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Abstract

We prove an inequality relating the trace of the extrinsic curvature,
the total angular momentum, the centre of mass, and the Trautman-
Bondi mass for a class of gravitational initial data sets with constant
mean curvature (CMC) extending to null infinity. As an application
we obtain non-existence results for the asymptotic Dirichlet problem for
CMC hypersurfaces in stationary space–times.

1 Introduction

Let (S , g, K) be an n-dimensional, n ≥ 3, constant mean curvature (CMC)
general relativistic initial data set with cosmological constant Λ (possibly
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zero), thus

R = |K|2 − (trgK)2 + 2Λ + 16πρ, (1.1)

DiK
ij = −8πμj , Di(trgK) = 0. (1.2)

Here ρ is the matter energy density and μj is the matter momentum vector.

There is a transformation which maps such initial data sets with trgK =
κ, where κ is a constant, to new initial data sets (S , g, K̂) with trgK̂ = 0
and Λ shifted by −(n − 1)κ2/2n: Indeed, if

K̂ij = Kij − κ

n
gij , (1.3)

then (1.2) still holds with K replaced by K̂, while (1.1) becomes

R = |K̂|2 − (trgK̂)2
︸ ︷︷ ︸

0

+2 (Λ − n − 1
2n

κ2)
︸ ︷︷ ︸

Λ̂

+16πρ. (1.4)

Equation (1.3) allows one to go back and forth from CMC hyperboloidal ini-
tial data sets in space–times with Λ = 0 to initial data sets in asymptotically
anti-de Sitter (adS) space–times with Λ < 0.

The object of this note is to point out that this transformation, together
with the known bounds on total angular momentum and centre of mass for
asymptotically adS space–times [11, 22], implies a striking angular-momentum
bound for CMC hyperboloidal initial data which are asymptotically flat at
null infinity, see (5.3) below.

Our analysis complements Dain’s recent upper bound on angular momen-
tum [13] at spatial infinity for axi-symmetric solutions with two asymptoti-
cally flat regions.

As an interesting application, we obtain non-existence results for hyper-
surfaces as above in stationary space–times, see Section 8 below.

Before presenting our inequality it is useful to review the definitions of
global charges both with Λ = 0 and Λ < 0; we start with the latter.

2 Global charges for asymptotically anti-de Sitter initial data

For the purposes of this work, an n-dimensional initial data set (S , g, K)
will be called adS if S contains an asymptotic region, diffeomorphic to
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the complement of a ball in R
n, in which K asymptotes to zero while g

asymptotes to a Riemannian background metric

b = dr2 + sinh2(r) h̆, (2.1)

where h̆ is a unit round metric on Sn−1. Note that (b, 0) are initial data
for adS space–time. We further assume that there exist constants k ≥ 1,
α > n/2 and C > 0 such that

|g − b|b + |D̊g|b + · · · + | D̊ · · · D̊
︸ ︷︷ ︸

k factors

g|b + |K|b + · · · + | D̊ · · · D̊
︸ ︷︷ ︸

k−1 factors

K|b ≤ Ceαr.

(2.2)

Here | · |b denotes the norm of a tensor field with respect to the metric b,
and D̊ is the covariant derivative of b.

In particular, the definition enforces the vanishing of trgK for CMC data.
Whether the data are CMC or not, (2.2) implies the vanishing of the trace-
free part of the extrinsic curvature of the conformal boundary at infinity.

Let X be a Killing vector in the asymptotic region of the background adS
space–time, the Hamiltonian associated with the flow along X can be cal-
culated as follows [7, 12, 10, 19]: Let V be the normal component of X with
respect to the background adS metric, and let Y be the tangential compo-
nent thereof; when defined along a space–like hypersurface, such pairs (V, Y )
are called Killing Initial Data (KIDs). Then the Hamiltonian H(V, Y ) cor-
responding to X (which we identify with the couple (V, Y )) takes the form

H(V, Y ) := lim
R→∞

1
16π

∫

r=R

(

U
i(V ) + V

i(Y )
)

dSi, (2.3)

where

U
i(V ) := 2

√

det g
(

V gi[kgj]lD̊jgkl + D[iV gj]k(gjk − bjk)
)

, (2.4)

V
i(Y ) := 2

√

det g
(

Ki
j − Kk

kδ
i
j

)

Y j . (2.5)

Here all indices are space indices, running from 1 to n, and D̊ is the Levi–
Civita derivative of the space background metric b.

A preferred set of background Killing vector fields is provided by those
which are b-normal to the initial data surface. The resulting Hamiltonians
are usually interpreted as energies. In contradistinction with the asymp-
totically flat case, where only one normal background Killing vector field
exists, if one assumes that conformal infinity has spherical space-like sec-
tions, then there are several normal background Killing vector fields. This
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implies that there is not a single energy, but rather an energy functional
M . This functional M is uniquely characterized by n + 1 numbers Mμ,
μ = 0, 1, . . . , n, which transform as a Lorentz vector under asymptotic isome-
tries of g, see [12]. (The component M0 coincides with the Abbott–Deser
mass under appropriate restrictions [12].) It follows that the Lorentzian
length of Mμ is a geometric invariant of (S , g). The asymptotically adS-
positive-energy theorem implies that Mμ is causal, future pointing [16, 17, 22]
(compare [8, 20, 26, 27]), unless (S , g, K) are initial data for adS space–time.
Let us assume that we are not in this last situation.

It is convenient to view the hyperbolic space as a unit space-like hyper-
boloid in R

n+1, the latter equipped with the Minkowski metric. Assuming
that Mμ is timelike,1 after applying an asymptotic isometry to obtain

Mμ = (m, 0, . . . , 0),

the background Killing vector fields tangent to S can now be split into
rotations and “boosts.” It is customary to define the rest-frame angular
momentum as

ji := H(0, β(i)),

where the β(i)’s are the generators of rotations of Sn−1, when embedded in
R

n; for example, in space dimension n = 3 a natural choice is

β(i) = εijkx
j∂k.

The numerical values of the remaining n Hamiltonians generating boost
transformations will be denoted by ci. For initial data which are asymp-
totically flat in space-like directions, the ci’s have the interpretation of the
centre of mass, and we will retain the name of centre of mass for the vector

c = (ci).

For reasons that are discussed in Section 9 below, from now on we restrict
our attention to n = 3. Assuming that (S , g) is complete, that the dominant
energy condition holds,

|μ|g ≤ ρ, (2.6)
where μ and ρ are as in (1.1) and (1.2), and that the total matter energy as
defined by2

∫

S
(1 + er)ρ dμg (2.7)

1One expects that Mμ cannot be null, see [11] for some partial results.
2We take this opportunity to correct [11], where the weight factor er in (2.7) has been

inadvertently omitted from the hypotheses of the positive charges theorem.
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(with r as in (2.1)) is finite, it is shown in [22] (compare [11]) that the
positive energy theorem implies the following inequality:

m ≥
√

−Λ/3
√

|
c|2 + |
j|2 + 2|
c ×
j|, (2.8)

where 
c ×
j is the vector product, while |
j| =
√

j2
1 + j2

2 + j2
3 , etc.

The inequality also holds if S is complete with boundary, as long as the
boundary satisfies one of the “trapping” conditions: the boundary is either
weakly future trapped, which means that

trh λ + habKab ≤ 0, (2.9)

or weakly past trapped, which corresponds to changing the sign in front of
the K term in (2.9). Yet another such condition is obtained [8, 22] by setting
k(ν) = Kiaν

idxa, where the xa’s are coordinates on ∂S , then the positivity
of the global charges will hold if

trhλ + |k(ν)|h ≤
√

−2(n − 1)Λ
n

(2.10)

(see [8, Remark 4.8] for a discussion of (2.10) when k(ν) = 0).

It has been proved in [11] that equality in (2.8) holds only for initial
data in adS space–time provided the associated space–time has a Scri with a
sufficiently large time extent. Our application of (2.8) in Section 5 makes it
clear that it would be of interest to obtain a proof without such a condition.

3 Hamiltonian global charges in space–times asymptotically
flat at I +

In this section, we briefly review the space–time version of the approach
in [9]. Let (M , 4g) be a four-dimensional space-time with a smooth, or
polyhomogeneous, conformal boundary completion at null infinity ˜M =
M ∪ I + à la Penrose. Let S be a smooth space-like hypersurface in ˜M
which intersects I + transversally at a smooth section S = ∂S = S ∩ I +.
Such a section singles out a six parameter family of Bondi coordinate sys-
tems, by the requirement that in the chosen Bondi coordinates we have
S = {u = 0}. Now, every such coordinate system defines a flat background
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metric b in a neighbourhood of S:

b = bμν dxμ dxν ≡ −du2 − 2 du dr + r2h̆AB dxA dxB. (3.1)

The resulting metrics are independent of the Bondi coordinate system cho-
sen, within the six parameter freedom available, as those coordinate systems
differ from each other by a Lorentz transformation. We can thus define a
unique six parameter family of BMS generators which are singled out by the
requirement that they are tangent to S, and that they are Killing vector
fields of the background metric b.

Consider, near S ⊂ I +, a Bondi-type coordinate system (u, x, vA) as
above with u ∈ (−ε, ε), x ∈ [0, ε), for some ε > 0, while the vA’s are coordi-
nates on S2. Here the usual Bondi coordinate r is replaced by 1/x so that
the space–time metric 4g, when conformally rescaled by r−2, takes the form

x2 4gμν dxμ dxν = −V x3e2β du2 + 2e2β du dx

+ hB
AC(dxA − UAdu)(dxC − UCdu), (3.2)

∂(det hB
AC)

∂x
= 0. (3.3)

If the matter fields decay sufficiently fast then, for smooth conformally
rescaled metrics, one has the following asymptotics:

hB
AB = h̆AB +

χAB(v)
r

+ O(r−2), (3.4)

β = − h̆ABh̆CDχACχBD

32r2 + O(r−3), (3.5)

UA = − D̆BχAB

2r2 +
2NA(v)

r3 +
D̆A

(

χCDχCD

)

16r3 + o(r−3),

V = r − 2μTB + O(r−1), (3.6)

where h̆ is the unit round metric on S2, D̆ is the corresponding derivative
operator, and μTB is the Bondi mass aspect function.

In terms of these variables, the Hamiltonian associated to rotations and
boosts reads [9, equation (6.117)]

HL(X, S ) = − 1
64π

∫

S2

(

24NA + 2χABχBC
||C

+
1
2
(χBCχBC)||A

)

XA
∣

∣

x=0 sin θ dθ dϕ, (3.7)
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where the vector fields X in (3.7) belong to the six-dimensional vector space
of b-Killing vectors uniquely singled out by S = ∂S .

The above definition has several good properties, discussed in [9], some of
which are used in Section 8 below. For a discussion of alternative definitions
of angular momentum at I , see [25].

4 The global charges of hyperboloidal initial data sets with
Λ = 0

We continue with a review of the initial data version of the analysis in [9].
Consider an asymptotically CMC hyperboloidal initial data set (S , g, K).
In [10, Appendix C.3] a construction is given of an embedding ι : S → M B

of such an initial data set into a space–time (M B, gB) coordinatized as in
(3.2), with the property that the conformal boundary of S is mapped to
u = 0. Both the embedding ι and (M B, gB) are constructed so that ι∗gB is
asymptotic to infinite order to g at the conformal boundary of S ; similarly,
the pull-back to S of the extrinsic curvature of ι(S ) is asymptotic to infinite
order to K. The angular momentum and the centre of mass of (S , g, K)
are then defined using (3.7).

The coordinates (x, vA) on M B, when composed with ι, induce coordi-
nates near the conformal boundary of S which will be denoted by the same
symbols. One can then write ι(S ) as a graph:

u = α(x, vA), α(0, vA) = 0,

and we have (see [10])

α,x

∣

∣

∣

x=0
=

9
2(trgK)2

, (4.1)

αxx

∣

∣

∣

x=0
= −1

2

(

3
trgK

)3

(trgK),x, (4.2)

x2g =
(

2
∂α

∂x
+ O(x)

)

dx2 + O(x) dx dxA + (h̆AB + xχAB + O(x2)) dxA dxB.

(4.3)

Thus the extrinsic curvature of the conformal boundary at infinity, say λ̃AB,
is proportional to χAB:

λ̃AB = − 6
trgK

χAB. (4.4)

Hence λ̃ vanishes if and only if χ does; this will be relevant shortly.
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5 The angular momentum inequality

With these preliminaries, we may now state the inequality. Let κ be a con-
stant, and consider a CMC hyperboloidal initial data set (S , g, K) with
dim S = 3, trgK = κ and Λ = 0. Suppose that (S , g) is complete and that
the dominant energy condition (2.6) holds. In this section we will assume
that

the trace-free part of the extrinsic curvature
of the conformal boundary at infinity vanishes; (5.1)

an argument indicating that (5.1) can be removed will be presented in Sec-
tion 6 below. (Note, however, that (5.1) has been invoked in the literature in
the context of CMC hyperboloidal surfaces [4, 14, 18].) It follows from (4.4)
that this is equivalent to the hypothesis that, in Newman-Penrose terminol-
ogy, the associated Bondi cone is asymptotically shear free. Performing the
transformation (1.3), the initial data set (S , g, K̂) satisfies the constraint
equations with

Λ = −κ2

3
.

We need to analyse what happens with the global charges under (1.3). First,
using the formulae in [10, Appendix F] one checks that, both for transla-
tions and rotations, any trace terms in (2.3) integrate out to zero, so that
the extrinsic curvature contributions to (2.3) from Kij and K̂ij coincide.
The same is true for boost generators if (5.1) is assumed. Next, it fol-
lows from [9, Appendix C.3] that [10, equation (3.13)] holds, which implies
that the functional [10, equation (3.11)] coincides with (2.3) (see [10, equa-
tion (3.14)]). Letting m be the Hamiltonian mass of (S , g, K̂), and mTB
the Trautman-Bondi mass of (S , g, K), the equality

m = mTB. (5.2)

follows now from Theorem 5.3 of [10].

For the remaining charges, observe that under (5.1) integrals (2.3) are
equal to their linearizations. Now, it has been shown in [10, Appendix B]
that,3 again under (5.1), the linearization of the functional [10, equa-
tion (3.14)] equals the linearization of the functional Hboundary of [9]. The

3Note that the terms quadratic in χ in the last equation of [10, Appendix B] might
seem to be incompatible with the fact that a linearized expression is considered. This
apparent contradiction is resolved by observing that some coefficients of the metric, which
enter linearly in the integral, are themselves quadratic in the free Bondi functions χ and
their derivatives.
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calculations in [9, Sections 6.4 and 6.5] then show that the angular momenta
of K and K̂ coincide. Now, the centre of mass for (S , g, K̂) is calcu-
lated using only the first term at the right-hand side of [9, equation (6.57)],
whereas the calculation for (S , g, K) uses the whole right-hand side of that
equation. Nevertheless, both quantities are equal under (5.1).

If we furthermore assume that ρ decays fast enough so that the total
energy as defined by (2.7) is finite, then all the conditions needed for (2.8)
are met, and we conclude that

mTB ≥ |trgK|
3

√

|
c|2 + |
j|2 + 2|
c ×
j|. (5.3)

Here mTB is the Trautman–Bondi mass, 
j is the angular momentum vector
(the Hamiltonian associated with rotations) in the rest frame (i.e., a confor-
mal frame in which space-momentum vanishes), and 
c is the centre of mass
(the Hamiltonian associated with boosts) in that frame. In particular, we
have the striking bounds

mTB ≥ |trgK|
3

|
j|, mTB ≥ |trgK|
3

|
c|. (5.4)

In the light of the earlier discussion of (2.8), it is expected that equality in
(5.3) can occur only for initial data in Minkowski space–time; it would be
of interest to prove this.

6 A possible direct proof

In this section, we indicate an argument that could remove the restrictive
condition (5.1). We start with some notation. In space–time dimension n,
we view the hyperbolic space as the open unit ball Bn(1) ⊂ R

n equipped
with the metric b = nb = ω−2δ, where δ is the standard flat metric on R

n,
and

ω =
1 − |x|2

2
.

If we write the Minkowski metric η as −dt2 + δijdyidyj , and set

τ = t −
√

1 + |y|2, yi = ω−1xi, r = |x|, (6.1)

we obtain
η = −dτ2 + ω−2(−2rdτdr + δijdxidxj).
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The KID-decompositions of the Minkowskian Killing vectors at S := {τ =
0} read

∂t = V(0)n + Y(0) =
1 + |x|2
1 − |x|2 n − xi∂xi ,

∂yi = V(i)n + Y(i) = −ω−1xin + ω∂xi + xixj∂xj ,

t∂yi + yi∂t = 0 · n + C(i) =
1 + |x|2

2
∂xi − xixj∂xj ,

yi∂yj − yj∂yi = 0 · n + Ω(i)(j) = xi∂xj − xj∂xi ,

where n is the unit normal to S .

The standard proof of positivity of Trautman–Bondi mass proceeds by
solving the Witten equation:

γi∇iψ = 0, where ∇i := Di +
1
2
Kijγ

jγ0. (6.2)

One further requires ψ to asymptote to spinors ψ̊ which are restrictions to
a hyperboloid of covariantly constant spinors in Minkowski space–time. For
hyperboloids with K̊ij = −bij the spinors solve4

D̊iψ̊ =
1
2
γiγ

0ψ̊. (6.3)

In the obvious spin frame associated with the above conformal representa-
tion,5 the solutions of (6.3) read

ψu = ω−1/2(1 + xkγkγ0)u (6.4)

(summation over k), where u is a spinor with constant entries, while the anti-
Hermitian matrices γk with constant entries satisfy the flat space Clifford
relations

γiγj + γjγi = −2δij .

(The ψu’s exhaust the space of solutions because the map that assigns u to,
e.g., ψu(0) is a bijection.) Further, γ0 is a Hermitian matrix, with constant

4We use the conventions of [10], in which the standard unit future hyperboloid in
Minkowski space–time R

1,n satisfies trgK = −n.
5More precisely, we take a spin frame that projects to the frame θi = ω−1dxi, with ei

dual to θi, and a local basis of the spinor bundle in which the γμ’s are constant matrices.
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entries, satisfying

(γ0)2 = 1, γ0γj + γjγ0 = 0.

(The spinor bundle can always be chosen so that such a matrix exists.) The
KID (Vu, Y i

u) associated to ψu takes the form

Vu := 〈ψu, ψu〉 = 2
(

|u|2 1 + |x|2
1 − |x|2
︸ ︷︷ ︸

V(0)

−〈u, γkγ0u〉 (−2)xk

1 − |x|2
︸ ︷︷ ︸

V(k)

)

, (6.5)

Y i
u∂i := 〈ψu, γ0γiψu〉ei

= −2
(

|u|2 xi∂i
︸︷︷︸

Y(0)

+〈u, γkγ0u〉
(1 − |x|2

2
δi
k + xixk

)

∂i

︸ ︷︷ ︸

Y(k)

)

. (6.6)

This, together with the usual Witten argument, implies that the boundary
term in the Witten equation will only carry information about the global
charges associated with space-time translations of R

1,n.

