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Abstract

We first review the description of flag manifolds in terms of Pliicker
coordinates and coherent states. Using this description, we construct
fuzzy versions of the algebra of functions on these spaces in both oper-
atorial and star product language. Our main focus is here on flag man-
ifolds appearing in the double fibration underlying the most common
twistor correspondences. After extending the Pliicker description to cer-
tain supersymmetric cases, we also obtain the appropriate deformed alge-
bra of functions on a number of fuzzy flag supermanifolds. In particular,
fuzzy versions of Calabi—Yau supermanifolds are found.
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1 Introduction and results

Quite often in physics, approximation methods like perturbation theory are
necessary for explicit computations. In particular, nonperturbative meth-
ods, which typically involve the reduction of the field theory to a model with
a finite number of degrees of freedom, are required to access the physics of
field theories in the strong coupling regime. The standard method of this
type is lattice field theory. It has been very successful in the study of confine-
ment in quantum chromodynamics and for nonperturbative regularization
of quantum field theories.

Lattice discretizations do have some disadvantages, however. They do
not retain the symmetries of the exact theory except in some rough sense.
By limiting the couplings to nearest neighbour, the topology and differential
geometry of the wunderlying manifolds are treated only indirectly.
Furthermore, the description of fermions in this context leads to the well-
known fermion doubling problem.

Fortunately, the lattice is not the only method of reducing a field theory
to a finite number of degrees of freedom. An alternative is what has become
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known as the fuzzy approach [1-10], see [11] for a detailed review. The
basic idea is here to take a classical phase space of finite volume, quantize it
and thus obtain a space carrying a function algebra with a finite number of
degrees of freedom. There are certain limitations to this approach, such as
the even dimensionality of the parent manifold, that can be avoided when
the phase space is a coadjoint orbit of a Lie group. The functions on the
resultant fuzzy spaces are described by linear operators on irreducible rep-
resentations of the group. The simplest such example is the two sphere S2,
with the resulting phase space known as the fuzzy sphere [1]. Field theory
models on the fuzzy sphere then possess only a finite number of modes. The
simplest such field theory with ¢* interaction was proposed in [3].

There are other reasons to consider fuzzy spaces. They lead to matrix
models, which have seen much interest by string theorists especially in
describing D-branes: When considering D-branes on group manifolds [12],
turning on background fields can render the target space geometry fuzzy [13].
Similarly, a system of DO-branes in a nontrivial background can form the
fuzzy sphere [14]; see also [15].

The spaces we choose for deformation play a prominent role in various
geometrical areas. Flag manifolds, i.e., the spaces of sequences of nested sub-
vector spaces in a given vector space, are generalizations of Grafimannians
(and thus of complex projective spaces) and serve as nontrivial examples in
algebraic geometry. They are special cases of coset spaces, and in particu-
lar coset superspaces received growing attention recently [16,17]. Moreover,
flag manifolds arise naturally in the theory of characteristic classes of vector
bundles, in representation theory, in mirror symmetry and in twistor the-
ory. It is therefore clear that studying fuzzy versions of flag manifolds may
lead to a deeper understanding of both differential and algebraic geometry
on fuzzy spaces. Although the results presented in this paper generalize to
arbitrary flag manifolds, we will restrict our attention to those which appear
naturally in the double fibrations of twistor theory described, e.g., in [18].

We start our discussion by giving a detailed description of flag manifolds
in terms of Pliicker coordinates and the geometric structures on these spaces.
The latter is induced from a canonical embedding of the flag manifolds into
Euclidean space. We continue with the description of the correspondence
between flag manifolds and coherent states in various representations of
the Lie group SU(n). In particular, a relationship between the patches
covering a flag manifold and dominant weight states in the corresponding
representation is established.

With the appropriate representations found in the coherent state picture
together with the Pliicker description, the discussion of fuzzy flag manifolds
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is rather straightforward. We present the matrix algebras corresponding to
the algebra of functions on these spaces together with the equivalent star
product picture. The latter is used to translate derivatives, which contain
information about the geometry of the flag manifolds, into the operator lan-
guage. In particular, the Laplacian turns into the second-order Casimir oper-
ator in the considered representation. It is also shown that the constructed
matrix algebras converge towards the algebra of continuous functions on flag
manifolds in the limit of infinite-dimensional representations.

To prepare the fuzzification of flag supermanifolds, we develop the super-
analogue to the Pliicker embedding, which is novel, as far as we know. Also,
the embedding of these flag supermanifolds into Euclidean superspaces is
discussed. A relation between supercoherent states and points on flag super-
manifolds is found, which is closely related to the corresponding picture in
the case of ordinary flag manifolds. The fuzzification can then be obtained
in a rather straightforward way. We give a series of matrix algebras, which
approximate functions on the flag supermanifolds and present the equiv-
alent star product formulation. All derivatives can again be translated
into the operator language and encode geometric information about the
spaces.

The results we obtain may find several applications. First, it is desirable
to see whether the Penrose-Ward transform (see, e.g., [19] for a review)
can be carried over to an analogous construction built on a double fibration
of fuzzy spaces. This, however, would demand a clearer understanding of
the various gauge theories (i.e., holomorphic Chern—Simons and Yang—Mills
theory) on the involved fuzzy geometries together with an explicit notion
of holomorphic vector bundles over fuzzy spaces, see [20] for progress in
this direction. Second, the Grafimannian G4 is the conformal compacti-
fication of complex Minkowski space and after imposing reality conditions,
one arrives at the compactified form of four-dimensional space-times with
all possible signatures. Fuzzy versions of these spaces would certainly be
very useful; unfortunately, it is not clear, how to impose the correspond-
ing reality conditions in the fuzzy case. The main purpose of constructing
fuzzy flag manifolds and in particular their supersymmetric counterparts
is, however, to have at hand fuzzy versions of Calabi—Yau supermanifolds.
These spaces, as, e.g., the fuzzy version of the complex projective super-
space CP3* discussed in this paper, might be used for the construction of
first examples of interacting supersymmetric field theories on fuzzy spaces
that can be simulated numerically. Furthermore, there is a conjectured
mirror symmetry [21] between two of the flag supermanifolds we describe in
this paper ((CPB‘4 and F{(1)0)(3)3):43), and trying to understand this mirror
symmetry in terms of fuzzy spaces seems very promising.
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2 Pliicker coordinates and the geometry of flag manifolds
2.1 Flag manifolds of U(4)

Consider the vector space C". A flag fi,..r,:n in C" is a sequence of nested
vector subspaces Vi, C --- C Vi C C" such that dimc V; = j. A flag man-
ifold Fy, ..., is the set of all flags fi,...,.n-

The simplest example of a flag manifold is Fi,,, which is the complex
projective space CP" 1. Furthermore, the GraBmannian G, the space
of k-dimensional vector subspaces of C", is the flag manifold Fj.,. A flag
frn = Vi is obviously invariant under the subgroup H = U(n — k) x U(k) C
U(n), as the elements of U(n — k) do not change vectors in Vi, while the
elements of U(k) are just the unitary maps Vj, — Vj. Therefore, the group
H defines (maximal) equivalence classes of flags in U(n) and we can write
Fy., = U(n)/H. This can be generalized to

Fleyetepmn = U(n)/(U(n — ky) x U(kr — ky—1) -+ - x U(k1))
= SU(n)/S(U(n — k) x U(ky — k1) - x U(k1)), (2.1

and thus the dimension of this flag manifold is n? — (n — k)% — (k. — ky_1)?
— .- — (k7). Note that the above equation cannot be used as a defining
relation, as the embedding of the subgroup factored out is not specified.
The flag manifolds of SU(4) can also be obtained as coset spaces of SL(4, C),
the complexification of SU(4), see, e.g., [22]. Here, one factors out the
group of certain upper block triangular matrices and from this complexified
description it follows that flag manifolds are complex manifolds. They are in
fact Kéhler manifolds and we will construct their Kéhler structure explicitly
later on. We will also see that flag manifolds are adjoint orbits {gPg~!|g €
SU(4)} of certain projectors P and therefore carry a natural symplectic
structure. Furthermore, a flag manifold is a homogeneous space.

The flag manifolds of U(n) split naturally into irreducible and reducible
ones, where the irreducible flag manifolds are the Grafimannians Fy,., =
Gy:n- In their case, the compact subgroup H consists of two factors. These
flag manifolds form hermitian symmetric spaces, i.e., the commutators of
two elements of u(n)/(u(n — k1) x u(ky)) is an element of u(n — ki) x u(ky).

In the following, we will be exclusively interested! in flag manifolds
of U(4), which naturally appear in the double fibrations underlying the
most important twistor correspondences, see, e.g., [18]. These fibrations

!Nevertheless, all of our discussion trivially translates into the case of flag manifolds

of U(n).
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are obtained by truncating the flags in an obvious manner, e.g., there is a
projection Fia.4 — Fb.4. All the twistor double fibrations are included in the
following diagram:

Fy3.4
~
T F3.4
T F123;4 T (2.2)

In the twistor context, the space Fy4 is the conformal compactification
of complexified Minkowski space M and the spaces Fh.4, F3.4, F13.4 are the
spaces of self-dual null planes in M (twistor space), anti-self-dual null planes
in M (dual twistor space) and null geodesics in M (a thickening of which
is the ambitwistor space), respectively. One can also consider affine (non-
compact) subspaces of all the above spaces and the corresponding double
fibrations. For more details on this point, see [19].

