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Abstract

The universal curve π : C → M over the moduli space M of stable
r-spin maps to a target Kähler manifold X carries a universal spin bundle
L → C . Therefore, the moduli space M itself carries a natural K -theory
class Rπ∗L.

We introduce a twisted r-spin Gromov–Witten potential of X enriched
with Chern characters of Rπ∗L. We show that the twisted potential can
be reconstructed from the ordinary r-spin Gromov–Witten potential of X
via an operator that assumes a particularly simple form in Givental’s
quantization formalism.

1 Introduction

In [23] Mumford used the Grothendieck–Riemann–Roch formula to express
the Chern characters of the Hodge bundle over the moduli space of stable
curves via other tautological classes.

e-print archive: http://lanl.arXiv.org/abs/0711.0339
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Faber and Pandharipande [12] generalized his result to spaces of stable
maps. They showed that the resulting formula allows one to express the
so-called twisted Gromov–Witten potential (enriched with Chern characters
of the Hodge bundle) of any target Kähler manifold via the usual Gromov–
Witten potential.

Givental [15] noted that the above result admitted a strikingly concise
formulation in the framework of his quantization formalism. This allows
many explicit calculations of twisted Gromov–Witten potentials starting
from known “untwisted” potentials (see [10,11,27] and references therein).

In the present paper, we generalize all these steps to the spaces of r-spin
structures and maps, Theorem 1.1. Witten’s r-spin conjecture, proved
in [13], determines the r-spin untwisted Gromov–Witten potential of the
point. Theorem 1.1 can be regarded as the natural tool to calculate r-spin
Gromov–Witten potentials beyond the untwisted cases, see Remark 1.2.

1.1 Mumford’s formula and Givental’s formalism

1.1.1 Moduli spaces

Let Mg,n denote the moduli space of genus-g stable curves with n marked
points, and let C g,n → Mg,n be the universal curve. In one-to-one corre-
spondence with the marked points, natural cohomology classes ψ1, . . . , ψn

in H2(Mg,n, Q) are defined on the moduli space: the cotangent lines at the
ith markings form a line bundle Li → Mg,n, and ψi equals c1(Li). More-
over, if p : Mg,n+1 → Mg,n is the forgetful map, we define κd = p∗(ψd+1

n+1) in
H2d(Mg,n, Q), for d ≥ 1. (We refer to [16] for an overview of these and other
geometrically defined cohomology classes on Mg,n and their properties.)

1.1.2 Boundary

Set

D = Mg−1,n+2 �
⊔

l+l′=g
I�I′={1,...,n}

M l,I∪{n+1} × M l′,I′∪{n+2}.

Then there is a natural map j : D → Mg,n, obtained by gluing together the
marked points number n + 1 and n + 2. The image of j is the boundary of
Mg,n.
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1.1.3 Mumford’s formula

In [23], Mumford applied the Grothendieck–Riemann–Roch formula to
express the Chern characters chd(Λ) of the Hodge bundle Λ → Mg,n. His
formula reads, for d ≥ 1,

chd(Λ) =
Bd+1

(d + 1)!

[
κd −

n∑

i=1

ψd
i +

1
2
j∗

(d−1∑

a=0

ψa
n+1(−ψn+2)d−1−a

)]
, (1.1)

where Bd+1 is the (d + 1)th Bernoulli number. In particular, chd(Λ) = 0 for
even d, because odd Bernoulli numbers Bd+1 vanish.

1.1.4 Differential operators

Let X be a Kähler manifold and (hμ)μ∈B a basis of the cohomology space
H = H∗(X, Q) such that h1 = 1. For simplicity, we assume that X has only
even cohomology. Let gμμ′ be the matrix of the Poincaré duality form on H
in the basis (hμ). Denote by Xg,n,D the space of degree D stable maps with
target X, of genus g, with n marked points. Here D is an effective cycle
in H2(X, Z). Let [Xg,n,D]v denote its virtual fundamental class.

Introduce the following generating series in the variables Q, sd, d ≥ 1, and
tμa , a ≥ 0, μ ∈ B:

Fg(ttt, sss) =
∑

n≥1

∑

D

QD
∑

a1,...,an
μ1,...,μn

∫

[Xg,n,D]v
exp
(∑

d≥1

sd chd(Λ)
)

×
n∏

i=1

ψai
i ev∗

i (hμi) · tμ1
a1 . . . tμn

an

n!
.

The series F =
∑

g≥0 �g−1Fg is called the twisted Gromov–Witten potential
of X. Let Z = exp F .

Denote by gμμ′
the inverse matrix of gμμ′ . From the expression of chd(Λ),

Faber and Pandharipande [12] deduced the following claim: we have

∂Z

∂sd
= LdZ,
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where Ld is the linear differential operator depending only on the variables tμa :

Ld =
Bd+1

(d + 1)!

⎡

⎢⎢⎣
∂

∂t1d+1
−
∑

a≥0,μ

tμa
∂

∂tμa+d

+
�

2

∑

a+a′=d−1
μ,μ′

(−1)a′
gμμ′ ∂2

∂tμa∂tμ
′

a′

⎤

⎥⎥⎦ .

1.1.5 Givental’s quantization

Let H = H((z−1)) be the space of H-valued Laurent series in z, finite in the
positive direction and possibly infinite in the negative direction. This space
bears a natural symplectic form

ω(f1, f2) = Resz=0
∑

μ,μ′

gμμ′fμ
1 (−z)fμ′

2 (z).

If we write a Laurent series in the form

f(z) =
∑

a≥0
μ∈B

qμ
azahμ +

∑

a≥0
μ,μ′∈B

pa,μgμμ′
(−1/z)a+1hμ′

(the first sum is finite, while the second one can be infinite), then pa,μ, qμ
a

form a set of Darboux coordinates on H. The coordinates qμ
a are identified

with the variables tμa above via

q1
1 = t11 − 1,

qμ
a = tμa for other a and μ.

The strange-looking shift for a = 1, μ = 1 is called the dilaton shift.

Functions (or Hamiltonians) on the space H are quantized according to
Weyl’s rules: qμ

a is transformed into the operator of multiplication by qμ
a/

√
�,

while pa,μ is transformed into the operator
√

� ∂/∂qμ
a . By convention, the

derivations are applied before the multiplications. Using these rules, we
obtain the following result.

The operator Ld is the Weyl quantization of the Hamiltonian

Pd =
Bd+1

(d + 1)!

⎡

⎢⎢⎣−
∑

a≥0
μ∈B

qμ
apa+d,μ +

1
2

∑

a+a′=d−1
μ,μ′∈B

(−1)a′
gμμ′

pa,μpa′,μ′

⎤

⎥⎥⎦ .
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Every Hamiltonian P determines a vector field on (or an infinitesimal
symplectic transformation of) H, given by ω−1(dP ). Since our Hamilton-
ian is of pure degree 2, the corresponding vector field is linear. Follow-
ing [15], we obtain that the vector field on H determined by Pd is given by
the multiplication by

Bd+1

(d + 1)!
zd. (1.2)

The Hamiltonian can, of course, be recovered from the vector field (up to
an additive constant). Thus the not-so-simple Mumford formula (1.1) turns
out to be encoded in the strikingly simple expression (1.2).

1.1.6 Characteristic classes

Moduli spaces of r-spin curves Mr,mmm
g,n and of r-spin maps Xr,mmm

g,n,D will be
introduced in Section 2. Essentially, they classify stable curves or maps
enriched with an r-spin structure in the sense of Witten: in the case of a
smooth curve with no markings, an r-spin structure is a line bundle L, which
is an rth tensor root of the canonical line bundle on the curve.

These moduli spaces come with universal curves π : C r,mmm
g,n → Mr,mmm

g,n and
π : C r,mmm

g,n,D(X) → Xr,mmm
g,n,D. The universal curve has n sections s1, . . . sn specify-

ing the marked points and carries a universal r-spin structure Lr,mmm
g,n (which is

either a line bundle or a sheaf, depending on the construction, see
Section 2). Let ω be the relative dualizing sheaf of the universal curve
and ωlog the relative dualizing sheaf twisted by the divisor of the sections∑

[si].

On the moduli space Mr,mmm
g,n or Xr,mmm

g,n,D we consider the following cohomol-
ogy classes:

ψi = c1(s∗
i ω),

κd = π∗(c1(ωlog)d+1),

chd = chd(Rπ∗Lr,mmm
g,n ),

where chd denotes the term in degree d of the Chern character.

Remark 1.1. The classes ψi and κd are the pullbacks of the analogous
classes in the Chow ring of the stack Mg,n of stable curves (respectively,
the stack Xg,n,D of stable maps) via the natural morphism Mr,mmm

g,n → Mg,n

(respectively Xr,mmm
g,n,D → Xg,n,D).
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1.2 The main result

Let X be a target Kähler manifold and (hμ) a basis in H∗(X, Q) (as before,
we assume that X has only even cohomology).

Denote by
[
Xr,mmm

g,n,D

]v the virtual r-spin class of Xr,mmm
g,n,D (see Section 3 for

more details). Let evi : Xr,mmm
g,n,D → X be the evaluation maps.

Let Bd(x) be the Bernoulli polynomials. They are defined by

etx t

et − 1
=
∑ Bd(x)

d!
td.

Definition 1.1. The power series Fg,r(ttt, sss)

∑

D

QD
∑

n≥1

1
n!

∑

m1,...,mn
a1,...,an
μ1,...,μn

1
rg−1

∫

[
Xr,mmm

g,n,D

]v
exp
(∑

d≥1

sd chd

) n∏

i=1

ψai
i ev∗

i (hμi)t
μi⊗mi
ai

.

is called the genus-g r-spin twisted Gromov–Witten potential of X.

Let Fr(ttt, sss) =
∑

g≥0 �g−1Fg,r(ttt, sss) and Zr = exp(Fr).

Consider the vector space Qr−1 with basis e1, . . . , er−1 endowed with
the quadratic form g with coefficients gab = δa+b,r. A diagonal matrix in
basis e1, . . . , er−1 will be denoted by diag[u1, . . . , ur−1]. Denote by H the
space H = H∗(X, Q) ⊗ Qr−1. The metric on H is the tensor product of the
Poincaré paring on H∗(X, Q) and the metric gab on Qr−1.

Let H = H
((1

z

))
as in Section 1.1.5.

Theorem 1.1. We have
∂Zr

∂sd
= LdZr,

where Ld is a differential operator in the variables ttt obtained by Weyl quan-
tization of the infinitesimal symplectic transformation of H given by

zd

(d + 1)!
· Id ⊗ diag

[
Bd+1

(
1
r

)
, . . . , Bd+1

(
r − 1

r

)]
.

Remark 1.2. This theorem actually gives a way of computing the twisted
r-spin potential of X starting from the ordinary r-spin potential of X, not
twisted by the classes chd.
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More precisely, let fr = Fr|s1=s2=···=0 be the ordinary r-spin Gromov–
Witten potential of X. Then we have

exp(Fr) = exp
(∑

sdLd

)
exp(fr).

1.3 Plan of the paper

In Section 2 we give an overview of the existing constructions of the natural
compactification of spaces of r-spin curves. In Section 3 we explain in more
detail the properties of the moduli spaces of r-stable spin maps and the
virtual fundamental classes. In Section 4 we recall and slightly generalize
the results obtained in [9] by applying the Grothendieck–Riemann–Roch
formula to the spin bundle on the so-called universal r-bubbled curve. In
Section 5 we put these results in the framework of Givental’s quantization.

2 Moduli of r-spin curves: an overview

Here we describe the construction of the moduli spaces of r-stable spin curves
and maps. The integer r ≥ 2 is fixed once and for all. We denote by Zr the
group of rth roots of unity and set ξr = exp(2πi/r).

All schemes and stacks throughout this paper are defined over C.

2.1 Smooth curves

Let (C; s1, . . . , sn) be a smooth genus-g curve with n ≥ 1 marked points.
Choose n integers m1, . . . , mn ∈ Z such that 2g − 2 + n −

∑
mi is divisible

by r. An r-spin structure of type mmm = (m1, . . . , mn) on C is a line bundle L
over C together with an identification

ϕ : L⊗r ∼−→ ωlog

(
−

n∑

i=1

mi[si]

)
,

where ω is the cotangent line bundle of C and ωlog = ω (
∑

[si]).

The number mi is called the index of L at xi.

There are exactly r2g nonisomorphic r-spin structures of type mmm on every
smooth curve. Each of them has r “trivial” automorphisms L → L given by
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the multiplications by rth roots of unity along its fibers. A curve endowed
with an r-spin structure is called a smooth r-spin curve.

The moduli space Mr,mmm
g,n of smooth r-spin curves is an r2g-sheeted unram-

ified covering of the moduli space of smooth curves Mg,n in the sense that
its fibre is constant and consists of r2g copies of the same zero-dimensional
stack. However, since each point of the fibre is equipped with the r “triv-
ial” automorphisms mentioned above, the forgetful map Mr,mmm

g,n → Mg,n is of
degree r2g−1.

Remark 2.1. Let mmm = (m1, . . . , mn) and m′m′m′ = (m1, . . . , mi + r, . . . , mn).
There is a natural isomorphism between Mr,mmm

g,n and Mr,m′m′m′
g,n . Therefore, from

now on, we will always choose m1, . . . , mn in {1, . . . , r}.

2.2 Curves with nodes

There exists a natural compactification Mr,mmm
g,n of the space Mr,mmm

g,n . This
compactification can be constructed in three different (but equivalent) ways,
and there are, accordingly, three different versions of the universal curve over
the compactified moduli space (see figure 1). We are going to describe the
behavior of the universal curve at the neighborhood of a node in all three
versions.

In the universal curve π : C g,n → Mg,n over the space of stable curves,
from a local point of view, there is a unique type of node. The local picture
of π at the neighborhood of a node is given by (x, y) 	→ t = xy. However,
in the universal curve over the space of r-stable curves, there are r different
types of nodes: they are distinguished by assigning to the branches of the
curve at the node two integers a, b ∈ {1, . . . , r} such that either a = b = r or
a + b = r, see below.

(1) Coarse r-spin curves. Coarse (or scheme-theoretic) r-spin curves were
introduced by Jarvis [17,18] using relatively torsion-free sheaves.

Figure 1: (A) a stable curve, (B) an r-stable curve, and (C) an r-bubbled
curve.
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The local picture of the universal coarse r-spin curve at the neighborhood
of a node is given by the equation xy = tr, where t is a local coordinate on
the moduli space. Thus the universal curve has an Ar−1 singularity at
x = y = t = 0.

If a = b = r, then locally, at the neighborhood of the node, L is a line
bundle endowed with an isomorphism

L⊗r ∼−→ ωlog.

(There is no need to twist ωlog by a divisor of marked points since we are
working at the neighborhood of the node.)

If a + b = r, then L is no longer a line bundle, but a (rank-1 torsion-free)
sheaf generated by two elements η and ξ, modulo the relations yξ = taη,
xη = tbξ. There is a map from L⊗r to the sheaf of sections of ωlog given by

ξiηj 	→ tjbxa−j dx

x
= −tiayb−i dy

y
,

for i + j = r. This map is, of course, not an isomorphism.

A stable curve endowed with a sheaf L like that will be called a stable
coarse r-spin curve. We often need to generalize this to stable maps from C
to a Kähler manifold X. In this case the source curve is a prestable curve,
which is not necessarily stable. When C is equipped with a sheaf L as above,
we say that C is a prestable coarse r-spin curve.

(2) r-bubbled spin curves. The previous construction was improved in [6].
The idea is to transform every stable curve with at least one node into a
semistable curve. One obtains that, on the semistable curves, it is enough
to consider locally free sheaves.

We provide a precise description as follows. Consider the resolution of
the Ar−1 singularity at the origin of {xy = tr} by 
r/2� iterated blowups.
One obtains a smooth universal curve, where every node is replaced by a
chain of r − 1 complex projective lines.

On this universal curve, L is a line bundle, and we have a map

L⊗r → ωlog

(
−

n∑

i=1

mi[si]

)
.
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This map is not an isomorphism. Indeed, its vanishing divisor is a
weighted sum of the projective lines that form the (r − 1)-chain, with coef-
ficients

a, 2a, . . . , (b − 1)a, ba, b(a − 1), . . . , 2b, b,

for a, b ∈ {1, . . . , r − 1} and a + b = r.

In this paper, a curve like that will be called an r-bubbled curve. When
endowed with the line bundle L as above, it will be called an r-bubbled spin
curve.

(3) r-stable spin curves. Another way to improve the initial construction
was given in [2, 8]. A stack structure at the neighborhood of every node
of every singular curve is introduced. Note that the surface xy = tr is the
quotient of the smooth surface XY = t by the action of the group Zr = Z/rZ

via X 	→ ξrX, Y 	→ ξ−1
r Y . In other words, the surface xy = tr is actually

the coarse space of a smooth stack. Over this smooth stack, L is a line
bundle and

L⊗r → ωlog

(
−

n∑

i=1

mi[si]

)

is a global isomorphism. These stacks are special cases of Abramovich and
Vistoli’s stack-theoretic curves: stacks with stabilizers of arbitrary order at
the nodes and at the markings (they are called “twisted curves” in [3]).

The fibers of this version of the universal curve are stable curves endowed
with a nontrivial stack structure at the nodes. They are called r-stable curves
and the r-prestable curves are defined analogously. The neighborhood of a
node in an r-stable curve is isomorphic to an ordinary node XY = 0 endowed
with the group action of Zr via X 	→ ξrX, Y 	→ ξ−1

r Y . When endowed with
the line bundle L as above, the curve is called an r-(pre)stable spin curve.

An r-stable curve with k nodes has exactly rk times as many automor-
phisms as the associated coarse stable curve [1, Theorem. 7.1.1].

In this picture, the numbers a and b result from the Zr-action involved
in the local picture of L at the two branches. More precisely, locally on the
Zr-space

{XY = 0} with Zr - action(X, Y ) 	→ (ξrX, ξ−1
r Y ),

the total space of L is the Zr-space

{(X, Y, T ) | XY = 0} with Zr - action(X, Y, T ) 	→ (ξrX, ξ−1
r Y, ξa

r T ).
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The index b in {1, . . . , r} is determined by a + b ≡ 0 mod r or by inter-
changing X with Y in the local picture.

On the three constructions: Among the three constructions, the third one
(involving r-stable curves) is best fit for constructing the compactification.
Indeed, Mr,mmm

g,n is just the solution of the corresponding moduli problem.
On the other hand, the objects defined in the first two constructions, carry
less information. In these definitions, it can happen that two r-spin curves
lying over two distinct points of the boundary of Mr,mmm

g,n are isomorphic.
Thus in these constructions, the moduli functor yields a singular stack,
which needs to be normalized if we want to obtain Mr,mmm

g,n . (The authors
in [6, 17] addressed this issue: the moduli functor of r-spin structures should
be refined in an appropriate way [6, 18, p. 26; (a,b)], but we do not discuss
this here.)

On the other hand, if we wish to apply the Grothendieck–Riemann–Roch
(GRR) formula, it turns out that it is more straightforward to work with the
second construction involving r-bubbled curves. This happens because the
GRR formula applies without modifications to morphisms between stacks
only if the fibers of the morphisms are schemes, which is not true for r-stable
curves.

In this paper we will talk about spin structures on r-(pre)stable curves
when describing moduli spaces and morphisms between them, but we will
switch to r-bubbled curves when we want to apply GRR and calculate the
Chern character of the K-theoretical direct image of the r-spin structure.
The following remark explains why this direct image coincides with the
direct image via the r-(pre)stable curve.

Remark 2.2. There are the following morphisms between universal curves:

p′ : C bubble → C coarse and p′′ : C stacky → C coarse
.

Moreover, we have Lcoarse = p′
∗Lbubble = p′′

∗Lstacky.

2.3 Boundary

The structure of the boundary of Mr,mmm
g,n is similar to that of Mg,n, but there

is a new subtlety.

Notation. By [n] we denote the set {1, . . . , n}. Let I ⊂ [n]. For any mul-
tiindex mmm = (m1, . . . , mn), we denote by mmmI the multiindex (mi)i∈I .
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For any nonnegative integers n and g we define the following involutions.

(1) Given l ∈ {0, . . . , g}, we write l′ for g − l.

(2) Given a subset I ⊂ [n] we write I ′ for [n] \ I.

(3) Given q ∈ {1, . . . , r} we write q′ for the integer in {1, . . . , r} satisfying
q + q′ ∈ rZ.

The boundary ∂Mr,mmm
g,n of Mr,mmm

g,n is the moduli space of singular r-stable
spin curves. The normalization N(∂Mr,mmm

g,n ) of the boundary is the moduli
space of pairs (C,node of C), where C is a singular r-stable spin curve.
Finally, we consider a double cover D of the normalization, namely, the
moduli space of triples (C, node of C, branch of C at the node).

While in the case of moduli spaces of stable curves, the space D turned
out to be a disjoint union of several smaller moduli spaces, the picture here
is more complicated: the space D is not isomorphic, but can be projected
to a disjoint union of smaller moduli spaces.

The stack D is naturally equipped with two line bundles whose fibers are
the cotangent lines to the chosen branch of the coarse stable curve and to
the other branch. We write

ψ, ψ′ ∈ H2(D, Q)

for their respective first Chern classes. Note that in this notation, we priv-
ilege the coarse curve, because in this way the classes ψ and ψ′ are more
easily related to the classes ψi introduced in Section 1.1.6.

Recall that the spin bundle L determines local indices a and b in {1, . . . , r}
satisfying a + b ≡ 0 mod r in one-to-one correspondence with the branches
of the node. Therefore, to each point (C, node of C, branch of C at the
node) we associate an index q ∈ {1, . . . , r} by setting either q = a or q = b
depending on the branch.

We can decompose D according to the topological type of the node and
the index of the spin bundle L at the chosen branch:

D =
⊔

0≤l≤g
I⊆[n]

Dl,I �
⊔

1≤q≤r

Dq
irr. (2.1)

A point of Dl,I corresponds to a curve with a node that divides it into a
component of genus l with marking set I and a component of genus l′ with
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marking set I ′. A point of Dq
irr corresponds to a curve with a nonseparating

node, the index of the spin bundle at the chosen branch being q. We have
the natural morphisms jl,I : Dl,I −→ Mr,mmm

g,n and jq
irr : Dq

irr −→ Mr,mmm
g,n .

Remark 2.3. Over Dl,I the multiplicity index q ∈ {1, . . . , r} is constant
and satisfies

2l − 1 −
∑

I

(mi − 1) ≡ q mod r. (2.2)

We denote this index by q(l, I). On the other hand, on Dq
irr the index q is

constant by definition. Let us set Dirr =
⊔

q Dq
irr.

There exist natural morphisms from Dl,I and Dq
irr to the moduli of r-stable

spin curves of smaller dimension (see [19]).

Dl,I

μl,I

���������������
jl,I

���������������������� l ∈ {0, . . . , g}, I ⊆ [n], q = q(l, I)

Mr,(mmmI ,q)
l,|I|+1 × Mr,(mmmI′ ,q′)

l′,|I′|+1 Mr,mmm
g,n

Dq
irr

μq
irr

���������������
jq
irr

���������������������� q ∈ {1, . . . , r}

Mr,(mmm,q,q′)
g−1,n+2 Mr,mmm

g,n

These morphisms are obtained by

(1) normalizing the curve at the node and taking the pullback of the spin
bundle to the normalization,

(2) “forgetting” the orbifold structure at the two new marked points (this
is the same as passing to the coarse space, but only locally), and

(3) replacing the spin bundle L by the sheaf of its invariant sections (this
sheaf turns out to be locally free at the two new marked points).

Remark 2.4. When q = r, we actually obtain two r-spin structures of types
(mmmI , 0) and (mmmI′ , 0). Indeed, q = r is the case where, locally at the node, the
line bundles are pullbacks of rth roots of ωlog on the coarse space. If we want
the indices mi to lie in the set {1, . . . , r} as usual, we must further compose
the functor μl,I with the canonical isomorphisms recalled in Remark 2.1
shifting by r the two multiindices at the two new markings.
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We set μirr =
⊔

q μq
irr.

Let us prove that the degree of μl,I and μirr equals 1. Assume, for simplic-
ity that we are in the case where the generic curve has trivial automorphism
group. Set d = GCD(q, r). Then we claim the following:

A generic geometric point in the image of μl,I has a stabilizer of order r2.
It has one geometric preimage with stabilizer of order r2. The degree of μl,I

equals 1.

A generic geometric point in the image of μirr has a stabilizer of order r.
It has d geometric preimages with stabilizers of order rd. The degree of μirr
equals 1.

For both morphisms, we consider a generic point in the image and work
out the fiber over it.

For μl,I , the point in the image is a pair formed by a smooth genus-l
(|I| + 1)-marked curve C1 and a smooth genus-l′ (|I ′| + 1)-marked curve C2,
each with trivial automorphism group, and each equipped with spin bundles
L1 and L2. Then, due to the “trivial” automorphisms acting by multiplica-
tion along the fibers of L1 and — independently — along the fibers of L2, the
point has a stabilizer of order r2. The geometric points of the fiber are “glu-
ings” of L1 → C1 and L2 → C2; that is to say: r-stable spin curves yielding
L1 → C1 and L2 → C2 when we apply procedures (1–3) listed above. There
is only one coarse curve obtained from identifying the (|I| + 1)th point of
C1 to the (|I ′| + 1)th of C2 and, more importantly, there is only one r-stable
curve C over it (see for example [24, Lemma. 5.3]). Furthermore, the fact
that the node is separating implies that there is only one line bundle L up
to isomorphism gluing L1 and L2. Therefore the fiber of μl,I contains a
single point. We now show that its stabilizer has order r2 as desired. As
mentioned above, the order of Aut(C,markings) equals r, because of the
presence of a node [1, Theorem 7.1.1]. By pulling back the spin bundle
L via any of these automorphisms, we get another spin bundle gluing L1
and L2. We just showed that, up to isomorphism, there exists only one
such gluing; therefore, we conclude that each automorphism of the r-stable
curve lifts to an automorphism of the r-stable spin curve. Furthermore, the
r-stable spin curve has exactly r times as many automorphism as the
r-stable curve, because the morphisms lifting the identity of C are exactly
r “trivial” automorphisms acting by multiplication on the fibers of L.
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For μq
irr a generic point in the image is a spin bundle L0 over a smooth

genus-(g − 1) (n + 2)-marked r-stable curve C0 satisfying Aut(C0,
markings) = 1. Its automorphism group has order r: it consists of the
“trivial” automorphisms acting by multiplication on the fibers of L0. The
geometric points of the fibers are “gluings”: r-stable spin curves yielding C0
and L0 through procedures (1–3). Again, and for the same reasons as above,
there is only one r-stable curve C yielding C0 after normalization and pas-
sage to the coarse space. However, since the node is nonseparating, there are
exactly r spin bundles gluing L0 on the nodal curve C. Let us first show that
on C there are exactly r gluings of the trivial bundle on C0: these are the
sheaves T (0), T (1), . . . , T (r − 1) of regular functions f : C0 → C satisfying a
compatibility conditions f(sn+1) = ξi

rf(sn+2) at the (n + 1)th marking sn+1
and at the (n + 2)nd marking sn+2 of C0. In fact, {T (0), T (1), . . . , T (r − 1)}
is a cyclic group generated by T (1) and acting freely and transitively on the
gluings of L0 −→ C0 on C; therefore, once one of such gluings L is fixed,
we can write them all as {L ⊗ T (0), L ⊗ T (1), . . . , L ⊗ T (r − 1)}. These line
bundles are pairwise nonisomorphic over C, i.e., an isomorphism

exists only if i = j.

The automorphisms of (C,markings), form a cyclic group of order r,
because of the presence of a node [1, Theorem 7.1.1]. Denote by α a gen-
erator of this group. Let d = GCD(r, q). In [8, Proposition 2.5.3], the first
author shows that there exists an isomorphism

if and only if j = i + d.

In this way these automorphisms identify r/d by r/d the spin bundles

{L ⊗ T (0), L ⊗ T (1), . . . , L ⊗ T (r − 1)}.
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Furthermore, only the d automorphisms α0, α
r
d , . . . , α(d−1) r

d lift to automor-
phisms of the r-stable spin curve. As above, due to the “trivial” automor-
phism acting by multiplication on the fibers, we observe that the
automorphisms of the r-stable spin curve are r times as many as the auto-
morphisms lifting from the r-stable curve. In this way, the fiber consists of
d distinct geometric points with stabilizers of order rd.

Remark 2.5. We point out that μl,I and μq
irr are not isomorphisms in

general. The discussion above makes it evident for μq
irr: in general, the

generic fiber contains more than one geometric point. A more detailed
analysis shows that also μl,I is not an isomorphism in general.1

The discussion above can be extended to the case of stable maps, as we
will see in the next section.

3 Spaces of spin maps, virtual classes, and twisted potentials

The space Xr,mmm
g,n,D = Mr,mmm

g,n,D(X) is the moduli space of r-stable spin maps of
degree D: these are certain types of maps from r-prestable spin curves to
the Kähler manifold X whose image cycle is rationally equivalent to D. The
stack Xr,mmm

g,n,D is equipped with a universal r-prestable curve, whose coarse
space is the universal coarse prestable curve, in which Ar−1 singularities
appear. The desingularization of this coarse curve is the universal r-bubbled
curve, which is well suited for GRR calculations.

3.1 Moduli of r-stable spin maps

Let X be a Kähler manifold. Fix r ≥ 2, two positive integers g and n, and an
effective cycle D in H2(X, Z). By Xr,mmm

g,n,D, we denote the category of r-stable

1We consider for simplicity the case q(l, I) = r, but the discussion extends whenever
q = q(l, I) is not prime to r. We claim that μl,I is not fully faithful. Take an automorphism
acting by multiplication by two different factors on the fibers of L1 and L2 defined above.
Such an automorphism is not in the image of the functor μl,I . After applying μl,I by
following procedures (1–3), we find that the r2 automorphisms of the r-stable spin curve
L → C only yield automorphisms acting by multiplication by the same factor on L1 and
L2. Indeed, the case q(l, I) = r implies that L is a pullback from the coarse space; since
each automorphism α ∈ Aut(C, markings) fix the coarse space, the line bundle α∗L is
equal — and not only isomorphic — to L. In this way, all automorphisms lifting α to
L → C yield the identity on L0 → C0.
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spin maps. An object is given by the data

satisfying the following conditions:

(1) C → B is an r-prestable curve. More explicitly C is a stack of relative
dimension one over a base scheme B, its smooth locus is represented
by a scheme, and its singularities are nodes with cyclic stabilizers of
order r. The local picture at the nodes is given by [{XY = t}/Zr],
where t is a local parameter on the base scheme and the group Zr

acts by (X, Y, t) 	→ (ξrX, ξ−1
r Y, t).

(2) The coarse schemes and morphisms between schemes corresponding
to C → B, C → X, and s1, . . . , sn : B → C form a stable map of genus
g over B, of degree D, and marked at n distinct smooth points.

(3) L is a line bundle on C and ϕ sets an isomorphism between L⊗r and
ωlog(−

∑n
i=1 mi[si(B)]).

Morphisms are defined in the natural way. Since C is a stack, in order
to obtain a category, we need to consider one-morphisms up to two-isomor-
phisms (this yields a two-category equivalent to a category as detailed in [3]).

It follows immediately from [3, 8, 24] that Xr,mmm
g,n,d is a proper Deligne–

Mumford stack. Beside Kontsevich’s construction of the stack of stable
maps, the key fact is the existence of an algebraic stack of r-prestable curves
(a straightforward consequence of Olsson’s description [24] of the stack of all
Abramovich and Vistoli’s stack-theoretic curves). We detail this as follows:

(i) The functor retaining only the coarse schemes and morphisms between
schemes corresponding to C → B, C → X, and s1, . . . , sn : B → C
lands on Kontsevich’s proper stack Xg,n,D:

p : Xr,mmm
g,n,D → Xg,n,D. (3.1)

(ii) Note that Xg,n,D naturally maps to Mg,n, the stack of genus-g
n-pointed prestable curves. Morphism (3.1) is the base change via
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p : Xg,n,D → Mg,n of the proper morphism

M
r,mmm
g,n → Mg,n (3.2)

sending r-prestable curves equipped with an r-spin structure L⊗r ∼=
ωlog(−

∑n
i=1 mi[si(B)]) to the coarse prestable curves. Morphism

(3.2) is proper and represented by Deligne–Mumford stacks. This
can be regarded as a consequence of [24], showing that the stack of
r-prestable curves is proper over the stack of prestable curves, and
of [8], showing that the functor of rth roots is proper over the stack
of r-prestable curves.

Remark 3.1. If X is a point, we recover the stack Mr,mmm
g,n and (3.1) is the

morphism Mr,mmm
g,n → Mg,n.

Remark 3.2. Moduli of stable maps equipped with r-spin structures were
introduced in [20] by means of Jarvis’s notion of coarse stable r-spin curve.
As mentioned above, with this technique several technical points concerning
the singularities appearing in the moduli stack and the stabilization mor-
phisms need to be addressed. The use of Abramovich and Vistoli’s stack-
theoretic curves simplifies the treatment of the moduli stack and avoids
dealing with singularities. This approach to Gromov–Witten r-spin theory
via stack-theoretic curves was alluded to in [19, Section 2.3, 7]. After Ols-
son [24], this treatment becomes straightforward. From the point of view
of enumerative geometry, the two approaches of [20] or via stack-theoretic
curves are equivalent; this follows immediately from the case treated in [2],
which can be regarded as the case X = pt (see also [9, Section 4.3]).

An irreducible component of Xr,mmm
g,n,D whose generic points correspond to

singular curves is, in general, nonreduced. Indeed, such a component is pro-
jected onto a ramification locus of morphism (3.2). (Another explanation:
following [2] one can realize Xr,mmm

g,n,D as the moduli stack of stable maps to a
target stack. Such moduli stacks may well be nonreduced.)

3.2 The genus-g r-spin twisted Gromov–Witten potential of X

The stack Xr,mmm
g,n,D is equipped with a virtual r-spin class, a homology class

playing the role of the virtual fundamental class in the standard Gromov–
Witten theory of stable maps. This is the class used in the definition of
intersection numbers in Gromov–Witten r-spin theory. We recall its defini-
tion as follows (we refer to Definitions 4.7 and 5.4 in [20]):

[
Xr,mmm

g,n,D

]v
= cW (mmm) ∩ p∗[Xg,n,D]v,
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where cW (mmm) is the so called Witten’s top Chern class, a cohomology class,
whose degree is opposite to the Euler characteristic of the universal spin
structure. (The explicit expression for the degree is ((r − 2)(g − 1) − n +∑

i mi)/r, by Riemann–Roch.) The class cW has several compatible con-
structions [7,22,25], which extend naturally from Mr,mmm

g,n to Xr,mmm
g,n,D. Further-

more, this class can be understood as the virtual fundamental homology
class of the space of 1/r-differentials on stable maps, but we do not develop
this point here.

The definitions of the tautological classes ψ1, . . . , ψn, κd, and chd intro-
duced in Section 1.1.6 naturally extend over Xr,mmm

g,n,D.

The coefficients appearing in the r-spin Gromov–Witten potential are
intersection number of the tautological classes against the virtual r-spin
class

[
Xr,mmm

g,n,D

]v. We recall from Section 1.1 the definition of the genus-g
r-spin twisted Gromov–Witten potential of X, Fg,r(ttt, sss)

∑

D

QD
∑

n≥1

1
n!

∑

m1,...,mn
a1,...,an
μ1,...,μn

1
rg−1

∫

[Xr,mmm
g,n,D]v

exp
(∑

d≥1

sd chd

) n∏

i=1

ψai
i ev∗

i (hμi)t
μi⊗mi
ai

.

The total r-spin twisted Gromov–Witten potential of X is given by
Fr(ttt, sss) =

∑
g≥0 �g−1Fg,r(ttt, sss).

3.3 Properties of the virtual r-spin class

We state the properties of the virtual r-spin class
[
Xr,mmm

g,n,d

]v needed in the
rest of the paper. The main result is Proposition 3.1, which can be regarded
as the generalization to r-spin maps of the main factorization properties of
the virtual fundamental class [Xg,n,D]v. The notation follows closely Faber
and Pandharipande’s treatment [12, Section 1.2].

Remark 3.3. In [19, Section 5], the authors provide a statement of the
Gromov–Witten r-spin factorization properties after pushforward via the
forgetful morphism p : Xr,mmm

g,n,D → Xg,n,D. These factorization properties are
sufficient if we wish to intersect

[
Xr,mmm

g,n,D

]v only with pullbacks from Xg,n,D.
However, in the r-spin twisted Gromov–Witten potential above, we consider
intersections of classes such as chd that are not pullbacks from Xg,n,D.

To begin with, at (3.1–3.3), we set up natural morphisms π, j, and μ
needed in the statements. First, recall the morphism forgetting the (n + 1)th
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point:

π : X
r,(mmm,1)
g,n+1,D −→ Xr,mmm

g,n,D. (3.3)

Second, we extend the discussion Section 2.3 of the boundary locus to the
substack ∂Xr,mmm

g,n,D ↪→ Xr,mmm
g,n,D of singular objects: i.e., r-spin structures over

singular r-prestable curves mapping to X. By the same definitions of Section
2.3, we get the locus D classifying triples (C, node of C, branch of C at the
node), which admits the natural decomposition

D =
⊔

0≤l≤g
I⊆[n]

Dl,I �
⊔

1≤q≤r

Dq
irr

analogue to (2.1). The images of the morphisms jl,I : Dl,I −→ Xr,mmm
g,n,D and

jq
irr : Dq

irr −→ Xr,mmm
g,n,D describe the entire boundary locus. As in Section 2.3,

the stack D can be projected to certain moduli stacks, which we denote by
Δξ, where ξ labels the topological type of the splitting of the curve and of
the map at the node.

First, we introduce the set Ω of such splittings ξ

Ω = Ωirr �
⊔

0≤l≤g
I⊆[n]

Ωl,I ,

with Ωl,I = {(l, I, A) | A ∈ H2(X, Z)}, and Ωirr = {(irr, q) | q ∈ {1, . . . , r}}.
To each ξ ∈ Ω, we attach a stack Δξ as follows. For ξ = (l, I, A) ∈ Ωl,I , we
denote by Δξ the stack fitting in the fiber diagram

Δξ ��

��

X
r,(mmmI′ ,q′)
l′,|I′|+1,A′

ev′

��

�

X
r,(mmmI ,q)
l,|I|+1,A ev

�� X,

where A′ = D − A ∈ H2(X, Z), q equals the index q(l, I) defined by equation
(2.2), and the fibered product is taken with respect to the morphisms ev and
ev′ evaluating the (|I| + 1)th and the (|I ′| + 1)th point. Equivalently, we say
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Figure 2: The morphisms μ.

that Δξ fits in the fiber diagram

Δξ ��

��

X

δ=(id,id)

��

�

X
r,(mmmI ,q)
l,|I|+1,A × X

r,(mmmI′ ,q′)
l′,|I′|+1,A′ ev×ev′

�� X × X,

where δ : X → X × X is the diagonal morphism.

Similarly, for ξ = (irr, q) ∈ Ωirr, the stack Δξ fits in the fiber diagram

Δξ ��

��

X

δ=(id,id)

��

�

X
r,(mmm,q,q′)
g−1,n+2,D (ev,ev′)

�� X × X,

where the morphisms ev and ev′ evaluating the (n + 1)st and the (n + 2)nd
point.

By applying to Dl,I and Dq
irr the morphism defined in Section 2.3 (see

figure 2) we obtain the diagrams

Dl,I

μl,I

�����������
jl,I

����������
l ∈ {0, . . . , g}, I ⊆ [n]

⊔
ξ∈Ωl,I

Δξ Xr,mmm
g,n,D

(3.4)

Dq
irr

μq
irr

����
��

��
��

� jq
irr

		��������
q ∈ {1, . . . , r}

Δ(irr,q) Xr,mmm
g,n,D

(3.5)
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Remark 3.4. We notice that certain stacks Δξ may well be empty. This is
indeed the case if A or D − A is not an effective cycle in H2(X, Z).

The stacks Δξ are moduli functors classifying r-stable spin maps and,
therefore, are equipped with virtual r-spin classes [Δξ]

v obtained, as above,
by intersecting the virtual fundamental class of the corresponding moduli
stack of stable maps with Witten’s class cW . Such virtual r-spin classes
[Δξ]

v can be explicitly obtained as follows (Axiom 4 of [5], see also [12,
Section 1.2]). For ξ = (l, I, A) ∈ Ωl,I , we have

[
Δ(l,I,A)

]v =
[
X

r,(mmmI ,q)
l,|I|+1,A

]v
×
[
X

r,(mmmI′ ,q′)
l′,|I′|+1,A′

]v
∩ (ev × ev′)−1(δ), (3.6)

where δ is the diagonal cycle in X × X. For ξ = (irr, q) ∈ Ωirr, we have

[Δ(irr,q)]
v =

[
X

r,(mmm,q,q′)
g−1,n+2,D

]v
∩ (ev, ev′)−1(δ). (3.7)

The factorization property relates the virtual r-spin class of Δξ and
Xr,mmm

g,n,D. Note that it is delicate to restrict the virtual fundamental class
of Xr,mmm

g,n,D to the boundary locus, because Xr,mmm
g,n,D may be singular or simply

not of the expected dimension. This problem already arises for moduli of
stable maps, where calculations involve the natural morphism from Xg,n,D to
the nonsingular algebraic stack Mg,n of prestable n-pointed genus-g curves.
Similarly, we need to regard Xr,mmm

g,n,D alongside with the natural morphism to
the nonsingular algebraic stack M

r,mmm
g,n of r-prestable curves equipped with

an r-spin structure of type mmm:

Xr,mmm
g,n,D −→ M

r,mmm
g,n .

Then, we take refined pullbacks (jl,I)! and (jqirr)
! (see [14]) via the natural

morphisms

jl,I : Dl,I → M
r,mmm
g,n and j

q
irr : D

q
irr → M

r,mmm
g,n

induced by the usual decomposition of the locus D mapping to the boundary
locus of M

r,mmm
g,n representing r-spin structures over singular r-prestable curves.
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Clearly, the morphisms jl,I , j
q
irr, jl,I , and jq

irr fit in the fiber diagrams

Dl,I
jl,I ��

��

Xr,mmm
g,n,D

��

Dq
irr

jq
irr ��

��

Xr,mmm
g,n,D

��
� �

Dl,I
jl,I

�� Mr,mmm
g,n . D

q
irr

j
q
irr

�� Mr,mmm
g,n .

where Dl,I and D
q
irr are the terms of the natural decomposition

D =
⊔

0≤l≤g
I⊆[n]

Dl,I �
⊔

1≤q≤r

D
q
irr.

Proposition 3.1. The virtual r-spin class
[
Xr,mmm

g,n,D

]v satisfies the following
properties.

Factorization property. For any l ∈ {0, . . . , g} and I ⊆ [n], we have

(μl,I)∗(jl,I)!
[
Xr,mmm

g,n,D

]v =
∑

ξ∈Ωl,I

[Δξ]v,

and for any q ∈ {1, . . . , r}, we have

(μq
irr)∗(j

q
irr)

![Xr,mmm
g,n,D

]v = [Δ(irr,q)]
v,

Forgetting property: We have

[Xr,(mmm,1)
g,n+1,D]v = π∗[Xr,mmm

g,n,D]v,

where π is the morphism X
r,(mmm,1)
g,n+1,D −→ Xr,mmm

g,n,D forgetting the (n + 1)th point.

Proof. The equations above are based on the properties of the virtual fun-
damental class [Xg,n,D]v proved in [4,5,21] and on the properties of Witten’s
class cW (mmm) proved in [19,25,26].

The forgetting property is an immediate consequence of the analogous
properties for [Xg,n,D]v and cW (mmm).

On the other hand, the factorization property requires the Isogeny prop-
erty of [4, 5]. This condition claims that for any l ∈ {0, . . . , g} and I ⊆ [n],
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we have

(jl,I)!p∗[Xg,n,D]v = (μl,I)∗(p∗[Xl,|I|+1,A]v × p∗[Xl′,|I′|+1,A′ ]v

∩ (ev × ev′)−1(δ)),

where, on the right-hand side, δ is the diagonal in X × X and we implicitly
sum over the parameter A ranging over H2(X, Z). Furthermore, for q ∈
{1, . . . , r}, we have

(jqirr)
!p∗[Xg,n,D]v = (μq

irr)
∗ (p∗[Xg−1,n+2,D]v ∩ (ev × ev′)−1(δ)

)
.

Witten’s cohomology class cW (mmm) satisfies the following factorization
properties proved in [19, 25, 26]. For any l ∈ {0, . . . , g} and for any I ⊆ [n],
we have

(μl,I)∗(jl,I)∗(cW (mmm)) = cW (mmmI , q) × cW (mmmI′ , q′).

For any q ∈ {1, . . . , r}, we have

(μq
irr)∗(j

q
irr)

∗(cW (mmm)) = cW (mmm, q, q′).

The projection formula for μl,I and μq
irr yields immediately the desired fac-

torization property. �

Remark 3.5. We briefly recall why we restrict the range of the indices mi

to {1, . . . , r}. Indeed, it makes sense to define the moduli of r-stable spin
curves for any multiindex mmm ∈ Zn. On the other hand, the construction of
Witten’s class cW (mmm) requires that the entries mi are positive. Furthermore,
this extended Witten’s class cW (mmm) satisfies the so-called descending and
the vanishing properties. The descending property claims that for all i ∈
{1, . . . , n}, we have

cW (mmm + rδδδi) = −mi

r
ψi cW (mmm).

The vanishing property claims that, if mi ∈ rZ for some 1 ≤ i ≤ n, then we
have

cW (mmm) = 0.
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Automatically, the virtual r-spin class
[
Xr,mmm

g,n,D

]v shares analogous recursive
relations. Because of these properties, it makes sense to restrict ourselves
to the values mi ∈ {1, . . . , r − 1}.

4 Applying the Grothendieck–Riemann–Roch formula

In [9, Theorem 1.1.2], the first author applied the Grothendieck–Riemann–
Roch formula to the r-spin structure L over the universal curve. These
methods can be easily generalized to any family of r-bubbled spin curves.
In Section 4.1, we describe how the GRR formula works in this case. In
Section 4.2 we intersect the GRR formula with the virtual r-spin class of
Xr,mmm

g,n,D. Finally in Section 4.3 we use this version of the GRR formula to
deduce the differential equation satisfied by the twisted r-spin potential.
The final result, Proposition 4.3, is the crucial ingredient allowing us to
generalize Givental’s quantization.

4.1 The GRR formula for r-bubbled spin curves

In [9] the GRR formula was applied to the universal curve π : C r,mmm
g,n → Mr,mmm

g,n .
In this section, we briefly describe these computations to show that they
actually work for any family of r-spin curves with maximal variation.

Definition 4.1. A family of n-pointed, r-prestable curves π : C → B is a
family with maximal variation if for any b ∈ B the Kodaira–Spencer homo-
morphism TbB → Ext1(ΩCb

,OCb
) is surjective.

It follows from the definition, that in a family C → B with maximal varia-
tion, the boundary ∂B = {b ∈ B | Cb is singular} is a normal crossings divi-
sor in B. As in Section 2.3, we construct a smooth scheme D whose points
are triples (b ∈ ∂B,node of Cb, branch at the node). The scheme D has a
decomposition D =

⊔
l,I Dl,I �

⊔
q Dq

irr endowed with morphisms jl,I : Dl,I →
B and jq

irr : Dq
irr → B.

The schemes B and D are equipped with the tautological cohomology
classes κd, ψ1, . . . , ψn ∈ H∗(B, Z) and ψ, ψ′ ∈ H2(D, Z) as in Section 1.1.6.

The following result is a slight generalization of the main theorem of [9].

Proposition 4.1 [9]. Consider a family of r-prestable curves C → B with
maximal variation over a nonsingular scheme B, equipped with an r-spin
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structure L

Then, we have

chd(Rπ∗L) =
Bd+1(1

r )
(d + 1)!

κd −
n∑

i=1

Bd+1(mi
r )

(d + 1)!
ψd

i

+
r

2

r∑

q=1

Bd+1(
q
r )

(d + 1)!
(jq

irr)∗

(
∑

a+a′=d−1

(ψ)a(−ψ′)a′

)

+
r

2

∑

0≤l≤g
I⊆[n]

Bd+1(
q(l,I)

r )
(d + 1)!

(jl,I)∗

(
∑

a+a′=d−1

(ψ)a(−ψ′)a′

)
.

Sketch of a proof. We want to calculate the Chern character of the direct
image Rπ∗L. The first step of the proof is to replace the r-stable curve
π : C → B by the corresponding r-bubbled curve π̃ : C̃ → B. Replacing π∗
with π̃∗ does not change the higher direct image because of the identities of
Remark 2.2. The GRR formula applied to this situation reads

ch(Rπ̃∗L) = π∗
(
td(π̃)ch(L)

)
.

Now the aim is to compute the right-hand side.

The maximal variation condition guarantees that the bubbles form a nor-
mal crossings divisor in C̃, while the nodes of the singular fibers of C̃ form
a smooth subscheme of pure codimension 2.

We can construct r − 1 families Pi → D, 1 ≤ i ≤ r − 1, of projective lines
over D that map to the bubbles of C̃ (starting from the closest bubble
to the chosen branch). In the sequel a bubble will be the image of one of
the Pi in C̃. Each family Pi has two disjoint sections, where the bubble
intersects neighboring bubbles or branches. The normal sheaves relative to
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these sections are line bundles over D. The first Chern classes of these line
bundles will be called bubble classes. They are important for two reasons:

(1) For a family with smooth fibers, the class td(π̃) is just the Todd class
of the relative tangent vector bundle; but in our case not all fibers are
smooth, and the nodes give a contribution to td(π̃). This contribution
is expressed in terms of the bubble classes.

(2) The rth tensor power L⊗r is isomorphic to the relative dualizing line
bundle ωlog to C̃ twisted by the divisors formed by the bubbles (see
Section 2.2). Therefore, to evaluate ch(L) we need to know the inter-
sections between the classes represented by the bubbles. The inter-
section of two different bubbles is simply their geometric intersection
(this is guaranteed by the maximal variation condition). However, the
selfintersection of a bubble is more complicated and can be described
in terms of the bubble classes.

It is explained in [9] that the bubble classes can be expressed via ψ and
ψ′ over every component Dl,I and Dq

irr. Once we know this, a computation
(though not a simple one) leads to the result stated in the proposition. �

4.2 The GRR formula and the virtual r-spin class

Proposition 4.1 allows us to express the homology class chd ∩
[
Xr,mmm

g,n,D

]v.

Proposition 4.2. We have

chd ∩
[
Xr,mmm

g,n,D

]v

=
Bd+1(1

r )
(d + 1)!

κd ∩
[
Xr,mmm

g,n,D

]v −
n∑

i=1

Bd+1(mi
r )

(d + 1)!
ψd

i ∩
[
Xr,mmm

g,n,D

]v

+
r

2

r∑

q=1

Bd+1(
q
r )

(d + 1)!
(jq

irr)∗

(
∑

a+a′=d−1

(ψ)a(−ψ′)a′ ∩ (jqirr)
![Xr,mmm

g,n,D

]v
)

+
r

2

∑

0≤l≤g
I⊆[n]

Bd+1(
q(l,I)

r )
(d + 1)!

(jl,I)∗

(
∑

a+a′=d−1

(ψ)a(−ψ′)a′ ∩ (jl,I)!
[
Xr,mmm

g,n,D

]v
)

.

Proof. In order to apply Proposition 4.1, we need to show that Xr,mmm
g,n,D can

be embedded into a nonsingular Deligne–Mumford stack B̃ equipped with
an n-pointed r-prestable curve π̃ : C̃ → B̃ of maximal variation and with an
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r-spin structure L̃ fitting in the following fiber diagram:

L

��

�� L̃

��
�

C

��

�� C̃

��
�

Xr,mmm
g,n,D

�� B̃,

where L → C is the universal r-prestable spin curve over Xr,mmm
g,n,D. This is

actually the crucial step of the proof: once B̃ is constructed, since Propo-
sition 4.1 holds for Rπ̃∗L̃ over B̃, the desired equation follows from the
projection formula for refined intersections [14, Proposition 8.1.1(c)].

First, by Faber and Pandharipande [12, Section 1.2, Proposition 1], there
exists an embedding of Xg,n,D into a nonsingular Deligne–Mumford stack
B̃′ and a prestable curve C̃ ′ → B̃′, whose variation is maximal, and which
extends the universal curve of Xg,n,D. The markings also extend, and indeed
we can regard C̃ ′ → B̃′ as a morphism B̃′ → Mg,n extending Xg,n,D → Mg,n.
Consider the fibered product B̃ = B̃′ ×Mg,n M

r,mmm
g,n . By construction (see (i)

and (ii)), the stack Xr,mmm
g,n,D is the fiber over B̃′ of B̃ → B̃′; therefore, it is

embedded in B̃. Furthermore, B̃ is naturally equipped with an r-prestable
curve and an r-spin structure, which extends the universal r-spin structure
of Xr,mmm

g,n,D.

In this construction, it is crucial to notice that B̃ is a nonsingular Deligne–
Mumford stack. This follows from Olsson’s description of the stack
of r-prestable curves. Indeed, in [24], the morphism B̃ → B̃′ at a point
x : Spec k → B̃′ is locally represented by the flat, finite morphism of non-
singular Deligne–Mumford stacks

[(Spec Ĩ)/(μμμm
r )] → Spec I, (4.1)

where the notation is chosen as follows. The scheme Spec I is the versal
deformation space of x at B̃′. The index m equals the number of nodes
of the curve C̃ ′

x over x ∈ B̃′. The ring Ĩ equals I[z1, . . . , zm]/(zr
i − ti,∀i),

where t1, . . . , tm ∈ I are chosen so that {ti = 0} ⊂ Spec I is the locus where
the ith node persists. Finally, the group (μμμr)m acts by multiplication on the
coordinates (z1, . . . , zm). �
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4.3 The differential operator

Consider the genus-g r-spin twisted Gromov–Witten potential Fg(sss, ttt) of X.
Set

Fr(ttt, sss) =
∑

g≥0

�g−1Fg,r(ttt, sss), and Zr = exp(Fr).

Proposition 4.3. We have

∂

∂sd
Zr = LdZr,

where Ld is the operator

Ld =
Bd+1(1

r )
(d + 1)!

∂

∂t1⊗1
d+1

−
∑

a≥0
μ⊗m

Bd+1(m
r )

(d + 1)!
tμ⊗m
a

∂

∂tμ⊗m
a+d

+
�

2

∑

a+a′=d−1
μ,μ′

m,m′

(−1)a′
gμ⊗m,μ′⊗m′ Bd+1(m

r )
(d + 1)!

∂2

∂tμ⊗m
a ∂tμ

′⊗m′

a′

,

where all summations are taken over the range a ≥ 0 and 1 ≤ m ≤ r.

Proof. We can write the statement in terms of Fr using Zr = expFr; we get

∂Fr

∂sd
=

Bd+1(1
r )

(d + 1)!
∂Fr

∂t1⊗1
d+1

−
∑

a≥0
μ⊗m

Bd+1(m
r )

(d + 1)!
tμ⊗m
a

∂Fr

∂tμ⊗m
a+d

+
�

2

∑

a+a′=d−1
μ,μ′

m,m′

(−1)a′
gμ⊗m,μ′⊗m′ Bd+1(m

r )
(d + 1)!

∂2F

∂tμ⊗m
a ∂tμ

′⊗m′

a′

+
�

2

∑

a+a′=d−1
μ,μ′

m,m′

(−1)a′
gm⊗μ,m′⊗μ′ Bd+1(m

r )
(d + 1)!

∂Fr

∂tμ⊗m
a

∂Fr

∂tμ
′⊗m′

a′

. (4.2)

Write the right-hand side as R1 + R2 + R3 + R4. Using Proposition 4.2, we
decompose also ∂Fr/∂sd as the sum of four terms involving κd, ψd

i , classes
in the image of

⊔
q jq

irr, and classes in the image of
⊔

l,I jl,I . In each the
following four steps we identify these summands.
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Step 1. intersection numbers involving κd. The class κd can be regarded as
the pushforward of ψd+1

n+1 via π : X
r,(mmm,1)
g,n+1,D → Xr,mmm

g,n,D. Then, by the forgetting
property, the projection formula yields

∫

[Xr,mmm
g,n,D]v

κd

n∏

i=1

ψai
i ev∗

i (hμi)
k∏

j=0

chdj

=
∫

[
X

r,(mmm,1)
g,n+1,D

]v
ψd+1

n+1

n∏

i=1

ψai
i ev∗

i (hμi)
k∏

j=0

chdj
,

where we used the equation ψd+1
n+1π

∗ψi = ψd+1
n+1ψi for all d ≥ 0, and 1 ≤ i ≤ n.

In this way, we get R1.

Step 2. intersection numbers involving ψd
i . These intersections are already

in the desired form and yield immediately R2.

Step 3. intersection numbers involving classes in the image of jirr,q. For all
1 ≤ q ≤ r, we intersect

(
�

r

)g−1∏n
i=1 ψai

i ev∗
i (hμi)

∏k
j=0 chdj

with the homol-
ogy class

r

2
(jq

irr)∗

(
∑

a+a′=d−1

(ψ)a(−ψ′)a′ ∩ (jqirr)
!
[
Xr,mmm

g,n,D

]v
)

and we multiply by Bd+1(q/r)/(d + 1)!. Taking aside this last factor, we
carry out the intersection on Dq

irr, and we get

�g−1

2rg−2

[
∑

a+a′=d−1

(μq
irr)

∗
(
(ψn+1)a(−ψn+2)a′

)
· (jq

irr)
∗

×

⎛

⎝
n∏

i=1

ψai
i ev∗

i (hμi)
k∏

j=0

chdj

⎞

⎠

⎤

⎦ ∩ (jqirr)
!
[
Xr,mmm

g,n,D

]v

Now instead of integrating via jq
irr we can integrate via μq

irr. Notice the
identity

(jq
irr)

∗
(

n∏

i=1

ψai
i ev∗

i (hμi)

)
= (μq

irr)
∗
(

n∏

i=1

ψai
i ev∗

i (hμi)

)
.

As in [19], we also notice that the terms of the Chern character in degree
d ≥ 1, satisfy the identity

(jq
irr)

∗chd = (μq
irr)

∗(chd).
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Therefore, the intersection number is

�g−1

2rg−2

∑

a+a′=d−1

(μq
irr)

∗

⎛

⎝(ψn+1)a(−ψn+2)a′
n∏

i=1

ψai
i ev∗

i (hμi)
k∏

j=0

chdj

⎞

⎠

∩ (jqirr)
!
([

Xr,mmm
g,n,D

]v)
.

Using the projection formula for μq
irr and the factorization property we

get

�g−1

2rg−2

∑

a+a′=d−1

(−1)a′
∫

[Δ(irr,q)]
v
(ψn+1)a(ψn+2)a′

n∏

i=1

ψai
i ev∗

i (hμi)
k∏

j=0

chdj
.

Recall that by the Künneth formula the Poincaré dual class of the diagonal
[δ] in X × X can be written as

∑
μ,μ′ gμ,μ′

hμ × hμ′ , where gμ,μ′
is the inverse

matrix of the Poincaré pairing matrix gμ,μ′ on H∗(X, Q). In this way, we
obtain the intersection numbers of X

r,(mmm,q,q′)
g−1,n+2,D with an extra �/2 factor

�

2

⎛

⎜⎜⎝
�g−2

rg−2

∑

a+a′=d−1
μ,μ′

(−1)a′
gμ,μ′

∫
[
X

r,(mmm,q,q′)
g−1,n+2,D

]v
(ψn+1)aev∗

i (hμ)(ψn+2)a′
ev∗

i (hμ′)

×
n∏

i=1

ψai
i ev∗

i (hμi)
k∏

j=0

chdj

⎞

⎟⎟⎠,

which, if we sum over q ∈ {1, . . . , r} and take the factor Bd+1(q/r)/(d + 1)!
into account, agrees with R3.

Step 4. intersection numbers involving classes in the image of jl,I . Set
I ⊆ [n] and l ∈ {0, . . . , g}, and write q for q(l, I). We show that the term
involving QDtμ1⊗m1

a1 . . . tμn⊗mn
an �g−1 in R4 equals

QDtμ1⊗m1
a1

. . . tμn⊗mn
an

(
�

r

)g−1 1
n!

∏

i∈[n]

ψai
i ev∗

i (hμi) exp
(∑

h

shchh

)

∩ r

2
Bd+1

( q
r

)

(d + 1)!
(jl,I)∗

(
∑

a+a′=d−1

ψa(−ψ′)a′ ∩ j
!
l,I

[
Xr,mmm

g,n,D

])
.
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As in the previous step we put aside the factor Bd+1(q/r)/(d + 1)!, and we
carry out the intersection on Dl,I . We get

∑

a+a′=d−1

(−1)a′
QD tμ1⊗m1

a1 . . . tμn⊗mn
an

n!
�g−1

2rg−2

× (jl,I)∗

⎛

⎝
∏

i∈[n]

ψai
i ev∗

i (hμi) exp
(∑

h

shchh

)
⎞

⎠

× (μl,I)∗
(
(ψ|I|+1)

a × (ψ|I′|+1)
a′
)

∩ (jqirr)
!
[
Xr,mmm

g,n,D

]v
, (4.3)

where we identified the classes ψ and ψ′ on Dl,I with pullbacks via μl,I .

Notice that the classes ψi, ev∗
i (hμi), and chd satisfy the relations

(jl,I)∗
(

n∏

i=1

ψai
i ev∗

i (hμi)

)
= (μl,I)∗

(
∏

I

ψai
i ev∗

i (hμi) ×
∏

I′

ψai
i ev∗

i (hμi)

)
,

(jl,I)∗chd = (μl,I)∗((chd × 1) + (1 × chd)), for d ≥ 1.

Recall the factorization property of the virtual class from Proposition 3.1

(μl,I)∗(jl,I)!
[
Xr,mmm

g,n,D

]v =
∑

(l,I,A)∈Ωl,I

[
Δ(l,I,A)

]v

=
[
X

r,(mmmI ,q)
l,b,A

]v[
X

r,(mmmI′ ,q′)
l′,b′,A′

]v
∩ (ev × ev′)−1(δ),

where b = |I| + 1 and b′ = |I ′| + 1. These relations, together with formal
properties of the exponent function, allow us to rewrite each summand
appearing in the alternate sum (4.3) in terms of intersections on the fiberd
product X

r,(mmmI ,q)
l,b,A ×X X

r,(mmmI′ ,q′)
l′,b′,A′ :

�

2

∑

A+A′=D

[
QA

(
�

r

)l−1∏

i∈I

tμi⊗mi
ai

n!

×
(

ψa
b ev∗

b(hμ)
∏

i∈I

ψai
i ev∗

i (hμi) exp

(
∑

h

shchh

))
∩
[
Xr,mmmI ,q

l,b,A

]v
]

[
QA′

(
�

r

)l′−1 ∏

i∈I′

tμi⊗mi
ai

n!

×
(

ψa′
b′ ev∗

b′(hμ′)
∏

i∈I′

ψai
i ev∗

i (hμi) exp

(
∑

h

shchh

))
∩
[
X

r,mmmI′ ,q′

l′,b′,A′

]v
]
,
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where the Künneth formula [δ] =
∑

μ,μ′ gμ,μ′
hμ × hμ′ has been used. Taking

into account the factor Bd+1(q/r)/(d + 1)!, this yields the monomial of R4

involving QDtμ1⊗m1
a1 . . . tμn⊗mn

an �g−1. �

5 Givental’s quantization

Now we can prove our main Theorem 1.1.

We use the notation from Section 1.2. In particular, H = H∗(X, Q) ⊗
Qr−1 is a vector space with a quadratic form g and H = H((z−1)) is the
corresponding infinite-dimensional symplectic space.

Proposition 5.1. The operator Ld from Proposition 4.3 is obtained by the
Weyl quantization rules from the hamiltonian

Pd = −
∞∑

a=0

∑

μ,m

Bd+1(m
r )

(d + 1)!
qμ⊗m
a pa+d,μ⊗m

+
1
2

∑

a+a′=d−1
μ,μ′,m,m′

(−1)d Bd+1(m
r )

(d + 1)!
gμ⊗m,μ′⊗m′

pa,μ⊗mpa′,μ′⊗m′ .

on H.

Proposition 5.2. The vector field, or the infinitesimal symplectic transfor-
mation, induced by this hamiltonian is the multiplication by

zd

(d + 1)!
id ⊗ diag

[
Bd+1

(
1
r

)
, . . . , Bd+1

(
r − 1

r

)]
.

Both propositions are proved by a simple computation.

Theorem 1.1 follows. �

References

[1] D. Abramovich, A. Corti and A. Vistoli, Twisted bundles and admissible
covers, Special issue in honor of Steven L. Kleiman, Comm. Algebra
31(8) (2003), 3547–3618, arXiv:math/0106211v1.

[2] D. Abramovich and T. J. Jarvis, Moduli of twisted spin curves, Proc.
Amer. Math. Soc. 131 (2003), 685–699, arXiv:math/0104154v1.



1368 A. CHIODO AND D. ZVONKINE

[3] D. Abramovich and A. Vistoli, Compactifying the space of stable maps,
J. Amer. Math. Soc. 15(1) (2002), 27–75, arXiv:math/9908167v2.

[4] K. Behrend and B. Fantechi, The intrinsic normal cone, Inventiones
Mathematicae 128 (1997), 45–88, arXiv:alg-geom/9601010v1.

[5] K. Behrend and Yu. Manin, Stacks of stable maps and Gromov–Witten
invariants, Duke J. Math. 85(1) (1996), 1–60, arXiv:alg-geom/
9506023v2.

[6] L. Caporaso, C. Casagrande and M. Cornalba, Moduli of roots of line
bundles on curves, Trans. Amer. Math. Soc. 359(8) (2007), 3733–3768,
arXiv:math/0404078v2.

[7] A. Chiodo, The Witten top Chern class via K-theory, J. Algebraic
Geom. 15(4) (2006), 681–707, arXiv:math/0210398v2.

[8] A. Chiodo, Stable twisted curves and their r-spin structures (Courbes
champêtres stables et leurs structures r-spin), Ann. Inst. Fourier, 58(5)
(2008), 1635–1689, Preprint version: math.AG/0603687.

[9] A. Chiodo, Towards an enumerative geometry of the moduli space of
twisted curves and rth roots, Compos. Math. 144 (2008), Part 6, 1461–
1496, Preprint version: math.AG/0607324.

[10] T. Coates, A. Corti, H. Iritani, H.-H. Tseng, Computing genus-zero
twisted Gromov–Witten invariants, Duke Math. J. 147(3) (2009), 377–
438, Preprint version: math.AG/0611550.

[11] T. Coates and A. Givental, Quantum Riemann–Roch, Lefschetz and
Serre, Ann. Math. 165(1) (2007), 15–53.

[12] C. Faber and R. Pandharipande, Hodge integrals and Gromov–Witten
theory, Invent. Math. 139(1) (2000), 173–199, arXiv:math/9810173v1.

[13] C. Faber, S. Shadrin and D. Zvonkine, Tautological relations and the
r-spin Witten conjecture, Annales Scientifiques de l’ENS, 43, Fascicule
4 (2010), to appear.

[14] W. Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer
Grenzgebiete 3, Folge Band 2, Springer-Verlag, Berlin, Heidelberg, New
York, Tokyo, 1984.

[15] A. Givental, Gromov–Witten invariants and quantization of quadratic
hamiltonians, in ‘Frobenius Manifolds’, 91–112, Aspects Math. E36,
Vieweg, Wiesbaden, 2004, arXiv:math/0108100v2.

[16] T. Graber and R. Pandharipande, Constructions of nontautological
classes on moduli spaces of curves, Michigan Math. J. 51(1) (2003),
93–109, arXiv:math/0104057v2.

[17] T. J. Jarvis, Torsion-free sheaves and moduli of generalized spin curves,
Compos. Math. 110(3) (1998), 291–333, arXiv:alg-geom/9502022v1.



TWISTED r-SPIN POTENTIAL 1369

[18] T. J. Jarvis, Geometry of the moduli of higher spin curves, Inter-
nat. J. Math. 11 (2000), 637–663, arXiv:math/9809138v3.

[19] T. J. Jarvis, T. Kimura and A. Vaintrob, Moduli spaces of higher spin
curves and integrable hierarchies, Compos. Math. 126(2) (2001), 157–
212, arXiv:math/9905034v4.

[20] T. J. Jarvis, T. Kimura, and A. Vaintrob, Stable spin maps, Gromov–
Witten invariants, and quantum cohomology, Commun. Math. Phys.
259(3) (2005), 511–543, arXiv:math/0012210v1.

[21] J. Li and G. Tian, Virtual moduli cycles and Gromov–Witten invariants
of algebraic varieties, J. Amer. Math. Soc. 11 (1998), 119–174.

[22] T. Mochizuki, The virtual class of the moduli stack of stable r-spin
curves, Commun. Math. Phys. 264(1) (2006), 1–40.

[23] D. Mumford, Towards an enumerative geometry of the moduli space
of curves, Arithmetic and Geometry, II, 271–328, Progr. Math. 36,
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