Now, our argument so far leading to the angular momentum bound can
be rephrased as follows: instead of (6.2) one considers

γi∇̂iψ = 0, where ∇̂i := Di +
1
2

(

Kij − trgK

n
gij

)

γjγ0 − itrgK

2n
γi, (6.7)

where the ψ’s asymptote now to imaginary Killing spinors ψ̂ of b which, for
trg K = −n, solve

D̊iψ̂ = − i

2
γiψ̂. (6.8)

Those take the form

ψ̂u = ω−1/2(1 − ixkγk)u (6.9)

(summation over k), where u is again a spinor with constant entries. Instead
of (6.5) and (6.6), the KID (V̂u, Ŷ i

u) associated to ψ̂u takes the form

V̂u := 〈ψ̂u, ψ̂u〉 = 2
(

|u|2 1 + |x|2
1 − |x|2
︸ ︷︷ ︸

V(0)

+〈u, iγku〉 (−2)xk

1 − |x|2
︸ ︷︷ ︸

V(k)

)

, (6.10)
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Ŷ i
u∂i := 〈ψ̂u, γ0γiψ̂u〉ei

= 2〈u, γ0γku〉
(1 + |x|2

2
δi
k − xixk

)

∂i

︸ ︷︷ ︸

C(k)

+
1
2
〈u, iγ0(γkγi − γiγk)u〉 (xk∂i − xi∂k)

︸ ︷︷ ︸

Ω(k)(i)

, (6.11)

so that the boundary term in the Witten identity will carry now information
about all global charges.

We are ready to prove that the existence of solutions of (6.7) with the
above boundary condition, without assuming the vanishing of χ. Indeed,
from inspection of the positivity proof of [10, Section 5.4] one infers that
one needs to justify

γi∇̂iψ̂ ∈ L2, (6.12)

compare the proof of Lemma 5.9 in [10]. In what follows, notations and
conventions of [10] are used unless explicitly indicated otherwise.6 Now,
after a constant rescaling so that trgK = −n, from (6.7) we obtain

γi∇̂iψ̂ = γiDiψ̂ +
(

Kij − trgK

n
gij

)

γiγjγ0

︸ ︷︷ ︸

0

ψ̂ − ni

2
ψ̂.

By (6.8) we have

X(ψ̂) =
1
4
ω̊ij(X)γiγjψ̂ − i

2

∑

�

X̊�γ�ψ̂, (6.13)

where X̊� are the components of X in the b–orthonormal frame êi as in
[10, Appendix C]: X = X̊iêi. In (6.13), we have indicated explicitly the
summation over � since both �’s are superscripts there. Letting f̂i = M̂i

j êj

be the g-orthonormal frame as in [10, Appendix C], it follows that

γ�∇̂�ψ̂ = γ�f̂�(ψ̂) − 1
4
ωij(f̂�)γ�γiγjψ̂ − ni

2
ψ̂

=
1
4

(

ω̊ij(f̂�) − ωij(
ˆ̂
f�)

)

γ�γiγjψ̂ − i

2

∑

j

(M̂i
j − δj

i )γ
iγjψ̂ . (6.14)

6We take the opportunity to point out the following misprints there: first, γ0 is assumed
to be hermitian and γi – anti-hermitian, in spite of what is said at the beginning of page
122 of [10]. Next,

√
det g should be estimated as O(x−3) in the penultimate displayed

equation of Appendix D of [10]. In [10, equation (5.14)] the factor 1/4π should be 4π.
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It has been shown in [10, Appendix D] that the first term in (6.14) can
be estimated by Cx2|ψ̂|, which in turn implies that it is in L2. Next, by
[10, equations (C.21), (C.22), (C.40) and (C.47)], both the anti-symmetric
part and the trace of M̂i

j − δj
i are O(x2), and (6.12) follows. This, together

with the arguments in [8, 10] proves existence of the relevant solutions of the
Witten equation. In retrospect, the calculation here is shorter than the one
for the original positivity proof, albeit applying to CMC initial data only.

To complete the proof of (5.3) without the restrictive condition (5.1) one
needs to analyse the boundary term that appears in the Witten identity
associated to the operator (6.7). We are planning to return to this in the
near future.

7 The conformal method

Given a spacetime (M , g), it is far from clear that whether or not M con-
tains any complete CMC surfaces (see, however, [4]). Furthermore, it is
not clear whether or not those surfaces will be sufficiently differentiable at
I + as needed above. Therefore, it is reasonable to raise the question of
the range of applicability of our bounds. Recall, now, that the conformal
method provides a construction of all, say vacuum, CMC general relativistic
initial data sets. In the hyperboloidal context, one prescribes a non-zero
value of trgK, as well as an arbitrary conformally compactifiable Riemann-
ian manifold (S , g̊) equipped with a seed symmetric trace-free tensor, say
A, and constructs (S , g, K) by solving a set of elliptic equations, see [3]
and references therein. In such a construction the resulting initial data set
will satisfy condition (5.1) if and only if the trace-free part of the extrin-
sic curvature of the conformal boundary at infinity of g̊ vanishes. Since g̊
and A can be chosen arbitrarily, subject to a finite number of compatibility
conditions at the conformal boundary [2], we conclude that there exists an
infinite-dimensional family of vacuum initial data sets for which (5.3) pro-
vides a non-trivial upper bound for 
j and 
c in terms of the total mass. The
associated globally hyperbolic vacuum developments [15] provide, in turn,
examples of space–times containing hypersurfaces satisfying the hypotheses
of our inequality.

8 Obstructions to existence of CMC surfaces

Note that (4.3) shows that λ̃AB is the same for all CMC surfaces asymptotic
to a given cut of I . This leads to the following unexpected consequence of
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our analysis: whenever |
j| + |
c| �= 0 there exists an upper bound on |trgK| for
complete hyperboloidal CMC surfaces satisfying7 (5.1) (without boundary,
or with boundaries on or beyond horizons) which asymptote to smooth cuts
S of I , namely

|trgK| ≤ 3mTB
√

|
c|2 + |
j|2 + 2|
c ×
j|
. (8.1)

8.1 CMC surfaces in Schwarzschild

Equation (8.1) does not lead to any restrictions on trgK for CMC hypersur-
faces in Schwarzschild space–time which asymptote to spherically symmet-
ric cuts of I +, and indeed there are none [23]. Consider, however, cuts Sα

of the Schwarzschildian I + which are obtained by applying a translation
u → u + α to S0 = {u = 0}, where α is a linear combination of � = 0 and 1
spherical harmonics. As shown in [10, Section 6.6], all such cuts have van-
ishing angular momentum. More generally, it is shown in [10, Section 6.7]
that for all stationary space–times the Hamiltonian angular momentum is
independent of the cut of I + chosen, so the discussion that follows applies
to any stationary space–time with matter satisfying the dominant energy
condition. It is also shown in [10, Sections 6.6 and 6.7] that the change of
centre of mass of Sα can be calculated using the standard special-relativistic
rule: under a translation by a vector 
a orthogonal to the momentum the
centre of mass is shifted by m
a. Since (5.1) is preserved under translations,
from (8.1) we conclude that for any translation 
a, the associated cut Sα in
the Schwarzschild space–time cannot span a complete CMC surface meeting
I + smoothly (or C2 and polyhomogeneously) with

|trgK| >
3
|
a| . (8.2)

An identical conclusion is reached in space–times that are stationary near
I + and have zero angular momentum, and a similar conclusion without
assuming that 
j = 0.

8.2 CMC hypersurfaces in Kerr space–time?

Both the tensor field χ and the centre of mass vanish for the family of
{u = const} cuts of I + in Kerr space–time, where u is an outgoing

7In view of the analysis of Section 6, it is rather likely that (5.1) is not needed for the
discussion of this section.
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Eddington–Finkelstein coordinate, and for these we obtain

|trgK| ≤ 3
|a| , (8.3)

where a is the usual angular momentum parameter in the Kerr metric, for
any complete CMC surface spanned by those cuts. As above, it follows
immediately that no such surfaces exceeding this bound exist.

We wish to present an argument which suggests strongly that no such
hypersurfaces exist in Kerr at all. Suppose, for contradiction, that there
exists a complete space-like hypersurface Sκ0 in Kerr space–time, satisfy-
ing (5.1), with trgK = κ0, for some κ0 < 0, with two spherical boundaries
lying on two different components of I +. We further assume that Sκ0

is contained within four diamond-shaped blocks of the usual maximal ana-
lytic extension of Kerr, on two of which r− < r < r+, while r > r+ on the
remaining, asymptotically flat, ones. Choose any κ more negative than
−3/|a| (and thus smaller than κ0) and let Sn be a sequence of CMC sur-
faces with trgK = κ such that the boundary of Sn consists of two spherical
components lying on Sκ0 , with ∂Sn approaching I as n tends to infin-
ity. Such Sn exist by the results in [5, 6], because Sκ0 provides an upper
barrier, whereas a lower barrier is provided by the boundary of the past
domain of dependence, say D−

n , of that subregion of Sκ0 which is bounded
by ∂Sn. To see that D−

n is conditionally compact, note that it must be
included in the region which is delimited to the future by Sκ0 , and which
is delimited to the past8 by the hypersurfaces u = u0, and û = u0, where
u is an Eddington–Finkelstein retarded coordinate the level sets of which
provide cuts of I + in the first asymptotic region, while û is the analogous
Eddington–Finkelstein coordinate associated to the second asymptotically
flat region, with u0 = min(inf∂Sκ0

u, inf∂Sκ0
û). (Note that one of u and û

is actually an advanced Eddington–Finkelstein coordinate v in the relevant
region r− < r < r+.) This proves that the compactness condition needed
for Bartnik’s theorem [6] of existence of smooth solutions of the Dirichlet
problem is satisfied. (An alternative height bound to the past is obtained by
the level sets of r near r−, which are crushing [14] as r → r−.) By Bartnik’s
interior estimates the sequence Sn converges, in the compact-open topology,
to some smooth hypersurface Sκ. If one could show — which is not clear
(compare [4] where the conditions for the construction of barriers near the
boundary preclude a non-vanishing J) — that Sn is uniformly space like in
the conformally rescaled space–time, with a bound independent of n, one
would obtain a smooth space-like CMC surface Sκ spanned on ∂Sκ0 ⊂ I +.

8This follows from the fact that in Eddington–Finkelstein coordinates one has grr =
Γμ

rr = 0, so that the curves u = u0, θ = θ0, ϕ = ϕ0 are null geodesics.
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If one could further show — which is likely, using the results in [3] — that Sκ

is smooth at I (polyhomogeneous and C2 would suffice [10]; compare [24]),
one would obtain a contradiction with (8.3) for κ large negative. It would
then follow that no CMC hypersurfaces Sκ0 as assumed above exist in Kerr.

9 Higher dimensions

It is interesting to enquire what happens in higher dimensions. Indeed,
the positive charges theorem has been proved for hyperboloidal initial data
with Λ < 0 with a spherical conformal infinity under the assumption that
S is spin (compare, however, [1]), together with the asymptotic condi-
tions (2.2) [11]; note that those require the vanishing, up to an overall con-
formal factor, of �n/2� derivatives of the conformally rescaled metric at the
conformal boundary at infinity. Assuming the latter condition, we expect
the transformation (1.3) to map all the global charges at null infinity to the
adS ones, but no such analysis has been carried out so far. Now, an easy
way out is to define the charges at null infinity as the values of the adS ones
after the transformation (1.3) has been performed. Under suitable global
hypotheses, this gives immediately the global charges inequalities of [11]9 in
any dimension n ≥ 3. It is then unfortunate that no explicit sharp inequal-
ities are known in spaced–time dimensions higher than seven. In any case,
it would be preferable to express the inequalities in terms of global charges
directly definable at I +, compare [21]. Furthermore, similarly to n = 3, we
expect the asymptotic conditions (2.2) to be overly restrictive for a proper
understanding of null infinity.
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