The dimensions of the involved spaces are easily calculated from the
formula given below the defining equation (2.1). The minimal number of
patches in a covering of the flag manifolds can be calculated inductively in
the following way. The minimal number of patches covering all of G.,, is (Z),
in particular, we have n as the minimal number of patches for CP" 1. The
number of patches needed for a flag manifold is then obtained by multiply-
ing the patches of the contained subflags. For example, to cover Fia.4, one
needs at least 6 for Fy.4 times 2 for Fi.9 equals 12 patches. We summarize
the results of these calculations in the following table:

Flag manifold Fiy Foy F34 Fiog Fisg Foza Fiaga

Complex dimension 3 4 3 5 ) 5 6
Minimal # patches 4 6 4 12 12 12 24

2.2 Description of CP3

There are various aspects of the classical description of flag manifolds that
we will use for their fuzzification. In particular, we need a description in
terms of homogeneous coordinates, a description in terms of projectors and
the link between both of them. We will first discuss the simple example
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of F1.4 = CP3 = U(4)/(U(3) x U(1)) in detail before going over to the more
complicated spaces.

A normalized vector in C* clearly spans a one-dimensional vector subspace
of C* and thus corresponds to a flag f1:4. There is, however, a redundancy
in the total phase of the vector, which needs to be factored out. One is thus
naturally led to consider the generalized Hopf fibration defined by the short
exact sequence

1 — Ul) — st — cpvt — 1 (2.3)

for the case n =4. In coordinates a* on C*, the projection down to S”
amounts to imposing the condition a’a’ 0i; = 1 and the subsequent projection
down to CP? is performed by considering the auxiliary coordinates

TYy = (Li)\%aj, (2.4)
where Af;, a =1,...,15 are the Gell-Mann matrices? of SU(4). These coor-
dinates describe an embedding of CP? in R'®. Note that we factored out
only the U(1) (internal) part from the invariance group of the flag fi.4 acting
nontrivially on the one-dimensional subspace of C* spanned by the vector a.
The remaining U(3) (external) part acts orthogonally to this vector and
therefore leaves it invariant. In an equivalent construction [20], the action
of this external group appears more explicitly.

The homogeneous coordinates a’ are a special case of the so-called Pliicker
coordinates, which we will discuss in the next section. Before, however, let
us give a second description of CP? in terms of projectors, see, e.g., [5].

A projector P is a hermitian 4 x 4 matrix satisfying P? = P. The rank
of the projector P, tr(P), is equal to the dimension of the subspace it
projects onto. It is therefore evident that every point on an irreducible flag
manifold Fj.4 corresponds to a rank-k projector Py.4(x); in particular, CcP3
is isomorphic to the space of rank-1 projectors Py.4(x).

The space of projectors acting on C* is spanned by the Gell-Mann matri-
ces of SU(4) and the identity. We can write
P =aN; = 20 + 2%\, (2.5)
where a =0,...,15 and a=1,...,15. We use \g = ]1/\/11, which implies
that 20 = tr (P)/v/4 and
Oab 1
=\ + —
NZRYC:
2We shall adopt the following convention throughout:
tr (A"A%) =67, A%, A" = V2if*PC

Aoy = (ClabC + ifabc> Ac, (2.6)
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where dg,© and fg ¢ are the (traceless) symmetric invariant tensor and the
structure constants of SU(4), respectively. Recall that the Lie algebra indices
are raised and lowered with the Killing metric d4p.

As stated above, the irreducible flag manifolds Fj., correspond to the
space of projector Pj.4 of rank £ and the condition (Pk;4)2 = Py.4 defines a
set of quadratic constraints, embedding the flag manifolds in R (or R,
if one considers x% 4 already fixed by the condition on the trace of Pp.4).
Explicitly, they read as

4k — k2 4 — 2k

and x2;4x2;4dabc:\f2 1 Thy (2.7)

a .a __
xk;4xk;4 -

Given a projector P,g;4 of rank k, all of the space F}.4 is obtained by
its orbit gP,SAg_l, g € U(4). However, two elements g and ¢’ related by
g =¢'h, where h € H=U(4 — k) x U(k), will rotate to the same element
973,8;49_1 = g/P,gAg’_l. This simply reflects the definition (2.1) of Fj4 as a
coset space.

There is evidently a relation between F1.4 and F3,4 since the coordinates
z{., of a projector Pr;4 yield the coordinates of a projector Ps;q by x5, =
—xf.4, as one easily checks using (2.7). Furthermore, the coordinates 5.4 of
a projector Pa.4 yield a second projector Pa.4 with coordinates Thy = —254.
The meaning of these dualities will become clear in the next section.

For CP? = F 1.4, the projector is obtained by extending the definition (2.4)
of the auxiliary coordinates to :B’f 4= di)\?jaj , which satisfy the constraints
(2.7). Due to Aij AR = 0il0k;j, the resulting projector is then explicitly given
by the matrix P14 = aa® and one easily verifies (731;4)2 = P1.4.

2.3 Pliicker coordinates and projectors describing
irreducible flag manifolds

To define a two-plane in C?, we can use two normalized vectors a,b € c*
antisymmetrized to Ay == aAb=1(a®b—b®a) = (AY) := alp’l. Asone
easily observes, the antisymmetrization projects on the mutually orthogonal
components of a and b. The AZQJ are so-called Plicker coordinates on Fy.4 =
U(4)/(U(2) x U(2)) and satisfy by construction the identity

eijmAY ASL = 0. (2.8)
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As there are six projective Pliicker coordinates, we learn that the
Grafmannian Fy4 is a quadric in CP5, the so-called Klein quadric, see,
e.g., [23]. Equation (2.8) is an example of the Plicker relations, which
describe an embedding of a GraBmannian Gy, in P(A¥C™). Although the
Pliicker relation is straightforward in the present case of .4 = G4, we will
need more nontrivial such relations when discussing flag supermanifold and
we will present a more explicit discussion in Section 5.2 There are certainly
other approaches to coordinatizing flag manifolds; see, e.g., [22] for “Bruhat
coordinates” and more background material on flag manifolds.

Let us now consider the space of hyperplanes in C?, i.e., F5,=U(4)/
(U(1) x U(3)). Analogous to the case of the two-plane, a three-plane is
spanned by three antisymmetrized vectors a A b A ¢, which are naturally dual
to a single vector d = (d;) = (;jpa’b*c!), which in turn spans the orthogonal
complement to the hyperplane. However, the nondualized picture will be
useful later on and therefore let us also introduce the Pliicker coordinates
AR = glipi k],

We can contract these new Pliicker coordinates with tensor products of
the Gell-Mann matrices, which yields auxiliary coordinates describing an
embedding of the GraSmannians in Euclidean space. In the case of Fy.4, we
have

x%i = Aé”é (/\d A )\b)iliZlejzAélh (29)
with the antisymmetrized tensor product A defined in components as
(A A B)ij;kl = % (Aikle — AjkBil - AilBjk + A]lek) (210)

The choice of this contraction, which again factors out a phase, will become
obvious after discussing the description of Fb.4 in terms of projectors. Note
that mgfﬂl is symmetric in its indices. The above contraction is in agreement
with the generalized Hopf fibration®

1 — UQ) — S"xS° — Foy=Gyy — 1. (2.11)

As before, a normalized complex vector in C* defines a point on S7, and we
choose a to be this point. In the combination As = a A b, the component of
b parallel to a vanishes trivially, and thus the relevant component of b is a
point on S°. Factoring out the internal U(2) which describes rotations in
the plane a A b, one obtains G,4. The other U(2) factor is again trivially

factored out, since it does not affect Ay. To see that the contraction (2.9)

3 After imposing a certain reality condition, this fibration reduces naturally to

1 = 8'x8" = %8 = 2x8° = Ghy — 1
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indeed factors out an U(2), note that the action
al ... 0/4 al .. 0/4 .
<bl o > r—)g(bl o > with g € U(2), (2.12)

leaves invariant both A5 and A4 up to a phase and therefore (2.9) is indeed
invariant. Correspondingly, one can discuss the isotropy groups for all the
flag manifolds we construct in the following. We refrain from doing this, but
present a more detailed discussion in the quantized picture.

In the case of F3.4, we choose the auxiliary coordinates

2y = AR (AT A AP AN A, (2.13)

111213,J1J273
In the dual picture, this corresponds to
jg;4 = jk;\zldl with ;\%z ~ €kiriziz€lj1j273 (Ab AXEA )‘d>‘ L (2'14)
112213,717273
and the implied map of the Lie algebra indices (béd) — a can easily be
calculated. This contraction corresponds to the generalized Hopf fibration

1 — UB) — STx8x8 — F3y — 1. (2.15)

Although we already gave a description of the Graimannians Fj,.4 in terms
of projectors in the previous section, it will be more convenient to switch to
certain rank-1 projectors ., acting on the representation spaces of the 6
and 4 of* u(4) in the cases F5., and F3.4, respectively. This can be done
in three equivalent ways. In the first one, one chooses two or three rank-1
projectors and antisymmetrizes them

Py =2P' AP? and Py =3P AP2APY, (2.16)

where P" = ;Uff)\@ are some rank-1 projectors. Besides the usual conditions
(2.7) on rank-1 projectors, additional conditions between the coordinate vec-
tors , and x, arise to guarantee that .4 and 5.4 are projectors. These
conditions state, e.g., for %54 that P! +P? is again a projector, which
amounts to P1P2 4 P2P! = 0. In terms of coordinates, the first projector is
constructed from a complex vector a’ by Ty = ZLi)\%aj , while the second one

is constructed from an orthonormalized vector b, with b ~ b® — (@’b/)a’ by

Ty = Ei/\ﬁ‘jbﬂ. The sum of these two rank-1 projectors will automatically
yield a rank-2 projector.

4Recall that these representations carry two and three antisymmetrized indices of the
fundamental of u(4), respectively.
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Alternatively, we can also antisymmetrize our previous rank-2 and rank-3
projectors Pa.4 and P34

95;4 = Py NP2y and @&4 = P3.4 N'P3.a N\ P34, (2.17)

as discussed in [7]. Note that both approaches are equivalent, the latter,
however, is slightly more economical in the use of parameters. Furthermore,
due to the formula

tr (AA B) = 3(tr (A) tr (B) — tr (AB)), (2.18)

which is easily verified using (2.10), and a similar one for the antisym-
metrization of three projectors, all of the above projectors have unit trace
and therefore indeed rank 1.

Here, we choose to work in the first approach, embedding the
GraBmannians in the space of symmetrized products of vectors in R'6. This
will eventually lead to simpler expressions for the star product on all the
Grafimannians. It is also linked to the contractions we obtained from the
various Hopf fibrations in the previous section. Let us first introduce the
shorthand notation

A1 — N1 AL A NG (2.19)

Recall that A% turns out to be totally symmetric in its indices. Using
this notation, we can easily define the appropriate projectors in the 6 and
4 of u(4) as

P4 = 21,%(?};))\&5 with xg?i) =a"b" ()‘di))iliz,jljzajlbjz’ (2.20)
Paq = Bt with a0 = @B (AN), s g1gags 7 D2,

Here, the subspaces are spanned by complex vectors a,b and a, b, ¢, respec-
tively, and xg.lf) and :z:é‘.lic) describe embeddings of Fy.4 and F3.4 in R16:17/2-1
and R161718/(23)=1 "yegpectively. Note that the coordinates x8?4 and :Ug?f

are fixed by the ranks of the projectors .4 and H3.4.

To check that these operators are indeed projectors, one uses identities
like
(AAB)(CAD) = g((Ac A BD) + (AD A BC)) (2.21)

yielding the Fierz identities discussed in Appendix B. For example, %5.4 can
be shown to read as

(92;4)@;“ = a[ibﬂ@[ki)l], (2.22)
where we have chosen a and b orthogonal to each other. It then follows
immediately that

(‘@2§4)ij§kl(<@2;4)kl;mn = (@2;4)ij;mn- (2.23)



654 SEAN MURRAY AND CHRISTIAN SAMANN
Note that the naive contraction to obtain the auxiliary coordinates for

Fyy
2dy = AY (N A1), 0 A8 (2.24)

does not yield a projector since x% 1(A% A1)y is not idemquadratic.

2.4 The description of reducible flag manifolds

The construction of the Pliicker coordinates for the reducible ﬂag manifolds
is performed in successive steps. For the complete flag manifold® Fia3.4 =
U(4)/(U(1))*, we start from the Pliicker coordinates for a line in C*, a’,
and add a plane containing this line, A;J = alip/] as well as a hyperplane
containing this plane, Aéj ¥ — alipickl. We arrive at the set of coordinates

i M Gl o (2.25)
from which we can construct the auxiliary coordinates
e qlinpie gis] ()\11111@21113) a1 piz 3]

11%213,J17273 (2 26)
aliapis] gis ()\wa) ]GCLJ ’

1‘123
x glinpis) (noas)
i4i57j4J5

The Hopf fibration underlying this contraction reads as
1 — UQ)xUQQ)xUQ1) — STx85x8 — Flozy — 1, (2.27)

and the three U(1) factors leave invariant the three factors in m123 Be

On the remaining flag manifolds, the Pliicker coordinates are given by
subsets of the coordinates for F23.4. For example, on Fioq = U(4)/(U(2) x
U(1) x U(1)), we have the Pliicker coordinates

aiv!, o (2.28)
with obvious auxiliary coordinates. The Hopf fibration reads as
I — U1)xUQQ) — S"x8° — Fioy — 1. (2.29a)

This fibration is a reduction of the Hopf fibration for Fs4 to the case in
which the (internal) isotropy group of the flags is merely U(1) x U(1).

The construction of Fi3.4 = U(4)/(U(1) x U(2) x U(1)) and Fa3.4 = U(4)/
(U(1) x U(1) x U(2)) follows the same line of argument, and the two Hopf

5The manifolds consisting of nonmaximal flags are called partial flag manifolds.
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fibrations read as
I — UQ)xU@Q) — STxS°x8 — Fiz3q4 — 1,  (2.29b)

I — U@2)xUQ1) — STxS8° xS — Fygy — 1, (2.29¢)
respectively. In particular, the flag manifold Fi3.4 is described by the set of
Pliicker coordinates (a[ibj ck},ai). In twistor theory, the common description
of this space is in terms of a quadric in the space CP? x CP? with coor-
dinates a’ and af. The quadric condition reads as a’aj =0 and with the
identification a] = Eijklaj bk, its relation to the Pliicker description becomes
clear.

Also the reducible flag manifolds can be mapped to the space of certain
tensor products of projectors. For example in the case Fi2.4, we combine
Po4 = 7311; A Pi 4 With an additional rank-1 projector Pf’; 4 given by a linear
combination of 7311; 4 and 7312;4:

7)f’;4 = 047?11;4 + ﬂpiéb Oé2 + /82 =1 (230)

Thus, Pi4 projects onto a one-dimensional subspace of the plane which %4
projects onto. The definition of P'f’; 4 implies that the coordinates are linear
combinations:

28 = ozl + fat, (2.31)
and together with the constraints on the projectors and the antisymmetriza-
tion of 7311;4 and 7312; 4 In Pay, this equation describes an embedding of the
flag manifold Fi9.4 in Euclidean space.

For the complete flag manifold Fi23.4, we use altogether six rank-1 pro-
jectors, combined in 92%?43, 923?4 and Pﬁ4, each satisfying equation (2.7) and
furthermore fulfilling conditions corresponding to (2.31). The coordinates
:c‘%gg, xffg and x% form an over-complete set of coordinates on Fi23.4, and the
restrictions we impose are an embedding of Fi23.4 in Euclidean space.

All of the reducible flag manifolds can again be described in terms of
rank-1 projectors &2. Explicitly, these projectors read as

Pro.q = pPrh20s \01th2 @ N3
Plag = g0 DINDLW3 @ N
Pogy = 010 N0 W3 @ W5

Wy W1 W Wa we
@123.4:1.1 ())\1 3®)\45®)\ 6’

(2.32)

where the z1 "% are the auxiliary coordinates constructed from the (inde-

pendent) Pliicker coordinates on the various flag manifolds. Note that in
all cases the number of generators in the projector corresponds to the sum
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of the dimensions of the nested vector spaces in the flag. Even though this
description contains a vast redundancy, it turns out to be rather convenient
for describing the geometric structures on the flag manifolds inherited from
the embedding in Euclidean space, which is the purpose of the next section.

2.5 Geometric structures on the flag manifolds

In this section, we will develop expressions for the complex structure, the
metric and the symplectic structure on the flag manifolds introduced above,
following closely [5]. Given a projector P°, which describes a point on the
flag manifold M = Fj,..;, .4, all of M is obtained by an appropriate action
of U(4) on P°. That is, the tangent directions are given by infinitesimal
actions of U(4) and thus the space of tangent vectors is

TpoM = {R(A)P°|A € su(4)}. (2.33)

Here, we have to distinguish the different representations R of A for the
different projectors PV used for the various flag manifolds. For projectors
consisting of k-fold antisymmetric combinations of rank-1 projectors, R(A)
is the sum of a k-fold tensor product with all entries 1 but one, which is
adp :=1i[A,]. In particular, we have

R(A) :=adp for Py,
(A)=ady ®1+1®ady for oy, (2.34)

R(A) :
R(A) =adp®1®1+1®ady ®1+1®1®ady for Psy.

for the irreducible flag manifolds. The representations in the case of reducible
flag manifolds are constructed in an obvious manner, and one has, e.g.,
R(A) =ady®1®ady +1®adA®@1  for Piay,

R(A) =adpy®1®@1®ady +1®ady ®1®1 (2.35)

+1®1®ady ®1 for ,@13;4.

If and only if A is a generator of H, R(A)P° vanishes and therefore Tpo M
is of the same dimension as M. By construction, we have for an element
V S TpOM

Vvi=v, {PV}=V, V=0 (2.36)

The orthogonal complement of Tpo M in the embedding space is spanned
by all other actions of U(4) onto P°. In particular for CP3, the generators x*
of the stabilizer subgroup H = U(3) x U(1) of PY span the orthogonal com-
plement of Tpo M in the embedding space RS as they satisfy by definition
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PO k% =0 and therefore they are orthogonal to any element of ThpoM:
[P, y g y P
itr (k*[A, P°]) = 0.

To define a complex structure I, we start from such a structure on the
embedding space, which in turn induces a complex structure on the
tangent space at P°. Consider the generators A\® of u(4). We can pair
them into (A?P, A1) p=0---7 and define I(A\?P, \?PT1) = (—\ZPFL \2P),
which amounts to the canonical complex structure on R'6. This translates
into a complex structure on any general embedding space and the pairing
together with the projection onto TpolM is performed by taking the
commutator with P°:

IV = —i[P°, V] with V € TpoM. (2.37)

One easily checks that I? = —1 and IW =0 for W € T;OM . This definition
extends from T’po M to the full tangent bundle and yields an almost complex
structure on M, which turns out to be integrable.

Also the metric is induced from the one on the embedding space, which
is the Euclidean (Killing) metric and, after translation into matrices, sim-
ply given by the trace. To incorporate the projection onto T'poM, we can
multiply each vector in TpoM by the complex structure before taking the
trace which yields the hermitian metric

g(Vi, Vo) = tr (IVi1Va) = —tr ([P°, VA][PY, V3]), (2.38)

as for elements Vi, Vo € Tpo M, we have g(Vi, V2) = g(IVi,IV3). The contin-
uation of this metric to all of M is evident. There is furthermore a symplectic
structure defined as

QW1 Va) = g(IV1, Va), (2.39)

which we can combine as usually with the metric into the Kéhler structure
J defined as

J(Vi, Vo) := § (9(Vi, Vo) +1Q(V1, Vo)) = tr (POVi(1 — PO)VR),  (2.40)
which also extends globally.

Note that the projectors we use in the description of flag manifolds are of
rank 1 and therefore, the above formula simplifies to

J(V1, Vo) = tr (POViVa) — tr (POVA) tr (POV%). (2.41)

On CP3, A is a generator of the fundamental representation of
SU(4) and we can introduce the components Q‘iﬂ = QA% ) as well as
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Jﬁiﬁl = J(\, )\i)). For these, we have the useful identities
Qb = V2 febac (2.42)
and
JihA = tr (POA@(n - 7?0))\’3) A = PON (1 — PY),
Nadihh = Xatr (POX(1 = PON) = (1= PONP. (2.43)
In deriving these identities, one needs the relation
tr AAD) A, = AP for A%, AP € u(4), (2.44)

cf. formulee (B.23). Due to (PY)2 = P, the relations (2.43) remain valid
after omitting the hats over the indices.

Let us briefly comment on the explicit form of the structures obtained
in the above discussion for the various flag manifolds. We start with the
Grafimannians. These spaces are described by rank-1 projectors in the rep-
resentation R, which is here the previously defined k-fold A-product of the
fundamental one. The tangent directions are given by infinitesimal actions
of elements of U(4):

Tpy Fra = {(ads ® 1+ 1 ® ady)Pay|A € su(4)},

Tpy Fra={(adA ®1®1+10ady®1+101® ada ) Pe4lA € su(4)}.
(2.45)

Note that the most general action, e.g., on the projector 778;4 is given by
Ady, ® Adg,. Since 738;4 is the sum of antisymmetrized tensor products

of the form A% A )\i’, only the symmetrized form of Ad, ® Adgy, is rele-
vant, which is ((Adg, + Adg,) ® (Ady, + Adg,)). At infinitesimal level, this
yields the action ady ® 1 + 1 ® ady.

All the properties (2.36) are easily verified to hold also for the tangent
vectors of all the Grafimannians. Furthermore, the definitions of the complex
structure, the metric and the Kéahler structure is done in a straightforward
manner, since the only essential aspect in their definition on CP? was that
PY is a projector.
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Using again the shorthand notation (2.19), the appropriate components
of the symplectic and the Kahler structure are given by
QLA — (A, A) and  QEET — (xabE S,
JIEd— J(AB ) and  JERAET — g (xabe ydef )
The corresponding versions of the identities (2.42), (2.43) read as
an ed =(cd) V2 gt and Q“OO def =(def) \/ﬁf“dbxbef, (2.47)

where these relations only hold for the components symmetric in (c¢d) and
(def), respectively, and

(2.46)

Jihedyed — g (PON(1 @ 1 — POYN) A — PONIb (1 @ 1 — PY),
J;Zc,def)\def — i (PO/\dbé(]l 2101 — pO)A&éf))\ciéf (2.48)
= PN (1 @101 PY),
which follow from the relations in (B.23).
To describe the tangent space to the reducible flag manifolds M = Fj, 1,4

at a point 77,21 hpid = 77,82 ® Plg1(k2); 4» one proceeds completely analogously to
above and defines

Tpy . M= {(adp ®1@ - +1Qadp @+ - @1 ®ady)
X (Phyia © PRy (o) [N € 5u(4) }. (2.49)
It immediately follows that the elements of T’ po M all satisfy (2.36). The
1725
stabilizer subgroup H of 731%@;4 is indeed U(4 — ko) x U(ka — k1) x U(ky).
The definition of the complex structure, the metric, the symplectic and

the Kahler structure are again straightforward. For the latter, we introduce
components, e.g., for Fia.4

J{“’fd ef Jg“jfd ® J1 A (2.50)

and one has again obvious identities corresponding to (2.43).

2.6 Spherical functions on the flag manifolds

Before discussing the fuzzification of functions on the flag manifolds, let us
briefly review some aspects of harmonic analysis on these spaces. That is, we
want to describe the construction of spherical functions on flag manifolds,
which form a complete orthonormal basis on these spaces and are simulta-
neously eigenfunctions of the Laplace operator. For this, we will extend the
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standard discussion of spherical functions using the various generalized Hopf
fibrations described above. (A detailed discussion for CP" = F1,, is found,
e.g., in [24].)

The spherical functions on the sphere S™ are simply the restrictions of the
homogeneous harmonic polynomials on R™! to S™ [25] and the dimension
of the eigenspaces H7, j € N, corresponding to the eigenvalue j(j +m — 1)
are (mn? ) For m = 2n — 1, the eigenspaces H’ are spanned by homogeneous
polynomials in the complex coordinates a’ on C" plus their complex conju-
gate minus all terms containing contractions a'a’, as these terms belong to

spaces H* with k < j.

The complex projective space CP? is obtained from the generalized Hopf
fibration U(1) — S7 — CP3. The eigenfunctions of the Laplace operator on
this space are the subset of the corresponding eigenfunctions on S7 which
are invariant under U(1). These functions are obviously the product of a
homogeneous polynomial of order k in @' and another such polynomial in
@’ minus all the possible contractions. We thus get the “hyperspherical
harmonics”

Yﬁ”"'lkﬂ'"]’“ =a't---a'*a’ - - - a’* — contraction terms, (2.51)

which have eigenvalues A\ = k(k + 3) and their eigenspaces H{“A have

dimensions ) )
. k+3 k+ 2
dim Hf,, = ( N ) — <k N 1) : (2.52)

where the last term subtracts the dimensions of the contraction terms.

The Grafmannian Ga,4 is obtained from the Hopf fibration U(2) — ST x
S5 — G2.4. The spherical functions on S7 x S° are constructed from homo-
geneous polynomials in A%¥ and A* where we add again the complex conju-
gate polynomial to render the expression real and finally subtract all terms
containing contractions. The subspace of U(2)-invariant functions is now
spanned by those polynomials, which have an equal number of A%s and
ARl and we thus have:

Y2]f4“]1"'%Jkllml"'lkm’“ = AN AR ghma o AlmE _ contraction terms.
(2.53)

From the generalized Hopf fibrations discussed in the preceding sections,
the construction of the remaining flag manifolds is obvious. For our pur-
poses, it is more important to note that these spherical functions on G/H
are in one-to-one correspondence with so-called spherical representations of
G/H, ie., (finite dimensional) representations of G with nontrivial
H-invariant vectors, see, e.g., [26,27]. This allows us to associate each set
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of eigenfunctions of the Laplace operator on the flag manifolds with certain
sets of irreducible representations of (G, which we will do in the next section.
Later on, we will use these representations to construct the algebra of fuzzy
functions on the flag manifolds. From this construction, one can also read
off the eigenvalues of the eigenspaces of the Laplace operator on the various
flag manifolds.

3 Flag manifolds and coherent states

To quantize the flag manifolds, we would like to connect every point on these
spaces to a state in a Hilbert space. A function then automatically becomes
an operator on this space. To establish this connection, recall that every
point on a flag manifold which is a coset space of G = U(n) is in one-to-
one correspondence to a generalized coherent state in a specific represen-
tation of G. We will review this relation in the next section and partly
follow the discussion of Perelomov [28], see [15,29] for quantization using
coherent states.

3.1 Representations of SU(n) and coherent states

Consider the Dynkin diagram of SU(n) for simple roots aq, ..., a,—1
a1 a2 Gp—1
a1 a9 Op—1 (31)

An irreducible representation T with highest weight A can be labelled
by the Dynkin indices® a1,...,a,_1. In the representation (Hilbert) space
A1, there is a corresponding highest weight vector |A) and . has a basis
of weight vectors” {|u)}, i.e., Hj|p) = pj|p).

The isotropy subgroup H,, for any weight vector |u) contains the Cartan
subgroup H of SU(n), which is isomorphic to the maximal torus 77 ! =
U(1)*"~! =U(1) x --- x U(1) and for general weight vectors the subgroup
H),, coincides with T"~1. For degenerate representation, where the highest

5See Appendix B for more details.
"Which can be chosen to be orthonormal
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weight A is orthogonal to some simple root ay, i.e.,
(A, ) = 0 = as, (3.2)

the isotropy subgroup H,, may be larger than T~ for some weight vectors.
This is evident since, as explained in Appendix B, the a; indicate the highest
power of E_,, whose action is still nontrivial on |A).

A helpful picture arises, when enlarging SU(n) to U(n). The Cartan
subalgebra consists now of n factors of U(1), which one can imagine sitting
around the a;. Every a; which is zero combines the U(m;) left of it with
the U(mg) right to it to a U(mq +mg). This allows us to construct all
the isotropy groups one encounters in flag manifolds, and we will be more
explicit in the next section.

To construct a coherent state system, one has to choose an initial vector
o) in M. Then the system of states {|1),) = T*(g)|¢o)} is called the
coherent state system {T, |¢)9)}. Let Hy be the isotropy subgroup for the
state [1p). Then a coherent state |t)4) is determined by a point x = z(g) in
the coset space G/Hy, corresponding to the element g by [¢)4) = exp(ia)|z)
up to a phase, [1g) = |0). The isotropy subgroup for a linear combination of
weight vectors is, in general, a subgroup of the Cartan subgroup. Therefore
it is convenient to choose a weight vector |u) as an initial state. For non-
degenerate representations, the isotropy subgroup H, is isomorphic to the
Cartan subgroup H, and the coherent state |x) is characterized by a point
of G/H, or equivalently by a point of the orbit of the adjoint representation

Hjlz) = T(9)H;T~(g)lx), |z) =T(9)ln)- (3.3)

In a representation with some Dynkin labels vanishing, the isotropy sub-
group H,, is larger than H for some weight vectors |u), in which case the
orbit may be degenerate.

There is considerable choice in the selection of the initial state |0), even
on restriction to weight vectors. Perelomov [30] has shown that the state |0)
must be |u), where p is a dominant weight, if it is to be closest to classical.
That is, |4) is obtained from the highest weight by the Weyl reflection group.
Then the coherent states minimize the invariant uncertainty relation

ACH = min, (3.4)

where

Co=> (H)’+ Y (EBaE_o+E_oEa) (3.5)

j OCEE+
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is the quadratic Casimir operator and

ACy = (Co) = [ D (Hj)* +2 > (Ea)(E_a) | (3.6)

7 aeX

Let us take the initial state to be the highest weight vector |A). The
coherent state system is then more explicitly defined by

ja) = NT(g)|A), N7 = (AT (g)|A), (3.7)

|a) = N exp Z ay E_o | exp (hiH;) exp Z alEy | |A)

aEX aEX

= Nexp Z ay, E_o | |A), (3.8)

aeX

where we have restricted ourselves to elements of G which have a Gauflian
decomposition. Note that if some of the Dynkin labels a; vanish (degenerate
representations), then the corresponding coordinates a, (and possible some
others, see the appendix) are no longer independent and can be eliminated
from the definition of the group element ¢ and thus the coherent states
correspond to points on various flag manifolds. The number of independent
coordinates a;, gives the (complex) dimension of the flag manifold.

Note that our construction of coherent states yields merely one patch of
the covering of the flag manifolds. Starting from a different dominant weight
state corresponds to working on a different patch, as the state |w(A)), where
w is an element of the Weyl group W, is not contained in the set of the
coherent states |a) constructed from |A). This is because we have restricted
ourselves to group elements that have a Gauflian decomposition. We can
assume all the weight states to be orthogonal. In particular, two states |A)
and |w(A)) have no overlap, i.e., (AJw(A)) = 0. Consider now the coherent
state |a) as constructed above,

n

@)=~ [1+ Z% S arB.| | (3.9)
n=1

a62+
As E_, contains only lowering operators, we have (A|F_,|A) =0, which
implies
(Ala™) = (AIN|A) + 0 = N. (3.10)

It is thus clear that all |a) have a component parallel to |A) and therefore
|a) never equals |w(A)), which we wanted to prove.
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The number of such dominant weight states from which we can start
and thus the number of patches is evidently given by the dimension of
{w(A), w € W} or equivalently the number of corners of the convex hull
of the states in the weight diagram of the representation. This number is
just the rank of the Weyl group modulo group elements acting trivially in a
certain representation. As the Weyl group for SU(n) is essentially the per-
mutation group of n elements with rank n!, the minimal number of patches
covering the complete flag manifold Fig3...,—1., is given by n!, while the
number of patches for all other flag manifolds of SU(n) is smaller. The rea-
son for this is simply that for other flag manifolds, certain Dynkin labels a;
are zero, which implies that the corresponding Weyl reflections

150, A) = 'A - Zwa> (3.11)

act trivially on the highest weight state.

To clarify the above construction, we will first discuss the simple case of
flags in SU(3), whose weight diagrams are two-dimensional, before presenting
the construction for the flag manifolds of SU(4).

3.2 Examples for SU(3)

There are two flag manifolds which arise as coset spaces of SU(3): The com-

plex projective space CP? = Fi3 = Fy3 = CP? SUU((QS)) and the reducible

flag manifold Fia,3 = % The representations 3, 3 and 6 of SU(3),

corresponding to the diagrams

1 0 0 1 2 0
o—o=0, O0—0O=H OoO——0 =10,
(3.12)
all have dominant weight states with isotropy group U(2). Thus, the coher-
ent states constructed from these representations are in one-to-one corre-
spondence with points on CP2. The adjoint representation 8 as well as the
27 corresponding to the diagrams

b bep & b-g0 o

have dominant weight states, whose isotropy group is only the maximal
torus U(1) x U(1) and therefore the derived coherent states are in one-to-
one correspondence with points on the flag manifold Fia.3. Recall that the
number of patches is found to be the number of corners in (the convex
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hulls of) the weight diagrams. Consider, e.g., the diagrams

corresponding to the representations with Dynkin labels (1,0), (1,1) and
(2,1), respectively. We see that the complex projective space CP? is covered
by at least three patches, while the flag manifold Fia.3 requires a minimum
of six patches.

3.3 The flags in C*

Let us now come to the coherent states which correspond to points on flag
manifolds of SU(4). For these, the choice of representations as well as the
Dynkin diagrams are given in Table 1.

Note that the representations for the reducible flag manifolds are not
unique at level L. One can choose any representation (ai(L),a2(L),a3(L));
however, for considering the limit L — oo, the functions a; should be poly-
nomials of the same order in L.

The minimal numbers of patches for the various flag manifolds are again
the numbers of corners in the weight diagrams for the various representa-
tions. For example, consider the weight diagrams of the representations
(1,0,0), (1,0,1), (1,1, 1),

which yield coherent states corresponding to CP3, Fi3.4 and Fio3.4 with
minimal coverings of 4, 12 and 24 patches, respectively.
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Table 1: Representations of SU(4) related to the flag manifolds in C*.

Isotropy group Dynkin Young
dimc  Patches in U(4) labels diagrams
L
Fly 3 4 U(1) x U(3) (L,0,0) 1]
L
—
Fou 4 6 U(2) x U(2) (0, L,0) i
L
—
Fsy 3 4 U(3) x U(1) (0,0,L)
L+L
———
Fio. 5 12 U(1) xU(1) x U(2) (L,L,0) E}jﬂjﬂ
L+L
[T 1]
Fi3.4 5 12 U(l) x U(2) x U(1) (L,0,L)
L+L
[ ]
Fogq 5 12 U@2) xU(1) xu() (0,L, L) 1]
L+L+L
Figza 6 24 U(1) x U(1)x (L, L, L) } } } -
U(1) x U(1)

4 Fuzzification of the flag manifolds

Combining the description of the flag manifolds in terms of Pliicker coordi-
nates which we developed in Section 2 with the correspondence to coherent
states in the previous section, we have an obvious way in which one can
truncate the algebra of functions on these spaces to obtain the latter’s fuzzy
versions. Before we describe the construction of the fuzzy flag manifolds in
detail, let us briefly recall the underlying principles.

4.1 Fuzzification

By fuzzy geometry, we mean a truncation of the algebra of functions on a
compact space such that the coordinates become noncommutative while all
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isometries are manifestly preserved. Given a compact Riemannian manifold
M without boundary, the spectrum of the Laplace operator is discrete and
the eigenfunctions form an orthogonal basis B of L?(M). A naive guess for a
discretization would be to truncate the expansion of a function by using only
a finite subset B of elements in B. Multiplication of functions, however,
clearly necessitates a subsequent projection back on to B, which in turn
will render the product nonassociative in general.

If the manifold M = G/H is a coadjoint orbit of a Lie group G, we can
easily circumvent this problem: we can map functions to operators acting
as automorphisms8 on the representation space of some representation R
of G which admits singlets under H and replace the product between func-
tions by the operator product. In the previous section, we described which
representations R are suitable for the various flag manifolds of SU(4). We
will see that the choice of R corresponds to a choice of the truncation and
the closure of multiplication is trivially given.

Using a projector pr(z) = |z)(z| which corresponds to a point x € G/H
and acts on the representation space of R, we can establish a map between
operators and functions on the coset space by the formula

fa(@) = tr (pr(@)f). (4.1)
The operator product then induces a star product via
(fr*98)(@) = tr (pr(@)f3)- (4.2)

In general, there is an infinite sequence of suitable representations R; for
any coset space and for each of these representations, the star product is
different. Choosing higher-dimensional representations amounts to a better
approximation of the functions by operators, and there is usually a well-
defined limit, in which the complete set of functions on the coset together
with the ordinary product is reproduced.

Let us return to equation (4.1). To each operator f representing a function
on Mpg, assign a corresponding symbol f(g), g € G by [7]

flg) =t (DR(g™)f), (4.3)

where D(g) is the group element g acting in the representation R. The
normalization constant ng is defined by

/du(g)DR(gl)szR(g)kl = an5ﬂ5jk (4.4)

8That is, they can be represented by square matrices.
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with du(g) being the Haar measure on G. Inversely, the operator f
corresponding to the symbol f is therefore obtained from

f= /du(g)f(g)DR(g)- (4.5)

A~

From the symbol f of an operator f, we can easily calculate the function
defined in (4.1) using

fr(z) = / dp(g)wn(z.9)f(g) with wr(z,g) == tr (or(x)D*()). (46)

In the definition of the star product (4.2), this translates into

(fr* gr)(@) = / dy(g) / (e Nor(z.99) F@ald), A7)

and it is for this formula that we will find explicit expressions for all the flag
manifolds later on.

In the discussion of fuzzy flag manifolds using star products, we can use
both of the two equivalent descriptions: either real coordinates describing
an embedding of the coset space into flat Euclidean space or the complex
homogeneous or Pliicker coordinates. In the latter coordinates the star
product can be shown to simplify considerably. Moreover, they allow for a
direct translation to the operator picture.

Note that so far, we only arrived at an algebra of functions on a topological
space. The explicit geometry of this space, i.e., its metric structure, has
not been described yet. In noncommutative geometry, this information is
encoded in a Dirac operator, or — in a slightly weaker way — in a Laplacian.
Using the above mentioned embedding, we obtain a canonical metric on the
coset space and can show that the Laplace operator naturally translates into
the second-order Casimir in the representation R.

For more details on the principle underlying fuzzification, see also [5].

. . 3
4.2 The fuzzy complex projective space CP?;

The fuzzification of Fi4 (and therefore also that of its dual Fj.4) is well
known [5], and we follow the usual discussion of the procedure for CPY.
That is, we promote the vector a and its complex conjugate a to a four-tuple
of annihilation and creation operators satisfying the algebra [a’,a/1] = §%.
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The auxiliary coordinates defined in (2.4) also become operators

AL L itya g
Tt = &’“T&ldkla Aija’ s (4.8)
which evidently commute with the number operator N = a*talsy,;. There-
fore, we can restrict the algebra of functions to the subspace of the Fock

space, on which N = L. This subspace is spanned by
%&iﬁ ce. diLT|0> with C' = v/nilnslnglng!, (49)

where the n; are the number of indices being . The truncated algebra of
functions Ay, on this space is the algebra of operators with basis

a't ... a0y oa’ - - -4l (4.10)

It is immediately obvious that these operators will commute with the number
operator NV, which amounts to factoring out a U(1) as implied in the defini-
tion of any flag manifold. The coefficients of the expansion of an operator

2
in terms of the basis (4.10) form square matrices of dimension ((33TLL!)!) (5],

and in terms of Young diagrams of SU(4), we have

L
L L e e L

11 ® O] = ® [TT1T11- (4.11)

To expose the underlying SU(4) structure and to construct the polarization
tensors, we can contract indices from the creation operators with indices
from the annihilation operators using the 15 generators A{; of SU(4). A
contraction with )\% ~ 0;j yields the embedded subalgebra truncated at level
L — 1, since the trace over a fundamental and an antifundamental index
corresponds to the determinant over four indices in either the fundamental
or antifundamental representation and thus to a column of four boxes in a
Young diagram, which is cancelled. The tensor product expansion looks as

L 2L
— L ——

—
®=1@@j@@m@ A 42)

A representation of the Lie algebra of SU(4) is given by the Schwinger
construction and we can write

L% = a""\al . (4.13)
One can easily verify the algebra [L9, L] = iv/2f9 L€ using [af, a/] = 6%.
In the representations R = R(L) introduced above, the projector Pi.4 =

P(x1;4), which describes the embedding of CP? in R, is simply the L-fold
symmetrized tensor product pi4 = pP(z14) = P(214) ® - - - ® P(x14), and
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we can map any operator f in the algebra Ay, to a corresponding function
f1, on the embedding of CP? in R'® by

fr(@ra) = tr (p"(x10) f). (4.14)
Furthermore, this map induces a star product on CP? defined as
(fo*gr)(x1:4) = fr(zia) * gr(z1,4) = tr (PL(931;4)f§), (4.15)

where fr, and g7, are the functions corresponding to the operators f and g,
respectively.

To make the star product more explicit, we calculate w’ (1.4, 99") for the
fundamental representation L = 1:

wh (961;4799/) = tr (731;499/) = tr (731;49731;49/) + tr (731;49(1L - 7)1;4)9/)-
(4.16)
Since Pi,4 is a rank-1 projector, we have
tr (PragPrag’) = tr (Prag) tr (Prag’) = w" (214, 9)w" (14, 9") (4.17)
and with the identities (2.43), it follows immediately that
tr (Prag(1 — Pra)g’) = tr(A"g) tr (PraA* (1 — Pra)g’)

- <8ilw(xl;4,g)> Jaeb ((fxbw(xlﬂ,g/)). (4.18)

For the representations with L > 1, we can simply take the L-fold tensor
product of wl(z1.4,9) [7:

L
WL(xl;ﬁlag) = (wl(x1;4ag))® ) (419)
and the total star product reads as [5]
L

(fLxgL)(w14) =
1=0

(L —1)!
Ll

(Ouoean fr (1:0)) T - T Dy 91 (1:4))

(4.20)

In the homogeneous coordinates a’,a* on CP3, the space of functions is
spanned by homogeneous polynomials of the form

at---a'talt - alr, (4.21)

which correspond to the operators (4.10) under the map (4.14). In these
coordinates, the star product simplifies to [31]

B 1 0 0 1 0 0
U9 =1\ T gam ™ Gase © Tidam  dave
where pu(a ® b) = a - b. Note that this construction of a star product gener-

alizes in a rather straightforward way to other spaces, as soon as we have a
suitable projector p¥(z) at hand.

(f®9)|, (4.22)
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To relate the given matrix algebra to the space CP?, we need some addi-
tional structure to encode the geometry of this space. For this, consider the
vector fields on CP? from the perspective of the embedding space R16:

0
oxc’
where f,;,© are the structure constants of SU(4). Note here that in the limit

L — oo, the fuzzy derivatives approach the ones from the continuum in an
obvious way. It is now rather straightforward to show that [5]

Lo=—V2fpa’ (Lo, L) = V2 Lo, (4.23)

£ o) = V20 fi(a)

L
— ﬁ(fl*fL@) — fr(x) *:L”a’)

— tr (pL(m)[ia, f]) , (4.24)

where [L%,:] are the generators of SU(4) in the representation (L,0,0)
® (0,0,L). Tt is therefore also clear that the Laplace operator on CP3,
A = L2L%,,, is mapped to the second-order Casimir in the adjoint
representation (L,0,0) ® (0,0, L)

A1;4f = [La7 [£b7 .ﬂ]éab' (4.25)

4.3 The fuzzy Graflmannian Gg; 4

We proceed analogously to the case of CP2, which leads to the results pre-
sented in [7] in a somewhat simpler form. That is, we take the Pliicker
description discussed in Section 2.3. and promote the vector components to
creation and annihilation operators &, a', Bi, bit.  We thus arrive at
the algebra

[, a't) = [b', 1] = 6%, (4.26)
and all other commutators vanish. From these operators, we construct the
composite creation and annihilation operators

fléj =al'p!  and A;ﬁ = Lyt (4.27)
which satisfy

A, Akt = <5ik5jl 4 itk 4 5z‘ki,sz;i> (4.28)

(ki)
where (-)(;)jx denotes antisymmetrization of the enclosed components, as
well as

14, A5, Agmt) = (2075 A" (4.29)

[i][kl][mn]



672 SEAN MURRAY AND CHRISTIAN SAMANN

We can now use A;nnT to build an L-particle’ Hilbert space 5. This
space is spanned by

éAg{le .. AéLjLT‘O>’ (4.30)

where C' is the norm of the state. Acting with Agm on such a state yields a
state in %’éﬁfl due to (4.28) and (4.29). Recall that in the Pliicker descrip-
tion of Ga4, we constructed the plane by antisymmetrizing two vectors,
which could be chosen orthogonal such that a’b’ = 0. On the operator level,
this translates into

@9, 43" =0, (a1, AN =0, [T A3)=0 and [a'B7,AY) =0,
(4.31)

and therefore the action of a‘fb’ on any state in %’3134 vanishes. This implies
that we can introduce the number operator

N =a'tals;; = b1 o;; = L (4.32)
and

AUT AR .65 = 2N(N —1) = 2L(L + 1), (4.33)

where the equalities hold only after restriction to %LAL Thus, ,%OQL4 is indeed
an L-particle Hilbert space. We already know from the discussion in the
previous section that the states (4.30) are invariant under S(U(2) x U(2)).
Let us nevertheless be more explicit on the action of the internal SU(2),

which acts nontrivially on both a* and bi. Its generators L{ . act according to

Lh, = ad (a;’j )\;qdf]>, (4.34)

where @} =a’, aj =b" and X, p,g=1,2, r=1,2,3 are the Gell-Mann
matrices of SU(2). The combinations Agj and Aéj I are now invariant under
this action due to the general formula

laif A, alT g = o, (4.35)

where p=1,...,k and 4,5, = 1,...,n; see Appendix B for a proof.

The truncated algebra of functions Ay is the algebra of operators
spanned by

A’élle L. AiLjLT’0> <0|Aklll . AngL7 (4.36)

9Note that a particle is here a composite object consisting of two excitations.
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and the coefficients in an expansion in terms of these operators are square
(3+L)!(2+L)!
3L L+1)!

the number operator N and in terms of Young diagrams, we have here

matrices of size . Note that these operators again commute with

— PN, —— PR,
H}H@HH—H\H@HH‘ (4.37)

Again, each of the tensor product decompositions at level L contains the
tensor product decomposition at lower levels:

[] [ ]

HHefH=1eF eHeg e efHe

o . (4.38)
Contrary to the case of CP3, where increasing the level L by one yielded
precisely one new type of Young tableau in the sum, we here obtain L + 1
new diagrams in each step, which consist of three rows with a +b+a, a + b
and a boxes, respectively. The new diagrams at level L are the ones for
whicha =nand b=2L —2nforn=1---L.

All these notions readily translate for arbitrary Gramannians.

To find a representation of the Lie algebra of SU(4), we use a generalized
Schwinger construction

~ 1 Ny ~

L= THA?TA%MA’Q“ with A%y = (A* AL)iju. (4.39)
It is important to stress that the L® by themselves do not form a represen-
tation of SU(4), but again after having them act on a state in %’éﬁl, they

do. This is simply due to the fact that because of (4.31), L reduces when
acting on a state in %’éﬁl to
L =a"tA\al + bIAGY . (4.40)
The projector yielding a star product on this space is the symmetri-
zed L-fold tensor product p5;4 = pL(l‘2;4) = P2s @+ Q Poy. Proceeding
precisely along the lines of the discussion of the star product on CP3, we
find that

wl(xdb, 99') = w'(z,9) (1 + %&ngB’édAgédA) wh(z, g, (4.41)

where at least one of the indices in each ab or éd is nonzero. That is, the
component 20 plays a similar réle to the component z° in the case of CP3.
Furthermore, one should stress that as usual for the derivatives on spaces
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with symmetrized tensors as coordinates, one has

5 .
— fora=b#0

9.0 = 9= . : (4.42)

ab {%85@5 fora #0b

It is then quite obvious that the star product is given by

(fr*gr)(z2;4) Z L'l' (alz}l)...(&lz}l)fL(x2;4)>

aibi;érd arby;ed
X J2;141 1 1,..J2;l41 1dy (3(61621).”(@&1)%(x2;4)>, (4.43)

where 6(a1b1) (aby) = '66”131' Note that our choice of embedding Fb.4

arby
in R1617/2-1 yielded a slightly simpler expression for the star product on
this space than the one in [7], which used an embedding in R'®.

The expression for the star product further simplifies, if we switch again
to complex coordinates al’b’! on C* A C*. The functions corresponding to
the operators (4.36) read as

a,[iIle] . d[iLBjL]a[kl bll] . a[kLblL} (444)
and the star product is here defined as
B 1 0 0 o 0 ® 1 9 0
(F>9) = 1| i1 5ol abm ~ Qaliz 9bi] ~ LIL! 9l b
0
galic (%JL (f 9|

The natural Laplacian on L%”QLAt encoding the geometry of Ga.4 is derived
from the embedding of G4 in R617/2-1 " Tp terms of Pliicker coordinates,
the generators read as

— 0 0 0 0
Ea = Z)\%& + bz)\,il]% — (I‘y)\;l]@ T b])\;l] 8b7' (445)
From this expression and equation (2.9), we obtain the following expression
in terms of the embedding coordinates

B)
—iV2 o, (4.46)

which satisfies the algebra [£?, £?] = iv/2 fabcﬁc, as is easily verified. Using
the first relation in (2.47), we can write

£ o) = VOO ()
= 20 % f, — fr* 2% = —itr (p% (z2.4)[L%, fL]). (4.47)
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We thus see again that all the derivatives are mapped to the generators
of SU(4) acting in the adjoint and therefore the Laplacian is given by the
second-order Casimir of this representation of SU(4),

A2;4 = adLaadLb(Sab. (4.48)

This observation from the cases CP? and Go.4 translates to all flag manifolds
and we suppress this calculation in the remaining cases. For the discussion
of the eigenvalues of these Casimirs, see Appendix B.

4.4 The fuzzy dual complex projective space F:f 4

One can infer the fuzzification of Fj3.4 in a straightforward manner from the
ones of Fi,4 and Fy4. We start from the Pliicker description and promote
the vectors a, b, c to a triple of four-tuples of oscillators with creation and

annihilation operators di,&iT,Bi,BiT,ci,éiT. We furthermore introduce the
composite operators
A = Glipjek)  and AT = bt eIt (4.49)
satisfying the commutation relations
(i dh| = ez |43, 43|
= Oim + EigpiEmnrs ("1 574G + 677G - gnigrhetd

+amtadbrtbksst 4 antadorkestel 4 53'”6“6’“&“@1).
(4.50)

The expression for [[[c? aﬁ]c@;]cﬁ ] contains only the combination :Jl =

i? ,]
5mnrsAgrST-
The L-particle Fock space %”3’:4 is evidently spanned by the states
Aéljlle . AngLkL”())’ (4.51)
and this space forms the representation (0,0,L) of SU(4). The isotropy
subgroup of any state in this representation is thus S(U(3) x U(1)), and the
internal SU(3) action, affecting all the elementary oscillators a, b, ¢ is given by
ir, =ad (a;‘jA;qa;) , (4.52)

where d’i,&é,&é stand for di,lai,éi, respectively, and A" are the Gell-Mann
matrices of SU(3). Invariance of the operators AY ¥ and AY M follows from
equation (4.35). It is this representation which underlies the construction

of vector bundles over CP%. [20].
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The algebra of functions truncated at level L is again constructed from
two copies of the Fock space and their SU(4) transformation property is
captured by the diagrams

L L L

® =111 ® : (4.53)

We clearly see that this algebra is dual to (4.11), i.e., that of Fﬂ. For this
reason, we will not go into any further details.

The definition of a star product is obvious. The projector in the sym-
metrized L-fold tensor product reads as p§;4(x3;4) =P34 @ - @ P34 and
yields

~

(fL *gr)(73.4) L'l' ( alglél)...(&lglél)fL(xs;z;))

bré1d a;byé;déy f
% Ja1 wedienfi Jg;z4zcz e fi < (d1é1f1)~~(tfzélfl)gL($3;4)>’

(4.54)
where again the components %% are dropped in the formula and
o fora=b=¢#0
Oxabe
1, P
Oube = o gaare fOra= b # ¢ etc. . (4.55)
1 5 R,
6 Bt fora£Ab#c¢#a

The discussion of the star product formalism in the complex coordinates
albickl on C* A C* A C* is trivially deduced from the cases CP% and GY.
The star product here reads as

(f*>:[1 88‘8.”8 8A8®
9 =PI LILIL 9ali 967 9] daliz obir acm
1 o o0 0 o 0
® TILILI 9aln 06 9cm1  dalie o ackLl

(f® g)}

4.5 The fuzzy reducible flag manifold F 12 n

In the case of the reducible flag manifolds, one needs a set of composite
creation and annihilation operators. These sets are in one-to-one correspon-
dence with the Pliicker coordinates. For Ff;; 4 we thus have

A9 AYT and @, a'f. (4.56)
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The missing commutation relations are easily found from (4.28) and
(4.29), e.g.,

a7, ASFT] = otliphlt (4.57)
and the (L1, Lo)-particle Hilbert spaces are now constructed as
At AT gkt gk, (4.58)

The corresponding operators
ARt Agdn Tkt kit oy (0] A . AP gl L gle(4.50)

evidently form a closed algebra and act on the representation space of the
representation given in terms of Young diagrams by
Lo+14

Li+L2 Li+Lo Li+Lo
#% yﬁ
0 =< A I . EEH:D:D
® T ® . (4.60)

The internal isotropy subgroup here is U(1) x U(1), which follows from the
discussion of the underlying coherent states. The explicit action of this
subgroup on the elementary oscillators is given by the number operators for
a' and b

Note that the full algebra of functions on the flag manifold is obtained
from the Hilbert space, which is the sum of all representations with
Ly + Ly = L for some fixed L. This is somewhat evident as the algebra
of functions on Ff;A should contain both the algebra of functions of Ff;l

and FZF 4 at level L.

To define a star product on this space, recall that we could describe the
flag manifold Fi2.4 in terms of two rank-1 projectors Pp and P; satisfying
PoP1 Py = P1. Furthermore, note that we can split every operator f in this
representation as

Ly L
" - . . N — ——
f=fuhkbehi with by e HHH © HHH
Lo (4.61)
—— Lo
—~—

and hi € ® (T11),

where I and J are multi-indices. To such an operator, a truncated function
is assigned by

(@20, m1020) = frotr (p"(z2,0)h3) tr (p" (212)) 1), (4.62)

where p%(z9,4) and pL($1(2);4) are the projectors P(z2,4) and P(x1().4) in
the same representations as ﬁ{z and xy(z),4. Furthermore, xo,4, T1(9)4 are

the coordinates on Fjo4 embedded in Euclidean space, of the plane and
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the included line, respectively. On this embedding, the star product of two
operators is defined as
(f * 9) (@234, T1(2:a) = Frogaan tr (" (wasa) o hs") tr (p" (w1 (2),0) A AY).
(4.63)
Evidently, the star product between xg,4 and xy(g)4 is simply the ordinary
product. Altogether, the star product on Fia,4 can be derived from the ones
on CP? and Ga.4, and we have

(fr * 1) (12:4)

L L

= (L= D (L)) A

=2 L > Lk! (8(&151%%&:5:>aé1'“ékfL(”““))
=0 k=0

% J(&151)7(51621);é1f1 .

12:4 .Jl(g';li)l)’(élczl)?ékfk (8

(élcil)---(éldl)afl...fkgL(9012;4)> .
(4.64)

4.6 The fuzzy reducible flag manifolds F£;4, Fllg;4 and F11;3;4

After the discussion of the fuzzy version of Fi2.4, the corresponding construc-
tions for the remaining reducible flag manifolds are quite straightforward.
We first choose sets of oscillators, which in turn yield the generators for the
algebra of functions:

F13;4 : Agjka AgjkTa di7 &ZT7

F23;4 : Aéjka AgjkTa A;ja AZQJTv

F].23;4 : A?k, AgjkTa AAZQJa AAZQJTa &27 &lT
The underlying representations, on which these operators act are given by
the Young diagrams

(4.65)

Li+Lo Li+Lo La+L1 Li+Lo
,_/% A
) [[T] [[T] [[T] [[T]
F13;4. ® = ® )
Li+L
1+L2 Li+Lo Lo+Lq Li+Lo
[T [ ] [ ]
Foa - T ® To=HHH 1 @ RN
Lit+La+Ls Li+Lo+Ls
—f
[T 1T [T 1T
Fio3.4 : ] ]
L3+Lo+Lq Li+La+L3
. [T 1T [T 1T 466
= 1] ® 1] : (4.66)
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From these diagrams, it is evident that Fy3.4 is dual to Fi2.4, and that the
spaces I3.4 and Fi23.4 are dual to themselves.

Furthermore, the explicit action of the internal isotropy subgroups is eas-
ily constructed. For example, in the case Fb3.4, the group acting nontrivial
on the elementary oscillators but leaving invariant the states of the Fock
space is SU(2) x U(1). Its action reads as

L. =ad ( ;T)\;qAEJ and Lmt = ad ( 4l AZ) (4.67)

where as before @i = a*, ah = b" and Apg are the Gell-Mann matrices of
SU(2). Evidently, the composite operators A5 and Ay T and AY * and AY kT
are invariant under this combination.

The definition of a star product is performed analogously to the case of
Fia.4. We decompose an operator f representing a function on a fuzzy flag
manifold into

f=fuht, ®hi, and f=flxhi®h]eh] (4.68)

for Fy k,.4a and Fia3.4, respectively. The map from operators to functions
reads as

J(Thysas They (ko ):a) = frytr (PLl(fEsz)%g) tr (o™ ($k1(k2);4)ilgl) (4.69)

and

f(z3:4, T2(3):4, T1(23)14)
= frox tr (p™ (z3,0)hd) tr (p"2 (oga).0) 1] ) tr (072 (w1 (23)a) ] ), (4.70)

which naturally induces a star product via the usual formula. The explicit
form of the star products are then obtained from the obvious sums over the
differential operators

. -9 J(alblcl) (diénfr)sanha J(&li?lél)v(dlélfl)%gkilk
(alblcl) (alblcl) 913k 13;4 13;4
X 3 (drérfr)-(diérfr) © havhy
% R . % . ) J(alblcl) (dré1f1);(g1h1),(a71) L
(arbrér)-(arbiér) 7 (grha)-+(grhe) 23

(abiér),(dienf);(auh) (i) = =

Joa TG e )i ) © )i
5 5 Sy qlanbién)(diénfi)i(g1ha),(mana);
F123:4 20 (ay,e0)(iner) @ @1k @ 5151234
J(azszl) (diér f1)5(grhw), (mknk)vpr(hg o o
123;4 (dré1fr)-(diéfr)

q--
Ef it
(Mmafg)-(mgig) ¥ Gre-gr-

%
Fi3,4:0

Foz.4:

D
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4.7 Continuous limits of the fuzzy flag manifolds

As a consistency check, one can calculate the dimension of the continuous
flag manifolds from considering the L — oo limit of the various represen-
tations used in describing the fuzzy algebra of functions on them. The
underlying idea is simply that given a cutoff L, the number of eigenvalues
should be proportional to L% on a d-dimensional manifold. The number
of degrees of freedom in the matrix algebras was the square of the dimen-
sion d(ai(L),az(L),as(L)) of the representation (ai(L),a2(L),as(L)), and
we can thus deduce that

g Lh_r)n In (d(al(L>iZQ£L)’ ag(L))) '

(4.71)

A trivial calculation shows that the representations and the matrix algebras
we have chosen in the previous sections indeed reproduce the right dimen-
sions for the various flag manifolds:

Flag manifold Fiq Foy Fsy Fia;4 Fi3.4 Fa34 Fi23;4

Representations (L,0,0) (0,L,0) (0,0,L) (L,L,0) (L,0,L) (0,L,L) (L,L,L)
Real dimension 6 8 6 10 10 10 12

Considering the expressions for the star products on the various flag man-
ifolds found in the previous sections, it is also evident that the star or oper-
ator product will go over to the commutative product in the limit L — oo.
As discussed in [31], this limit is, however, not clearly observable in the
simplified formulse using the complex coordinates a’,b’,c¢’. Furthermore,
the derivatives in the fuzzy case containing the geometric information are

evidently approaching the derivatives in the continuum for L — co.

5 Super Pliicker embeddings and flag supermanifolds
5.1 Flag supermanifolds of U(4|n)

Flag supermanifolds can be defined analogously to bosonic flag manifolds by
considering the supervector space C™" [18]; see also Appendix A for more
details. A superflag is a sequence of superspaces Vp, C --- C Vp, C Ccmin
such that dim¢c Vp = D =d|6. Note that inclusion requires that d; < d;
and ¢; < d; for ¢ < j with at least one inequality being strict. A flag super-
manifold Fp,...p,.mn is correspondingly the set of all superflags fp,...p, ;mjn-
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One can again write a flag supermanifold as a coset space
FDl---Dk;m|n = U(m\n)/(U(m — dk]n — 5k) X oo X U(d1|(51)) (51)

The special unitary supergroups SU(m|n) are not useful here, as for m = n,
one has to exclude the identity matrix, which is a central element in this
case, from the set of generators of su(m|n). See Appendix A for more details
on this point.

As before, we will be interested in the flag manifolds arising naturally in
the double fibration underlying well-known supertwistor correspondences.
These spaces are flags in the superspace C4"_ and because there are again
natural projections, they fit into the following diagram:

/
Feoemiam T
b Fumewememan |

F110)2(0)2m);(4in) l Fajo)3jm):(4in)
T Fapy —

(5.2)

Here, F(1)0);(4n) 1S the superspace CP3™ and F210)(2/n);(4n) 18 the conformal
compactification of super Minkowski space with n = AN being the number of
supersymmetries. Note that F{2/0)(2jn);(4|n) contains the left chiral superspace
F2/0);(4n) as well as the right chiral superspace Faj,);4pn) [18]. Since in the
twistor correspondences involving F(1|g).(4jn) and F(3)p);(4/n), only these chiral
subspaces play a role, we will also restrict the correspondence spaces and
only consider F1jo)2j0);(ajn) and Fiajn)(3in)i(aln) nstead of Fijo)2j0)(2pn);(ain)
and Fiz)0)(2n) (3}n)5(4}n)

To get a reliable handle on the geometry of the flag supermanifolds, it is
useful to introduce local coordinates. For simplicity, we will first consider
the ordinary Grafimannians and then discuss the super case. The extension
to reducible flag supermanifolds will be straightforward. On a Grafimannian
G'k:n, @ patch corresponds to a subset I C {1,...,n} with k elements, which
selects k columns of a k x n matrix Z. We identify these columns with
the columns of a k x k unit matrix; they fix parts of the vectors spanning
the k-dimensional vector subspaces. The remaining columns are filled by
the local coordinates on the patch I. As an example, consider CP? = G13,
where there are three patches

Zi =121 22), Zy=(2a123) and Z3= (23 22 1). (5.3)
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Transition functions are elements of a finite subgroup of GL(n, C), permuting
the k£ X k unit matrix to different columns. We also see that on every patch
we have the U(k) x U(n — k) C U(n) invariance manifest.

For a super Graimannian Gy, we consider a (k[x) x (k + (n — k)|x +
(v — k))-dimensional supermatrix Z, into which we insert the columns of
the k| X k|k-dimensional unit matrix, preserving the grading of the matrix.
The set I of the columns which we selected corresponds again to a patch.
The discussion of the transition functions is the same as in the bosonic case
and the symmetries factored out are again manifest.

A first observation is that for the super Gramannians we are interested
in, the fermionic dimension of the subspace is always either maximal or
minimal. This leads, e.g., to matrices Zy

Gaouaja : Zaa). = (Tax2 laxaz | Eaxa)

Gajoapa : Zio) = (L2x2 | §2x4) (5.4)

a .z ~ (max2 Tax2 | 024
204;4)4 ¢ £34]1234 = 0 1 ;
§ax2 4X2 ‘ 4x4

where the lines indicate the boundaries of the four canonical blocks in the
supermatrix Z. The first and the third space are the compactified, com-
plexified chiral and anti-chiral N' = 4 superspaces, respectively. It is easy to
convince oneself that (the bosonic part of) the transition functions are the
same as in the purely bosonic case. Therefore, the super Gramannians (and
also the flag supermanifolds) we are dealing with are simply certain fermionic
vector bundles over their bodies, i.e., the embedded ordinary flag manifolds.
As an explicit example, consider the space cp', Following our discussion
of local coordinates, we introduce the two patches Uy, corresponding to the
matrices

Zy=(201¢¢2) and Z_=(1z ