical meaning. As much of such a project
results to be quite technical, we preferred to begin with a preparatory article,
where we mainly fix our notations and the objects of study. For this reason
we tried here to be as elementary as possible and included an introductory
section which obviously does not pretend to be neither exhaustive nor self-
contained. However, we also included the first step of our analysis, that is the
application of local mirror symmetry to the construction of a prepotential
accounting for the lower genus Gopakumar–Vafa invariants (which we simply
called the Gromov–Witten invariants or GW -invariants). In particular, for
this purpose, we have adopted a particularly elegant way introduced by
Hosono in [30] and which we dubbed the “Hosono conjecture”. Our results
can be thus interpreted also as a positive (partial) check of the Hosono
conjecture for the case of an orbifold with multiple resolutions.
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Indeed, we applied the Hosono conjecture to an orbifold model admit-
ting five distinct crepant resolutions, showing that, for each resolution, it
partially determines a prepotential encoding information about the Gromov–
Witten invariants. As we seen, not all GW -invariant are determined. Indeed,
it is not even clear how they could be defined as some ambiguity is intro-
duced by noncompactness of the varieties considered. However, we can note
that for all resolutions, the only noncomputable invariants are the one associ-
ated to curves having zero intersection with the compact divisor D7. Curves
having negative intersection with D7 cannot deform out of D7. When they
have nonnegative intersection with all the other (noncompact) divisors, then
we expect for the invariant numbers to count the number of deformations in
D7. However, when the intersection with some of the noncompact divisors is
negative, then the deformations are constrained on the intersection between
the divisors and we expect for the G–W numbers to vanish.

The invariants predicted by the prepotential agree with the ones computed
directly by means of the methods described in [9]. In place of repeating
such computations here, we will simply compare some of the invariants of
our examples with the ones provided in [9]. Let us start with resolution five.
It contains a P

2 associated the compact divisor D7 and the curves C27, C37
and C67, all equivalent. Then, let us fix b := C3 ≡ C67. It has intersection
−3 with D7 so that it is the null section of the normal bundle of D7 in X.
It also has intersection numbers 1 with D3, D5, D6 and 0 with the other
noncompact divisors. Thus it freely deforms out from all the noncompact
divisors, in the sense discussed above, and then one expects that the number
of its deformations is just the number of deformations inside P

2. From the
list (4.101) we see that, up to degree six, the corresponding numbers are
GW [d] = GW [0, 0, d, 0] with

GW [1] = 3, GW [2] = −6, GW [3] = 27,
GW [4] = −192, GW [5] = 1695, GW [6] = −17,064, (5.1)

which indeed coincide with the GW–numbers of O(−3) → P
2, see table 1

in [9].

Let us move to the fourth resolution. It contains the Hirzebruch surface
F1 associated to D7 and the curves C27, C37, C57, C67. The independent
curves are b := C2 ≡ C57 and f := C3 ≡ C67 which define the base and the
fibre of the Hirzebruch fibration. Note that b has intersection −1 with D5 so
that we expect for its eventual deformations in F1 to be constrained. This
does not happens for f or for all combinations [dB, dF ] ≡ [0, dB, dF , 0] with
dF ≥ dB which have negative intersections with D7 only. Thus we again
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expect for the GW -invariants corresponding to [dB, dF ] to be the same as
in F1. Indeed from table 10 in [9] we see that deformations appears for KF1

only for dF ≥ dB (apart from the case [1, 0]). We can see that our results,
as listed in (4.90), are in perfect agreement

GW [1, 0] = 1, GW [0, 1] = −2, GW [1, 1] = 3, GW [1, 2] = 5,
GW [2, 2] = −6, GW [1, 3] = 7, GW [1, 4] = 9, GW [1, 5] = 9,
GW [3, 3] = 27, GW [2, 3] = −32, GW [2, 4] = −110, (5.2)

and GW [i, j] = GW [0, k] = 0 for j < i, i > 2, i + j ≤ 6 and k = 2, 3, 4, 5.

A similar comparison can be done for resolution three. In that case, D7
and the curves C27, C37, C47 and C57 define an Hirzebruch surface F2 with
base b := C2 ≡ C57 and fibre f := C4 ≡ C47. Note that b has intersection
0 with D7 so that curves [dB, 0] are not countable. These correspond to
the first column of table 11 in [9]. Next curves [dB, dF ] = [0, dB, 0, dF ] with
positive dF are computable in D7, but only for dF > dB their intersections
with Di are negative only when they intersect the compact divisor. We then
expect for the curves [dB, dB + 1 + k] to determine the same numbers as for
KF2 , whereas for dF ≤ dB they can be constrained by the fact they have
negative intersection with D5 also. However, as follows from table 11 in [9]
all such numbers vanish (excluding the case [dB, dF ] = [1, 1]) and again our
results, collected in (4.79), agree with the numbers of KF2

GW [1, 1] = −2, GW [1, 2] = −4, GW [1, 3] = GW [2, 3] = −6,
GW [1, 4] = −8, GW [1, 5] = −10, GW [2, 4] = −32, (5.3)

and GW [i, j] = 0 for all the remaining ones up to degree 6 (and with j �= 0).

All these are only a part of the numbers predicted by means of the Hosono
construction. Indeed, these are the ones corresponding to curves having
negative intersection number with the compact divisor and thus admitting
a representant contained in it. However, as yet remarked, the constructed
potential results to determine much more numbers and in particular we note
that, for all cases, the only noncomputable numbers are the ones associated
to curves having null intersection with the compact divisor. Actually, the
true meaning of these facts are not completely clear to us and deserve a
deeper analysis, which is left as part of a future work. One way to proceed
in such a direction is to search for an extended GKZ system whose solutions
permit to extend the computation of the invariants to all curves, as proposed
for example in [17,18]. This also should provide a slight improvement of the
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Hosono conjecture. Such analysis are actually under investigation. Further-
more, Hosono conjecture goes beyond the determination of the prepotential
(or the central charge), involving the monodromy properties of the hyper-
geometric components and a concrete determination of the mirror map at
list at the K-theoretical level, and partial information on the homological
mirror map Mir. The multiple resolutions of our example, corresponding
to a single mirror family, are related by flop transformations and must be
related by Fourier–Mukay transforms at the level of derived categories (see
Section 4.2). In this contest it could be helpful to find the solutions of our
GKZ system in the full B-moduli space using the approach of [2,6] and [28].
This is the deeper aspect of the conjecture and will be discussed in the third
paper.
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Appendix A The cohomology valued hypergeometric series

Here we compute the coefficient hypergeometric series.

A.1 Computation of the coefficients

First note that J3
i = 0 so that we need the terms up to order two. Also

at order zero is survives only the term with �m = �0, because for nonpositive
integer argument the Γ function diverges. Thus, at order zero w = 1.

A.1.1 Some properties of the Gamma function

The Euler Gamma function has integral representation

Γ(z) =
∫ ∞

0
e−ttz−1 dt, Re(0) > 0, (A.1)
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and admits analytical continuation to the whole complex plane exclud-
ing the nonpositive integers. Indeed, it admit the very useful Weierstrass
representation

1
Γ(z)

= zeγz
∞∏

n=1

(
1 +

z

n

)
e− z

n , (A.2)

where

γ = lim
N→∞

(
1 + 1

2 + 1
3 + . . . + 1

N − log(N + 1)
)

∼ 0.5772156649 . . . (A.3)

is the Euler–Mascheroni constant.

From (A.2) it follows easily the duplication formula

Γ(2z) =
22z−1
√

π
Γ(z)Γ(z + 1/2). (A.4)

Another useful function is the Psi function

ψ(z) =
Γ′(z)
Γ(z)

. (A.5)

From (A.2)

ψ(z) = −γ − 1
z +

∞∑

n=1

z

n(n + z)
⇒ ψ′(z) =

∞∑

n=0

1
(z + n)2

= ζz(2).

(A.6)

Here ζa(z) = ζ(a; z) is the usual Hurwitz Zeta function. In particular ψ′(1) =
π2/6 and, if N is a nonnegative integer, using these relations we
have

(1)

1
Γ(N + 1)

=
1

N !
,

1
Γ(−N)

= 0;
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(2)

∂ρ
1

Γ(1 + N + aρ)

∣∣∣∣
ρ=0

=
a

N !
ψ(N + 1) =

a

N !
(
γ − 1 − 1

2 − . . . − 1
N

)

if N �= 0, and

∂ρ
1

Γ(1 + aρ)

∣∣∣∣
ρ=0

= aγ;

also

∂ρ
1

Γ(−N + ρ)

∣∣∣∣
ρ=0

= (−1)NN !.

(3)

∂ρ∂σ
1

Γ(1 + N + aρ + bσ)

∣∣∣∣
ρ=σ=0

=
ab

N !
(ψ(N + 1)2 − ψ′(N + 1));

In particular for N = 0

∂ρ∂σ
1

Γ(1 + aρ + bσ)

∣∣∣∣
ρ=σ=0

= ab

(
γ2 − π2

6

)
;

(4)

∂ρ∂σ
1

Γ(−N + aρ + bσ)

∣∣∣∣
ρ=σ=0

= −2ab(−1)NN !ψ(N + 1).

A.1.2 Order one

To compute the coefficients at order one, we can distinguish three cases:

• The derivative acts on the numerator : This gives a term log x only,
because the sum contributes only with the term �m = 0;

• The derivative acts on a factor of the form 1/Γ(N + 1): Then the
remaining factors force again �m to zero and by (2) we see that it
contribute with a factor aγ. There is one such factor for any Gamma
factor, and all sum up to zero. This is due to the fact that for any
fixed � the sum of its components vanishes;

• The main contributions come out when the derivative act on a factor
1/Γ(−N + 1): In this case such factor does not contribute to limiting
the allowed values for �m, which is no more constrained to zero.
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In conclusion, all the results can be expressed in terms of the following
functions:

Ψ(x) =
∞∑

n=1

(2n − 1)!
(n!)2

xn, (A.7)

Φ(x, y) =
∑

(m, k) ∈ Z≥
(m, k) �= (0, 0)

(2k + 3m − 1)!
m!(k + 2m)!k!

(−x)myk+2m, (A.8)

ℵ(�x) = −
∑

�n ∈ Z
4
≥

�n �= 0

(6n1 + 4n2 + 2n3 + 3n4 − 1)!
n1!n2!n3!n4!(2n1 + n2 + n4)!(3n1 + 2n2 + n3 + n4)!

·

· (x1x
2
2x

3
3x

4
4)

n1(x2x
2
3x

2
4)

n2(x3x4)n3(−x2x3x
2
4)

n4 . (A.9)

A.1.3 Order two

The second order term is obtained applying the second order operator

O2 = 1
2∂2

ρ3
+ ∂2

ρ4
+ ∂2

ρ2ρ3
+ ∂2

ρ2ρ4
+ 2∂2

ρ3ρ4
(A.10)

at �ρ = 0. In this case there are several contributions:13

• both derivatives acts on the numerator in the terms of the series. This
gives rise to terms of the form

(log xi)2, log xi log xj ;

• one derivative acts on the numerator and the other one acts on the
Gamma factors. This gives terms of the form

log xiw
(1)
j ,

where w
(1)
j is one of the first order terms computed before;

• both derivatives acts on two regular Gamma factors. These can be two
distinct factors or the same factor. In both the cases it contributes only
the �m = 0 term. For two distinct factors, we will find a contribution
proportional to γ2 and for the same factor one finds a term proportional
to γ2 − π2/6. A simple argumentation similar to the first order case

13For simplicity we will call regular the Gamma factors with positive argument, and
singular the Gamma factors with negative argument.
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shows that the terms in γ2 sum up to zero. Thus we expect only a
term proportional to π2;

• one derivative acts on a regular term and the other one acts on a
singular term. This gives rise to a contribution very similar to (A.7),
(A.8), where the terms of the series are corrected by a multiplicative
factor of the form ψ(N + 1);

• both derivatives acts on the same singular term. This gives a contri-
bution very similar to the previous point;

• the derivatives acts on two distinct singular Gamma terms. These give
the more complicated series, because there are minimal constrictions
for the range of �m in the sums.

A.1.4 Second order functions

Here we collect the functions which appear in the second order terms of
the cohomological hypergeometric functions. When the ranges �m ∈ Z

4
> are

intended to be restricted to the subsets where all factorials and psi functions
are well defined. The results can then be expressed in terms of the following
26 functions:

Ψ1(x, y) =
∑

(m, k) ∈ Z≥
(m, k) �= (0, 0)

(2k + 3m − 1)!
m!(k + 2m)!k!

[ψ(2k + 3m) − ψ(1)](−x)myk+2m; (A.11)

Ψ2(x, y) =
∑

(m, k) ∈ Z≥
(m, k) �= (0, 0)

(2k + 3m − 1)!
m!(k + 2m)!k!

[ψ(1 + k + 2m) − ψ(1)](−x)myk+2m; (A.12)

Ψ3(x, y) =
∑

(m, k) ∈ Z≥
(m, k) �= (0, 0)

(2k + 3m − 1)!
m!(k + 2m)!k!

[ψ(1 + k) − ψ(1)](−x)myk+2m;

(A.13)

Ψ4(x) =
∞∑

m=1

(2m − 1)!
(m!)2

[ψ(2m) − ψ(1)]xm; (A.14)

Ψ5(x) =
∞∑

m=1

(2m − 1)!
(m!)2

[ψ(m + 1) − ψ(1)]xm; (A.15)
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Ψ6(x, y) =
∑

(m, n) ∈ Z
2
≥

2n − m > 0
2m − n > 0

(2n − m − 1)!(2m − n − 1)!
m!n!

(−x)m(−y)n;

(A.16)

ℵ(i)(�x) =
∑

�n ∈ Z
4
≥

�n �= 0

(x1x
2
2x

3
3x

4
4)

n1(x2x
2
3x

2
4)

n2(x3x4)n3(−x2x3x
2
4)

n4

n1!n2!n3!n4!(2n1 + n2 + n4)!(3n1 + 2n2 + n3 + n4)!

χ
(i)
�n , i = 1, . . . , 7; (A.17)

χ
(1)
�n = (6n1 +4n2 +2n3 +3n4 −1)![ψ(6n1 + 4n2 + 2n3 + 3n4) − ψ(1)];

(A.18)

χ
(2)
�n = (6n1 + 4n2 + 2n3 + 3n4 − 1)!

[ψ(1 + 3n1 + 2n2 + n3 + n4) − ψ(1)]; (A.19)

χ
(3)
�n = (6n1 + 4n2 + 2n3 + 3n4 − 1)![ψ(1 + 2n1 + n2 + n4) − ψ(1)];

(A.20)

χ
(4)
�n = (6n1 + 4n2 + 2n3 + 3n4 − 1)![ψ(1 + n2) − ψ(1)]; (A.21)

χ
(5)
�n = (6n1 + 4n2 + 2n3 + 3n4 − 1)![ψ(1 + n4) − ψ(1)]; (A.22)

χ
(6)
�n = (6n1 + 4n2 + 2n3 + 3n4 − 1)![ψ(1 + n1) − ψ(1)]; (A.23)

χ
(7)
�n = (6n1 + 4n2 + 2n3 + 3n4 − 1)![ψ(1 + n3) − ψ(1)]; (A.24)

Λ1(�x) =
∑

�n ∈ Z
4
≥

n1 + n3 �= 0

n1!n2!n3!n4!(n1 + 2n2 + n3 + n4)!
(n1 + 3n2 + 2n4)!(n1 + 2n3)!xn1

1
· (A.25)

· (−x2
1x2x

2
4)

n2(x1x3)n3(x1x4)n4 ;

Λ2(�x) =
∑

�m∈Z
4
>

(m1 − m2 − m3 + m4 − 1)!(m3 + m4 − m1 − 1)!
m1!m2!m3!(m4 − 2m2)!(m1 − m3 − m4)!

· (A.26)

· xm1
1 (−x2)m2xm3

3 xm4
4 ;

Λ3(�x) =
∑

�m∈Z
4
>

(m1 + m3 − m4 − 1)!(m3 + m4 − m1 − 1)!
m1!m2!m3!(m2 + m3 − m1 − m4)!(m4 − 2m2)!

· (A.27)

· xm1
1 xm2

2 xm3
3 xm4

4 ;
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Λ4(�x) =
∑

�m∈Z
4
>

(m1 − m3 − m4 − 1)!(m1 − 1)!
m2!m3!(m1 + m2 − 2m4)!(m4 − 2m2)!(m1 − 2m3)!

· (A.28)

· xm1
1 xm2

2 (−x3)m3(−x4)m4 ;

Λ5(�x) =
∑

�m∈Z
3
>

(2m3 − m1 − 1)!(2m2 − 1)!
m1!m2!(m2 + m3)!(m3 − 2m1)!

· (A.29)

· (−x2)m1xm2
3 (−x4)m3 ;

Λ6(�x) =
∑

�m∈Z
4
>

(m3 − m4 − m1 − 1)!(m3 − m2 − 1)!
m1!m2!(m4 − 2m2)!(m3 − 2m2)!(m3 − 2m4)!

· (A.30)

· (−x1)m1(−x2)m2xm3
3 (−x4)m4 ;

Λ7(�x) =
∑

�m∈Z
4
>

(m3 − m2 − 1)!(2m4 − m3 − 1)!
m1!m2!(m1 − m3 + m4)!(m4 − 2m2)!(m3 − 2m2)!

· (A.31)

· xm1
1 (−x2)m2xm3

3 xm4
4 ;

Λ8(�x) =
∑

�m∈Z
4
>

(m3 − m2 − 1)!(2m2 − m4 − 1)!
m1!m2!(m1 − m3 + m4)!(m3 − 2m2)!(m3 − 2m4)!

· (A.32)

· xm1
1 (−x2)m2(−x3)m3(−x4)m4 ;

Λ9(�x) =
∑

�m∈Z
4
>

(m4 − m3 + m2 − m1 − 1)!(2m3 + m2 − m4 − 1)!
m1!m2!m3!(m4 − 2m1)!(m2 − m4)!

· (A.33)

· (−x1)m1xm2
2 (−x3)m3xm4

4 ;

Λ10(�x) =
∑

�m∈Z
4
>

(m4 − m3 + m2 − m1 − 1)!(m4 − m2 − 1)!
m1!m2!m3!(m4 − 2m1)!(m4 − 2m3 − m2)!

· (A.34)

· (−x1)m1xm2
2 (−x3)m3xm4

4 ;

Λ11(�x) =
∑

�m∈Z
4
>

(m4 − m2 − 1)!(2m3 + m2 − m4 − 1)!
m1!m2!m3!(m4 − 2m1)!(m1 + m3 − m2 − m4)!

· (A.35)

· xm1
1 xm2

2 xm3
3 xm4

4 ;

Λ12(�x) =
∑

�m∈Z
4
>

(m2 − m3 − m4 − 1)!(m2 − m3 − 1)!
m1!m3!(m4 − 2m1)!(m1 + m2 − 2m4)!(m2 − 3m3)!

· (A.36)

· xm1
1 xm2

2 xm3
3 (−x4)m4 ;

Λ13(�x) =
∑

�m∈Z
4
>

(m2 − m3 − 1)!(3m3 − m2 − 1)!
m1!m3!(m3 + m4 − m2)!(m4 − 2m1)!(m1 + m2 − 2m4)!

·

· xm1
1 xm2

2 xm3
3 xm4

4 . (A.37)
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