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Abstract

This article is devoted to a study of the asymptotic dynamics of generic
solutions of the Einstein vacuum equations toward a generic spacelike
singularity. Starting from fundamental assumptions about the nature of
generic spacelike singularities, we derive in a step-by-step manner the
cosmological billiard conjecture: we show that the generic asymptotic
dynamics of solutions is represented by (randomized) sequences of hetero-
clinic orbits on the “billiard attractor”. Our analysis rests on two pillars:
(i) a dynamical systems formulation based on the conformal Hubble-
normalized orthonormal frame approach expressed in an Iwasawa frame;
(ii) stochastic methods and the interplay between genericity and stochas-
ticity. Our work generalizes and improves the level of rigor of previous
work by Belinskii, Khalatnikov, and Lifshitz; furthermore, we establish
that our approach and the Hamiltonian approach to “cosmological bil-
liards”, as elaborated by Damour, Hennaux, and Nicolai, can be viewed
as yielding “dual” representations of the asymptotic dynamics.
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1 Introduction

Remarkable developments took place in the sixties, seventies, and early
eighties, that molded our understanding of singularities in general rela-
tivity (GR). On the one hand, the singularity theorems of Penrose and
Hawking [1] proved the inevitability of spacetime singularities under rather
general conditions. On the other hand, in a series of papers, Lifshitz,
Khalatnikov and Belinskii, [2-4] and references therein, set out to give a
description of the actual nature of generic singularities — henceforth we
will refer to these authors and their work as BKL. These authors performed
a heuristic analysis that eventually resulted in the claim that a generic sin-
gularity for the Einstein field equations with a perfect fluid with a radi-
ation equation of state as the matter source is spacelike, local, vacuum
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dominated, and oscillatory. BKL obtained this picture by (i) using cer-
tain spatially homogeneous (SH) metrics, (ii) replacing constants with spa-
tial functions, (iii) inserting the resulting expressions into Einstein’s field
equations and making a perturbative expansion, (iv) checking if this ad
hoc procedure yielded a consistent result and thereby completing the basic
viability test. Furthermore, BKL employed synchronous coordinates, i.e.,
Gaussian normal coordinates, such that the singularity occurred simultane-
ously. The BKL approach led to the conjecture that the time evolution
of a generic solution in the vicinity of a generic singularity is schemat-
ically described by a sequence of generalized Kasner solutions (i.e., vac-
uum Bianchi type I solutions where constants are replaced with spatially
dependent functions), where the transitions are “mediated” by generalized
vacuum Bianchi type II solutions through the so-called Kasner map. In
subsequent work, this map was shown to be associated with chaotic behav-
ior [5-7].

The BKL picture obtained further heuristic support from the Hamiltonian
approach developed by Misner and Chitré [8-10], originally for asymptotic
Bianchi type IX dynamics. In one variety of this approach the dynam-
ics was described in terms of a free motion in an abstract flat Lorentzian
(minisuper-) space surrounded by potential walls, or alternatively by means
of a spatial projection leading to a free motion inside a potential well
described by moving walls; for further developments of this picture, see [11]
and [12, Chapter 10]. In another variety of the Hamiltonian approach,
an intrinsic time variable was introduced, which led to a description of
the asymptotic dynamics in terms of a projected “billiard” motion in a
region of hyperbolic space bounded by infinitely high straight stationary
walls, see e.g., [9]. This work on “cosmological billiards” was later gen-
eralized in order to deal with general inhomogeneous cases, which cul-
minated in the recent work by Damour, Hennaux, and Nicolai, see [13,
14] and references therein. Apart from these studies, special inhomoge-
neous spacetimes with non-oscillatory singularities have also been inves-
tigated by means of Hamiltonian methods — notably by Moncrief, Isen-
berg, Berger, and collaborators, who also obtained numerical support for
the general basic BKL picture, see [15] and [16] for a review and additional
references.

Despite the ingenuity of the BKL and the Hamiltonian methods, there
has been, unfortunately, little progress as regards a desired sharpening of the
heuristic arguments in order to turn conjectures into rigorous mathematical
statements.! The requirement of mathematical rigor is met in a different

Note, however, the successful rigorous treatment of special non-oscillatory cases in [17],
which is partly based on Fuchsian methods.
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approach to cosmological singularities: the dynamical systems approach.
During the last decade, based on dynamical systems formulations, there has
been considerable progress in the SH case as regards theorems about dynam-
ical behavior, largely in connection with the book “Dynamical Systems in
Cosmology” [12]; notably, Ringstrom obtained the first mathematical theo-
rems in the context of oscillatory behavior for Bianchi type VIII and, more
substantially, type IX models [18,19]. In an attempt to extend the dynamical
systems approach to the inhomogeneous context, Uggla et al. [20] introduced
a dynamical systems formulation for the Einstein field equations without any
symmetries — in the following, we will refer to this work as UEWE. The
results were: a detailed description of the generic attractor; concisely formu-
lated conjectures about the asymptotic dynamic behavior toward a generic
spacelike singularity; a basis for a numerical investigation of generic singu-
larities — following UEWE numerical results yielded additional support for
the expected generic picture as well as the discovery of new phenomena and
subsequent refinements [21-23].

The purpose of the present paper is 2-fold: first, we establish a link
between the Hamiltonian picture as described by Damour and coworkers [13,
14] and the dynamical systems approach to inhomogeneous cosmologies as
initiated in UEWE. In particular, we demonstrate that the “Hamiltonian bil-
liards” and the corresponding dynamical systems description can be viewed
as yielding dual representations of the generic asymptotic dynamics (“con-
figuration space description” versus “momentum space description”). To
avoid excessive clutter that would obscure the main ideas, we simplify our
presentation by confining ourselves to the four-dimensional vacuum case.
Inclusion of matter sources such as perfect fluids, see e.g., [20,26], and to
more general cases like those considered by Damour and coworkers [13, 14]
should — in principle — be straightforward.

The second and main purpose of this paper is to derive and give rigor
to some of the key conjectures formulated in the BKL and Hamiltonian
approach, starting from “first principles” connected with the full state space
picture of our dynamical systems approach. This derivation does not consti-
tute a mathematical proof of the conjectures; however, in many respects we
go beyond what has been accomplished previously: we identify the “billiard
attractor” as the attractor for the asymptotic dynamics toward a generic
spacelike singularity; we give decay rates that describe the approach to
the attractor; we show how asymptotic constants of the motion, which
were obtained from the Hamiltonian billiard approach initially, arise. An
important ingredient in our treatment is the use of stochastic methods: we
emphasize the connection between genericity and stochasticity. The detailed
statements and conjectures we obtain are accessible to numerical experi-
ments and can be compared with results for special models.
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The present paper is to a large extent self-contained. First, we give a con-
densed review of the Hamiltonian approach of Damour and coworkers [13,14]
in Section 2. Second, we present the conformal Hubble-normalized orthonor-
mal frame approach leading to the dynamical systems formulation in Sec-
tions 3 and 4. Endowed with the basic techniques and the interrelation
between the two approaches, we then derive the billiard attractor, which
then serves as the starting point for further discussions, developments, and
concluding remarks.

2 The Hamiltonian billiard approach

In [13], Damour, Henneaux, and Nicolai used a Hamiltonian approach to
study the dynamics of the Einstein-dilaton p-form system in the neighbor-
hood of a generic spacelike singularity. The authors described the asymp-
totic behavior of the fields by a “billiard” motion in a region of hyperbolic
space bounded by straight “walls”. The techniques used in [13] represent
generalizations of methods that are due to Chitré and Misner [8-10], which
have been applied and extended by many authors, see the references in [13].
In the following we give a brief review of the Hamiltonian “billiard approach”
restricted to the four-dimensional vacuum case in GR; the presentation is
based on [13], but the notation is tailored to our later purposes. In particu-
lar, for frame indices we use «, (3, . . ., as in [12,20], and for spatial coordinate
indices we use i, j, ..., as in [13] and [12,20].

In [13], the metric is written in 3+1-form with vanishing shift vector,
ds® = —N?(dz®)? + g;j dz' da? . (2.1)

Let g% denote the inverse of the spatial three-metric gij and g = det g;;.
We introduce

Gkl .= gitk ghi — gid g and Gijkl = Gi(k 91)j — 2955 gris (2.2)

Gkl is the DeWitt metric [27] multiplied with g~'/2 so that it becomes a
tensor instead of a tensor density; Gijmn G = §;;* = 6((56?)

The Lagrangian (density) associated with the reduced Einstein—Hilbert
action reads

L=3/gN'GM g a1+ /gN °R, (2.3)

where a dot refers to the partial derivative w.r.t. 2" and 3R denotes the
spatial three-curvature associated with g;;. To obtain the Hamiltonian H
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we introduce the conjugate momenta
T = 0L/)0g;; = SN GTM gy

where we define
N =g 2N, (2.4)
This leads to

L= Wijgij —H= Wijgij - N [gijkl 7Tij7rkl -9 3R] .

Variation of # w.r.t. N yields the Hamiltonian constraint H = 0, while the
momentum constraints are introduced separately, see [13].

There exists a unique oriented orthonormal spatial coframe {w® | a =
1,...,3},w® = e dx', such that e*; = >s D3NP, where D is a diagonal
matrix, which we choose to express as D= diag[exp(—bl), exp
(—b?), exp(—b?’)], and where N'%; is a unit upper triangular matrix,

1 N N13 1 n1 no
WNY)=(0 1 WN%|=[0 1 n3]|. (2.5)
0 0 1 0 0 1

This choice of frame leads to the so-called Iwasawa decomposition of the
spatial metric g;;:

gZ] = Z eXp(—2ba)NaiNaj.

Existence and uniqueness of the frame {w®} is associated with the theo-
rem on the uniqueness of the QR decomposition in linear algebra; N'¢; can
also be viewed as representing the Gram—Schmidt orthogonalization of the
spatial coordinate coframe {dz'}. The Iwasawa decomposition corresponds
to a Cholesky decomposition of a symmetric matrix A into a product RTR,
where the diagonal elements of the triangular matrix R are factored out and
parameterized as exp(—b®).

To avoid confusion with the Greek frame indices «, (3, ..., we prefer to
use b as the kernel letter for the diagonal degrees of freedom instead of (3,
which was used by Damour et al. [13]. Note that the negative sign in the
exponentials is in agreement with the conventions of [13], but contrary to
the conventions of, e.g., [11,12]. For representations that are adapted to
metric anisotropies, see Misner [8] and, e.g., [9,12]. Following the summa-
tion convention of [13], summation of pairs of coordinate indices i,7, ... is
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understood, whereas sums over the frame indices «, 3, ... are written out
explicitly in this section.

_ The frame {e,} that is dual to {w®} is given by e, = €4'd,i = exp(b®)
N0, where the matrix (N?,) is the inverse of (N%;),

1 Ny N 1 n; no 1 —ny ning —ng
Na)=10 1 N%,|=|0 1 ng|=]0 1 —ng
0 0 1 0 0 1 0 0 1

(2.6)

Expressing the Lagrangian (2.3) in the Iwasawa frame variables b® and
N, yields

L= GN | GaghV’ + 5> exp(2(b° — b)) (N%/\‘/%)Q + g N R,
a3

a<fB

where we have introduced the reduced metric G,g, which is associated with
the diagonal degrees of freedom, i.e., “b“-space”:

Zgam}w = o _Z” _@:va) Eﬂ:wﬁ ;

Y#0

when “b*-space” is endowed with the metric G,g, it is isometric to a (2 + 1)-
dimensional Minkowski space, since the signature of G, is (— 4+ +). The
inverse metric G%° of Gap is given by

Z gaﬁvawg :Z 5aﬁvaw5— % VaWB= Z Uy Wey — % (Z va> Z wg
a,B a,B

a,B v a B

The momenta 7, that are conjugate to b* and the momenta P!, (i > «a)
that are conjugate to N'¢; read

To = 2N Goghs Pi, = NV O IINORT N, (> a),
5 (2.7)
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while P*, = 0 when ¢ < o; accordingly, P’, can be viewed as a lower trian-
gular matrix, whose components we for convenience call P;:

‘ 0 0 0 0 0 0
P)=[P2 0 o]l=(P 0 Of. (2.8)
7)31 P32 O 732 733 0

Inverting the relationships (2.7) yields

b = %Nzgaﬁﬂg, ng = N 201 =b%) (n3731 + (62(5’24’3) + n%)P2> ,
B

iy = N2V (P 4 ngPy), g = N2V )py, (2.9b)

which leads to

£=3" (mal + PLNS)

~ N 1S G mamp + 4 S e 2PN )2 —gR|, (2.10)
a,l a<p

where the Hamiltonian H can be read off easily.

We assume that the spacetime with metric (2.1) possesses a spacelike sin-
gularity in the past; then, as argued in [13], b* is expected to be timelike in
the vicinity of this singularity, i.e., > .8 Qagbabﬁ < 0. Based on these con-
siderations, it is possible to replace the metric variables b by new variables:
we introduce p? = — Y a8 gagbabﬁ and “orthogonal” angular variables, col-
lectively denoted by +, i.e., 0y is orthogonal to 0,. In these variables the
line element associated with G,z can be written in the form

do® = Gopdb™db’ = —dp® + p*dQj,
o,

where alQ,QZ is the standard metric on hyperbolic space. Making a further
variable change according to

A=logp= %log - Z gagbabﬁ (2.11)
a76
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yields do? = p?(—dA\? + d§22) and thus in particular

Zgo‘ﬁmﬂrg = —71'3 + p‘%i = p_2 [—7r§ + 7T,2y] ,
a?ﬁ

of. (2.10).

Consequently, choosing the rescaled lapse according to N = p? leads to
the Hamiltonian

H=1[-m+ 77,2y] + p? Z cq e 2rwal) (2.12)
A

here, the sum is over a number of terms of the same type: ca are functions of
spatial derivatives of the metric, off-diagonal metric variables, and momenta;
w4(7) denote linear forms of the variables 72, i.e., wa(y) = > (wa)a 7°.

The Hamiltonian approach relies on the expectation that p — +o0 in the
approach to the singularity. As a consequence of this assumption, each term
p? exp[—2pwa ()] becomes a sharp wall, i.e., an infinitely high potential
which is described by an infinite step function ©4 (x) that vanishes for z < 0
and is infinite when x > 0. In the GR vacuum case there exist three “dom-
inant” terms in the sum, which is the minimum number of terms required
to define the “billiard table”. The coefficients ¢4 of the dominant terms
are non-negative functions of the variables, but “generically” they are posi-
tive, see [13]. The three dominant terms p®c exp[—2pw4(7)] thus generate
“dominant” walls O (—2w4(y)). Only the dominant walls are assumed to
be of importance for the generic asymptotic dynamics; the other, “subdom-
inant”, terms of (2.12), whose exponential b*-dependence can be obtained
by multiplying dominant terms, are dropped accordingly. We thus obtain
an asymptotic Hamiltonian of the form

3

Moo =5 [-m3 + 72 + D Ouo(—2wa(v)), (2.13)
A=1

where the sum is over the three dominant terms.

This limiting Hamiltonian is believed to describe generic asymptotic
dynamics. It is independent of N'%;,P?,, and )\, which suggests that P?_,
N9, and 7, are asymptotic constants of the motion. The remaining non-
trivial dynamics resides in hyperbolic space, i.e., in the variables v. The
asymptotic dynamics can be described via (2.13) as a geodesic motion in
hyperbolic space, which is constrained by the existence of three sharp
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reflective walls, i.e., by a “billiard motion”. The asymptotic dynamics is
thus given by a “cosmological billiard”, see figure 8(a).

3 The dynamical systems approach
3.1 Conformal Hubble normalization

Physics is a science of scales: in many problems there exists a variable scale
of particular importance, which can be factored out of the equations in order
to obtain a simpler mathematical description. In GR there exists a single
dimensional unit which is chosen to be “length” (or, equivalently, “time”).
The geometrical way of factoring out a scale in GR is by means of a conformal
transformation: choose a conformal factor that depends on the variable
scale so that the conformal factor carries the dimension and the conformal
metric becomes dimensionless. Then, for dimensional reasons, the Einstein
field equations split into decoupled equations for the conformal factor and a
coupled system of dimensionless equations for quantities associated with the
dimensionless conformal metric.? This reduced dimensionless system carries
the essential information about the problem, since one can solve for the
decoupled equations for the conformal factor once it has been understood,
and thus recover the physical metric.

The problem of generic spacelike singularities and the dynamics of solu-
tions in a neighborhood thereof is one example where one has a variable scale:
it is provided by the affine parameter of inextendible causal geodesics, or
the expansion along such geodesics. Here we consider non-rotating timelike
congruences that may or may not be geodesic; the latter is of no partic-
ular relevance, since the generic behavior toward a spacelike singularity is
similar, as will be discussed later. One equation plays an essential role in
the singularity theorems — the Raychaudhuri equation for the expansion.
This makes a suitable function of the expansion an excellent candidate for
a conformal factor. By factoring out the expansion, which blows up toward
the singularity, we will obtain a system of regular dimensionless equations.?

Let us begin by introducing the basic set-up and nomenclature:

?Logarithmic derivatives of the conformal factor occur in the equations; however, one
of the evolution equations (which is the Raychaudhuri equation in the present Hubble-
normalized case) can be used to algebraically solve for the logarithmic time derivative,
and the constraints can be used to generically solve for the logarithmic spatial derivatives.

3For historical reasons we will choose the Hubble variable instead of the expansion, but
since they are proportional to each other, this makes no essential difference.
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Consider a four-dimensional Lorentzian manifold (the “physical space-
time”) with a metric g of signature (— + ++) that satisfies the Einstein
vacuum equations. By convention we set ¢ = 1 and 87 G = 1, which leaves
“length” (or, equivalently, “time”) as the single remaining unit. Let us con-
sider a timelike non-rotating congruence in the physical spacetime whose
tangential vector field we denote by u. We choose an orthonormal frame e,
(a=0,...,3) such that ey = u, and introduce an orthonormal coframe dual
to e, which we denote by w?, i.e., w?*(ey) = §%. Our choice of coordinates
is that of a coordinate 3 4+ 1 decomposition associated with u, where we set
the shift vector to zero and let 9,0 = Nu, so that the flow lines of u are the
timelines. Accordingly,

ey = N_laxo, ey = e,'0

ioand W0 = Nda®, w®=e%dat

with a = 1,2,3 and ¢ = 1,2, 3. The metric thus reads
g = 1y w'w’ = —N*(da)? + dagee”; da' dad

where 7,, = diag(—1,1,1,1). The Hubble scalar of the vector field u = eg
is given by H = %Vaua where V denotes the covariant derivative associated
with g, and hence H is related to the expansion 6§ of u by H = %9. Note that
H~! carries dimension “length” (see [24,28] and compare with discussions

about FRW models where this is a frequently used fact).

The natural way of keeping track of dimensions in a parameterized theory
like GR is by means of using rigid measuring rods that carry the dimension,
which corresponds to assigning a dimension (“length”) to the orthonormal
one-forms. To obtain Hubble-normalized variables and associated Hubble-
normalized equations, we factor out the Hubble scale out of the frame vec-
tors and dual one-forms, i.e., we go over to a conformal Hubble-normalized
orthonormal frame 8, and its dual coframe %:

The dimensionless “unphysical metric” G that is associated with the con-
formal frame is defined as G = 14, Q°Q0; it is related to g through a con-
formal rescaling:

G = 1 QQ° = H2ppw'w’ = Hg. (3.1)
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The conformal Hubble-normalized orthonormal frame satisfies

0o =N"10,0, 04=E, and Q°=Ndz°, Q%= E%ds’, (3.2)

xt
where N is the conformal lapse, E,’ are the conformal spatial frame vector
components, and F< the associated dual vector components, i.e.,

i

N=HN, Ei= % E® = He". (3.3)

Since 27 is dual to 8q, i.e., 2%(dp) = 6%, the same is true for the com-
o
ir 1

ponents E,' and F
written

.€., E()%E/gi = 6%. The unphysical metric G can be
G =112y Q" = —N?(d2°)? + 6ap BB, da' da’.

For further details and discussions see [24].

The starting point for the conformal Hubble-normalized orthonormal
frame approach to the Einstein equations is the decomposition of the com-
mutators of 9,

[00,00] = Ua 80 + Fo285, F.° =qd." —2.° — .’ R, (3.4a)
[O, 35] = (QA[a 55]7 + EaggNM)ay, (3.4b)

which can also be written in the alternative form

0= (80 + Ua)Bo — (65°80 — F.P)05, FoP =qds" —5a° — e’ R,
(3.4a)

0=C,"05 C.7=¢.°@0,—A,)— N,’, (3.4b")

see [24]. In (3.4a), U® are the frame components of the acceleration of 8
w.r.t. the conformal metric G, ie., U = V 5,00, where V is the covariant
derivative associated with G. The variable ¢ is the negative Hubble scalar
of the vector field 9y in the unphysical spacetime, i.e., ¢ = —%@, where
© = V,0 is the expansion of @y w.r.t. the metric G. The object ¥4 is the
(trace-less) shear, R, is the Fermi-rotation, which describes how the frame
rotates w.r.t. a Fermi propagated frame, associated with the vector @y and
the conformal metric G. In (3.4b), N®5 and A, are spatial commutator
functions that describe the three-curvature of G, see below; we also refer
to [12,24] where the analogous non-normalized objects are described.
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Using the analog of (3.4a) in the physical spacetime, i.e., [€g, €,] = Ua€0 +
faﬁ e, where the trace of faﬂ equals —3H, cf. [24], it is straightforward to

derive the equation
O00H = —(1+q)H. (3.5a)

We thus see that, in terms of the physical spacetime, ¢ is interpreted as the
deceleration parameter associated with eg = u and g. As we will describe
below, g can be algebraically determined by the Raychaudhuri equation.
Analogously, we define the spatial Hubble gradient r, by

OoH = —ry H, (3.5b)

where r,, is generically determined by the Codazzi constraint, see below. For
dimensional reasons, the equations (3.5) for H decouple from the remaining
dimensionless equations (3.6) to (3.8), which are given next.

We are now in a position to describe the dynamics of Einstein’s vac-
uum field equations in terms of the conformal Hubble-normalized variables
introduced above. From the Hubble-normalized commutator equations, the
Einstein field equations, and the Jacobi identities, see [24], we obtain a
dimensionless system of coupled equations; we split the system into gauge
equations, evolution equations, and constraint equations:

Gauge equation:

Uy =841l N. (3.6)

FEvolution equations:
dE. = F,’ E5', (3.7a)
602a5 = —(2 — q)Zag — 2675<a 25)7 Rs — 3Sag + (IE)aﬁ, (3.7b)
QNP = (3¢5, — 27, (@) NOY 4 (Iy)2P, (3.7¢)
OoAn = F.P Ag + (In)a. (3.7d)

Constraint equations:

0=C," Eg, (3.8a)
0=1-%%-Q — (Ig), (3.8b)
0=—345%." + .83 N5, + (I0)ars (3.8¢)
0=As3 N’ + (1)), (3.8d)
0= (Ijw)a (3.8¢)



310 J. MARK HEINZLE, CLAES UGGLA, AND NIKLAS ROHR

Here, (...) and (...) denote symmetrization and trace free symmetriza-
tion, respectively; let us briefly comment on this system: equations (3.6),
(3.7a), and (3.8a) are obtained from the commutator equations; (3.7b) is the
trace-free Einstein evolution equations, while the remaining Einstein evolu-
tion equation, which can be written as the Raychaudhuri equation, yields
the expression for ¢ that is given below in (3.9a); (3.8b) is the Gauss con-
straint; (3.8c) are the Codazzi constraint equations; (3.7¢), (3.7d), (3.8d),
(3.8e) are obtained from the Jacobi identities.

In these equations we have employed the following definitions:

22 = 18,450, ¢ =2%%+ (1), (3.9a)
O = _%3737 3R:—6A2—%Baa+(IR), (3.9b)

3Sap = 24,N5ia€5)’ + Blag) + (Is)ap,  Bap = 2Na” Nyg — N7 Nug;
(3.9¢)

here and in the following the norm of a spatial vector V¢ is written as
Vo, Ve =V2 3R, SSag are the conformal scalar curvature and trace-free
Ricci curvature, respectively. Finally, the expressions for (I,).., which are
zero in the symmetry-adapted SH case, are given by

(In)ap = =€ (o Ngys(Uy = 25) + Bt + Ata) (Up) + 2rg)

+ U(aUﬁ) — 214 Tp), (3.10a)
(I) = =30 + Ua — 240 + 2ra) (U™ + 1), (3.10b)
(IN)* = 0y + U F?, (Ia)a = 585 + Up)(3ada” — Fu),

(3.10c)

(IG) = % (260‘ — 44, + Ta)’l”a, (IC)Oé = aﬂzaﬁ + (250/8 + Zaﬁ)rﬁv
(3.10d)
(IJ)OZ - _%(6ﬂ Naﬁ + 6a18’yaﬂA’Y)7 (IJw)a - Caﬁ U[B, (3106)
(Is)ap = 8o Ag) — 0y Ns(aep)™’,  (Ir) = 40, A%. (3.10f)

The above dimensionless coupled system of partial differential equations
is associated with a state space described by the state vector

X = (BEo', 208, Aa: Nag) ; (3.11a)
we make the split

X =(Ex)® S, where S= (203, AasNag) - (3.12a)
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The Fermi rotation variables R, which describe how the chosen frame
rotates w.r.t. a Fermi-propagated frame, are gauge variables: thus R, =0
corresponds to choosing a Fermi frame while R,, # 0 yields a rotating frame.
The variable U, is regarded as a gauge variable determined by A/ (or, equiv-
alently, by N); the spatial Hubble gradient r, is generically determined by
the Codazzi constraint (3.8c), however, it one is so inclined one can derive
an evolution equation for r, and include r, into the state vector S, see
UEWE; sometimes it is also useful to elevate ¢ to a dependent variable,
see [21].

3.2 Iwasawa frame variables

In this paper we choose the conformal orthonormal frame 8, = E,'0,: to
be a conformally rescaled Iwasawa frame, i.e., E,’ = H 'e,?, where e,’ is a
lower triangular matrix? with the diagonal entries written in an exponential
form, see Section 2.

In Appendix A, we show that choosing a conformal Iwasawa frame in the
conformal Hubble-normalized dynamical systems approach corresponds to
choosing the gauge

Y3 = —Ry, Y31 =Rs, Xi12=—Rs,
and setting

N3 = N33 =0.

This makes it natural to introduce the notation ¥, = 3., and to replace
the off-diagonal components of 3,3 by R, according to the above equation,
ie.,

Y11 X2 X3 Y1 —Rs Ry
Yo1 oo Yoz | = | —Rg X9 —-Ri 1. (3.13)
Y31 Y32 X33 Ry —Ry X3

By this choice of gauge we write the state vector S as

S = (X4, Ra, Ao, Nog) - (3.14)

For further details we refer to Appendix A, where we give the relationships
between the Hamiltonian Iwasawa variables and the Hubble-

4Since eq’ = exp(ba)Nia, the components E,° form a lower triangular matrix when
N*, is an upper triangular matrix, which is in accordance with the definitions of Section 2.
For the case of the coframe, both E% and N'“; are upper triangular matrices.
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normalized variables of the conformal Hubble-normalized dynamical systems
approach.

As we will see in this paper, the Iwasawa gauge has non-trivial conse-
quences for the description of the generic asymptotic dynamics of solutions in
a neighborhood of a generic spacelike singularity. However, next we describe
some central concepts that are independent of the chosen frame.

4 Asymptotic silence, locality, and the silent boundary
4.1 Asymptotic silence and asymptotic locality

A generic spacelike singularity is expected to be a scalar curvature singu-
larity® associated with ultra strong gravity which increasingly focuses light
in all directions as the singularity is approached. The resulting asymptotic
collapse of the light cones® causes the particle horizons to shrink to zero
size toward the singularity along any timeline. As a consequence, commu-
nication between different timelines is prohibited in the asymptotic limit,
and we therefore refer to this causal feature of shrinking particle horizons
as asymptotic silence; the associated singularity is said to be asymptotically
silent.

Evidence for the conjecture that generic singularities are asymptotically
silent is discussed in UEWE and [26]; we also refer to corroborative results
from the context of SH cosmologies, see [12,18,19,25] and references therein.
In Section 4 in UEWE it is shown that, generically, asymptotic silence is
connected with the property that the Hubble-normalized spatial frame vari-
ables vanish asymptotically, i.e.,

E.,t—0

toward the singularity; however, this is not sufficient for asymptotic silence,
as is illustrated by special examples in [23, Section 4]. We also refer to [23]
for examples of various non-generic asymptotically silent singularities and
for examples of singularities for which asymptotic silence does not hold —
a phenomenon referred to as asymptotic silence-breaking.

°In contrast, a non-scalar curvature singularity is expected to require fine-tuning of
initial data.
5We may hence refer to this as an “anti-Newtonian” limit.
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We define the dynamics along a timeline toward a singularity to be asymp-
totically local if

E,)' =0, 04(S,75,U3) =0, (ra,U,) — 0. (4.1)

toward the singularity. (Note that this definition slightly differs from the
one used in [22]). Asymptotic silence and asymptotic local dynamics are
closely related concepts. The shrinking of particle horizons and the associ-
ated loss of communication between timelines suggests that inhomogeneities
are irrelevant for the asymptotic dynamics, since they are shifted outside the
shrinking horizons faster than they grow, i.e., E,° goes to zero at a rate that
is faster than the possible growth rate of 9;S,9;log(H), 9; log(N). This is
supported for generic timelines toward generic asymptotically silent space-
like singularities by numerical experiments [21,22], but it may not be the
case for all timelines. This is an issue that will be discussed in the con-
cluding remarks in connection with “recurring spike formation” [22]; see
also the discussion in [23]. However, apart from in the concluding remarks,
in the remainder of this paper we will be concerned with generic timelines
approaching generic asymptotically silent singularities for which the dynam-
ics is assumed to be asymptotically local.

4.2 The silent boundary

Consider the Einstein field equations in the conformal Hubble-normalized
approach, i.e., the system of equations (3.6) to (3.10) introduced in Section 3.
It follows from (3.7a), in connection with (3.8a), that

E,=0 (4.2)

defines an invariant subset of the state space; we refer to this invariant
subset as the silent boundary, which is characterized by the state vector S.
Since 8, = F,'0;, equation (4.2) implies 8,8 = 0 and BaUg =0,0,73=0
in (3.6) to (3.10), so that the equations on the silent boundary reduce to
a system of ordinary differential equations. Note, however, that we obtain
a system of ODEs for each spatial point x*; hence the silent boundary can
be visualized as an infinite set of copies, one for each spatial point, of a
finite dimensional state space. The equations on the silent boundary are
identical to the equations for the state vector S of spatially self-similar and
SH models. This is a direct consequence from the symmetry-assumptions,
since spatial self-similarity implies that d,S = 0 and 84 (Us, 7o) =0 in a
symmetry adapted frame, which in turn entails that the equations for E,°
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decouple, so that one obtains a reduced coupled system of ODEs for the
variables S.

The SH subset of the silent boundary (in brief: SH silent boundary) is
defined as the invariant subset of the silent boundary given by

E,)=0 and U,=0, re=0. (4.2")

Since this yields (I).. = 0, the equations on the SH silent boundary reduce
to a system of ordinary differential equations, which is obtained by setting
the quantities (I).. to zero in (3.6) to (3.10). This system is identical to
the (reduced) system of equations for SH models, since spatial homogene-
ity implies 8,8 = 0 and U, = r, = 0 in a symmetry-adapted frame, which
subsequently leads to a decoupling of the quantities E,’; see also [29]. Note
again that the SH silent boundary is an infinite set of copies, parameterized
by the spatial coordinates, of a finite dimensional state space with S as state
vector.

The particular importance of the SH silent boundary in the study of
generic spacelike singularities stems from its connection with asymptotically
local dynamics; compare (4.1) and (4.2"). The reasoning is as follows: The
Hubble-normalized conformal orthonormal frame approach produces field
equations that are regular in the asymptotic limit toward a generic spacelike
singularity. This allows us to extend the state space to also include the
silent boundary in our analysis of the dynamical system. This is highly
advantageous; in particular, based on our expectation that generic spacelike
singularities are asymptotically local, see (4.1), we are now able to conjecture
that the asymptotic behavior of asymptotically local solutions is reflected in
the dynamics on the SH silent boundary; see the discussion in Section 10.
Therefore, the SH silent boundary and its neighborhood in the full state
space will be the main object of investigation in this paper.

In contrast to the spatially self-similar and SH models, the variables S on
the SH silent boundary depend on the spatial coordinates, and the constants
of integration are therefore spatially dependent functions. The dynamical
systems formalism thus explains the first step in the heuristic ad hoc proce-
dure by BKL, which consists in replacing the constants in certain SH models
with spatially dependent functions. Moreover, the ODE structure on the
silent boundary in turn induces ODE structures associated with perturba-
tions thereof — in a series expansion, spatial partial derivatives only act on
spatial functions associated with previous lower order terms, thus only yield-
ing temporal constants for the perturbative equations; this feature naturally
captures the BKL statement that spatial derivatives only enters “passively”
into the equations [4, pp. 656-657]. Note, however, that the dynamical
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systems approach allows one to derive the results of BKL and thus put
them in the rigorous context of the regularized dimensionless state space
picture of Einstein’s field equations, a picture which also simplifies com-
parisons with analytical results for special cases as well as with numerical
investigations.

The asymptotic ODE structure induced by asymptotic local dynamics
can be exploited in several ways; in particular, it allows us to reparameter-
ize the individual timelines, for which the spatial coordinates x* are fixed,
so that &g f = —df /dr along a given timeline, where f(z°, 2?) is any variable
occurring in an ODE, and 7(z°, 2%) := —log(¢//) is a “local time function”
directed toward the singularity. In this context, ¢ = ¢*/6 and g is the deter-
minant of the physical spatial metric. In our convention, hatted objects
refer to objects that are functions of the spatial coordinates alone; note also
that we choose a time direction toward the singularity, which is in contrast
to UEWE. To obtain the solution in the chosen time coordinate 2", one
subsequently integrates the relation da® = —AN~!dr so that

20 =20z — /TNl(T/, z')dr'. (4.3)

The reparameterization freedom allows us to introduce a dynamical
systems treatment of the equations on the silent boundary and its
neighborhood, in complete analogy with the treatment of the so-called silent
cosmological models from a dynamical systems perspective, see [30,31] and
[12, Chapter 13].7 From now on, we will use the local reparameterization
freedom induced by asymptotically local dynamics and write

60 = _67'7

to study the asymptotic dynamics along timelines by means of finite dimen-
sional dynamical systems techniques.?

5 Kasner circle stability and the oscillatory subset

It is plausible that there exists an open set of vacuum models that possess
asymptotically silent singularities and obey asymptotically local dynamics
for a generic set of timelines. This follows from the analysis of UEWE [20]

"In the present context it is irrelevant that the only non-trivial spatially inhomogeneous
non-rotating exact silent solutions without a cosmological constant turned out to be the
Szekeres dust models; see [32] and, for similar topics and additional references, [33].

8As a simple illustration, we derive the generalized Kasner line element of BKL in
Appendix B.
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in combination with the results of [26], where a dynamical systems formu-
lation was used that added the null geodesic equations to the Einstein field
equations; further support comes from the numerical analysis of [21] and
from [22,23]. We therefore conclude that at a generic spatial point the SH
silent boundary — or rather a subset of the SH silent boundary — consti-
tutes a local attractor for solutions in the full inhomogeneous state space
associated with the Einstein equations; note, however, that it can only be
a local attractor in the full state space since there exists, e.g., an open set
of solutions without any singularity at all [34]; moreover, there may exist
an open set of solutions with weak null singularities, see [35] and references
therein, or an open set of solutions with a singularity that consists of parts
that are asymptotically silent and spacelike and parts that are weak null
singular; for special examples of singularities of this latter type, see [23].

The main aim of the present paper is to identify the subset of the SH
silent boundary that acts as the attractor for generic asymptotic dynam-
ics. As suggested by the analysis of SH models, the subsets that represent
Bianchi type I and II models will be of crucial importance. The common
denominator of these models is the most fundamental structure of the SH
silent boundary state space: the Kasner circle.

5.1 The Kasner circle, stable variables, and the oscillatory subset

The SH part of the silent boundary E,* = 0 is given by U, = ro = 0; it con-
sists of an infinite number of identical copies of the finite dimensional state
space spanned by the state vector S = (2X,3, Aqa, Nag); hereby, the spatial
variables can be regarded as acting as an index set. The associated system
of evolution equations and constraints is obtained when the quantities ().
are set to zero in (3.7b) to (3.7d) and (3.8b) to (3.8d), respectively. This sys-
tem of equations possesses a one-parameter set of equilibrium points which
is fundamental for our analysis: the Kasner circle K©. It is determined by

1-%?=A,=N,3=R,=0. (5.1)

Since R, = 0 corresponds to X3 = 0 (a # 3), Yap is diagonal for every
point on K©, i.e., ¥y5= diag[f]l, o, 23], where the numbers 3, (a=1,...,3)
are constants. (All considerations apply to each of the (infinitely many)
copies of the finite dimensional SH state space. Since the numbers S
(a =1,...,3) may differ between the individual copies of the SH state space,

Y are in fact spatially dependent functions. In this context recall that we
employ hatted objects to denote temporally constant spatially dependent
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functions.) It is standard to represent the Kasner circle in terms of the
(generalized, when viewed as spatially dependent) Kasner exponents p,,

S = diag[E1, o, 5] = diag[3p1 — 1,3p2 — 1,3ps — 1], (5.2)

where we have omitted the hats on top of p, in order to agree with standard
notation. Since tr ¥,3 = 0 and Y2 =1, the Kasner exponents satisfy the
Kasner relations

pr+p+ps=1, pi+ps+p;=1

In Appendix B we derive the generalized Kasner line element, see [4],
ds* = —dt* + (P ;1; + *P2mymy + t*P3nn;) da* da?

from the fixed point solution given by (5.1) and (5.2).

The Kasner circle K© can be divided into six sectors, where each sec-
tor is characterized by a typical ordered sequence of the Kasner exponents
(pa); hence, sector (123) is defined as the part of K© where p; < ps < p3,
whereas sector (312) is characterized by the order ps < p; < pa, etc.; see
figure 1(a). Evidently, the six sectors can be identified with each other
through permutations of the spatial axes. Of particular interest are the six
special points on the Kasner circle that are associated with solutions pos-
sessing an additional symmetry, the so-called locally rotationally symmetric
(LRS) solutions. The points @, correspond to the three equivalent LRS
solutions whose intrinsic geometry is non-flat; for ()1 we have (21, S, 23) =
(=2,1,1) and (p1,p2,p3) = (—%, %, %), cyclic permutations yield the param-
eters for ()2 and Q3. Each point T, corresponds to a flat LRS solution: the
Taub representation of Minkowski spacetime; the Taub points are given by
(f]l, S, f)g) =(2,-1,-1) or (p1,p2,p3) = (1,0,0), and cyclic permutations;
see Figure 1(a).

It is convenient to parameterize the Kasner exponents in terms of the
Kasner parameter u, which can be defined frame invariantly through

27u?(1 + u)?

det (Do) = 2 — o n T
et(Zap) (1 +u+u2)

u € [1,00], (5.3)

see Appendix C for details. Due to frame invariance, the Kasner parameter
naturally captures the equivalence of the six sectors of K©, see figure 1(b).
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(a) Kasner sectors and unstable variables.
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(b) Variation of the Kasner parameter u along the Kasner

circle.

Figure 1: The Kasner circle of fixed points; sectors and unstable variables
and relation to the Kasner parameter u. Note that v = 1 at the (), points
and that © = oo at the Taub points 7.

On sector (a, 3,7), where p, < pg < p-, we set

—u 1+u (1l + u)

Pe =T+ PP iur P ixur

It is easy to check that p, +psg+py =1 and P2 —|—p% —|—p3 =1. The
parameter u = 1 describes the points Q1, Q2, Qs, i.e., the three equivalent
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representations of the non-flat LRS Kasner solution, while © = oo defines
the Taub points T1, To, T3 and thus the Taub solution.’

We proceed by performing a local dynamical systems analysis in a neigh-
borhood of the Kasner circle K©. Linearization of the dynamical system at
an arbitrary point (p1, pa,p3) of K© yields

0:E,' = =3(1 — pa)Es'  (no sum over a) (5.5a)
for the conformal frame variables, and

0-Aq = —3(1 — pa)Aa (no sum overa) (5.5b)
OrNap = =6(L —py)Nap (a# B # 7 # a), (5.5¢)

for the variables A, Nog (o # ) on the SH silent boundary; furthermore,

0-N1 = —6p1 N1, 0;Na = —6p2 No (5.5d)
O0rRy = 3(p2 —p3)R1, OrRa = —3(p3 —p1)R2, 0O-R3 = 3(p1 — p2)R3,
(5.5e)

where we set N; = Ny; and Na = Nog (recall that N3 = N33 = 0). We see
that the variables E,}, Nos (o # 3), and A, belong to the stable subspace
of each fixed point of K© (except for the Taub points). In contrast, the
variables (Ry, Ra, R3) and (N1, N3) are stable or unstable depending on the
sector of K© the point (p1,p2,ps3) lies in. Finally, the variables ¥, = ¥,
belong to the center subspace, i.e., they are constant to first order. The
analysis of the stability of the Kasner circle K© is summarized in figure 1(a),
where the unstable variables are given for each sector of K©.

We now decompose the state vector S = (X,3, Aa, Nag) of the SH silent
boundary into a “stable” and an “oscillatory” part: S = Ssiable D Sosc,
where Sgtable = (Nag, Aa) (@ # B) and Sose = (Ea, Ra, N1, N2). The sub-
set determined by Sgiaple = 0 on the SH silent boundary is an invariant
subset, which we call the oscillatory subset O.

We conjecture that there exists an open set of solutions whose behavior is
governed by the Kasner states as 7 — o0, i.e., we expect solutions to spend
an increasing amount of time close to K© as 7 — oo. Equations (5.5b)
and (5.5¢c) suggest that the variables E,’ and the stable variables Sgiaple =

9For the BKL definition of u, the order of p, is fixed according to p1 < pa < p3; we
have found it convenient to use the above frame-independent definition instead, and to
permute the ordering of p, according to the sector one considers when dealing with frame-
dependent matters.
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(Nag, Aa) (o # B) decay rapidly, and that (E.‘, Sstable) — 0 in the limit
T — 00; this motivates the notation “stable”. In anticipation of results to
come, we note that the behavior of the variables Sosc = (X4, Ra, N1, N2) on
the oscillatory subset, by contrast, can be best described as “oscillatory”,
whence the chosen nomenclature. Since we conjecture (E,", Sstable) — 0, it
is the complicated dynamics of Sy on the oscillatory subset O that will
play the decisive role in our description of the generic asymptotic dynamics
— we thus begin by closely investigating the dynamical system on O.

5.2 The oscillatory dynamical system

Recall from Section 4 that the silent boundary contains an infinite number
of identical copies of the SH state space and thus of the oscillatory state
space O; hereby, the spatial variables act as the index set. Although it is
essential for our ultimate aims to consider this infinite collection of spaces
O, this is irrelevant for our proximate purposes: in the present context we
may regard the oscillatory subset O as one finite dimensional state space.

The evolution equations on the oscillatory subset O are given by setting
the stable variables to zero in equations (3.7b) and (3.7c), i.e., Sstable =
(Nog, Aa) =0 (o # ). (Recall that the quantities (I,).. are zero because O
is a subset of the SH silent boundary determined by E,* = 0, Uy =710 = 0.)
Accordingly, the dynamical system on O takes the form

0,5 = 2(1 — %)%, — Q(R2 + R3) + S, (5.62)
8,59 = 2(1 — )%y — 2(R? — R2) 4 38y, (5.6b)
9:35 =2(1 — X2)%3 + 2(R? + RQ) 3833, (5.6¢)
0-Ry =2(1 — Y*)Ry + (X2 — T3) Ry + 2RaR3, (5.6d)
9:Ry = 2(1 — S*)Ry — (33 — X1)Re, (5.6e)
0-R3 = 2(1 = %) Ry + (1 — $o)Rs — 2R Ry, (5.6f)
O; Ny = —2(X% + 1) Ny, (5.6g)
0Ny = —2(X? + ¥9) No, (5.6h)

where

5?2 =1 (2] + X5 + X5 + 2R + 2R3 + 2R3),
3811 = $(N1 — N2)(2N7 + No), (5.61)
38ps = —3(N1 — No)(N1 +2N3),  ?Ssg = —2(N1 — Na)*.
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The Gauss constraint (3.8b) becomes
1-%%— L(Ny — No)? =0, (5.6)
while the Codazzi constraints (3.8¢c) result in
NiRy =0, NiR3=0, NyR; =0, NyR3=0. (5.6k)
Note that — a priori — the Codazzi constraints read
NiRy =0, NoR;y =0, (N;— N2)R3=0; (5.6Kk")

however, unless N; = Ny # 0 on a finite 7-interval, the constraints (5.6k)
ensue. Now assume that N; = Ny # 0, so that 1 — X2 = 0; then Ry = 0 and
Ry =0, the equations (5.6a) to (5.6h) imply 31 = 39 (and 9,31 = 0;%9),
whereby R3 = 0. Therefore, NyR3 = 0 and NoR3 = 0, and (5.6k) holds in
the case N1 = Ny # 0 as well.

The constraints determine the structure of the oscillatory state space O:
it consists of a number of invariant subsets (“components”) that are con-
nected with each other by parts of their boundaries only. This partitioning
of O is to be understood in terms of the Bianchi classification: the invariant
subset given by (N7 = 0) A (N2 = 0) is the Bianchi type I state space, the
components (N7 = 0) A (N2 # 0) and (N1 # 0) A (N2 = 0) describe Bianchi
type Il states, and the components N1 Ny < 0 and N1 Ny > 0 are the Bianchi
type VIp and VIIj subsets, respectively. In other words, the equation sys-
tem (5.6), when restricted to the respective component, is identical to the
equations for the Bianchi type I, II, VIy, VIIj vacuum models. In the fol-
lowing, we more closely examine these “Bianchi components” of O.

The Bianchi type I component is defined by (N7 = 0) and (N2 = 0), and
hence (R1, Rz, R3) are arbitrary, but subject to the Gauss constraint. Every
orbit on the Bianchi type I component describes a Kasner solution, since

U?=r2=0 and 1-22=A42=N,, N =0 (5.7)

on this set; we therefore denote the Bianchi type I component alternatively
as the silent Kasner subset K. However, since (R1, Ra, R3) # (0,0, 0) (except
for the fixed points on K©), every orbit on K is a representation of a Kasner
solution in a frame that rotates w.r.t. a Fermi-propagated frame; this is
a consequence of the Iwasawa frame choice; see Appendix C for details.
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We distinguish several invariant Bianchi type I subsets which are defined by
the vanishing of different combinations of the three variables (R1, Rg, R3).
We will use B as a kernel letter for an invariant subspace and a subscript
that denotes the non-zero variables associated with the different subsets.
Accordingly, Bg, is an invariant subset, where R, # 0, Rg =0, R, =0 (o #
B # v # «); for Br, g, we have Ry # 0, Ry = 0, R3 # 0; the set Br,r,R, 18
characterized by R1Rs # 0 or RoR3 # 0 and thus comprises the case of all
three variables being non-zero. (It is easy to see that equations (5.6) prevent
the set (R; = 0) and the set (R3 = 0) from being invariant subsets.) The
Kasner circle K© is a special subset of the Bianchi type I component; here,
(R1, Ry, R3) = (0,0,0). In the standard notation B, for the closure of a set,
we find that, e.g., ER1 = Bpr, U KO, or, K = ER1R2R3 = BRr,Rors U BRr, Ry U
BR1 U BR2 U BR3 UK.

The Bianchi type II component is defined by either N7 or Ny being
zero. The Codazzi constraints (5.6k) enforce NoRg =0 (a # 3), i.e., the
Bianchi type II component consists of four invariant subsets: By,, By,
BN, Rr,, and By,Rr,. Solutions on the former subsets represent Bianchi type
IT models in a Fermi-propagated frame, since R, = 0 for all «; solutions
on By, r,, Bn,r, are representations in a frame that rotates w.r.t. a Fermi
frame.

Finally, we denote the Bianchi type VI and VIl subsets by By, n,— and
BN, N,+, respectively, where the subscript denotes the sign of NiN3. The
Codazzi constraints (5.6k) enforce R, = 0 for all a; hence all solutions on
these components are represented in a Fermi-propagated frame.

In figure 2 we present a diagram containing the subsets B, introduced
above. We give the dimension of the different subsets and show how they are
related to each other by setting variables to zero; the figure thus represents
a contraction diagram.

We conclude this section by noting that models of Bianchi type VIII
and IX are not described by the equations on the SH silent boundary we
consider. This is due to the inherent incompatibility of the SH frames of the
Bianchi type VIII and IX models with the Iwasawa frames we use throughout
this paper; w.r.t. an Iwasawa frame Bianchi type VIII and IX solutions
appear as inhomogeneous solutions and are thus associated with general
solutions in the full interior state space X. In contrast, the SH frames
of Bianchi type VI_;/9 models are Iwasawa compatible as we shall see in
Section 13. Since these models are expected to possess the same attractor
as generic timelines of generic asymptotically silent models when expressed
in an Iwasawa frame, it is rather these SH models that are of interest in the
present context.
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Figure 2: Subset contraction diagram of the oscillatory subset O. In our
notation, the subscripts denote the non-zero variables, and D hence describes
the dimension of the subsets B,. Solid lines correspond to setting R.-
variables to zero (frame rotation contractions); dashed lines are associated
with setting Nj or Ny to zero (Bianchi-type contractions). Note that, e.g.,
By, includes the two possible representations (one for each possible sign of
Ny) of the Fermi-propagated subset; similar statements hold for the other
subsets that involve N; or Ns. Analogously, e.g., Br, is the union of two
subsets that are characterized by the sign of R,,.

6 Dynamics on the components of the oscillatory subset

In the following we will describe the dynamics of the system (5.6) on the
oscillatory subset O. Since O decomposes into independent components, we
will analyze each component of O separately. We will see that the solutions
of (5.6) are heteroclinic orbits, which, except for in the Bianchi type VIl
case, connect different fixed points on the Kasner circle and thus provide
transitions between different Kasner states; accordingly we will henceforth
refer to such heteroclinic orbits as transitions.

6.1 The silent Kasner subset (Bianchi type I subset)

The silent Kasner subset, /C, is defined as the invariant component of O given
by (N1 =0) and (N2 = 0) and thus by the conditions (5.7). Consequently,
solutions on K represent Kasner states, though in general not in a Fermi
frame, since (R, R2, R3) # (0,0,0). In this way, a given Kasner state has
several different representations on K.
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We call the solutions of (5.6) on K frame transitions. Depending on how
many of the variables (Rj, Ro, R3) are non-zero, we distinguish between
single frame transitions and multiple frame transitions.

There exist three families of single frame transitions, denoted by Tg,,
TRy, TRy, which are associated with the subsets Br,, Br,, Br,. In the case
of a Tg, transition, equations (5.6a) and (5.6¢) yield that ¥, = const and
that ¥3, 3, are monotonically increasing or decreasing, see figure 3. The
initial and final states of the transitions are equilibrium points on the Kasner
circle K© that are related by (24)+ = (o), (Xg)+ = (24)—, and (X,)4 =
(¥3)—, where the subscripts ; and _ denote the final and initial states
of the transition, i.e., (X5)+ = lim; 1+ X5(7). Consequently, a Tg, orbit
corresponds to a Kasner solution viewed in a frame that rotates around the
a-axes; in their final state, the 5- and y-axes are rotated by m/2 w.r.t. their
initial position, which corresponds to an interchange of the [3-/~-directions.
Since the Kasner parameter u is a frame invariant, it is necessarily invariant

(d) T, (e) Tr,

Figure 3: Projections of single transitions for the Iwasawa frame onto diag-
onal ¥,-space. The first three transitions, 7n,, Tr,, Tr,, are the transitions
relevant for the billiard attractor in Section 11; the two other ones, Ty,
Tr,, are of relevance for the approach to the attractor, but asymptotically
they are suppressed as shown in Section 10.
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during a frame transition; in particular,
U= usp = u_ = const; (6.1)
see Appendix C for details. Expressed in u we obtain for 7g_,

3(1+2u)(1 +u +u?)~!
[ASg] = [()+ — (Zp)-| = {3Qu+ )1 +u+u?)™h (6.2)
3(-1+u?)(1+u+wu?)!

depending on whether the transition starts from sector (53,7, a), (5, a,7),
or (a, 3,7). A simple consequence is |[A¥g| < 2V/3.

For multiple frame transitions, more than one of the variables (R1, Rz, R3)
is non-zero. There exists one class of double frame transitions, Tr,r,, which
is associated with Bg,g,, and one class of triple frame transitions, Tr, r,Rs,
connected with Bgr, r,r,; for the latter, R, # 0 Va. The initial state of
a multiple frame transition is an equilibrium point on sector (321) of K©,
while the final state lies on (123); for details see Appendix D. The Kasner
parameter v is invariant under multiple frame transitions, since it is a frame
invariant; furthermore, we have |[A¥y| =0 and (X1)+ = (X3)+ (as for Tg,
transitions). For examples of multiple frame transitions, see figure 4(a).

/23

/"
Q2 Ty Q2 43 Ty
+
51— Ty 03] 51— Ty (03]
B~ A_
Q3 T Q3

T

N N

2 2

(a) Double frame transitions Tr,r,. (b) Mixed frame/curvature transitions 7, r, -

Figure 4: (a) A projection of double frame transitions onto Y,-space; note
that single transitions form the boundary of this subset and that the final
state of a double frame transition can be obtained in terms of a series of
single transitions that are associated with the same initial Kasner state. (b)
Mixed frame/curvature transitions for which analogous remarks hold.
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6.2 The silent Bianchi type II subset

Solutions of the oscillatory system (5.6) that satisfy N, # 0 for some « are
located on the Bianchi type II, VIy, or VIIg component. These solutions
are characterized by non-vanishing three-curvature, i.e., 3R = —NuogN b 4
(N2, see (3.9). We denote solutions of Bianchi type II and VI as
curvature transitions; for solutions of Bianchi type VIIy, we do not use this
terminology for reasons that will become clear below. Curvature transitions
(and Bianchi VIIj solutions) differ from frame transitions in one important
respect: the Kasner parameter u changes under the transition. We begin by
considering those curvature transitions that are associated with the Bianchi

type II subset.

The silent Bianchi type II subset is the subset of O determined by (N} #
0) A (N2 =0) and (N7 = 0) A (N # 0); it is the union of the invariant sub-
sets BNl, BN1R17 and BN2, BNQRQ'

The simplest solutions on the silent Bianchi type II subset are the orbits
on By, or By,, denoted by Ty, and Ty,, which we call single curvature tran-
sitions; the absence of a third family, 7y, is due to the peculiarities of the
Iwasawa frame. In the following we consider 7y, transitions; the treatment
of Tn, transitions is analogous. For Ty, , the Gauss constraint (5.6]) yields
N2/12 = 1 — X2, The resulting system for (31, X2, X3), equations (5.6a) to
(5.6¢), possesses solutions whose initial states are equilibrium points on sec-
tors (123) or (132) of KO, see figure 3. Without loss of generality we consider
Tn, transitions from sector (123) (as 7y, orbits that originate from sector
(132) are easily obtained by a permutation). The orbits can be parame-
terized by u = u_, the Kasner parameter characterizing the initial state; in
terms of an auxiliary function {(7), we obtain

Y= —4+1+ud)¢, Te=2-u¥, Y3=2-, (6.3a)
where the evolution equation for ( is given by
3

G-

where (+ = 3/(1 F u + u?); by definition, 0 < (_ < 1, and 0 < ¢4 < 3. The
function (7) interpolates monotonically between (_ (as 7 — —o0) and (4
(as 7 — 00). Letting w =1 in (6.3) yields the orbit that connects Q; with
Ty, see figure 3(a); u = oo corresponds to the point Ts.

9-¢=2(1-3%¢ with (1-3%?) ¢+ =K —=¢),  (6.3b)

Evaluation of (6.3a) at 7 = Foo (corresponding to (+) yields the initial/
final states of the 7y, transition, and thus a map that connects the initial
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and final Kasner states, which are described by u = u_ and w4, respectively:

u_ —1 ifu_ > 2, (6.4)
Uy = .
T e -1t ifl<u <2

This formula was first obtained by BKL via different methods; we will refer
to (6.4) as the Kasner map. Note that this result holds for both 7Ty, and
Tn, curvature transitions.

For later purposes, we define the growth factor g according to'®

._Ci_ 1+ u+ u? B 14+ u_ +u?
I T I —ut+® 1w+

Since u = u_ € [1,00) for Ty, orbits, we have 1 < g < 3.

There exist two classes of mized frame/curvature transitions: orbits on
By, r, and orbits on By,r,, which we denote by Tn,r, and Tn,r,, respec-
tively. The initial state of a 7T, g, orbit is an equilibrium point on sector
(132), and the final state lies on (213) or (231); for Tn,r, transitions, the
numbers 1 and 2 are interchanged; see Appendix D. In analogy to single
curvature transitions, the initial and the final Kasner state are related by the
Kasner map (6.4). This fact relies on the frame invariance of the parameter
u: Tn, and Ty, g, transitions are representations of the same Bianchi type
IT solutions — they are merely expressed in different frames (Fermi frame
versus rotating frame); the transformation law (6.4) of the frame invariant-u
is thus unaffected. For more details on mixed frame/curvature transitions,
see Appendix D; for examples, see figure 4(b). Note that henceforth, for
brevity, we will refer to mixed frame/curvature transitions as mixed curva-
ture transitions.

6.3 The silent Bianchi type VI and VIl subsets

The silent Bianchi type VI subset is given by N1 Ny < 0 and R, = 0 for all
«; it is denoted by By, n,—. We call the orbits on By, n,— double curvature
transitions: Ty, N,—, or simply Tn,n,. In Appendix D we show that the
a-limit of each Ty, n, transition is the Taub point Ts; the w-limit is a fixed
point on sector (312) or (321) of K©. Accordingly, in terms of the Kasner

10The quantity ¢ should not be confused with the determinant of the spatial metric —
it should be clear from the context which one is meant.



328 J. MARK HEINZLE, CLAES UGGLA, AND NIKLAS ROHR

parameter u, we find

Tx Bi hi VI
= oo Lare B VO oy oy, (6.6)

note that for each u € [1,00) there exist double curvature transitions that
map the Taub state u_ = oo to exactly that final Kasner state, i.e., u = u.
It is evident that the behavior of double curvature transitions is fundamen-
tally different from the behavior of Bianchi type II transitions (single and
mixed curvature transitions); compare (6.6) with the Kasner map (6.4). We
observe that there do not exist double curvature transitions with arbitrar-
ily small amplitudes: there exists € > 0 such that max, |Ni(7)| > € (and
max, | Na(7)| > €) uniformly for all double curvature transitions; for a proof
see Appendix D.

Finally, let us now consider the silent Bianchi type VIIy subset By, n,+,
which is defined by N1 N2 > 0 and R, = 0 for all a. The state space contains
a line of fixed points, Egt, given by the conditions (X1, X9, ¥3) = (1,1, —2)
and N; = Ny 2 0; see Appendix D for details. The a-limit of each Bianchi
VIIj orbit is a point on Egt, and the w-limit is a fixed point on sector (312)
or (321) of K©. Hence, since Bianchi type VIIj orbits do not connect two
fixed points on K©, we refrain from calling them transitions. For this reason,
we will not introduce the nomenclature 7y, n,+-

7 Sequences, eras, and phases

In the previous section, we have described the dynamics on the oscillatory
subset by analyzing the solutions (transitions) on the different components
of O. These transitions form pieces of a “heteroclinic orbit puzzle” that
governs asymptotically local dynamics; in the following we describe and
characterize its key features.

7.1 Sequences of transitions and Kasner sequences

We define a sequence of transitions as a heteroclinic sequence on the oscilla-
tory subset O, i.e., as an infinite concatenation of transition orbits (hetero-
clinic orbits) on O. (Note that, by definition, Bianchi type VIIj orbits are
excluded from these sequences; since the initial states of type VIl orbits
do not lie on K©, but on Egt, they cannot be concatenated with transition
orbits.) Accordingly, a sequence of transitions, which we denote by Sr, is
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described by St = (T:)ien = (To, T1, T2, - . .),'*  where each transition 7; is
either a frame transition Tr,, Tr,, Trss TRsR, s TR, Ry R3, OF @ single or mixed
curvature transition Ty, , TNy, TNy Ry TNy R, O @ double curvature transition
TN,N,- It is understood that the w-limit of each transition 7; (which is a
fixed point on K©) coincides with the a-limit of the transition 7.

The initial state of each individual transition 7; is a fixed point on K©
(which coincides with the final state of 7;_1), and is thus associated with
a particular value of the Kasner parameter u. Therefore, every sequence
of transitions S7 generates a series of Kasner parameters in a natural way.
Since frame transitions do not induce any change in u, see (6.1), the series of
Kasner states is not associated with the sequence S directly, but rather with
the sequence of curvature transitions of S, which may be regarded as its
supporting “skeleton”. This makes it convenient to introduce a second run-
ning index that consecutively numbers curvature transitions: [ =0,1,2,....
The index [ can be viewed as a function [ : N — N such that [(7) = [; denotes
the number of curvature transitions among the transitions {79, 71, ..., Ti—1}

Let u; denote the initial Kasner state of the [th curvature transition; then
the transition maps u; to w41,

Ith curvature transition
uy Ul+1-

For single and mixed curvature transitions, the Kasner map (6.4) applies:

w—1 if > 2,
_ 7.1
s {(ul D7 ifl<y <2 (7.1)

A double curvature transition, on the other hand, maps a Kasner state
characterized by u = oo to a Kasner state with u € (1, c0).

Two cases occur: (i) The initial state ug is an irrational number, which
is the generic case since Q is a set of measure zero in R. Then the sequence
(u)ien is given through the recursion (7.1); in particular, for all [, u; €
(1,00). A sequence (u;)en of this type we denote as a Kasner sequence.
Note that a Kasner sequence is associated with a sequence of transitions
S7 that does not contain any double curvature transitions 7n, n,. (ii) The
initial state ug is a rational number. Then there exists k£ < oo such that
ugp_1 = 1, whereby ug = co. At this point, the recursion defined by the
Kasner map (7.1) is interrupted. A double curvature transition 7Ty, n, must

"Tn order to agree with the conventions of [3] we define the first transition of Sy to
carry the index number 0.
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follow, which yields ug41 € [1,00). Generically, the Kasner parameter ug1
is an irrational number, hence the series (u;);> is a Kasner sequence given
by the recursion (7.1); by a shift of origin (i.e., by redefining ug := ug11),
we obtain again a standard Kasner sequence. If the Kasner parameter uy41
is a rational number, which is the non-generic case, we are back to square
one, at the beginning of the loop.

From this discussion, we are led to classify possible sequences of transi-
tions. Sequences with a finite number of double curvature transitions are
innocuous: they are standard Kasner sequences by a simple shift of origin
and thus do not require special treatment. Sequences that contain infin-
itely many double curvature transitions are qualitatively different, but they
are highly non-generic since they emerge from repeated fine-tuning: for
such sequences, the final state of each individual 7y, n, transition must be
represented by a rational value of the Kasner parameter. This indicates
that these sequences are not to be treated on an equal footing with generic
sequences, i.e., sequences that are free from double curvature transitions.
Henceforth, unless otherwise stated, a sequence of transitions S7 always
denotes a sequence where double curvature transitions are excluded, i.e., it
is an infinite concatenation of frame transitions and single and mixed cur-
vature transitions. It is sequences of this type that are intrinsically tied to
Kasner sequences (u;);ey which are defined through the recursion (7.1).

7.2 Eras, large curvature phases, and small curvature phases

Here we investigate qualitative properties of Kasner sequences (u;)ien; in
particular, we introduce a partition of the sequence into phases of small
curvature and phases of large curvature; however, we begin by defining the
concepts of an epoch and an era.

Consider a Kasner sequence (u;)ieny as given by the recursion (7.1). A
Kasner epoch is simply defined as an individual Kasner state u; of the
sequence. The sequence (u;);cy possesses a natural partition into eras: an
era is a set [lin, lous] O  such that v; is monotonically decreasing from a maxi-
mal value u'™ = u;, = (u;,, 1 — 1)7! to a minimal value 1 < u°" = v, < 2.
The length of an era is given by the number of Kasner epochs it contains:
L =loy — lin + 1. Since u; 1 = u; — 1 for all [ of an era [liy, lout], we have
L = int(u™™), where int(x) is a function that gives the integer part of x,
see [5]. Note that an era can be, and many will be, of length one.

We now introduce a somewhat more flexible concept that comprises the
concept of an era as a special case. Let R > n, > 1; we define a phase of
small curvature — a small curvature phase — as a set [li, lout] 3 [ such that
w; monotonically decreases from a maximal value u™ = uy,, to a minimal
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t

value ©°"* = vy, , according to

le[linylout]
S

ult = wy, = (ug,—1 — 1)_1 > > 1 N+ 1> u" =y, > 0,

(7.2)

When 7, is chosen to be equal to 1, the definition of a small curvature
phase reduces to the definition of an era; however, the usefulness of the con-
cept of a small curvature phase stems from the possibility of choosing 7,, > 1,
and this is the choice we will typically make. In this case, a small curvature
phase contains only large values of u. Accordingly, the Kretschmann scalar
W associated with the metric G is small, since Wy = 27u?(1 + u)?/(1 + u +
u?)3 = 27u ' (1 + u=' + O(u™2)), cf. Appendix C. Since this quantity deter-
mines the magnitude of the curvature during a Bianchi type II transition,
see Section 14 and figure 9(c), the terminology “phase of small curvature”
suggests itself. Finally, note that the length of a small curvature phase is
defined in analogy to the length of an era as the number of Kasner epochs
(i.e., Kasner parameters) it comprises:

L=l —lin+1= int(uin -y + 1) = u'™ — 1, ~ ul®, (7.3)
where the last approximation holds only in the special case u'™ > 1.

The complement of a phase of small curvature is a phase of large curva-
ture. A set [l;,lf] 2 is called a large curvature phase if

U1 > Ny, w <my foralll e [l 1], w1 >0y .

Accordingly, the length L of a large curvature phase is at least int(u;) >
int(n,, — 1), since w;, € (n, — 1,7,,). In a large curvature phase, the values of
the Kasner parameter are comparatively small, i.e., small in comparison with
the u-values of a small curvature phase (7.2); it follows that curvature is com-
paratively large in the case of a large curvature phase, see Section 14, which
motivates the nomenclature “large curvature phase”. Note that the concept
of a large curvature phase does not exist when 7, is chosen to be equal to 1;
recall that in this case the concepts era/small curvature phase are identical.

Small curvature phases and large curvature phases occur alternately. A
large curvature phase continues and ends the era that began simultane-
ously with the small curvature phase preceding the large curvature phase.
When 1 < u; < 2, the Kasner parameter number (I 4+ 1) begins a new era:
if uj41 <y, then that entire era belongs to the continuing large curvature
phase; if, and only if, u;41 > 1y, then a large curvature phase has ended and
a new small curvature phase begins. Consequently, a large curvature phase
can contain an arbitrary number of eras. In the following example, where
the choice 7, = 3.5 has been made, the large curvature phase contains two
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and a half eras.

small curvature phase large curvature phase s.c.p.

——
6.29 — 5.29 — 4.29 — 3.29 — 2.29 — 1.29 — 3.45 — 2.45 — 1.45 — 2.23 — 1.23 =+ 4.33 — ...
————

era era era era
(7.4)

Let us now briefly discuss how curvature phases are represented in the state
space O. Consider a sequence of transitions Sy = (7;);eny on O and the
associated Kasner sequence (u;)ien. Suppose that [ € [lin, lout] is a small
curvature phase (associated with a value 7, > 1) of the Kasner sequence
(u7)1en. Since the inverse of the Kasner parameter, i.e., u™!, is a measure
for the (angular) distance (on K©) from T3 (and equivalently from Ty, Ts),
the condition u™ > 7, characterizing the small curvature phase is equivalent
to (u™)~! < n; !, ie., to the statement that the (angular) distance of the
transitions from T3 (Ty, T2) be less than a given distance i, 1. Suppose that
the curvature transition number l;;, (which is the first curvature transition of
the phase) is a Ty, transition that takes place in the 7, I-neighborhood of the
Taub point Ts. In this neighborhood of T3 only three types of transitions
are possible: Tn,, Tn,, and Tg,, see figure 3; it is thus immediate from
the figures that the initial Ty, transition generates a sequence where Ty,
transitions and 7Ty, or Tg, transitions occur alternately while the distance
u~! from T3 slowly increases (as u decreases by u +— u — 1). For some time,
therefore, the sequence is “captured” in the 1, !-neighborhood of the point
Tj3; since the curvature is small in this neighborhood, the phase is a “phase
of small curvature”. From (7.3) we have that the length of a captured phase
is given by L ~ u™ when u'™ >> 7,; in other words, the number of curvature
transitions needed to leave the given 7, !-neighborhood of T3 is inversely
proportional to the initial distance (u™)~! from T3. For an example of a
small curvature phase in the state space picture, see figure 5.

/23

Q2 T3
T
21 1 Ql
Q3 Ty
P

Figure 5: A small curvature phase. Note that this particular small curvature
phase starts with a Tg, transition followed by a Tg, transition and a series
of alternating 7x, and Tg, transitions; the latter oscillatory behavior is of
particular relevance for the billiard attractor discussed in Section 11.
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In our description of generic asymptotic dynamics, it will turn out to be
important to characterize Kasner sequences from a stochastic point of view.
In order to do so, in the subsequent section, we will consider the space of
all possible Kasner sequences.

8 Stochastic analysis of Kasner sequences

The recursion formula (7.1) that defines Kasner sequences typically gen-
erates sequences of pairwise different values u;. However, there also exist
Kasner sequences (u;);en that are periodic; for instance, the sequence

54+ VI8 6 . _T1-Vi3
uy = — U = —- = ——
07 /13 -1 N e 2T /13-1
54413

uy = —
T V-1
is a Kasner sequence with period 3, see [37] or [12, p. 236]. Note that this

Kasner sequence is associated with a heteroclinic cycle (or rather, a set of
entangled heteroclinic cycles) in the state space description of sequences.

— Uus

(8.1)

Consider an arbitrary Kasner sequence (u;);en. As discussed in Section 7,
this sequence possesses a natural partition into eras j = 1,2, ..., where each
era j is associated with an initial value v = u™™ > 1 of the Kasner parameter,
which we denote by uljn The Kasner map (7.1) thus generates a sequence

(uljn) jen obeying the recursion formula

; 1
ut = ——— (8.2)

Jj+1 in) ’

frac(u'}')

where frac(-) is a function that gives the fractional part of its argument.
It is known that the transformation (8.2) is associated with exponential
instability: the distance between two points (whose initial distance is small)
grows exponentially with the number of iterations j, see [5].
in
. J
points (given by the values of u'l') in the interval (1, o0) C R. By adopting
this viewpoint, it becomes natural to ask whether this distribution possesses
a probabilistic description, i.e., whether it can be modeled by a continuous
probability function. In general, this will not be the case, since there exist
Kasner sequences that generate finite distributions {vy,...,v,}, i.e., ul;1 €

For the following, we regard the sequence (u'l');en as a distribution of

{v1,...,u,} for all j € N. In the example (8.1) we even obtain u'! = v

(5+v13)/(v/13 — 1) for all j € N. ’
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However, the picture changes when we consider not the distribution of one
single sequence (uijn)jeN, but the entirety of all distributions generated by
the collection of all possible Kasner sequences. This collective distribution
is indeed modeled by a continuous probability function, which arises as the
stationary limit from an arbitrary probability density via the map u™ —
[frac(u™)] =%, cf. (8.2); see [5]. In other words, u'™ can be regarded as a

random variable with a specific probability density given by

1 1

w(u ): 10g2uin(1+uin)'

(8.3)

According to the probabilistic description with probability density (8.3),
when we choose an arbitrary u™ from an arbitrary era of an arbitrary Kasner
sequence, the probability of ™ taking a value in (v1,v2) is given by

. 1 v2 1
P m = du .
(v1 < u™ <) 10g2/vl Wit u) u

In order to obtain a probability distribution on a bounded interval, the
inverse of the Kasner parameter u'® is used: we denote the inverse of u™ by
s, i.e., = (u™)~!; by definition, s € (0,1). The probability density of the
random variable ¢ reads

1
"~ log21 4+ s’

w(s2) (8.4)

see [5].

It is straightforward to adapt the probabilistic description to the concept
of small/large curvature phases. The Kasner sequence (u;);en consists of
infinitely many small curvature phases j = 1,2,..., where each small curva-
ture phase is associated with a value ui]‘-1 > 1), of the initial Kasner parameter
(which naturally coincides with the initial parameter of the era that begins
simultaneously with the small curvature phase j, see (7.4)). Let s; be
the inverse of ui]n, Le., »; = (uijr»‘)_1 <, 1; the distribution of the sequence
(5¢j)jen in the interval (0,n,') is described by a random variable s with
probability density

—1

1 1 yin

() = _ : / () ds = 13 (8.5)
log(1+mn, ) 1+ 0

evidently, for 7, = 1 the distribution w(s) reduces to (8.4). Note in partic-
ular that w(0) # 0.
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Consider a Kasner sequence (u;);eny whose distribution of the parameters
(ui]‘?)jeN has a probabilistic description (in terms of the probability den-
sity (8.5)). For such a Kasner sequence, small curvature phases are expected
to dominate over large curvature phases in the following sense: the probabil-
ity that an epoch of the sequence chosen randomly among [ epochs belongs
to a small curvature phase tends to one as [ — oo. The proof is based on
stochastic arguments:

We first compute the expectation value (L) of the length of a small cur-
vature phase. Since L ~ u™ —n, = s~ —n,, see (7.3), we obtain

(L) = /On“ W(5¢) L(3¢)de ~ @(0) /On“ (! — a)de = o0,

i.e., (L) is infinite. Note that this feature is independent of the probability
density w(s) as long as w(0) > 0.

Second, we compute the expectation value for the length of a large curva-
ture phase. A large curvature phase continues and ends the era that started
simultaneously with the preceding small curvature phase, see (7.4). The
probability for the large curvature phase to contain another (complete) era
is given by

nat 1 1 1 -1 -1
pzl—/ w(%)d%:/ w(%)d%zl—wwl—L<l;
0 nit log 2 log 2

the approximation assumes 7, > 1. Accordingly, the probability that a
large curvature phase contains at least another n (complete) eras is p™; the
probability that a large curvature phase contains exactly n (complete) eras is
(1 —p)p™. (Note here that the assumption 7, > 1 ensures that there will be
sufficiently many eras in one large curvature phase to permit a probabilistic
description.) The expectation value for the length of an era that is contained
in a large curvature phase is

(L) [t e [ty

~ (log 2) " log 1.,

where again 7,, > 1 is assumed. Accordingly, a sequence of n eras within a
large curvature phase is expected to be of length n(log2)~!logn,. Combin-
ing the results, we find that the expectation value for the length of a large
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curvature phase is given by

(e,
1+ (log 2) ™ (log nu) (1 = p) > np™ = ny + nulog nu ~ 1y log nu < oo.

n=0

Since the mean length of a large curvature phase is expected to be finite,
while the expectation value (L) of the length of a small curvature phase is
infinite, we conclude that, asymptotically as [ — oo, small curvature phases
dominate over large curvature phases.

Recall that, in the state space description, small curvature phases are
phases where the sequence of transitions Sy, which generates the Kasner
series (u;);eny we consider, is captured in a small neighborhood of the Taub
points, see figure 5. Accordingly, dominance of small curvature phases over
large curvature phases means that the sequence of transitions S7 spends
more and more “time” (as measured by the number of epochs) in a neigh-
borhood of the Taub points as compared to the time spent close to ordinary
Kasner states; above all, the ratio diverges in the limit. Considerations of
this type quite naturally bring the Taub points into focus when we aim at
investigating generic asymptotic dynamics of solutions.

9 Growth

In this section, we analyze the analytic and stochastic properties of a func-
tion that is naturally associated with a sequence of transitions: the growth
function.

9.1 Auxiliary differential equations and the growth function

In our analysis, we will encounter certain types of differential equations; the
following auxiliary equation represents the common denominator:

0, A =2(1 — ¥?)A. (9.1)

When a solution of (5.6) on the oscillatory subset O is given, then the
equation can be regarded as a linear differential equation with a prescribed
time-dependent coefficient 2(1 — ¥2). Let us now integrate (9.1) along the
different Bianchi type I and II transitions.
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Along frame transitions we obtain A = const, since (1 —¥?) =0. Sin-
gle and mixed curvature transitions yield A(ry) — A(7) = A(70)[C(7)/¢(70)],
which follows from (6.3b); note that ((7)/((79) > 1 for all 7 > 7y. Letting
7o — —o0 and 7 — oo shows that the initial value of A (i.e., lim,_,_~ A(7))
and the final value of A (i.e., lim,;_,o, A(7)) are related by the growth factor
g; recall that g is given by

Cltu+d?
S l-u+tu?’

where wu is the (initial) Kasner parameter of the curvature transition; see
(6.5). In condensed form, we write

A gA (9.2)

for the effect of a curvature transition on the quantity A. Recall that, since
u € (1,00) for single and mixed curvature transitions, we have 1 < g < 3.

Solving equation (9.1) along a sequence of transitions St on O amounts
to iterating (9.2), which we will elaborate on in the following. (Recall that,
in our convention, Sy contains only Bianchi type I and II transitions, unless
otherwise stated.) For the [th curvature transition of a sequence Sy, the
growth factor is given by

14w +u? 14w + uf -
twt l2 _ tut 52 r?,  where 1) := (min{u; — 1,1}) E
L—w+up  1+wgr +up,

g1 =
(9.3)

the quantity r; satisfies r; > 1, where r; = 1 whenever u; > 2 — this is the
case when u;11 = u; — 1, see (6.4). We define the growth function as the

product of the growth factors: we let G : N — R be defined by G(0) = Gy =
1 and

H ﬁ Lrutu N\, <1+uo+u0>1—[1
9= 1+uj+1+u?+1 J 1+ul+ul

7=0

Since g; > 1,7; > 1 for all j >1 (and g; A 1 as j = 00), G| increases
rapidly with [ and G; — oo with [ — oo. In our convention, (G; denotes the
value of the growth function at the beginning of the lth curvature transition;
see figure 6.
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Figure 6: Transition counting conventions.

Iterating (9.2) along [ curvature transitions of the sequence Sy thus yields
-1

A(] — G(l) AO = Gl AO = ng Ao; (9.4)
j=0

hence A is a function whose rate of growth is described by the growth func-
tion G. Finally, in order to write equation (9.4) in proper notation, let A;
denote the value of A at the beginning of the ith transition 7; of the sequence
St =(To,T1,Ta,...); then we can write

A; = Gy Ao; (9.5)

recall that [(i) = [; is the curvature transition index associated with S, i.e.,
the number of curvature transitions among {7y, 71,..., 7}, see Section 7.
The use of this notation appears superfluous in the present context, since
the function A does not change under frame transitions and it would thus
suffice to focus on the curvature transitions [ =0,1,2,... of S7; however,
next we will discuss a more general differential equation whose solutions are
affected by frame transitions.

Consider the following auxiliary differential equation, which is frame
dependent:
9.B =2(1—-%%)B + 2R3 — 2R?; (9.6)
as with (9.1), our aim is to integrate this equation along a sequence of
transitions St.

For simplicity, let S = (7o, 71, T2, - ..) be a sequence of transitions that
does not contain Ty, and Ty, g, transitions; hence Ny = 0 along S7, so that

0-(83 —2) =2(1 — £%)(Xp — 2) + 2R2 — 2R?

holds for each transition 7;, which follows from (5.6b) and (5.6j). Conse-
quently, (X2 — 2) is a particular solution of (9.6).

The general solution for B along &7 can thus be constructed explicitly as
the superposition of the particular solution (X9 — 2) and the general solution
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of the homogeneous equation. Since the latter is given by (9.5), we obtain
Bi = (32(i) — 2) + Gy [Bo —(22(0) = 2)|, (9.7)

where 32(i) denotes the value of ¥y after i transitions (which, by the con-
vention illustrated in figure 6, is the value at the beginning of the transition
with index 7). In the generic case, i.e., By # (X2(0) — 2), we therefore find

B; ~ const Gy (i — o0) (9.8)

with const # 0; in particular, |B;| — oo asi — co. The result (9.7) is slightly
modified when 7y, and 7y, r, transitions are taken into account, see Appen-
dix E; however, the generic behavior of B as described by (9.8) remains
unchanged.

In Section 7 we have argued that generically sequences of transitions do
not contain double curvature transitions; in accordance with these consider-
ations, we have hence focused our analysis on sequences S7 of this type. In
the remainder of this subsection, however, we discuss non-generic sequences,
in particular in view of the growth associated with double curvature transi-
tions.

From Section 6 and Appendix D we recall that the equation 0,(2 — ¥3) =
2(1 — ¥2)(2 — ¥3) holds along double curvature transitions (i.e., Bianchi
type Vlp orbits) and analogously along Bianchi type VIIy orbits. Con-
sequently, we find that A(7) = A(79)(2 — 33)(7)/(2 — X3)(70); the behav-
ior of B is identical, since setting (R;, Ra, R3) = 0 reduces (9.6) to (9.1).
Since the a-limit of all orbits is a fixed point with 33 = 2, the expression
(2 —233)(1)/(2 — X3)(70) diverges as 1) — —oo. The growth factor g asso-
ciated with a Bianchi type VIy/VIIy orbit can thus be considered as being
infinite. It is immediate from these considerations that the growth func-
tion is ill-defined along sequences of transitions that contain double curva-
ture transitions; it is natural, however, to consider a “piecewise” growth
function: following the remarks of Section 7 we choose to view double cur-
vature transitions as repeated interruptions of a regular Kasner sequence.
Thereby the concepts introduced in Section 7 (i.e., eras, small/large curva-
ture phases) are still relevant; the interruptions, however, correspond to two
successive eras not being “causally connected” — the initial Kasner param-
eter u'" of an era that arises from the final state of a Ty, n, transition is not
related to the Kasner parameter of the preceding era. This suggests that we
treat sequences of transitions that contain double curvature transition as a
concatenation of “pieces” of standard Kasner sequences glued together by
TN, N, transitions. Along these fragments the growth function is defined in
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the standard way; however, joining the pieces is not possible, since this is
connected with a divergent growth along the joining 7x,n, transition.

In anticipation of our considerations in Section 10, we conclude these
remarks by considering orbits that are not exactly of Bianchi type VIy/VIIy,
but arbitrarily close (in a higher dimensional state space where the a-/w-
limits of the VIp/VIIj orbits are saddles). It is immediate that the growth of
A and B along such orbits can be arbitrarily large depending on the degree
of the type VIy/VIIy approximation.

9.2 Properties of the growth function

Since the growth function is the key element in the description of the behav-
ior of A and B, it is appropriate to study this function in more detail. Let
us begin by investigating the properties of the growth function G(I) along
a sequence of transitions S with regard to the concepts of small and large
curvature phases, and eras.

Consider first a small curvature phase [liy, lout], Wwhere we assume 7, > 2.
For all [ the growth factor g; is given by

1+ul+u12 B 1—|—ul+u12

= , 9.9
l—ul—f—ul2 1+ul+1+ul2+1 ( )

g1 =

see (9.3). The growth function satisfies the recursive relation G;11 = Gyg;,
so that we obtain

G Gllows +1) + ) ’H Lbu o (un)? T () ()
g = ~ ’
(9.10)

where the approximation requires 7, > 1. Equation (9.10) describes the
growth of G(I) during one small curvature phase.

In a large curvature phase [l;, l¢], since u; < n,, for all I € [l;,l¢], we have

1+UZ+U1 1+77u+77u

=C,>1; Cy~1+2n " ifn, > 1.
1_ul+ul 1_77u+77u p p UM U

(9.11)

g1 =
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Therefore, in a large curvature phase, the growth function G(I) behaves
like

G(1+1) H g > G(I;)(Cp)!Hh, (9.12)
i.e., we observe exponential growth of G(l) with a given base Cj.

Let us now discuss the growth of G(I) in an era [lin, lout]. We define the
era growth factor g as

QZM: loﬁlgl g, = 1+uin_|_(uin)2 1W
o e A

(9.13a)
so that
1 in in)2
g> - ;(“ )’ (9.13b)
Consider the partition of a sequence into ¢ =0,1,2,... eras. For the era
with number a, the era growth factor g, can be written as
1 in in)2 ) . in 2
0o = + U, + (Ua) _ (1 + Ul}; + (u1;1)2) ( a—l—l) ) (914)

1 —uQt + (ugnt)? 1+ ua+1 + (u a+1)2

The era growth function G is defined as the product of era growth factors.
From G,4+1 = Gag, We obtain

in)2

a—1 uin uin 2 U
g( ) ga—QOch—gO (H( m) ) |:1+ ((1)111;)1_)2( O) 1+u(i(§‘:-(uig)2 )

c=0

where we set Gp = 1 by convention The expression in brackets is a number
in the interval (1/3,3); when «}} and 'y are large the number is close to
one.

Let us now compute the expectation values of the growth factors. The
era growth factor g, cf. (9.13), does not possess a finite expectation value.
This is because the equations contain u'® (=»"1) and (u™™)%:

1 1
(u™) = /0 w(s)se L dse =00, ((u™)?) = /0 w(3) 2 dze= 00 = (g)= o0,

where we have used the probability density w(s) from Section 8. The same
result applies for the growth factor describing the growth of G in a small
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curvature phase, cf. (9.10). However, the expectation value of the logarithm
of the era growth factor can be estimated straightforwardly:

1
(logg) > —log3 —|—/ w(s¢)log(1+ 21 + 37 2)dse = 1.77. (9.15)
0

By definition, the logarithm of the era growth function G is the sum of
the logarithms of the era growth factors, therefore we expect logG to grow
according to

a—1
(logGa) = <Zloggc> =a(logg) > 1.77a.

c=0

For further results on growth functions, see Appendix F.

10 Asymptotic shadowing
10.1 Shadowing — asymptotic sequences of orbits

The subsequent considerations constitute the core of our analysis: we pro-
vide evidence that the asymptotic dynamics of solutions of Einstein’s equa-
tions which exhibit a generic spacelike singularity is represented by sequences
of Bianchi type I and type II transitions.

The basic assumption we make is that a solution of Einstein’s equa-
tions X (¢, 2") that possesses a generic spacelike singularity is asymptotically
silent. We further assume that the dynamics of X (¢, %) along a timeline
associated with a generic spatial point z° of such a singularity is asymp-
totically local. This entails that the asymptotic behavior of the solution is
described, with an increasing degree of accuracy, by the dynamics on the SH
part of the silent boundary. The SH silent boundary consists of an infinite
number of copies of the finite dimensional SH state space that is spanned
by the state vector § = (X,3, Ao, Naog), where the spatial coordinates act
as the infinite index set. Our assumptions thus lead to the conjecture that
the asymptotic behavior of the solution X (7) at a generic spatial point !
is governed by the dynamics on the SH state space.

In Section 5 we have analyzed one structure on the SH silent boundary
that is expected to be of fundamental importance: the Kasner circle of equi-
librium points K©. The local dynamical systems analysis of K© suggests that
E," — 0 as 7 — 0o, which indicates intrinsic consistency of our considera-
tions. Furthermore, we are led to the conjecture that there exists a “stable
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part” Sgtaple Of the state vector S, whose variables vanish in the asymptotic
limit, i.e., Sstable = (N12, Nog, N31, Ay) — 0 as 7 — oo. This conjecture is
intimately connected with the assumption that the asymptotic evolution of
a generic solution is largely dominated by Kasner states, in the sense that
the solution spends an increasing amount of 7-time in a small neighborhood
of the (non-flat part of) Kasner circle.

Since we expect Sgtaple — 0, it is the asymptotic behavior of the remaining
“oscillatory variables” Sosc = (Xa, Ra, N1, N2) that represents the essential
asymptotic dynamics of the solution X (7). Under the above assumptions,
the Codazzi constraints (3.8c) imply that

N1R2 — 0, N2R2 — 0, (Nl — N2)R3 —0 (10.1)

as T — 00, which is to be compared with (5.6k’); in the same limit we obtain
that Sosc satisfies the oscillatory dynamical system (5.6a) to (5.6h) and the
constraint (5.6j). This suggests that the asymptotic dynamics of Sy =
(Xa, Ray N1, N2) is governed by the dynamics on the oscillatory subset O,
which we have shown to be represented by Bianchi type I, II, VIj transitions
— frame and curvature transitions — and Bianchi type VIl orbits. In brief,
asymptotically, the state vector Sygc of a solution X shadows the flow on O.

Along the orbit Sos(7) the SH Codazzi constraints (5.6k) are satisfied
only in the limit 7 — oo; hence the disconnectedness of the Bianchi compo-
nents of the oscillatory subset O is irrelevant for the solution Spsc(7). As
an immediate consequence of asymptotic shadowing it thus follows that in
the asymptotic regime 7 — 0o, the orbit Susc(7) resembles a sequence of
Bianchi transitions and orbits: Sos.(7) can be partitioned into a sequence of
segments, where each segment is associated with a heteroclinic orbit on O
(of type I, II, VI, or VIIy). Two subsequent segments of Sysc(7) are joined
smoothly in a neighborhood of an equilibrium point of the Kasner circle.!?
As 7 — 00, the segments of Sysc(7) are approximated to an increasing degree
of accuracy by heteroclinic orbits on O; simultaneously, the joining of seg-
ments occurs increasingly closer to K©; hence Sosc(7) is described by a
sequence of Bianchi transitions and orbits with an increasing degree of accu-
racy. We may call this representation of the orbit Sesc(7) in the asymptotic
regime an asymptotic sequence of O-orbits ASo (or, for brevity, simply
asymptotic sequence). Note that the concept of asymptotic sequences ASp
gives a precise meaning to BKL’s “piecewise approximations”.

12The partition of Sosc(7) into segments involves a certain arbitrariness: which point
in the neighborhood of K© is chosen to be defined as the end point of one transition and
the initial point of the subsequent one is a matter of convention; however, asymptotically
any reasonable convention leads to the natural segmentation into the heteroclinic orbits
on O.
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As it will turn out in the following, generic asymptotic sequences ASp fall
into segments that correspond to Bianchi type I and II transitions; it is
suggestive to call asymptotic sequences of this kind asymptotic sequences
of transitions AS7. With slight abuse of notation we write AS7 = (7;);en,
where 7; does not denote an exact transition in present context, but a seg-
ment of ASp, which we can view as an approximate transition.

However, a priori we cannot exclude that Bianchi type VIj transitions
(double curvature transitions) and Bianchi type VI orbits play an impor-
tant role in the context of asymptotic sequences ASp. A segment of ASH
that is approximated by a type VIp/VIIy orbit — an approximate type
VIy/VIIy orbit in our nomenclature — is expected to connect a neighbor-
hood of the point T3 with a neighborhood of one of the fixed points on
sectors (312) or (321) on K©. Clearly, since the accuracy of the approxima-
tion, i.e., the degree of shadowing, improves as 7 — oo, these neighborhoods
are expected to shrink with increasing 7. However, this does not automat-
ically lead to an exclusion of type VIy/VIIj orbits from generic asymptotic
sequences. Instead, the exclusion of type VIp/VIIy orbits follows from a
bootstrap-like argument which we present next.

10.2 Ry —-0and Ny -+ 0as ™ — o0

Consider an asymptotic sequence ASp. Equations (5.6a) to (5.6h) imply
that the product (R;R3) satisfies

Or(RiRs) = 4(1 = S*)R1Rs + (X1 — E3)Ri Ry + 2(R3 — R R»
with increasing accuracy as 7 — oco. Using the auxiliary quantity B, which
is subject to the auxiliary equation (9.6), we obtain an identical equation
for (R2B), i.e.,
Or(RoB) = 4(1 — £*)RyB + (£1 — £3)RoB + 2(Rj — RI)R» .
By choosing appropriate initial data for B, it follows that (ReB) coincides
with (R;R3). Accordingly we obtain
RyB = RiR3 or |Ro|~ |RiRs|B™". (10.2)
Generically, along an asymptotic sequence of transitions AS7, the quan-

tity B satisfies B; ~ const Gy(;) in the asymptotic regime ¢ — oo, where G;
is the growth function of Section 9; this is because AS7 is approximated
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by a sequence of transitions S in the limit 7 — oo. Along an asymptotic
sequence ASp (which, in contrast to AS7, might also contain type VI/VIIy
orbits), the behavior of B described by the growth function holds at least
piecewise, where the interruptions are associated with the approximate type
V1y/VIIj orbits of ASp; when the solution shadows a Bianchi type VI/VIIy
orbit, a large increase in B ensues, see Section 9. Since type VIy/VIIj orbits
thus strengthen the growth of B in relation to the normal growth described
by Gj(;), we conclude that the relation B; ~ const Gj(;) can be regarded as
representing a lower bound for the growth of B.

We can therefore write (10.2) as ‘Rg‘i ~ const |R1R3‘iGl_(i1) as i — 00, or
in simplified notation,

| Ra| ~ const ‘Rle‘G_l. (10.3)

Since |RjRs3| is bounded because of the Gauss constraint (5.6j), equa-
tion (10.3) implies that |Rs| — 0 as 7 — o0, i.e., generically R is asymptot-
ically suppressed. Analogously, |No| — 0 as 7 — oo, which we show in the
following.

Consider the product (N1 R3); from (5.6a) to (5.6h) we have

O (N1R3) = 2[2(1 — £%) — £% — 53] N1Rj — 4R Ry R3Ny.

Since, generically, Ry ~ const (R1R3) G~! by (10.3), we obtain

Or(N1R3) =2[2(1 — ¥%) — $* — 5] NiR; — 4RIG™H (N1 R3).  (10.4)

In the asymptotic regime 7 — oo the last term in (10.4) vanishes; in fact,
by using the results of the previous sections we show in Appendix F that
the term falls off rapidly enough so that

O (N1R3) =2 [2(1 — $%) — £% — 53] N1 R3 (10.5)

holds asymptotically. Similarly, using the auxiliary quantity A leads to the
equation
Or (N2 A?) =2[2(1 — B2) — £2 — 55] N, A?

for (N2 A?). By choosing appropriate initial data for A, we conclude that

|N2A2| ~ const |N1R§|;
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equivalently, by using (9.5), we can write |Nal; Nconst\N1R§|7;Gl_(i2), or
simply,
|No| ~ const | N1 R3|G~2. (10.6)

Since |R2| and | Ny — N| are bounded because of (5.6), equation (10.6)
implies that, generically, |[No| — 0 as 7 — oc.

10.3 Exclusion of R; and N,

Here we establish the following result: the statement (Ra2, N2) — 0 (7 — 00)
does not merely mean that the amplitudes in Ry and Ny are decreasing, but
it also leads to a complete or stochastic exclusion of the shadowing of orbits
that involve Ry or No, i.e., TRy, TNy, TRoNos TR1RoRss TN, N, transitions and
Bianchi type VIIj orbits.

In Section 6 and Appendix D we have proved that there are no Bianchi
type VIy (7Tn,n,) and VIIp orbits with arbitrarily small amplitudes: there
exists € > 0 such that max |Na| > € uniformly for all type VIp/VIIj orbits.
Since, generically, |Na| — 0 along asymptotic sequences ASp, this entails
that Bianchi type VIy and VIl orbits cannot be contained in generic
sequences ASp in the asymptotic regime, as for sufficiently large 7, |Ng]
satisfies | Na| < €. Since the shadowing of Bianchi type VI and VIIj orbits
is thus completely excluded, asymptotic sequences ASp are sequences of
transitions AS7 which consist of Bianchi type I/II transitions only. In brief,
a generic ASp must be an AS7.

Let us now consider the remaining transitions that involve the excitation
of one of the variables Ry or Na, i.e., Try, TNys TRyNo> TRy Ry R5 transitions.
Consider, for instance, the case of Tg, transitions: for a given Tg, transition,
the quantity |Rz| goes through a finite maximum r along the transition
orbit, which can be computed via the Gauss constraint (5.6j). However,
since |R2| — 0 as 7 — oo by (10.3), |R2| can never reach the value 7, and
hence the given transition cannot take place when 7 is sufficiently large.

It follows that more and more 7g, transitions are excluded as 7 — oo, so
that merely transitions in increasingly smaller neighborhoods of Ty and Q2
are possible; however, it is a priori not clear whether these transitions “die
out” completely after some time, or if there are infinitely many as 7 — oo.
Consider, e.g., a neighborhood of the point Ts: the repeated occurrence of
alternating sequences of Ty, and Tg, transitions (generating small curvature
phases) is quite plausible a priori, particularly in the light of the statement
that small curvature phases dominate in sequences of transitions S; and
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thus in the asymptotic dynamics of AS7; see the discussion in Section 8.
However, in the following we establish a proposition that implies that 7g,
(and Ty, ) transitions are excluded stochastically for generic sequences AS7:

Proposition (Stochastic exclusion of Ry and Ni). A generic asymptotic
sequence AST contains a finite number of Try, TRyRoRss TNy, and Tn,R,
transitions only.

As for the previous results, the word “generic” is important also in this
context; there might exist sequences AS7 that contain an infinite number
of transitions that involve Ry or No; however, these sequences form a set of
measure zero in the space of all sequences. Recall further that asymptotic
sequences of transitions ASy are the generic case of asymptotic sequences
ASo; hence, in the proposition it is equivalent to write ASe instead of AST.

The validity of the proposition relies on stochastic arguments, which we
present in the remainder of this subsection. For simplicity we focus on the
statement that there is a finite number of 7g, transitions in a generic asymp-
totic sequence AS7. The treatment of the other transitions is analogous.

Consider an arbitrary 7g, frame transition. Along the Tg, orbit the
quantity |Ra| goes through a maximum 7 that is determined by the Gauss
constraint (5.6j); it is straightforward to express r in terms of the Kasner
parameter u that characterizes the 7Tg, transition: in particular, if v > 1
(which corresponds to a 7Tg, transition that takes place in a small neigh-
borhood of T5), we obtain r ~ 3u~!; if (u — 1) < 1, then the corresponding
Tr, transition is close to Q2 and r ~ (u — 1); cf. figure 3.

By equation (10.3), along AS7 the quantity |Ra| decreases with time at
a rate given by |Ral;;) Gl_l; hence, a necessary condition for an (approx-
imate) Tg, transition to take place after the [th (approximate) curvature
transition of AS7 is that u be sufficiently large (or (u — 1) be sufficiently
small):

T
An occurrence of a T, transition close to { QQ} is only possible if
2

-1 —1
{ul <cG, }’ (10.7)

ul—1<cGl_1

where ¢ is a constant. Based on these considerations, we find that estab-
lishing the proposition amounts to proving that for generic sequences the
conditions in (10.7) are satisfied only for finitely many [ as | — oo. For sim-
plicity, we focus on the first case of (10.7), i.e., we investigate the condition
ul_1 < cGl_l; it is straightforward to adapt the results to the second case.
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Since asymptotic sequences AS7 shadow sequences of transitions Sy, we
can adopt the concepts introduced in Section 7; in particular, to obtain a
more transparent formulation of the problem, we make use of the concept of
eras: we view AS7 as a succession of eras [(lin)a, (lout)a] (¢ =0,1,2,3,...),
and denote by s, € (0,1) the value of u~! at the beginning of era a, i.e.,
s, = (u™)~L. Furthermore, we define d, to be the value of the function on
the r.h.s. of condition (10.7) at the beginning of era a, i.e.,

5 = Gy, = ¢l = ¢Ya
where G, is the era growth function defined in Section 9. Without loss of
generality, we assume the initial value g of the sequence to be sufficiently
small, i.e., 0p < €. Based on these concepts, the first case of (10.7) translates
to the following necessary condition for the occurrence of Tp, transitions:

An occurrence of a Tg, transition close to Ty in era a is only possible if
#, < 6q. (10.8)

To establish the proposition we show that for generic sequences the con-
dition 7, < ¢, is satisfied for a finite number of eras only.

The arguments we present in the following are stochastic in nature. Our
basic assumption is that we can model the sequence (3¢,)q4en by a random
variable s on (0, 1) with a well-defined probability density. The justification
for this assumption and its origin are discussed in Section 10.4 below. For
the subsequent computations, we employ the density w(s) that describes
the stochastics of Kasner sequences; however, the basic qualitative results
are largely independent of the concrete form of the probability density, see
the remarks at the end of this subsection.

Since s is a random variable, the sequence (3¢,)qen represents an infinite
series of trials with ». The sequence (d4)qen, on the other hand, represents
a sequence (0, d,) of intervals whose length decreases as a — co. The condi-
tion (10.8) thus reads: the number of eras that can contain Tg, transitions
coincides with the number of “hits” s, € (0,4d,) as a — oco.

In Appendix G we demonstrate that the behavior of the sequence (d,)aen
is decisive for the “hit rate”: J, ~ a~! leads to a diverging expectation
value for the number of hits as a — co. In our case, this would lead to
the conclusion that an infinite number of eras can contain 7g, transitions
(although the recurrence intervals between 7, transitions would become
increasingly large). A sequence d, ~ a2, on the other hand, generates a
finite expectation value; in that case only a finite number of eras is expected
to contain Tg, transitions.
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The present situation is more complicated since (d4)qen 1S N0t given explic-
itly, but is instead determined by a stochastic process. We have the relation

Gar1=cGoy =Gy '8, ! = g4 0a,
see Section 9, and by using (9.13) and (9.14),

3 3522
14 it 4 (uip)? ™

Oat+1 < = .
a+1 1+%a+%3 a

Equivalently we can write

log 841 — log 6, < log 3 + log »2 — log(1 + 3¢, + 32).

Employing the probability density w(s) for s, see (8.4), we find an esti-
mate for the expectation value of log d4+1/dq,

1
(log 9441 — logd,) < log3 +/ w() (log 5* — log(1 + 5 + 3%)) d«
0
~—1.77 < —1,

see also (9.15). Accordingly, for a > 1, we expect

(logd,) < —a +logdy < —a + loge.

Consequently, the condition (10.8), i.e., 3, < J, (or, equivalently, log s, <
log d,) translates to the following statement:

An occurrence of a Tg, transition close to T in era a is only possible if

2, < e 9.

Based on these considerations, we can compute the probabilities for “N
hits” (cf. Appendix G). For a>> 1, the probability that » € (0,ee™?) is
given by

—a

P(s € (0,ee™%)) = /066 w(se)dsx =: 0, = cw(0)e°.
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For a series of A trials, we find that the probability P4(0) (“no hit”, i.e.,
the probability for the scenario » ¢ [0,ee™ %] Va =1,..., A) is given by
A _ A
log P4(0) = Zlog(l — 0a) & Z (—ew(0)e™® + O(e%e ™))
a=1

1—e 4

~ —ew(0) =y

Similarly, the probability for “one hit” is

and the probability for “two hits” in a series of A trials, P“(2), is given by

~ 2 ~ 2
PA(2) b O 1 ba ba
PA(O)_Zl—Sal—SbN2 Za:l—ga Ea: 1-94,

a<b
1 1—e 472
< 3 [aw(())il o } .

Letting A — 0o, we obtain
p?
P*0)=e?=1—p, P*®1)<p, P™?2)< EXE (10.9)

where p = ew(0)(1 — e~1)~1. We conclude that the expectation value of the
number of hits is finite:

(#hits) = ZiPw(i) < Zz% =pef < oo.
i=1 i=1

Since the “number of hits” corresponds to the number of eras that con-
tain 7g, transitions, we have shown that the number of eras that contain
Tr, transitions is expected to be finite and thus we have established the
proposition.



THE COSMOLOGICAL BILLIARD ATTRACTOR 351

It is important to stress that the arguments of the proof rely on the
assumption that the sequence ASt is generic. By stochastic methods, it is
impossible to exclude that there exist (non-generic) sequences that contain
an infinite number of Tr, (or Ty, TNoRss TR RoRs) transitions.

We conclude this subsection with the observation that the above results
are to a large extent independent of the concrete form of the probability
density w(); e.g., it is sufficient to assume that w(0) is finite to obtain the
result (10.9). This is essentially due to the rapid decrease of d,, which is an
exponential decay that stems from the (era) growth function.

Let us finally summarize the results of this subsection: Bianchi type VI
and VIIj orbits are excluded from generic asymptotic sequences ASp; there-
fore, a generic asymptotic sequence ASp is an asymptotic sequence of tran-
sitions AS7. Generically sequences AS7 do not contain transitions that
involve an excitation of the variables Rs and N», i.e., the transitions Ty, g,,
Trys Tny, and Tg, R,y do not appear. The arguments leading to the stochas-
tic exclusion of Ry and Ny are based on the stochastic properties of asymp-
totic sequences; next we discuss the stochasticity of asymptotic sequences
in more detail.

10.4 Randomized Kasner sequences

In Section 7 we have seen that generic sequences of transitions Sy are asso-
ciated with Kasner sequences (u;);en, which are determined by the recur-
sion (7.1), where the initial value ug € Q. In Section 8 we have presented
a stochastic analysis of Kasner sequences: the collective distribution of all
sequences (ui]r-l)jeN (or, equivalently, (s¢)jen = (uzn)J_elN) possesses a prob-
abilistic description in terms of a probability density w. In the context of
asymptotic sequences of transitions AS7, however, we do not deal with exact
Kasner sequences; in the following we investigate the resulting consequences

for the probabilistic aspects.

An asymptotic sequence of transitions AS7 generates an approximate
Kasner map, i.e.,

w — 1 if u > 2,
~ 10.10
s {(ul —D)7l i<y <2 (10.10)

Since asymptotic sequences AS7y shadow sequences S7 to an increasing
degree of accuracy, the errors in (10.10) converge to zero as 7 — oo. We
presume that the nature of these errors is random, which is due to the fact
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that the approach AS7 — Sy is effectively unpredictable. This random
element in the approach AS7 — St is the key to a probabilistic descrip-
tion of an approximate Kasner sequence (10.10): while an exact Kasner
sequence might not be described by the collective probability density w(x)
(or alternatively w(s)), the random errors in (10.10) smear out the prob-
ability distributions of exact sequences over the entire collective; we thus
expect the sequence (), en associated with an individual generic random-
ized asymptotic Kasner sequence to be described by the probability density
w(s¢) of Section 8. In brief, we can regard (10.10) as a randomized asymp-
totic Kasner sequence which admits a probabilistic description in terms of
the density w(s).

The errors in (10.10) are not uniform in u (i.e., independent of the value
of u): the Kasner map u+ u— 1 (or u+ (u— 1)71) is relatively robust
when u takes a value that is far from the extremes (which are u =1 and
u = 00), i.e., when u € (1 +¢,e7!) for some ¢; in contrast, the errors in the
Kasner map might be large when u~! or (u — 1) is small. To see this, we con-
sider the (approximate) curvature transitions that generate (10.10). When
u € (14 ¢,e71), the associated curvature transition connects two points on
the Kasner circle K© where the (angular) gradient of u (i.e., the gradient
of u along the Kasner circle) is comparatively small, see figure 1(b). A
perturbation of the curvature transition, i.e., a deviation from the exact
orbit, thus leads to a small error in the Kasner map. In contrast, when
u > 71, the associated curvature transition takes place in a small neighbor-
hood of one of the Taub points, where the angular gradient of u is large,
see figure 1(b); hence, any deviation from the exact curvature transition
orbit leads to a large error in the u-map. This effect is amplified by the
local characteristics in the approach AS7 — S7: we expect the accuracy of
the shadowing to be smaller in the neighborhood of the Taub points (and
the points Q) than elsewhere. The dynamics in the neighborhood of the
Taub points is rather complicated, which is due to the fact that these fixed
points are not transversally hyperbolic: the approach to the attractor is
expected to be rather slow, and for fixed points close to the Taub points,
the actual dynamics is expected to display relatively large deviations from
the linearized dynamics (more accurately described by “eras of small oscil-
lations”). It is evident that this leads to an additional blow-up of errors in
the u-map for large u.

Based on these consideration, we expect that the Kasner map is not
well-defined unless u € (1 +¢,e71); only for this “safe range” of u we can
assume that (10.10) holds. However, in the asymptotic regime the safe
range increases, i.e., ¢ — 0 as 7 — oo, which is simply because AST — S7.
Suppose that the safe range grows rapidly enough. Then we can draw the
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following conclusion: the probability that the sequence (u;);cr ever leaves
the safe range is zero. To see this, we use the same arguments that led to
the stochastic exclusion of Ry and Nz: the “number of hits” s € (0,¢;)
(corresponding to the Kasner sequence leaving the safe range) has a finite
expectation value.

It is plausible that the increase of the safe range is in fact an exponential
growth, since it is directly related to the accuracy of the shadowing. The
decay rates of Ry and N» suggest that the overall accuracy of the shadowing
behaves in the same way, which in turn leads to the required rapid growth
of the safe range. Presuming the correctness of these considerations, we find
that generic asymptotic Kasner sequences are indeed described by (10.10),
where the errors converge to zero (uniformly) as 7 — oco.

11 The billiard attractor

In the previous section we have argued that for generic solutions the variables
Ry and Ny are not excited in the asymptotic regime, i.e., we have established
the exclusion of transitions that involve the variables Ro and No from generic
asymptotic sequences of transitions. Accordingly, the essential asymptotic
dynamics of generic solutions X (7) is described not by the full oscillatory
dynamical system (5.6a) to (5.6h), but instead by a reduced system that is
obtained by setting Ry = 0 and No = 0.

11.1 The billiard subset

We define the billiard subset Op as the invariant subset (Ry = 0) A (N3 = 0)
of the oscillatory subset O, which leaves Syiiara = (21, X2, X3, R1, R3, N1)
as the state vector.

The system of differential equations on Op is given by

0,51 =2(1 — ¥, — 2R3 + 2N7, (11.1a)
0;89 =2(1 - £%)%, — 2(R} — R3) — 3N, (11.1b)
0,83 =2(1 — £?)E3 + 2R} — N7, (11.1c)
O-Ry =2(1 — SRy + (32 — T3) Ry, (11.1d)
0-R3 =2(1 — S*)R3 + (X1 — X2) R, (11.1e)
Or Ny = —2(2% + £1) Ny, (11.1f)
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where
¥? = L(21 4+ 23 + 23 + 2R? + 2R)).

1
6
The Gauss constraint (5.6j) reads
1-2*- LN =0, (11.1g)

and the Codazzi constraint (5.6k) takes the form
Rs Ny = 0. (11.1h)

Due to the Codazzi constraint, the billiard subset consists of two invariant
components: the component Nj = 0 is the Bianchi type I subset Bg,g,,
which consists of K° U Bg, UBgr, UBg,gr,; the component Ny # 0 is the
Bianchi type II subset, which is given by Br, UBn, UBgr,n,. The flow
of the dynamical system on these subsets has been analyzed in Section 6.
A depiction of the flow on the boundary subsets Bg,, Br, (single frame
transitions Tg,, Try) and By, (single curvature transitions 7y, ) is given
in figure 3; for the flow on Br,r, (double frame transitions Tg,r,) and
Br, N, (mixed curvature transitions 7Tr, n, ), see figure 4. The analysis of the
stability of the fixed points on K©, as regards Op, is summarized in figure 7.

A sequence of transitions on the billiard subset, which we denote by Br,
is an infinite concatenation of transition orbits on Op. Each transition 7;
of By is either a frame transition Tg,, Trs, TR, Rs, OF & curvature transition
Tny s Tryn, - It is understood that the final state of each transition 7; (which
is a fixed point on K©) coincides with the initial state of the transition 7;;1.
Clearly, billiard sequences By can be viewed as a special case of the more
general sequences of transitions S on O.

Figure 7: Active triggers on K© associated with the billiard subset; note
that R3 N1 =0.
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11.2 The asymptotic suppression of multiple transitions

The considerations of Section 10 can be summarized as follows: the dynam-
ical evolution of generic solutions X is asymptotically silent and local, and
the asymptotic behavior along generic timelines is governed by the dynam-
ics on the SH silent boundary. At a spatial point z?, the asymptotic evolu-
tion of X (7) is thus represented by a solution S = (X3, Aa, Nag) of the
finite dimensional SH dynamical system. The stable variables Sgtapie =
(N12, No3, N31, A,) vanish in the limit 7 — 0. Among the remaining oscil-
latory variables, which are Sosc = (X4, Ra, N1, N2), two more variables con-
verge to zero: Ry and No. This leaves the billiard variables Shyiiarda =
(X4, R1,R3,N1) as the variables that capture the essential asymptotic
dynamics.

The billiard variables are constrained by the asymptotic condition
N1R3 — 0 (7’ — OO),

which is the asymptotic Codazzi constraint that ensues from (10.1). In
the same limit the variables Shijiarq satisfy the billiard system (11.1a) and
(11.1f) and the Gauss constraint (11.1g) holds. The asymptotic evolution
of Shilliara 1s thus governed by the dynamics on the billiard subset Og; in
other words: the state vectors Spipiarq Of solutions X (7) shadow sequences
of transitions By on the billiard subset. Accordingly, in the asymptotic
regime, the orbit Spiniard(7) can be partitioned into a sequence of segments,
where each segment is associated with a transition on Op. We call this
representation of the orbit Syiiard(7) an asymptotic billiard sequence ABr.
Since a billiard sequence By on Op is a concatenation of transitions of the
types TNy, Trys TRs» TrsRy> TNy Ry, an asymptotic billiard sequence AB7 is
a concatenation of approximate transitions, i.e., AB7 = (7;);en, where each
T; denotes an approximate transition in the present context.

In asymptotic billiard sequences AB7, however, multiple transitions are
suppressed asymptotically, i.e., transitions of the types Tr,r,, Tn, r, do not
occur in the asymptotic regime. In the following we discuss this statement;
however, we focus on the simpler case of Tr,r, transitions.

From the differential equations (11.1d) and (11.1e), we obtain
R R
0y log - 3% and thus log 13 / Yo dr,
Rs Rs

where we assume for simplicity and without loss of generality that Ry,
R3 > 0. In an asymptotic billiard sequence AB7, the variables R; and R3 (as
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well as N7) are characterized by oscillations between zero and finite maxima
(which are bounded above via the Gauss constraint); in particular, Ry /4 0
and Rz 4 0 as 7 — oo (as well as N1 4 0). For Tg, transitions, while R;
is of order unity, R3 is small, so that R;/Rs is large; conversely, for Tg,
transitions, Ry/Rg is small.

Consequently, log(R1/Rs3) and thus [ X dr is a function that oscillates
in the range (—00,00). The central property of these oscillations is that the
amplitude increases (rapidly) with increasing 7, which is due to the increas-
ing accuracy of the shadowing. In the asymptotic regime we can use a simple
model for these oscillations, which is based on the observation that the orbit
AB7 spends an increasing amount of 7-time in a neighborhood of the Kas-
ner fixed points, while each transition always takes a fixed A7 (depending
on the transition). We obtain [ X dr = Y (22);(A7);, where i € N consec-
utively numbers the Kasner fixed points that the orbit passes, and where,
accordingly, (AT); is the time the orbit spends in a neighborhood of the
Kasner point i. The quantities (X2); range in (—2,2); in conformance with
our assumptions, we expect the distribution of the (¥2); in (—2,2) to have a
probabilistic description. Therefore, the sum > (¥2);(A7); can be thought
of as arising from a stochastic process resembling a random walk > s;; in
the present case, however, the step size s; is not fixed, but itself random;
most importantly, the step size increases with the number of steps taken.

The growth of the step size is of crucial importance. Consider an interval
(—a,a) (where a is small compared to the first step size). If s; increases
slowly with ¢, the probability that """ | s; € (—a,a) for some n (recurrence
probability) is one. If the growth is sufficiently fast, however, this probability
is zero; this is case, for instance, if the growth rate is geometric. The behavior
of the quantity log(R1/R3) is determined accordingly: for every a, there
exists 7, such that the average step size is large compared to a for all 7 > 7,;
the probability that log(R;/R3) lies in the interval (—a, a) for some 7 > 7, is
expected to vanish; this is because the step size increases rapidly, which is in
turn due to the expectation that the orbit AB+ shadows the attractor with
a rapidly increasing accuracy (so that (A7); grows fast). Consequently, in
the asymptotic regime, the probability of the quantity log(R;/Rs3) being in
any given interval around zero vanishes. Since, therefore, either R; is small
and R3 large or R; large or R3 small, our arguments suggest that multiple
transitions are suppressed as T — 00.

11.3 The billiard attractor

The asymptotic suppression of multiple transitions in the asymptotic regime
entails that asymptotic billiard sequences AB7 do not approach general
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billiard sequences By on the billiard subset O but sequences on the billiard
attractor Opy.

We define the billiard attractor subset Og 4 as
Opg = K© UBN1 UBR1 UBR3,
i.e., Op4 is the boundary of the billiard subset Og.

An attractor sequence of transitions Ag (or, for brevity, attractor
sequence) is a sequence of transitions on the billiard attractor Op4. By
definition, A7 is an infinite concatenation of single transitions of the type
TN, s TRy, and Tgr,, i.e., one type of single curvature transition and two types
of single frame transitions; to get an intuitive picture of attractor sequences,
we simply refer to figure 3(a) to (c).

The collection of our results leads to the formulation of the dynamical
systems billiard conjecture:

Conjecture. The asymptotic dynamical evolution of a generic timeline of
a solution of Finstein’s vacuum equations (expressed in an Iwasawa frame)
that exhibits a generic spacelike singularity is characterized as follows:

(i) It is asymptotically silent and local.
(ii) In the asymptotic limit, the essential dynamics is represented by an
attractor sequence Ay on the billiard attractor Op4.

The dynamical systems billiard conjecture can be viewed as the “dual
formulation” of the cosmological billiard conjecture by Damour et al. [13].
In Section 12 we will establish in detail the correspondence between the two
approaches. In the remainder of this section, we will give a brief summary
of our analysis that has led to the dynamical systems billiard conjecture.

Our previous analysis constitutes a derivation of the dynamical systems
billiard conjecture; however, although a considerable part of our treatment
meets the criterion of mathematical rigor, some of our arguments are heuris-
tic rather than rigorous (despite their being mathematically convincing);
therefore, the presented derivation of the billiard conjecture does not rep-
resent a rigorous proof but merely a first step toward a rigorous treatment.
Nonetheless, apart from the fact that our analysis provides strong support
for the billiard conjecture, we expect that many aspects of our considera-
tions are fundamental for a deeper understanding of the asymptotic dynam-
ics associated with generic spacelike singularities; in particular we believe
that we have identified several issues that have to be taken into account in
the pursuit of rigor.
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Let us therefore recapitulate the main steps in our derivation. Hereby we
are guided by the uncovered hierarchical structure of (boundary) subsets:
the essential asymptotic dynamics can be restricted successively to subsets
of subsets, to boundaries of boundaries.

A

Assumption: Asymptotic silence and asymptotically local dynamics.
Asymptotically local dynamics is defined by the requirement that E,*
—0,04(S, 73, Ug) — 0, (ra, Ua) — 0, which leads to a spatial decou-
pling of the field equations. As a consequence, a generic solution X (7)
of the Einstein vacuum equations at a generic spatial point approaches
the SH part of the silent boundary E,*’ = 0, which is spanned by the
state vector S = (X435, Aa, Nag)-

Assumption: Asymptotic dominance of the Kasner states in the asymp-
totic evolution of solutions. Linear analysis of the Kasner circle K©
leads to the conjecture that the variables Sgiapie vanish in the asymp-
totic limit 7 — oo, where Sgiaple = (Nag, Aa) (a # 3). Hence the
essential asymptotic dynamics is represented by the dynamics on a
subset of the SH part of the silent boundary, the oscillatory subset
O, and its associated state vector Sosc = (Xq, Ra, N1, N2). Orbits on
O are heteroclinic orbits (in general, transitions) that can be joined
to form infinite sequences. These sequences of orbits/transitions are
accessible to a mathematically rigorous treatment, where stochastic
aspects become important.

Assumption: Asymptotic shadowing. A generic solution X (7) shad-
ows a sequence of orbits/transitions on O with an increasing degree of
accuracy. Our analysis shows that we have Re — 0 and Ny — 0 along
generic orbits X (7); this implies that certain types of transitions that
involve the variables Ry, N3 are ruled out a priori (complete exclusion),
while it can shown that the probability for the occurrence of any of
the other transitions involving these variables is zero (stochastic exclu-
sion). The asymptotic exclusion of Re and N entails that the essential
asymptotic dynamics of X is described by the dynamics on the billiard
subset Op with its state vector Shiiara = (21, X2, 23, R1, R3, N1).
Asymptotic shadowing of billiard sequences. A generic solution X (7)
shadows a sequence of transitions on Op (billiard sequence) with an
increasing degree of accuracy. Our arguments indicate that the vari-
ables (R1, R3, N1) of Shiliara cannot be excited simultaneously. This
leads to the conclusion that the generic asymptotic dynamics is gov-
erned by the flow on the boundary of the billiard subset, which is the
billiard attractor Og4 = K© U By, U Bg, U Bg,. The dynamics on this
attractor set is represented by billiard attractor sequences (consisting
of one type of curvature transitions and two types of frame transitions:
TNy, and Tr,, Tr,), which thus form the attractor for generic solutions
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X. In other words, the essential dynamics of a generic solution X is
characterized by its approach to an attractor sequence Ar.

In this paper, we have given heuristic arguments for A = B, but our
main focus has been the other steps. Assuming that generic solutions X
are asymptotic sequences of O-orbits (i.e., assuming shadowing of the flow
on O) has inevitably led to the implication B = D.

Since stochastic considerations are essential for parts of our considera-
tions, we obtain only statements for (generic timelines of) generic solutions.
The possibility exists that there are solutions violating one or the other
properties; however, such solutions are expected to form a set of measure
zero in the space of all solutions.

12 “Duality” of Hamiltonian and dynamical systems
billiards

In Section 2 we have outlined the Hamiltonian approach to cosmological
billiards, where we have followed Damour, Hennaux, and Nicolai [13, 14].
This approach is based on an analysis of the Hamiltonian H in Iwasawa frame
variables, which are the diagonal degrees of freedom b“, the off-diagonal
variables N'%;, and the conjugate momenta. An asymptotic Hamiltonian H
is constructed from H by taking the limit p = /—b,b* — oo and dropping
all terms except for three terms that are identified as being “dominant”. The
asymptotic Hamiltonian H., is assumed to describe the generic asymptotic
dynamics of generic solutions that exhibit a spacelike singularity.

A direct consequence from the form of the asymptotic Hamiltonian H o
is that the off-diagonal degrees of freedom are asymptotic constants of the
motion, as is a momentum variable associated with a projection of the diago-
nal degrees of freedom — a phenomenon referred to as “asymptotic freezing”;
for a derivation of these results using the present dynamical systems formal-
ism and the results from the previous sections, see Appendix H. Therefore,
the non-trivial asymptotic dynamics is encoded in the diagonal degrees of
freedom, or, more precisely, their projections v*: the asymptotic dynam-
ics at each spatial point is described as a geodesic motion in a portion of
hyperbolic space that is bounded by sharp walls, see Section 2 and [13, 14].
This picture prompts the terminology “billiard motion” and “cosmological
billiards”; see Figure 8(a).

It is of interest to consider a Hamiltonian that is in a sense a link between
H and Ho: the “dominant” Hamiltonian Hgey. It is obtained by dropping
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1

(a) The cosmological billiard (b) The billiard attractor

Figure 8: Part of an orbit in terms of free Kasner (Fermi frame) motion
and frame and curvature bounces. This represents a ‘configuration space’
projection of the asymptotic dynamics. The disc here represents hyperbolic
space. Figure (b) shows part of an orbit in terms of single frame and curva-
ture transitions, i.e., it shows a part of an attractor sequence. Note that the
solution does not quite return to any of the Kasner points it has ‘visited’
before. This description represents a ‘momentum space’ projection of the
asymptotic dynamics. The circle here is the Kasner circle K©. The dashed
lines correspond to the two possible single transitions that are possible at
this stage; which one is realized depends on initial data. This corresponds
to that free motion in a given direction in (a) may either lead to that one
hits the wall associated with R; (the short wall) or Ny (the curved wall).

the “subdominant” terms of H before the limit p — oo is taken. Since the
asymptotic Hamiltonian constructed from Hgom naturally coincides with
Hoo, the asymptotic dynamics described by H and Hgom is the same.

From Section 2 and [13,14], we obtain the dominant Hamiltonian:
Haom = N |16 1,75 + L RY 20 =0%) 1R3 20107 %Nf e

where Ry := —Ps, R3 := —(P1 + n3 P3), and where Nj is a function of the
variables n,, given by equation (A.16a). The non-trivial dynamics is repre-
sented by the diagonal degrees of freedom b (or alternatively by p and the
projected variables v*): the dynamics is described as a motion in a portion
of Lorentzian space that is bounded by “exponential walls”. As the solu-
tion approaches the singularity, these walls become increasingly sharp with
an infinitely high potential as limit; we refer to the remarks at the end of
this section. The asymptotic dynamics is thus a free null geodesic motion
in Lorentzian space interrupted by bounces at the walls, which yields an
alternative representation of cosmological billiards.
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The asymptotic dynamics as described by Hamiltonian cosmological bil-
liards can be interpreted in terms of generalized Kasner solutions: Fermi-
propagated generalized Kasner solutions appear as straight lines (geodesics)
in flat Lorentzian space in the b description, or, equivalently, as geodesics
in hyperbolic space in the projected v* description. A free motion between
two bounces at walls thus translates to a (Fermi) “Kasner epoch”, a phase
where the solution evolves as a generalized Kasner solution, see (B.1). The
walls and the associated bounces, on the other hand, are of two kinds: (i)
frame/centrifugal /symmetry walls and associated bounces; (ii) curvature
walls and associated bounces. Bounces of the former type merely result
in axes permutations of a Kasner solution; bounces of the latter type are
Bianchi type II bounces: the Kasner state changes in accordance with a
change generated by a Bianchi type II solution.

The Hamiltonian approach emphasizes the dynamics of the configuration
space variables (b® and the projected variables v¢, respectively); therefore
one may say that the Hamiltonian picture yields a “configuration space”
representation of the asymptotic dynamics. In the following, we will see that
the dynamical systems approach can be viewed as a dual representation, i.e.,
a “momentum space” representation.

Consider the dominant Hamiltonian from the perspective of the dynam-
ical systems approach. The terms R exp(b? — b?), Rsexp(b! — b?), and
N exp(—2b') can be associated with R;, Rz, and N; by using the rela-
tions (A.14b) and (A.l4c). Accordingly, Hom contains §(R? + R}) + $ N?
modulo a common factor. Recall in this context that the Hamiltonian is pro-
portional to the Gauss constraint, cf. (11.1g). This indicates that there is
an intimate connection between: (i) centrifugal bounces in the Hamiltonian
picture and single frame transitions 7z, and 7Tg, in the dynamical systems
picture; (ii) curvature bounces and single curvature transitions 7y, .

When we calculate the Hamiltonian equations of Hpen = 0 associated
with the non-trivial degrees of freedom b, adopt the appropriate time gauge,
and then perform suitable variable transformations according to the formulas
of Appendix A, we obtain:

(i) the billiard system, i.e., the differential equations (11.1a) to (11.1f) and
the Gauss constraint (11.1g), however, without the Codazzi constraint
R3s N1 =0;

(ii) evolution equations for E, = (E1!, E5?, F3®) and the Hubble variable
H, with all spatial frame derivatives and all variables X (and Uy, Ta)
set to zero except E,., H, and Shijiard-
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The unconstrained billiard system (i) forms an independent coupled sys-
tem of differential equations. The equations (ii) for H and E,, on the other
hand, decouple from the unconstrained billiard system. These equations can
be regarded as linear equations with time dependent coefficients, which are
provided by the solutions of the billiard system. (Compare with the treat-
ment of the auxiliary quantities in Section 9). The evolution equations for
FE,, constitute the lowest order perturbation into the physical state space of
the full equations for F, in the vicinity of the silent boundary; together with
the Hubble variable H, they yield b* according to equation (A.2) in Appen-
dix A. The off-diagonal degrees of freedom can be treated similarly: the
solutions of the unconstrained billiard system provide the time-dependent
coefficients for the lowest order perturbation equations. In this manner, we
obtain asymptotic freezing , see Appendix H. This result further strength-
ens the connection between the Hamiltonian and the dynamical systems
approach.

The asymptotic limit of the dynamics of the unconstrained billiard system
is represented by attractor sequences A7, see figure 8(b).'3 The duality of
the Hamiltonian and the dynamical systems approach thus becomes appar-
ent: one phase of free motion in the Hamiltonian billiard picture corresponds
to a Kasner fixed point on the Kasner circle K©. The underlying reason for
this is that the dynamics has been projected out of the self-similar Fermi-
propagated Kasner solutions by means of a conformal normalization that has
yielded scale-invariant variables. The bounces at walls in the Hamiltonian
billiards correspond to motion in the dynamical systems picture represented
by the transition orbits (heteroclinic orbits) between Kasner points. The
curvature transitions 7y, are non-scale-invariant solutions and correspond
to curvature bounces in the Hamiltonian billiards; the frame transitions
Tr,, Tr, rotate axes w.r.t. a Fermi frame; see Appendix C. The transitions
appear as straight lines (in Euclidian space) when projected onto 3,-space.
Note that the transitions and the Hamiltonian wall bounces yield exactly
the same rules for changing Fermi-propagated Kasner states. (However,
the Hamiltonian billiard only gives a consistent picture when we consider
generic attractor sequences, which are characterized by irrational values of
the Kasner parameter u. Rational values of the Kasner parameter u lead to
motion straight into the sharp corners of the asymptotic billiard where the
dynamics is undefined.)

Changing from the Hamiltonian billiards to dynamical systems billiards,
the notions “bounces at walls” and “motion along straight lines” switch
places. In the Hamiltonian picture, free motion is followed by a bounce at a

13 A more detailed discussion of this statement will be given elsewhere.



THE COSMOLOGICAL BILLIARD ATTRACTOR 363

wall, which again gives rise to a phase of free motion. In the dynamical sys-
tems picture, we observe “bounces” at the fixed points on the Kasner circle
K©; in fact, since the Kasner circle constitutes the boundary of ¥,-space,
it can be viewed as a “wall” in the dynamical systems picture. Between
the bounces, we have motion along straight lines in ¥,-space (transitions).
In brief, the Hamiltonian “motion—-bounce-motion—bounce” is translated to
“bounce-motion—bounce—motion” in the dynamical systems billiards.

Since the variables Y, are intimately connected with the variables 7, it
is natural to refer to the projected dynamical systems picture as a “momen-
tum space” representation of the asymptotic dynamics, which complements
the Hamiltonian configuration space representation. To compare the two
pictures, see figure 8.

The correspondence between the dynamical systems and Hamiltonian pic-
tures offers a possibility for mutual support. Let us give a few examples: (i)
As can be inferred from figures 5 and 8, the typical “captured” Ty,-Tg, oscil-
latory behavior (a small curvature phase) corresponds to the many oscilla-
tions in the upper right corner in the Hamiltonian billiard, see figure 8(a). (ii)
Figure 7 indicates that Tr, transitions are less frequent than 7r, transitions:
Ry and R3 are unstable in three sectors of K©; however, R has to compete
with Ny in sector (132), which “depletes” Tg, transition at the cost of T,
transitions; 7Tg, is unaffected by this. The correctness of these arguments is
corroborated by the features of Lobashevski geometry close to the circular
boundary and by the fact that the wall associated with 7r, bounces is longer
than the one associated with Tg, bounces. (iii) Consider the Hamiltonian
Hdaom and perform a projection of the dynamics onto spatial constant vol-
ume slices in b*-space. The walls are “exponential walls” whose contours
are of a triangular shape where the corners are smoothed out. Toward
the singularity (i.e., with shrinking volume) the triangle increases in size,
where simultaneously the triangle’s sides become increasingly straight and
the corners increasingly sharp (relative to the size of the triangle), see [11]
for similar SH examples. Particularly, the corner shape is sensitive to the
additive effects from the different walls potentials. The increasing size of
the potential contour triangle and the comparatively sharper corners sug-
gest that it becomes increasingly less likely that the “billiard ball” hits the
corners. This geometrical feature suggests that, statistically, multiple tran-
sitions are asymptotically suppressed, in agreement with our quantitative
analysis.

It is of interest to also compare the dynamical systems picture with pre-
vious (Hamiltonian) treatments of so-called asymptotic velocity term dom-
inated (AVTD) dynamics; this is done in Appendix I.
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13 Models with symmetries in an Iwasawa frame

In this section, we give a brief overview on models with symmetries. Such
models are of obvious significance for the study of cosmological singularities;
since the equations simplify, we can hope to obtain more substantial evidence
and perhaps even prove theorems on the asymptotic dynamics of solutions.
This in turn can be expected to shed new light on the heuristic statements
concerning the generic case without symmetries.

13.1 G models

By definition, cosmological G; models possess one spacelike Killing vector;
let us choose this Killing vector to be 9,1. The Iwasawa decomposition
is compatible with G| symmetry and we are therefore able to choose an
Iwasawa frame that is symmetry adapted; we set 8, = E,'0,:, where E,’ is
a lower triangular matrix, see Section 3; accordingly,

0, = Ellaxl, 0: = Eglaxl + E226x2, 03 = Eglaxl + E3281,2 + E338x3,

where E,* as well as H and N are independent of z'. Consequently, when
f is a function that is independent of z!, it follows that

01f =0, Oof =Fx?0,2f, Osf = (F320,2 + E3*0,)f .

This in turn leads to a decoupling of the E,' equations from the system (3.6)
to (3.10), since E,'0,1 disappears from the r.h.s. of the evolution equations
and the constraints. Note also that (3.7a) and (3.8a) do not mix the compo-
nents F,' with E,? and E,3. In addition, using the expressions in Appen-
dix A, the symmetries are seen to further reduce the state space (3.12) and
(3.14); since
Nog =Nog=A1=U1 =11 =0,
the state space associated with the reduced coupled system of equations is
given by
X = (E227 E321 E337 EO&) Ra, Nlou A27 A3) )

in addition Us, Us, 19,13 are non-zero for most temporal gauge choices.

Apart from the above generic G case, there exist special G1 models. The
hypersurface-orthogonal Killing vector case, also referred to as the polarized
case in a U(1) context, see [38] and references therein, is given by setting
E»' and E3' to zero, so that the metric takes a diagonal form. Using the
expressions in Appendix A, it follows that N1; = Ro = R3 = 0. In this case,
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the sectors (231), (213), and (123) on the Kasner circle K© become stable,
which in turn implies that solutions asymptotically approach a Kasner state;
for proofs, see [38,39].

13.2 G5 models

Models with two commuting spacelike Killing vectors are known as G2 mod-
els, see, e.g., [12]. An Iwasawa frame that is adapted to the symmetries is
obtained by letting 81 and 82 be tangent to the group orbits. Accordingly,
E," and H, N are functions that are independent of z! and 22 and thus
depend on z° and 2% only. For any f = f(z", 2?), we get

alf = 07 32f = 07 a3f = E338x3f;
furthermore, as follows from Appendix A,
Nog=Niz=Noz3=Nisz=A; = Ao =U1 =Up =11 =13 = 0.

In addition, one can exploit the remaining freedom in choosing the frame at
a spatial point to obtain Ry = 0, and then the Codazzi constraint and the
evolution equation for Ry force Ry to be identically zero everywhere [40].
Using a symmetry-adapted Iwasawa frame thus leads to a decoupling of all
E,' equations, except for the equation for E33. Accordingly, the reduced
state space for the problem is represented by the state vector

X = (F3%, %, R1, R3, N11, N1a, A3) ;

in addition Us,r3 are non-zero for most temporal gauge choices. If one in
addition chooses the timelike separable area gauge [41], so that the area
density of the G symmetry orbits, i.e., A = (e1'es?)71, is a function of 2"

only, then Az = r3, as follows from (3.8a).
There exist several special classes of G2 models:

(i) Hypersurface-orthogonal models are characterized by the restriction
N1 = R3=0.

(ii) Orthogonally transitive models are obtained by setting R; = 0.

(iii) The diagonal case is given by Ni3 = R; = Rg = 0; this case is also
referred to as the polarized case in the literature dealing with a 7°-
topology [42,43].

(iv) Plane symmetric models are determined by N1; = N1o = Ry = R =0,
Y11 = Y.
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In [22] slightly different variables were used to discuss the general case
with T3-topology; these can be obtained as follows: firstly, note that U, =
Uo/H — 1o, Aq = ao/H + 14, where 1, a, are the acceleration and spatial
connection coefficients associated with g, respectively. Secondly, to identify
the present frame with the one used in [22], we permute both frame and
coordinate indices from the present ones to the ones used in [22] accord-
ing to 1 =3, 2— 1, 3= 2. Then, in addition, we make the few scalings
and notational changes that are needed in order to obtain the variables
(Bl r, U, 0,52, 5,5, N_, Ny ) used in [22] in terms of the present ones;
FE3? is replaced with Ep', which was used in [22], while the other variables
are related as follows:

r=ry=As, U =ry+Us, (13.1a)
i =53 +2n), Bo=55(80-8n), Bx=-7R; (13.1b)
Yo = — =R, N_ = ;=N Nyx=J=Nip. (13.1¢)

For our present purposes, it is of interest to note that numerical experiments
performed in the general Gy case in [22] gave evidence for the claim that
multiple transitions become increasingly rare and that the billiard attractor
gives a correct generic asymptotic description. However, the results in the
present paper suggest that it would be useful to numerically check our more
detailed statements about asymptotic suppression and decay rates (as well
as freezing, as discussed in Appendix H); the same also holds for the next
class of models.

13.3 Generic Bianchi type VI_; /9 models

The evolution and constraint equations for SH cosmologies are given by set-
ting all terms involving spatial derivatives to zero, which includes setting
U,=0= T«, see also Sections 3 and 4. This implies that the conformal
Hubble normalization becomes equivalent with the usual Hubble normal-
ization used in, e.g., [12]. While the Iwasawa gauge is compatible with the
symmetry-adapted frames of Bianchi types I-VII, since they admit a sub-
group of two spacelike commuting Killing vectors, it is incompatible with
the symmetry-adapted frames of Bianchi types VIII and IX. The most gen-
eral model with a symmetry-adapted Iwasawa frame is the general Bianchi
type VI_ 9 model, also sometimes referred to as the exceptional type VI
model.

The asymptotic dynamics of generic Bianchi cosmologies of type VI_j g
has been studied in [36]. The compatibility of these models with the Iwasawa
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gauge is responsible for their particular significance in the context of generic
inhomogeneous cosmologies: the general type VI_; /g case is the only SH vac-
uum case where models possess the same attractor toward the singularity as
generic inhomogeneous cosmologies in an Iwasawa frame; in particular, they
exhibit oscillatory asymptotic behavior. The type VI_; 9 models admit a G
subgroup; adapting the spatial Iwasawa frame to the three-dimensional sym-
metry surfaces so that the first two vectors are adapted to the G5 subgroup
implies that the same quantities as in the G2 case become zero; however, the
extra symmetry forces some additional quantities to be zero as well. The
Codazzi constraint with a = 2 yields R;(Nj2 — 3A3) = 0, but, in contrast
to other type VI, models, h = —1/9 implies, with the present conventions,
that Nis = 3A3; hence Ry is not forced to vanish since the Codazzi con-
straint is automatically satisfied, see, e.g., [12]; the general type VI_; /9 case
is thus characterized by non-zero off-diagonal shear components R; and R3.
It follows that we can choose

S = (X1,%2, Ry, R3, N1, A3),

as the reduced state space variables.

Using the variables (13.1) with the opposite signs' for ¥y and ¥y, and
ro = U, = 0, yields the system given in [36], where a numerical investigation
indicated that multiple transitions become increasingly rare and that the bil-
liard attractor gives a correct generic asymptotic description, in agreement
with the present general analysis.

14 Gauge considerations

It is a matter of course that there exist many useful spatial frame choices;
while our present considerations are based on the choice of an Iwasawa frame,
other prominent gauges are: the frame used in UEWE [20]; the SO(3) choice
used by Benini and Montani as the starting point for a Misner/Chitré billiard
analysis [44]; the Fermi choice (R, = 0). Each of these gauges exhibits some
computational advantages over the others in special contexts, and each has
its physical merits: e.g., Fermi observers associated with Fermi frames do
not get dizzy. But it is only in special situations, when one considers an
important class of spacetimes that shares a special, often global, feature,
that one can argue that a particular frame choice is preferred. It is probably
safe to conclude that no single frame choice will be optimal as regards all
features one may be interested in; e.g., Iwasawa frames are incompatible

Y This is because the opposite sign was used in [12,36] for the definition of R,.
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with the symmetry-adapted SH frames of Bianchi type VIII and IX, which
are historically the prime examples of “Mixmaster” dynamics.

The asymptotic causal structure associated with asymptotic silence indi-
cates that local and quasi-local aspects, and not global ones, are most impor-
tant when trying to understand the physics of generic spacelike singularities
in GR. Since this suggests that there is no preferred choice of frame, it is
natural that results should be translated to a frame-independent description
in order to separate gauge features from physics. In particular, the attractor
should be characterized within the framework of a spatial frame-invariant
description of the union of the silent Kasner and Bianchi type II subsets; it
follows from this that we are interested in quantities that do not involve R,,.

Let us therefore characterize this subset in a frame-invariant way. It is
described by the equations

Gi=U%=r2=A%= Naﬁzvazﬁa(Na’y —X%)=Dny=AN=0,

where we have introduced the following quantities:

G :=6PE,'Ey’, Dy :=det(Nag), An:=21[NogN* — (N2
The quantity G is the conformal Hubble-normalized contravariant three-
metric,'® see [24]; if N®O is of rank 2, then Dy = 0; if N is of rank 1
(as it is for Bianchi type II), then Dy = Ax = 0. The quantity NangZﬁ"
(N — $27) is the square of the expression €,”7 Ngs ., which is associ-
ated with the asymptotic Codazzi constraints.

To explore the frame-invariant description of the attractor, it is of interest
to consider the following Weyl spatial and spacetime scalar invariants

g2 =16,56%, H? = L HogHP,
Cabcd Cabcd ) ) Cabcd * Cabcd ) 3
Wi= gt~ T W= g = st

where {Eng, Hap}t = {Eup, Hap}/H? are the electric and the magnetic part
of the Weyl curvature tensor. (Here, E,g, Hyp refer to the orthonormal
frame components of the Weyl tensor of g while £,3, H3 are the orthonor-
mal frame components of the Weyl tensor of G, or, equivalently, the confor-
mal orthonormal frame components of the Weyl tensor of g).

Incidentally, this suggests that it is this object that is natural to use if one wants to
pursue a metric approach to the Einstein field equations and generic spacelike singularities.
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The attractor consists of a sequence of Kasner states connected by Bianchi
type II solutions (i.e., attractor sequences). To formulate this in terms of
curvature frame invariants, we proceed as follows: we first give the electric
and magnetic parts of the Weyl tensor for the By, subset:

En=2+(1-S)% - ¥1-%%, Hu=-3NM3,

£ =2+ (1-32)8 — Z(1-%7), Ha = $N1(Z2 +2%1),

E33 =2+ (1—33)83 — Z(1-%2), Hsz = 1N (Z3+2%).

The equations (6.3) then allow us to express the above equations in terms
of the frame-invariant (, and subsequently we can compute the curvature
scalars in terms of (, i.e., we obtain a frame-invariant description of the
scalars. However, the resulting expressions are quite complicated and we will
refrain from giving them explicitly. The Kasner states yield W; = 27u?(1 +
u)?/(1 +u+u?)? and Wy = 0; W, is monotonically decreasing in u with
the range (0,4) with Wi = 0 when u = o0, i.e., for the Taub state, while W,
reaches its maximum value W; = 4 for the non-flat LRS Kasner state v = 1.

The scalars can be expressed implicitly in 7-time for a Bianchi type II
transition since it is possible to integrate (6.3); we obtain

7(¢) = In (¢ = C)Mu ¢y — QT¢I

In figure 9(a), we plot a typical attractor sequence; note that a change of
era occurs. We then plot the £2, H? and Wy, W, scalars against each other
in figures 9(b) and (c), and obtain a frame-independent description of the
same orbit in terms of curvature properties.

Apart from spatial gauge considerations, it is of interest to ask oneself: to
what degree do asymptotic silence and local dynamics for a generic space-
like singularity depend on the temporal gauge one is using? Note that
asymptotic silence has been defined gauge invariantly, and hence the issue
is whether a generic spacelike singularity is asymptotically silent (which our
results indicate) and to what extent asymptotic local dynamics is a tempo-
rally gauge robust feature for a generic spacelike singularity. The asymptotic
causal structure associated with asymptotic silence suggests considerable
temporal gauge robustness, and we expect a large class of time choices to
be compatible with asymptotic local dynamics.

We first note that if one considers a foliation associated with a time
choice, and if it is possible to choose a parameterization of this foliation so
that A is bounded and greater (or smaller) than zero asymptotically toward
the singularity, then the billiard attractor is a local attractor in the full
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(b) 52—7‘{2 (C) Wi — W,

Figure 9: (a) A typical attractor sequence is shown, which is associated
with sequence of Kasner epoch characterized by the values of u given by
{ug,u1, uz, ug, uq} = {3.18,2.18,1.18, (1.18 — 1)~! = 5.56,4.56}. (b) and (c)
The corresponding Weyl scalar properties (note that the scalars are constant
during frame transitions are shown); the bullets pinpoint the Kasner epochs.
The dashed line in (c) indicates a new era and the arrows show the direction
of increasing time toward the singularity.

state space; the difference between using such a time variable and the local
reparameterization that uses 7 only amounts to an unimportant conformal
factor on the right hand sides of the billiard equations for each fixed z’.
We then note that the billiard attractor is a local attractor if one uses any
temporal choice compatible with the asymptotic local dynamics condition,
which, in particular, implies that the timelike congruence is asymptotically
conformally geodesic since Uy — 0 (which includes the synchronous choice
used by BKL). However, presumably it is possible to choose a time gauge
such that, e.g., U, 4 0, which is hence non-compatible with asymptotic
local dynamics, even though the spacetime may exhibit a singularity for
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which there exists a large class of time choices for which the dynamics is
asymptotically local.

15 Concluding remarks

In this paper, we have considered the dynamics of solutions of the Einstein
equations in the asymptotic limit toward a generic spacelike singularity: the
asymptotic behavior of solutions is represented by the billiard attractor and
the associated attractor sequences. We have derived the billiard attractor
based on the dynamical systems formulation of the Einstein equations in the
conformal Hubble-normalized Iwasawa frame approach; in addition, we have
established the “duality” of the presented framework with the Hamiltonian
approach to cosmological billiards of Damour et al. [13].

The cornerstones of our derivation of the billiard attractor have been (i)
the identification of a hierarchy of state spaces and invariant subsets; in the
asymptotic limit, dynamics is restricted to subsets of subsets, to boundaries
of boundaries, descending from the full state space via the SH silent bound-
ary and the oscillatory subset down to the billiard attractor; (ii) a thorough
analysis of sequences of transitions; in particular, we have introduced the
concepts of small and large curvature phases that appeared prominently in
our considerations; (iii) stochastic analysis; we have investigated the proba-
bilistic nature of Kasner sequences and we have discussed the effects leading
to randomization; randomized Kasner sequences and randomized asymp-
totic attractor sequences are fundamental concepts in our analysis; (iv) the
computation of decay rates; in connection with probabilistic aspects, we
have given the decay rates of several quantities; this decay has turned out
to be the underlying reason for the restriction of the dynamics to subsets and
boundaries of subsets. The presented derivation of the billiard conjecture
is not mathematically rigorous, but depends on arguments that are merely
heuristic — despite their being convincing. However, we are positive that
in any endeavor aimed at obtaining proofs, several concepts and methods
introduced in this paper will play a prominent role. Let us elaborate on this.

Generalizing the concept of an era has played an important role in our
analysis. The partitioning of sequences into small and large curvature phases
has shown that small curvature phases dominate over large curvature phases
from a stochastic point of view; hence, in the asymptotic evolution of solu-
tions, the phases when the solution is close to the Taub solution are crucial —
a fact that might not have been appreciated enough previously. Note that
the division into small and large curvature phases has featured prominently
in the more technical computations, see Appendix F for details.
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Asymptotic (attractor) sequences give a precise meaning to the notion of
“piece-wise approximations” by BKL. The dynamics of a generic timeline of
a solution with a generic spacelike singularity is expected to asymptotically
shadow the attractor, and hence the associated orbit can be partitioned
into segments where each segment can be approximated with an increasing
degree of accuracy by a heteroclinic orbit on the attractor. However, due to
“errors” associated with the approach toward the attractor, the solution does
not exactly follow the heteroclinic orbit structure on the attractor; instead
these increasingly small errors lead to an approximation that might be sub-
sumed under the notion of a randomized sequence of heteroclinic orbits.

Randomization constitutes an important ingredient in several contexts.
The underlying structures that allowed one to obtain mathematical proofs
about the attractor of the diagonal Bianchi type IX models in a Fermi-
propagated frame [18,19] are specific for these models and are not available
in other cases; since it is such cases that are relevant for the present general
scenario, the diagonal Bianchi type IX models are misleading. Our present
analysis suggests that one has to know the (asymptotic) history of a solution
to unravel its asymptotic features; this causes a dilemma since this requires
that one finds the solution, which seems unlikely. However, randomization
makes it possible to stochastically examine the cumulative effects of small
and large curvature phases, and this allows one to estimate decay rates and
give a description of what is going to happen generically. In our opinion,
statistical analysis will be an essential new ingredient in future proofs.

In this paper, we have obtained decay rates associated with asymptotic
suppression and freezing (see Appendix H), which will hold in the neigh-
borhood of the billiard attractor as well. Since decay rates are likely to
be ingredients in any proof, it is important that numerics not only check
that the dynamics of a generic spatial point approaches the attractor, but
that the attractor is approached in the way described by the decay rates;
therefore, these results offer new input for numerical investigations.

As we have seen, the asymptotic dynamics is inevitably restricted to
subsets of subsets, to boundaries of boundaries, which underlines the impor-
tance of the hierarchical structure of invariant sets associated with asymptot-
ically local SH dynamics. However, there also exists a hierarchy of invariant
subsets that is based on the number of Killing vectors the spacetime admits.
This symmetry-based hierarchy is of interest since it is associated with
different levels of technical difficulty; taking highly symmetric, and thus
technically simple, cases as a starting point, one can analytically and numeri-
cally explore, step-by-step, the cases of decreasing symmetry by making use
of the gained experience; since several structures that are relevant to the
non-symmetric case already appear in cases of special symmetries, this is
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likely to lead the way to the generic case. The present work shows how the
Hubble-normalized Iwasawa frame approach naturally provides a framework
for dealing with this type of hierarchy; the formulation comprises different
symmetry levels; note, however, that the Iwasawa decomposition is natu-
ral only when one has commuting spacelike Killing vectors, and hence it is
not appropriate for Bianchi types VIII or IX. The simplest model with an
oscillatory singularity as described by the present formalism is the general
Bianchi type VI_;/9 model. The next level of difficulty as regards oscilla-
tory singularities is the general case with two commuting spacelike Killing
vectors; then the general case with one spacelike Killing vector; and finally
the general case with no Killing vectors. Incidentally, by imposing geometric
restrictions on the Killing vectors such as hypersurface orthogonality, see,
e.g., [12,45], one can obtain relatively simple classes of models with non-
oscillatory singularities. Exploiting this outlined hierarchy of symmetries
might prove to be the key to a complete understanding of the nature of
generic spacelike singularities.

A dynamical system that is of particular interest in our analysis is the sys-
tem (11.1); when we do not impose the Codazzi constraint (11.1h), we refer
to this system as the unconstrained billiard system, see also the discussion
in Section 12 in connection with the “dominant” Hamiltonian. We expect
the unconstrained billiard system to possess the same generic asymptotic
behavior as the full system X in the neighborhood of an asymptotically
silent singularity; hence, in our approach, it is this system that is of cen-
tral importance for the asymptotic dynamics, rather than, e.g., the Bianchi
type IX system. We will provide a thorough analysis of this system and its
properties elsewhere.

Another interesting issue we have put little emphasis on in the present
paper is the question of consistency. It is suggestive to take the billiard
attractor and the associated billiard conjecture as a starting point for further
developments by inserting attractor sequences A7 into the relevant equa-
tions; using similar reasoning as done here for the suppression of variables,
we will be able to derive more substantial justification for the claim that
E,)) =0 (a major ingredient for asymptotic silence) and Sgiaple — 0 when
7 — oo (cf. steps A and B in Section 11). In addition, we will obtain further
information on the approach of solutions toward the asymptotic limit. We
will pursue issues of this kind in future work.

In this paper, we have been concerned with the vacuum GR case, how-
ever, the approach and methods we have developed will be applicable to the
case when matter is included and also to other theories (see, e.g., [13,14]
and references therein). As regards possible sources, this naturally suggests
a study of the influence of matter on singularities. As a simple example
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we refer to [46], which gives an indication that, e.g., Vlasov matter behaves
differently in some respects than perfect fluids. Of particular interest is the
question of structural stability of generic spacelike singularities, especially
since generic singularities seem to uncover the essential properties of mat-
ter. There are indications that a classification of the influence of matter on
generic singularity structure naturally rests on (i) energy conditions and (ii)
whether the effective propagation speed is less than the speed of light or
not. There are also indications that suggest a subclassification based on the
behavior of matter in the case of speed of light propagation: e.g., massless
scalar fields and electromagnetic fields influence the generic spacelike singu-
larity in different ways; does this motivate a subclassification based on spin?
In the sublight case, it seems to be natural to base a subclassification on
the question of what features are affected by matter and what features are
not, e.g., the Hubble-normalized energy—momentum tensor may go to zero,
which leads to an asymptotic description of the geometry by vacuum solu-
tions, but this does not necessarily mean that, e.g., the Hubble-normalized
rotation of a perfect fluid tends to zero. Another issue is how, and if, matter
influences the connection between generic spacelike singularities and weak
null singularities in asymptotically flat spacetimes, see [23]. Questions and
issues like these lead to a variety of possible research projects that could
make our understanding more substantial.

In this paper, we have assumed asymptotic silence and asymptotic local
dynamics, and our work has provided results and evidence that support
the consistency of this scenario for generic timelines. However, this does
not mean that there could not exist interesting phenomena associated with
special timelines, indeed, we believe that a set of measure zero of time-
lines exhibit spike formation and recurring “spike transitions” [22] that are
associated with non-local dynamics. Even so, it still seems that asymptotic
silence prevails and that asymptotic local dynamics play an important role
— remarkably, spike transitions seem to be governed by variations of the
Kasner map, which is associated with asymptotically local dynamics, hint-
ing at further more deeply hidden structures. Asymptotic spike formation is
associated with the unstable variables N1, R;, R3 going through a zero at a
spatial point (where a zero in N; yields a “true spike”, seen in the curvature,
while zeroes in Rj, R3 yield false spikes, i.e., gauge effects not seen in the
curvature; presumably, zeroes in No and Ry do not play a similar role since
these variables are generically suppressed in the asymptotic limit). There are
hints that spikes may interfere — destructively and constructively. Although
uncertain, constructive spike interference seems to dominate, which, if cor-
rect, leads to asymptotic “spike cascading” W.C. Lim, Private Communi-
cation. There are many other unresolved spike issues as well: are there
spikes that undergo infinitely many recurring spike transitions? Where do
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spikes form and in what way — how does spike interference work? Do
spikes asymptotically form a dense set? Can spikes leave observational
imprints in, e.g., the cosmic microwave background? These question are
clearly interesting in themselves, moreover, a clarification of some of these
issues is of considerable interest in the context of eventual generic singularity
proofs.

Ultimately one might ask oneself the question why generic singularities
should be studied at all in a classical GR context? Firstly, there exists a
regime between the Planck era and the GUT era where GR is expected to
hold and where the approach toward the singularity is presumably described
by the dynamics toward a generic singularity (recall that one of the points
of inflation is to “erase the effects of initial data” and that before this era-
sure a singularity is presumably generic according to this line of reasoning).
Secondly, black hole formation is associated with initial data reflecting the
complexities of the real universe; one would hence also in this case expect
generic spacelike singularities to play a role before one enters the Planck
regime. Thirdly, the formation of generic singularities is associated with
considerable structure, even in the case of spike formation: can this struc-
ture be used to asymptotically quantize gravity where it needs to be quan-
tized, namely in the ultra-strong gravitational field in the neighborhood of
a generic spacelike singularity?16
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Appendices
A Iwasawa variables and useful equations

In this section, we derive in some detail the connection between the Hamil-
tonian Iwasawa variables of Section 2 and the conformal Hubble-normalized

SFor the exploitation of some of these structures in the context of quantization of
special models, see, e.g., [47,48].
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variables of Section 3. Let us begin by recalling that for an Iwasawa frame
e% = exp(—b*)N%;,  eq' = exp(b*)N?, (no summation over a), (A.1)

where N'%; and N, are the upper triangular matrices given by (2.5) and
(2.6), respectively; the off-diagonal components of N'*; (N?,) are denoted
by na (a). Therefore, due to (3.3), we obtain for the conformal frame
components:

E% = Hexp(—bY N, E,'=H 'exp(b®)N', (no summation). (A.2)

In the following, we use the notation E, = E,* (no sum over «) and
analogously e, = e,®. Note that the frame variables e, have been chosen
to be positive, from which it follows that also E, > 0, since we take the
cosmological model to be expanding toward the future and hence H > 0.
Equation (A.1) can be inverted easily:

Byl Bsl B2
b =log(eq) =log (H E), n1=—, ng=——, ng= F?; (A.2)

In order to make contact between the Hamiltonian variables and the con-
formal Hubble-normalized variables, we first consider the Hubble scalar H.
Since g;j = e eﬁ 6a5, we have

V9= exp(—=b' —b? — b3) = exp < Z b"‘) ;

accordingly, we obtain for the derivative (w.r.t. coordinate time °):
$of -5 ( 5D Zb“) (A.3)

Since the derivative of ,/g is proportional to the expansion 6 according to

1

Ji=N§=3NH,
\faxo

this implies that
H——liiZba (A.4)
3N 920 ~ ) )
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Using the relation (2.9a) between b® and 7., where we recall that N =
N,/g, we obtain a representation of H in terms of the momenta, i.e.,

11 1
H=—— 0= — > 6| 7 A.
12\/§aw 12<6Xpab> ﬂﬂﬁ (45)

Equation (A.5) suggests that we define a quantity A,
1
A:=2H\/[g= 6%:%, (A.6)

which we will use frequently in the following. In terms of the frame compo-
nents, A can be expressed as

A =2H,/g=2(H?E, By F3)~ ", (A7)
since \/g = (e1 ez e3) ! = H3(E| By E3)~ L.

Inverting the commutator equations (34) yields the conformal Hubble-
normalized variables in terms of N and E,* and their derivatives:

Uy =0 logN, ¢= %E%aoEai, (A.8a)
R* = Le*3"EP00E,", Sa5=—E"00E, 05, (A.8b)
Ay = 1EP0,Es' — LEPO4E,', NP = E(,¢?%9, EL. (A.8c)

Inserting (A.2) into equation (A.8a) for ¢ yields

8oH 1 .
q:—H+380%:b . (AQ)

Since 0,0 = HNOy, equation (A.4) takes the simple form 9¢ ), b* = —3,
which in turn implies 8o,/g = 3,/g from (A.3). Using the expression (A.5)
to compute 0gH, we eventually obtain

1
g=2- A"y > T (A.10)

Note that equation (A.9) reproduces the dimensional equation 8gH =
—(1+4¢)H for H.
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Inserting (A.2) into (A.8b) yields

Ry = _%eb3*b260n3, Ry = %ebtbl (—n30on1 + Opna) ,
R3 = —%ebz_blaonl, (A.1la)
Y3 = +%eb3_b23on3, INERS %61)3_1)1 (—=n3don1 + Bona) ,
S = +%eb2_b180n1 (A.11Db)

for Ry and ¥,3 (o # 3), and

1 1 1 2
211 = 380%()‘1 —aob 5 222 = 33021)& _BOb )

1
Vs = 500 ; b — ob® (A.11c)

for the diagonal elements of ¥,3. The main observation is that the off-
diagonal components of ¥,3 are given by the Fermi rotation parameters R,
according to

(223, X31, X12) = (— Ry, Re, —R3), (A.12)

which is a fundamental property of the Iwasawa gauge.

In order to express to r.h.s. of (A.11) in terms of the momenta 7, and
Pu, we write (2.9) in the form

a ]. a 2 1_32 2_p3
0gb™ = n Zﬁ:g 677/3, Oono = Xe2(b ) <n3771 + (62(b ) 4 n%)Pg) ,
(A.13a)
don1 = %62@14’2) (P1+n3P2), Oonz = %62(1)24}3)7)3, (A.13b)

where we use N~ 19,0 = (A/2)8y. A straightforward computation then
results in

Yo =Yaa =2 A7, (nosum) (A.14a)
Ry = —Atexp(b® —b%)P3, Ry = A"texp(b' — b3)Ps, (A.14b)
Ry = —A texp(b' — b%)(n3 Po + P1), (A.14c)

where A is given in terms of the Hamiltonian variables by (A.6).
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Inversion of (A.14) yields

Ta = A2 — X4, (A.14a")
Py = —AR3Ey/Ey +ngP2, Po=ARoE3/En, (A.14b/)
P3 = —A Ry B3/ Es, (A.14c)

where A is given by (A.7).

To obtain the conformal Hubble-normalized variables A, and N,z in
terms of the Hamiltonian variables, we proceed analogously. Based on
(A.8c), we find

Ny = A texp (—2ba)Na (no summation over «),
Nag = A exp (=(0" + 7)) £, (a# 5 #7),
Aa—ra =AM exp (=0 +6) for (@ #B#7),

where

N1 = 2(0afiz — B37y + (7 + 1)(2101713 — Daliz)), (A.16a)

Ny = —20, 713, (A.16b)

N3 =0, (A.16¢)

fie =0 (b £b%), 9, =0, (A.16d)

for = 0o (0> £ bY) F 01721, Do = 10y + Do, (A.16¢)

fa+ = 03(b* £ %) F Ooig + M10173 — O1n2, O3 = N2 + g0 + Os;
(A.16¢)

as usual we denote the diagonal elements of N,3 by N,. In particular we
see that

N3 =0

in the Iwasawa gauge.
Finally, we note that the momentum conjugate to A = log p reads
my = Alog[(e1) ®71) (e2) P72 (e3) ).

where e, = HE, = exp(b%).

We conclude this section by investigating the equations for the conformal
spatial frame components E,* and the consequences thereof in some detail;
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these equations will be useful in Appendix H. From (3.4a) and (3.7a), we
- doE,' = F,PEs", where F,0 = ¢/ — 2/ — eaﬁvPﬂ.

In Iwasawa gauge (A.12), we obtain

O0E1 = (¢ —X1)E1, 00F2=(q—X2)E2, 0OoFEs=(q—X3)E3, (A.17a)

where E1, Fs, F3, and 31, ¥, X3, are again the diagonal components of E,’
and X,3, and

00F>! = 2R3E| + (¢ — $2) By, 89E3? = 2R1Fs + (¢ — X3)E3!, (A.17h)
30E31 = —2Ro 1 + 2R1E21 + (q — Eg)Egl, (A17C)

for the non-zero off-diagonal components of E,’. Using that
we find for the derivatives of e, = HE,,:

6061 = —(1 + 21)61, 8062 = —(1 + 22)62, 6063 = —(1 + 23)63.

(A.18)
Furthermore, from
Vg =H?*(E\E2Bs) ",
we obtain
009 = 3/g
from a direct computation based on (A.17a); therefore,
oA = Bo(2HG) = (2~ q)(2H \/G) = 2 — A (A.19)

Evidently, this equation is consistent with (A.6) and (A.10).

B Deriving the generalized Kasner line element of BKL

The Kasner subset on the silent boundary E,* = 0 is characterized by U, =
7o =0 (SH condition) and 0 =1 -2 = A, = «3- We specialize to the
Kasner circle K© by setting R, = 0, which corresponds to setting Yo =0
(a # 3). Therefore, for every point on K©, X5 = diag[ﬁ]l, S, 23], where
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the shear variables f)a(a =1,...,3) are temporally constant spatially depen-
dent functions; we set diag[¥11, Y99, Xi33] = diag[3p1 — 1,3p2 — 1, 3ps — 1].

In order to derive the leading asymptotic expressions for H and E,‘, we
first note that ¢ = 2, which is due to (3.9a). Equations (3.5) and (3.4a),
(3.7a) yield

H=He", E, =E,'e 3177 (no sum over a),

which leads to

~3PaT  (no sum over a);

eo‘,; = éo‘ie
recall that hatted objects denote temporally constant spatially dependent
functions.

In the synchronous gauge of BKL, i.e., N =1, N = H, equation (4.3)
leads to

t HA'].de

+ 1
+3
In addition, BKL also choose the synchronous time coordinate to be a
simultaneous bang time function. In the present derivation, this amounts
to setting ¢ = 0 as an initial value condition, which can be accomplished
by making a coordinate transformation. Consequently, we obtain ¢ oc e ™37,
With suitable redefinitions, i.e., é'; o< l;, é%; x m;, é3; x n;, and a = tP!,
b=1tP2, ¢ =1tP3 the “generalized Kasner line element ” of BKL ensues:

ds® = —dt* + [a2 Lily + b2 m; mj + A n; n dx’ da? . (B.1)

Thus, instead of ad hoc assuming the above line element, and inserting
it into the field equations in order to analyze its consistency, we have now
derived it as the lowest order perturbation of K© on the silent boundary.

Finally, note that an equivalent derivation can be performed in a Fermi
frame instead of an Iwasawa frame: we could start with R, = 0, which would
lead to a 4-dimensional ellipsoid of Kasner equilibrium points characterized
by temporally constant values f]aﬁ, and then make a temporally constant
rotation and diagonalize this matrix.

C Kasner solutions in a rotating frame

It is customary to represent a generalized Kasner solution in a Fermi frame
with constant diagonal shear variables: diag[¥1, Y9, ¥3] = const. However,
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when one considers a representation in a frame that rotates w.r.t. the Fermi
frame, one obtains time-dependent non-diagonal shear variables ¥,3(7) that

are related to 3, through time-dependent rotations Og(T), ie.,

(Og/ Eaﬂ Og/) , = dia‘g(ilv EA]27 23)

a/7ﬁ
= diag(3p1 —1,3p2 — 1,3p3 — 1) = const,

where the quantities (ﬁll, S, 23) can be regarded as the time-independent
eigenvalues of ¥,3(7). Accordingly, ¥,3(7) generates time-independent
frame invariants: the linear invariant reduces to the trace-free shear con-
dition, i.e., tr(zag(’l')) = 21<7‘) =+ 22(7') + 23(7') = 21 =+ 22 + 23 = 0; the
quadratic invariant yields the Gauss constraint, i.e.,

2085 =23+ %2+ %2 1 2R? 4 2R2 + 2R2 =322 4333 4 32 = 6.
Finally, the conserved cubic invariant is given by
det Xop(7) = 313533 = const.

This invariant can also be expressed in terms of a Weyl scalar. The
magnetic Weyl tensor is identically zero for Kasner, but the electric part is
non-trivial and thus one obtains one non-zero quadratic Weyl scalar, related
to det(X3qp) according to

Cabc dcabcd

Wi = —sHi

= 2 — det(X,3) = const.

Note that Clp.qC%°? is the Kretschmann scalar associated with the metric
g while the quantity C’abch“de/ H* is the Kretschmann scalar connected
with G.

Since det X3 = 315983 and (31,3, 33) € KO, det Yop is a constant
in the range [—2,2]. Conversely, each value of detX,3 from the interval
(—2,2) generates a unique ordered triple o < f]@ < 537 (a # B #v# a),
while det ¥,3 = £2 leads to the LRS points ¥, = £2, ¥3 =3, = F1 (o #
B#7# a)

The value of det ¥, thus characterizes a Kasner state frame invariantly
and uniquely; however, it is usually more convenient to use the Kasner
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parameter u instead, which is defined implicitly through

27u?(1 + u)?

det(Syg) = 2 — LW
et(Xas) (1+u+u?)3

= const, wu € [1,00], (C.1)

where det ¥,3 is a monotonically increasing function of w. The Kasner
parameter u € [1, 00| parameterizes the one-parameter set of Kasner states

(p1,p2, p3) according to

—u 1+u u(1l+ u)

_ - _ -7 =_ 7 C.2
14 u+u?’ Pp 14w+ u?’ Py 14w+ u?’ (C2)

Pa

for sector (a, 3,7) of the Kasner circle, i.e., po < pg < py (f]a < f]g < 27);
here u € (1,00). It is easy to check that p, +pg+py =1 and p? +p% +
p% = 1. The value u =1 represents the points Qi,Q2,Qs, i.e., the three
equivalent representations of the non-flat LRS Kasner solution; uw = oo
defines the Taub points T4, T9, T3 and thus the Taub solution.!”

The considerations of this section simplify the analysis of the silent Kasner
subset K, see Section 6.1. Since a solution of K is a representation of a
Kasner solution in an Iwasawa frame, properties such as u = const easily
follow.

D Multiple transitions

Here we give the proofs of some statements made in Section 6 concerning
multiple transitions; as an alternative to using frame invariants, we will use
elementary methods from the theory of dynamical systems.

Multiple frame transitions are solutions of (5.6) on the silent Kasner sub-
set K, for which at least two of the variables (R, Ra, R3) do not vanish

'"BKL define the Kasner parameter u according to p1 = —u/(14u + u?), pa = (1 +
w)/(1+u+u?), ps = u(l +u)/(1 +u+u?), cf. (C.2); here, the order of the Kasner expo-
nents is fixed as p1 < p2 < p3 by definition. We find it more natural to use the frame-
independent definition (C.1), and permute the ordering of p, according to the sector one
considers when dealing with frame-dependent matters.
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identically. The equations are

;Y1 = —2R3 — 2R3, 0,59 = —2RI +2R%, 0,%3 =2R? + 2R3,
(D.1a)

0, Ry = (22 — 23)R1 + 2R R3, 0, Ry = (21 — 23)R27
OrR3 = (31 — X2)R3 — 2R Ry, (D.1b)

together with 2 = 1. The set Ry = 0 is an invariant subset of (D.1) (while
R; =0 and R3 =0 are not invariant), hence possible classes of multiple
frame transitions are Tr,p, (which satisfy R; # 0,Ry =0,R3 #0) and
Tr,RyRs (Where all three functions are different from zero).

First, let Ry =0, i.e., we consider Tg,r, transitions. In this case, Ry =0
and Rs = 0 are invariant subspaces; we consider, without loss of generality,
the state space defined by R; > 0 and Rz > 0; since 2 = 1, the closure
of this state space is compact. The functions ¥; and Y3 are monotone on
the state space, and hence the monotonicity principle'® implies that the
a-limit and the w-limit of each orbit must lie on the boundaries R; =0
(i.e., on Bg,) or R3 =0 (i.e., on Bg,) of the state space. Using the known
structure of the flow on the boundaries (which contain the single transition
orbits), we conclude that the a-/w-limit must be a source/sink on K©. The
fixed points in four of the sectors of K© are saddles; the fixed points in sector
(321) are sources, since both R; and R3 belong to the unstable subspaces, see
figure 1(a); the points in sector (123) are sinks. Thus, Tr,r, orbits originate
in sector (321) and end in sector (123), see figure 4(a). (Recall that, in
this paper, “time” is directed toward the past singularity; the nomenclature
“a-limit set” and “w-limit set” is used in accordance with the chosen time-
direction.)

Second, let Ry # 0, i.e., we consider Tr, r,r, transitions; without loss of
generality we assume Ry > 0. Since ¥; and X3 are monotone functions,
the monotonicity principle yields that the a-/w-limit of every orbit must lie
on the boundary Rs = 0. Applying the previous result on the limit sets of
TrsRr, transitions, we see that the a-limit must be an equilibrium point in
sector (321) and the w-limit a point in sector (123).

8The monotonicity principle essentially states that if there exists a function that is
monotone along the orbits of a state space with compact closure, then the a-/w-limit set
of every orbit is contained on the boundary of the state space; see [12,49] and references
therein.
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For mized frame/curvature transitions Ty, r,, the system (5.6) reduces to

8,51 =2(1 - 2%, 4+ 2N2, 9Ny = —2(22 + 1) Ny, (D.2a)

0;R1 =2(1 —¥*)R; + (X2 — ¥3)Ry, (D.2b)

8,5 = 2(1 — 2)%y — 2R? — N7, 9,53 =2(1 - ¥2)%;3 + 2R? + LN7,
(D.2¢)

together with (1 — X2) = (1/12)N?; the remaining variables vanish identi-
cally. Without loss of generality, we consider the case Ny > 0 and R; > 0.
By (D.2), the function (¥X; +4) is monotone on the (relatively compact)
state space, and hence the monotonicity principle guarantees that the a-
and the w-limit of every orbit resides on the boundaries Ny =0 or R; = 0.
Using the structure of the flow on the boundaries (as given by the single
curvature transitions of figure 3), we find that the a-limit of each orbit is a
fixed point on sector (132), and that the w-limit is a point on sector (213)
or (231) of K©, see figure 4(b).

From (D.2) we can derive the validity of the Kasner map (6.4) explicitly.
The equations (D.2a) form a two-dimensional decoupled system for ¥; and
N1 by means of the Gauss constraint; the underlying reason for this is that
Y1 and Nj are invariant under the frame rotations in the (eg, eg)-plane that
are induced by R;. Since the subsystem for 3; and N; is identical to the
one for the single curvature transition case 7Ty, , the respective solutions are
identical; in particular, as in (6.3a),

D1 = —4+ (14+4?),

where ¢ is defined as in (6.3b) and w = w_. This implies that (¥;)4 is
identical to its counterpart in the 7y, case (provided that the initial values
(X1)— are the same). Note, however, that ¥y and X3 differ from the func-
tions given in (6.3a), since Ry # 0 changes the evolution of these quantities.
In particular, we find that (EQ)INlRl = (Eg)INl and (Eg)INlRl = (Eg)INl,
which reflects a relative rotation of the axes. However, in terms of the
Kasner parameter u, the two final states are indistinguishable, which is a
consequence of the frame invariance of u; hence w4 is given in terms of u_
by the Kasner map (6.4).

The equations on the silent Bianchi type VIy/VIIy subsets are given by

0:%0 =2(1 = X)X 0 4 3800, 0rNg = —2(X% 4+ X,)N,,
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a=1,...,3,a=1,2; here, the quantities 3S,, are polynomials in N; and
N, given by (5.61). The Gauss constraint (5.6j) reads

1
DIEIRED 3 NED 3 (Vi - No)? =6. (D.3)

Since 3833 = —(1/3)(Ny — N3)?, we obtain
1
0r(2 - %3) = 6(N1 — No)%(2 - 23), (D.4)

i.e., (2 — X3) is a strictly monotonically increasing function unless N3 = Nj.

The Bianchi type VIj subset is given by (N1 > 0) A (N2 < 0) (or, equiva-
lently, by the reversed inequalities). Hence, the Gauss constraint (D.3) leads
to a compact state space given by X7 + X3 + 32 + (1/2)N? < 6, where N =
N and Ny = N — /12(1 — ¥2). The function (2 — X3) is strictly monotone,
since (N1 — N3) > 0 everywhere. It thus follows from the monotonicity prin-
ciple that the a-/w-limits of orbits must reside on the boundaries of the state
space, i.e., on K® U By, UBy,. Using the known structure of the flow on
the Bianchi type II subsets, see figure 3, and the resulting local properties
of the fixed points on K©, we find that the a-limit of each orbit is the fixed
point T3 on K© and that the w-limit is a point on sector (312) or (321).

The Bianchi type VIl subset is given by (N1 > 0) A (N2 > 0) (or, equiv-
alently, by the reversed inequalities). In this case, the Gauss constraint does
not enforce a compact state space. The derivative of the function (2 — X3)
is not positive when N7 = Ns, see (D.4); however, 303(2 — X3)|n,=n, =
4(X1 — %9)2NZ(2 — X3), and hence (2 —X3) is a strictly monotonically
increasing function except on the LRS subset N1 = Ns and ¥1 = Y5, which
yields that (¥1,%9,%3) = (—1,—-1,2) or (X1,%92,%3) = (1,1, —-2). The lat-
ter is an invariant subset with 0,N, = —4N,, which represents the non-flat
LRS Kasner solution in a Bianchi type VIIy symmetry foliation. The set
(31,%9,%3) = (—1,—1,2), on the other hand, is a one-dimensional set of
fixed points, parameterized by N3 = Ns = const > 0, which we denote by
E}f; each fixed point represents the Minkowski spacetime in a Bianchi type
VIIj symmetry foliation, see [12, p. 130, 133]. It can be proved, see [50, The-
orem 5], that the a-limit of every orbit in the Bianchi type VIIj state space
is one of the fixed points on £3. The w-limits are points on sectors (312) or
(321) of K°.

For each individual Bianchi type VIy or VIIy orbit, the quantity |INVy|
(and, equivalently, |N3|) goes through a maximum value. It is of inter-
est to note that there exists a uniform bound, i.e., there exists € > 0 such



THE COSMOLOGICAL BILLIARD ATTRACTOR 387

that max, |[N1(7)| > € (and max, |N2(7)| > €) uniformly for all Bianchi type
VIy/VIIy orbits. In order to see this, assume that the assertion is false;
then there exists for all n € N a Bianchi type VI (Bianchi type VII) orbit
%, such that max, |Ni(7)| < 1/n, ie., |Ni(7)| <1/n V7. In particular,
|N1(7,)| < 1/n, where 7, is such that ¥3(7,,) = —1. Since the state space is
compact (or, in Bianchi type VII, the intersection of the state space with
the set |N7| < 1), without loss of generality the limit lim,,_, o 3o (7,) exists
— otherwise we go over to a subsequence. If the limit is neither of the points
Q1, Qo, then (X4, N1, N2)(7,) converges to a point on a 7y, single curvature
transition orbit. Hence, for sufficiently large n, the corresponding orbit ¥,
shadows this 7y, transition. However, the flow on the boundary of By, n,—
(BN, Ny+) forces T, to also shadow the Ty, transition preceding/succeeding
it. Along these Ty, transitions we have |Ni| £ (1/n) for large n, which is
a contradiction. The argument is analogous when lim,,_,o X4 (7,) is one of
the points Q1, Qo; in this case we employ the saddle structure of these fixed
points to show that for sufficiently large n, the orbit ¥, shadows a Ty, tran-
sition along which |N7| £ (1/n), which is again the desired contradiction.

E Behavior of an auxiliary quantity

In this appendix, we consider equation (9.6), i.e.,

0

5B =201~ >*)B + 2R% — 2R%; (E.1)
-

we show that, generically, B; ~ const Gy as i — oo, cf. (9.8), along a

sequence of transitions Sy. (In Section 9, this statement was shown to

be true for sequences St that do not contain Ty, and Ty,r, transitions,

which is equivalent to assuming Ny = 0.)

For the following it is convenient to use a continuous time variable along
S7; we introduce “sequence time” A\ by A = (1/2) + (arctan7)/m, ie., T =
tan [(2A — 1)7/2]; accordingly, the time interval A € (,7 + 1) (for i € N) cor-
responds to 7 ranging in (—oo,00) during the ith transition. By using
sequence time, we define the growth function G by

G(\): G =2(1- 22)%0, G(0) = 1.

By construction, G()) coincides with G;) as defined in Section 9 for
A = 4; this is because G| = HL_:IO gk, where the growth factors g are defined
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as the ratio (4 /(_ (where {1+ = lim;_, 1 () that arises from the equation
0,¢ = 2(1 — X2)¢ for the kth curvature transition, see (6.5) and Section 9.

The derivative of B is closely related to derivatives of ¥o; in sequence
time A\ we find

d
) %(22 —2)+2(1 - EQ)% [B—(22—2)] when Ny =0,

dr

dA

Q
=
o

$(Z2+4) +2(1 -%%)—~[B—(22+4)] when Ny =0.

(E.2)

Q

Integrating (E.1) thus amounts to integrating the two equations in (E.2)
alternately: as long as No = 0 we use the first equation; whenever there is
a Tn, or a Tn,R, transition the second equation is employed. For k € N,
let A\, € N be a sequence of times that represents the “switches” between
the two equations in (E.2), i.e., No = 0 in (Ag, A\kr1) for even k and N1 =0
in (Ag, Ag+1) for odd k. Integration of (E.2) and a somewhat cumbersome
iteration yields

k
B = (% =2/ +66(3) | (1) g5 | + GOIBO) — (5 = 2)(0)

J=1

for A € (Ag, Ag+1) with k even (and a similar result for odd k). By the
Leibniz criterion, the sum Z§:1(—1)j G(\j)~! converges as k — co. More-
over, \Zj>k(—1)jG()\j)_1| < G(>\j+1)_1, hence G(\) Zj>k(_1)jG()‘j)_1 is
bounded. Since also (X — 2)(\) is bounded, we can replace the sum with
an infinite series and collect the remaining terms in a term labeled b(\),

00 1
B(\) =G\ | B0) + 6;(1)’w = (32 =2)(0) | +b(N);

here b(\) is bounded (and oscillatory). Consequently, generically, B(\) ~
const G(\) holds asymptotically, or, in different notation, B; ~ const Gy;).

F Convergence of sums

Consider a sequence of transitions S7 on the oscillatory subset O; in our
nomenclature, S7 denotes a generic sequence, i.e., a sequence that does
not contain any double curvature transitions, see Section 7; therefore, the
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sequence St is associated with a Kasner sequence (u;);cn, where [ € N is
the index that consecutively numbers the curvature transitions of Sy.

In this appendix we first analyze the series
> G AT, (F.1)
l

where G| is the growth function and |(AX2)|; denotes the sum of the absolute
changes in ¥y occurring for the frame transitions between the (I — 1)th and
the Ith curvature transition. Series of the type (F.1) arise in connection
with the asymptotic suppression of the variable N, see Section 10 and
the discussion below, and in the context of the asymptotic freezing of the
Hamiltonian variables n; and P;, see Appendix H. In the following, we
prove that the series (F.1) converges. To establish this result, we analyze
contributions of the sum in large and small curvature phases separately.

First, we consider (F.1) for a large curvature phase (which we assume to
be associated with a sufficiently large value of n,): [ € [li,ls]. Obviously,
|(AX,)]; is uniformly bounded (by 2v/3), so that G; '|(AX2)|; < const G} .
Furthermore, in a large curvature phase, g, > Cp, > 1, cf. (9.11), so that
Gl]_ll = gl_lGl_1 < Gl_le_l for all [ € [l;,l]. Hence, for a large curvature
phase, each term in the sum can be bounded by a term of a geometric
series.

Second, we consider (F.1) for a small curvature phase; since small cur-
vature phases dominate over large curvature phases in the probabilistic
description of sequences, see Section 8, the subsequent considerations are
of central significance. Recall that the prototype of a small curvature phase
is the alternating sequence of 7n, and 7Tg, transitions in a neighborhood
of the point T3, which is characteristic for billiard sequences By. The fol-
lowing considerations are adapted to small curvature phases of this kind;
however, the results hold for general small curvature phases with obvious
minor modifications. Let [ € [liy, lout] be a small curvature phase (where we
assume u'™ > 7, + 1 to obtain a phase consisting of at least two-curvature
transitions):

-1

lout+1 lout+1 -1
Yooaas)i= > G [T e lam)l
I=lin+1 I=lin+1 J=lin

B G_l loui—fl 14y + ul2 3(1 + 2Ul)
™ 1+uin+(uin)2 1+ul+ul2

l:lin+1
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1+u1n+ uln) ™ 1+uin+(uin)2
3((u™)? —ny)

lin 1 + uln _I_ (um)

ZL: W k) _ o 3LQu" L)
=1

< 3G < const G

(F.2)

where we have used (9.9) for the growth factors g; and (6.2) for |[(AXs)|;.

From (9.12) we see that G < G_ nes L furthermore G w2 <G !

(1 —ny +n02)/(1 +u™ + (u™)? ) cf. (9 10) SO that G/ ! 4o <G 1C’ 1. This
leads to the important conclusion that the sum ass001ated w1th a small
curvature phase can be treated on an equal footing with a single term in a
large curvature phase, i.e.,

> GIH(AS) ] =+ (A, —1Gy 'y + (AS9)], G

lout+1
+ Y GrHAS)I| + (AS)l1y42Grt o +
I=lin+1

<const< S+ G GGG L+ )
<const (- + Gl + GG+ GG

G ),

Therefore,

ZG;H(AZg)h < const ZC’p_k < 00,
l k

which proves the asserted convergence of the series.

For asymptotic sequences of transitions ASy the above considerations
apply in the asymptotic regime when AS7 shadows sequences on O and
thus consists of approximate transitions (7;);eny. The convergence result
also holds analogously for asymptotic sequences ASp: since the possible
(approximate) Bianchi type VIp and VIIj orbits are associated with a very
large increase in GG, convergence in the sum is strengthened.

The established convergence of (F.1) has direct applications in our discus-
sion of asymptotic freezing in Appendix H. The convergence result is also the
basis for the proof of the assertion made in Section 10 that equation (10.4)
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simplifies to (10.5) along an asymptotic sequence of transitions ASt; this
will been shown in the following:

Integration of (10.4), i.e.,
Or(N1R3) =2 [2(1 — ¥?) — £% — 5] NyR} — 4RiG™ (V1 R3),  (F.3)

yields

log (N1 R3) = 2/ (21 - %) = %% - %) dr — 4/R%G1 dr + const.

In the asymptotic regime, the integrals can be written as sums over the
(approximate) transitions of the asymptotic sequence; the second integral
contributes only for transitions involving R;. We can make the estimate

Ti+1
/ RG ™M dr <> G4 / R2 dr, (F.4)
l Ti

where the limits of the integral on the r.h.s. denote the 7-time that elapses
during the frame transitions between curvature transition number [ and
[+ 1. In the asymptotic regime, the integrals of this type can be approxi-
mated by using exact transitions; in particular, there exists a uniform upper
bound, which suffices to prove convergence in large curvature phases in com-
plete analogy to the considerations above.

The variable R; is non-zero along 7Tg, transitions; along other single
transitions it vanishes. Note that multiple transitions involving R; can be
ignored in the present context, since we focus on small curvature phases,
where multiple transitions do not appear. For a Tg, transitions we have
—2R? = 9,35, hence —2 f:“ R¥dr = (X2)+ — (¥2)—. Therefore, since
|2 f;’“ R}| < |AX];, the sum in (F.4) can be estimated by a sum of the
type (F.1); we thus obtain convergence and

log (Nle) = 2/ (2(1 - »?) —xn? — ¥9) dr + const’

as T — oo. Consequently, the term —4R?G~1(N; R%) in (F.3) can be neglected
as T — 00; this leads to the simplified equation (10.5) and thus establishes
the claim.

To prove asymptotic freezing of 7y in Appendix H, we need to consider
series of a slightly more general type than (F.1). Consider a sequence of
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transitions S7 and the associated series

Z Gy ©, (F.5)
where a > 0, ¢ > 0 (and for simplicity 2a — ¢ > —1); note in this context that

the series
_ 1 _1logyy
E:G NogG;— § e
l [ 0og lul7 l l W )

see (H.20), can be estimated by a series of the type (F.5) (with a =1 —,
¢ =1—¢). In the following we prove convergence of the series (F.5).

In analogy to (F.2), we obtain during a small curvature phase

lout+1 lout+1 2 a
1+u+u
Z G w)™ =Gy Z <1 + Zin l:—(ulln)2> (ur)™*
I=lin+1 I=lin+1
lout+1 (ul)Qa_c

< (1 + 6)G(l_ina Z (uin)2a )

I=lin+1

where we have used an estimate of the type (1 +u+u?) < (1+ €)u? for
some € > 0 (which is small when 7, is large). Further, by estimating the
sum through the associated integral, i.e.,

lout+1 L uin
2a c 2a c 2a—c
Z = Z < const / U du,
I=lin+1 k=1 w
we arrive at
lout+1 1 . .
g G %(u;) ¢ < const G * ——————(u)' ¢ = const G “(u™)' ¢
Mt lin 2 —c+1 in

(F.6)

Modulo the large curvature phase terms whose sum converges straightfor-
wardly, and which hence can be suppressed, the series (F.5) can be written as

lout,j“‘l

.G =3, >
l

J A=l
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where [(lin)j, (lout)j] denotes the jth small curvature phase. Based on the
estimate (F.6) we therefore obtain

Z Gy (u)™¢ < const Z (G(lin)j>7a (u‘]“) l_C’ (F.7)
; -

J

where u'? is the initial value of u for the small curvature phase number 7,
which begins with transition I, ;.

Regarded as a random variable, u™ = s~ ! is associated with the proba-
bility density (), see (8.5). Therefore, u™ = 3! does not possess a finite
expectation value, cf. Section 8; however, (u®)!=¢ = »°~! does, since

—1

(@)= = 7 b e GO 2 )~ Tk ()

c
It follows that the expectation value of the sum in (F.7) exists, i.e.,

<2n: (G(lin)j>_a (u}“)l‘c> _ 2”: (G (lin)j>‘“ nic‘c_

j=1 j=1

Hence, since G(lm)j increases geometrically, i.e., G(lin)j o> CPG(lin)j7 the

limit n — oo exists. We conclude that the series (F.7) and thus (F.5) con-
verges.

G Hitting intervals stochastically

Let us introduce a continuous random variable s € [0, 1] with probability
density

w:[0,1] 35— w(x) €R, w(0)>0.

A simple example is a uniformly distributed random variable, i.e., w(s) = 1.

Now consider a sequence (d,,)neny Where d, € (0,1) ¥n and where §,, — 0
(n — 00). The sequence (0,)nen generates a sequence of intervals [0, dy,]
whose length decreases as n — oc.
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The probability that s € [0, d,] is given by

on
P(»x€[0,4,]) = /0 w(se)dzx =: 0y = w(0)dy, (G.1)

where the approximation holds for ¢, < 1. (Evidently, the result is exact
for a uniformly distributed random variable.) We denote the event s €
[0,6,] as a “hit”; the associated probability P (s € [0,6,]) = bn is the “hit
probability”.

Consider a series of n = 1,..., N trials. The probability that no hits occur
during N trials, i.e., 5 € [0,6,] Vn =1,..., N (“no hits”), is given by

n=1

analogously, the probability for “one hit” is

~ N _ N S
-3 T o= (o-50) 1%
=1 j=1,j#n n=1 i=1 =

Finally, the probability for “N hits” is the product Hﬁ[:l On

As a simple example let §,, = en™! with € < 1. We obtain

N N

log PV (0) =) "log(1—6,) = > (= w(0)8, + O(37))

therefore log PV (0) — —o0 as N — oo, and PV (0) = 0 as N — oo (inde-
pendently of €). Similarly,

PN Z ﬁ ~ exp (—ew(O) i >

n=1

0%

therefore PV (1) — 0 as N — oo (independently of €). The analogous result
holds for the general case: one can show that PV (i) — 0 as N — oo for all
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1 € N. We conclude that for an infinite series of trials the probability of
getting a finite number ¢ of hits is zero, P*°(i) = 0. We expect an infinite
number of hits as N — oo (although the intervals between two hits are
expected to become increasingly large).

As a second simple example let §, = en™2 with € < 1. We obtain

N
log PV (0) Zlogl—& %Z b, + O(62))
n=1
iy
= —ew( T;Tﬂ—i_O

in this case, log PV (0) = —cas N — oo (with ¢ > 0), hence PN(0) e ¢>0
as N — oco. Analogously, one can show that PV (i) — const > 0 as N — oo
for all 4 € N; in addition, PV (i) < PN (0)(c?/4!). Accordingly, for an infinite
series of trials, the probability of getting a finite number 4 of hits is finite,

, P>(i) > 0, where P>(i) — 0 as ¢ — co. An important conclusion is
that the expectation value of the number of hits is finite,

(#hits) = Z 1P (i

Note that the expectation value exists because P>°(i) falls off sufficiently
rapidly as ¢ — oo.

Remark. For the above computations we have made use of the approxima-
tion 0, ~ w(0)dy,, cf. (G.1). Alternatively, we could have used an estimate
of the type 0y, < [Jwl|oodn

H Asymptotic constants of the motion

The analysis of Damour et al. [13] indicates that the off-diagonal Iwasawa
frame variables n;, their conjugate momenta P;, and the momentum )
conjugate to A = log p, see Section 2, are asymptotic constants of motion;
i.e., these quantities converge to functions that only depend on the spatial
variables (so-called asymptotic freezing). In this appendix, we will derive
these results from a dynamical systems perspective.
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H.1 Asymptotic freezing of n; and P;

We begin by establishing asymptotic freezing of the quantities n; and P;. In
the conformal Hubble-normalized variables, these quantities are given by

Byt E5t E5?
= =2 - = - 3 H.1
ni E2 ) na E3 ) ns E3 ( a)
E E E
P1=—2H\/gRs > +ngPs, Py =2H\GRa7", Psy=—2H/gR1 =",
B B By
(H.1b)
where we have used the notation
Ey:=E\', EBy:=FE)* F3:=E3%
see Appendix A for details. Since n; = —nyi,ne = —no + NNz, N3 = —N3,

cf. (2.6), asymptotic freezing of 7n; implies that also n; converge to constants.

Consider the quantities 7;. From the formulas for 8gE,*, see Appendix A,
it is straightforward to compute

~ Ey _ Eq Ex! _ Es
0 =2R3—, O = 2Ry— +2R1—=-, 0O = 2R ==.
071 3E2’ 072 2E3 + 21 s 0n3 1E3

Let us now consider a sequence of transitions (or a billiard sequence)
that is approximated by an attractor sequence A7 in the asymptotic regime
T — 00. Recall that A7 is an infinite concatenation of 7Ty,, Tr,, and Tg,
transitions on the billiard attractor Opg4, see Section 11. As usual, for
notational simplicity, we drop the distinction between exact transitions and
approximate transitions. To lowest order, the evolution equations for n;
along A7 are given by
E E,

_ Fn N _ 2 _
O:fy = —2R3—L,  Orfig = —271 R1—2, O-fig = —2R; —=. H.2
ny %, N9 ny 'E, n3 'E, (H.2)

Let us first focus on the evolution of 1. We rewrite the evolution equation as

E
9.1y = —2R3 (E211~23> : (H.3)

and investigate the behavior of the quantity E;/(E2R3). Along Ar we

obtain 5 P 5
v 1 _ 2 1 .
a <E2R3> 201 — 52 <E2R3> , (HL4)
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therefore, E1/(E2R3) behaves like the inverse of the auxiliary quantity A,
see (9.1). Accordingly, F1/(FE2R3) decreases like the inverse of the growth

function, i.e.,
— ] =G5 | =— H.5
<E2R3>i 1@ <E2RS>07 (15)

see (9.5). Inserting this result into (H.3), we are able to explicitly com-
pute the change in 7y for each transition: An; is zero (in the lowest order
approximation) for each Tg, and each Ty, transition and

_ E -
(Anl)z = — <E2]1%3> ‘ ‘AEQ‘Z = —const Gl(zl)’Azglz, (HG)

)

when 7; is a Tr, frame transition; (AXs); denotes the change in Y9 during
this transition; here we have used that F;/(E2R3) is constant during 7; and
that 0,9 = 2R3.

To establish asymptotic freezing of i1, we must show that the summation
of all (Any); is finite (where the sum is over all Tg, frame transitions of
Ar). Let I, = {i | T; is Tgry}; the series

D (Any); = const Yy Gy |AZs; (H.7)
iEIR3 iGIR3
can be rewritten as
> G AD) < oo, (H.8)
l

where [ is the running index that consecutively numbers the curvature tran-
sitions in A7; |(AX2)|; then denotes the sum of the absolute changes in ¥
occurring for the frame transitions between the (I — 1)th and the Ith cur-
vature transition. The series (H.8) is proved to converge in Appendix F;
hence (H.7) converges. Finiteness of the sum (H.7) entails that n; converges
to a constant value (which depends on the spatial variables), i.e., 71 exhibits
asymptotic freezing.

The arguments used to establish asymptotic freezing of 79,73 are anal-
ogous. Instead of E/(E2Rj3), one can use the quantity Es/(E3R;), which
again exhibits a behavior of the type (H.5). In addition, the already estab-
lished asymptotic constancy of 77 can be employed in the equation for 7.

Remark. Asymptotic freezing does not depend on the assumption that the
solution converges to a attractor sequence (although this leads to simplifica-
tions in the computations). Analogously, one can show asymptotic freezing
in the case that the asymptotic sequence converges to an arbitrary sequence
of transitions on the billiard subset B (including double transitions).
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To establish asymptotic freezing of P;, we employ equation (H.4) and the
analogous equations for the quantities Fy/(E3R2) and Es/(FE3Rp): obvi-
ously, for the inverse quantities Es R3/FE1, EsRa/Eq, E3sRy/Es, the evolution
equations are of the form

0;A=2(1-X?A.
Furthermore, we note that the evolution equation for the quantity
A=2H,/gis
O A = —2(1 — Z2)A, (H.9)

see Appendix A. From these equations it is immediate that
0:P; = 0,

where we have used that n3 converges to a constant in the equation for Pj.
It follows that P; are constant in the asymptotic regime so that asymptotic
freezing holds trivially.

Remark. Based on the results of Appendix A, we are able to compute the
following ratios:

RiRsA  Ps(nsPa+P1)  NR3  Ni(ngPs+ Pip)?
Ry P T NgAZ Ny ’
BA 1
EsRs  ngPa+ Py’

where r.h.s., and hence also the lLh.s., are asymptotic constants of the
motion. Since the quantity A satisfies (A.19), it behaves like the auxiliary
quantity A (or like B in the generic case); we thus find — a posteriori —
the asymptotic behavior of Ry and N, in consistency with the results of
Section 10.

H.2 Asymptotic freezing of my

The momentum 7y conjugate to the variable A is given by
TN = Alog |:(€1)(2*21)(62)(2722)(63)(2723) ’

see Appendix A; recall that e, is defined by e, = HE, and that A = 2H /3.
The derivative of the variables e, reads

Oreq = (14 X4)eq, (H.10)



THE COSMOLOGICAL BILLIARD ATTRACTOR 399

cf. (A.18) in Appendix A. Using these formulas and equations (11.1a) to
(11.1c), and (11.1g) for 0;%,, and (H.9) for 0-A, we find that the derivative
of m is given by

A0,y = log[(e1)™ (e2)*2(e3)™3] + 6(1 — X2) + 2R + 2R3,  (H.11a)
where

X1 =-12(1 - 2?) + 2R3, Xo=2(Ri—-R3), X;=-2R} (H.llb)

In order to establish asymptotic freezing of 7, we consider a sequence
of transitions that is approximated by an attractor sequence A7 in the
asymptotic regime 7 — oo and investigate (H.11) along this sequence of
TN, Tr,, and Tg, transitions. We begin by analyzing the behavior of certain
functions in terms of the growth function G; we first note that

AN=2H,/g = AoG™!, sothat A; = AOG;(;).

From (11.1) and (H.10), we obtain the following equations:

Or [(1—X%)ef] =4(1 - %) [(1 - =?)ed] (H.12a)
a: [Rlzz] =2(1- %2 [Rlzz] . 0. [Rgzj] =2(1-%?) [3322111';1%)

hence the relations

-]« R w6 [m2]xa
€9 (&)

describe the behavior of these functions along A7 in terms of growth function
G. On the basis of these formulas, equation (H.11) simplifies. For a Tg,
frame transition, (H.11) reduces to

a,my = A {233 log Ei n 233] = 200G R2 [ —log G +log R3 + const} .
2
(H.13)

The fact that growth function G is constant along the 7g, transition
makes it possible to integrate (H.13). Since 9,39 = 2R3, we obtain that

2/R§ dr = AYs, and 2/R§ log R3 dr = AY5(log AYy — 1), (H.14)
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where we have used that R} = [$g — (X2)_][(X2)+ — Zo] for the second inte-

gral; as usual, AYy = (X9);+ — (X2)_, where (X2)+ denotes the values of Yo
at the endpoints of the transition. Using (H.14) we find that

Amy = AG A, [ —log G + log A + const} )

or, in index notation, where we assume that 7; is the Tg, transition under
consideration:

(Amy); = MoGyh (AT); [ —log Gys) + log(ASs); + const} . (H.15)

here, the constant is independent of 7. If 7; is a Tg, transition instead of a
Trs, the result is analogous.

In the case of a Ty, curvature transition, (H.11) reduces to

drmy = 6A(1 — X)) [—2loge; + 1]
=6A0G (1 —¥?)| —log G + 3 log(1 — £?) + const |. (H.16)

The integral of 2(1 — ¥?) yields the logarithm of the growth factor g =
(+ /(- associated with the transition 7Ty,, i.e.,

2/(1—22)d7':/d§:10gg+:10gg.

The integral of 2(1 — ¥2) log(1 — X2) is more involved; using (6.3b) we find

2/(1 — 2% log(l — ¥?)dr = <log C—3C+> log g

Gt
4 / 2log[<<<><<+<>]d<. (H.17)

If the Kasner parameter u (=wu_) of the 7y, transition is large (i.e., if
Tn, belongs to a small curvature phase), then (H.17) simplifies by using the
approximations

2 6
grR1+— G-~
u u
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in particular

C+
| losllc — 6 - Mg ~ 2 [logu

_ log6 — 1]
C )

3

so that
2
2 /(1 — ¥ log(l — ¥?)dr ~ = [~2logu + log 12 — 2]
u

for uw > 1. Since G is not constant along the 7Ty, orbit, equation (H.16)
cannot be integrated explicitly. However, by making the estimate G > G _,
where G_ is the initial value of the growth function, we obtain

|Amy| < 3M0G~! [log G_log g + constlog g + ‘ /(1 — %) log(1 — EQ)dT” ,
which reduces to
1
|Amy| < 6A G:IE [log G_ +logu+ const]

in the case u > 1. In index notation, when we assume that the Ty, transition
under consideration is the ith transition of the sequence, i.e., T; = Ty,, we
have

41
|[ATy|i < GAOGZ(S)K() [log Gy + log wyiy + const], (H.18)

%

where the estimate holds in a small curvature phase (with sufficiently large
ul).

To establish asymptotic freezing of ), we must show that the summation
of all (Amy); is finite (where the sum is over all transitions of Ay), i.e.,

> AT < co. (H.19)

i

Finiteness of this sum entails that 7, converges to a constant value
(depending on the spatial variables), i.e., m) exhibits asymptotic freezing.

We merely state the main arguments of the proof and omit the computa-
tional details: in analogy to the considerations of Appendix F, we may focus
on the behavior of (H.19) in small curvature phases (i.e., the alternating
phases of Tg, and Ty, transitions in the neighborhood of T3), since in large
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curvature phases, the treatment of the sum is simple. Since |AYg| ~ u™1
when u > 1, see (6.2), equations (H.15) and (H.18) are of the same type

and lead to sums of the type

_ 1 _1log
1 1
% G, logle and El G, o (H.20)

where [ is the running index that consecutively numbers the curvature tran-
sitions in A7. Finiteness of (H.20) is proved in Appendix F, hence finiteness
of (H.19) ensues and we obtain asymptotic freezing of 7.

I AVTD singularities and the dynamical systems approach

In this appendix, we discuss the connection between work on AVTD sin-
gularities and the dynamical systems approach. There exist no rigorous
results for inhomogeneous models with oscillatory singularities, but there
are some for inhomogeneous models with so-called AVTD singularities. In
this appendix, we address how work in this latter field relates to the present
approach.

The concept of velocity dominated singularities was first introduced by
Eardley et al. [51]. Isenberg, Moncrief and co-workers later used the approach
of Eardley et al. to obtain rigorous results, see [42] and references in [16].
Let us here follow Isenberg and Moncrief [42]. They use the standard initial
value problem as their starting point, the spatial metric and the extrinsic
curvature being the dependent variables. They then consider the system of
differential equations one obtains if one drop all spatial derivatives, except
in the Codazzi constraints, and sets the three-curvature to zero. By doing
so, they obtain a VI'D ODE system of evolutionary equations constrained
algebraically by the Gauss constraint; the solution of this system can sub-
sequently be inserted into the Codazzi constraints yielding a VT'D solution.
A spacetime is said to be asymptotically velocity term dominated (AVTD)
if it is a solution to Einstein’s equations such that it, w.r.t. some appro-
priate norm, asymptotically approach a solution to the VID equations,
see [42, p. 87, 88| for details. If furthermore the asymptotic limit yields a
singularity, this singularity is said to be AVTD.

If one uses a conformal Hubble-normalized orthonormal frame, then the
equations for the VI'D ODE system are the Bianchi type I evolution equa-
tions and the Gauss constraint on the silent boundary — and the equations
for E," and the Hubble variable H, with all spatial frame derivatives dropped
and all variables set to zero except for 3,3 (and possible matter variables),
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i.e., the lowest order perturbations of the evolution equations for E,’ and
H w.r.t. the silent Bianchi type I subset; this therefore yields the general-
ized Bianchi type I solutions, which in the vacuum case are the generalized
Kasner solutions. The VTD treatment of the Codazzi constraints corre-
sponds to inserting these solutions into the lowest non-zero perturbation
of the constraints w.r.t. the silent Bianchi type I subset (i.e., one sets all
variables to zero except for E,, Y, and possible matter variables, in the
constraints).

In the vacuum case, AVTD singularities occur for special spacetimes,
notably ones with symmetries, as discussed in Section 13. In cases with
one or two commuting spacelike Killing vectors, this naturally leads to an
Iwasawa frame representation, and hence to a fairly simple correspondence
between the present Iwasawa-based conformally Hubble-normalized vari-
ables and variables that have been used in previous work in this area (thus
the AVTD starting point is obtained by plugging in the Kasner circle K©
into the lowest order approximation for E,’ and H, as done in Appendix B).

Arguably the most impressive result about AVTD singularities was
obtained by Andersson and Rendall [17] for massless scalar fields and stiff
perfect fluids. In this case, the Bianchi type I equations on the silent bound-
ary yields the generalized Jacobs solutions, and it turns out that an open
subset of these solutions are stable and hence attract an open set of solu-
tions. It should, however, be pointed out that the approach of Anders-
son and Rendall is naturally related to a Fermi propagated frame rather
than an Iwasawa frame. Stiff perfect fluid spacetimes has also been inves-
tigated in terms of the UEWE dynamical systems approach by Coley and
Lim [52].

We note that within the present framework AVTD singularities are more
appropriately geometrically described as singularities that are associated
with (Hubble) asymptotic (Hubble) conformal spatial flatness.

To study when singularities are not AVTD, Moncrief and coworkers have
introduced the “Method of Consistent Potentials” [15,43], and references
in [16]. In this case, one inserts the VTD solutions (the generalized Kasner
solutions in the vacuum case) into the full equations (or rather, into the
Hamiltonian for the full equations); if all terms are decaying the spacetime
is AVTD, if not it is conjectured to have local Mixmaster dynamics. We note
that this corresponds to the linear perturbation of the Kasner circle K© in
the present context, as can be seen by inserting the generalized Kasner
solutions into the relations given in Appendix A and comparing with the
linearized K© result. Here, however, this result is seen in the context of the
full conformally normalized state space picture.
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We note that the Hamiltonian approach using the “dominant” Hamil-
tonian H suggests a direct generalization of the VITD/AVTD approach, or
equivalently, the billiard subset and its lowest order perturbation into the
physical state space (with the ODE solution, yielding a lowest order per-
turbation, inserted into the constraints), see Section 12. An advantage of
the present approach is that it naturally splits the problem into two parts
and hence offers a possibility of achieving more modest goals than cracking
the whole problem: it may be possible to prove some statements that are
connected with the silent boundary only — it may not be necessary to also
prove things about perturbations thereof.
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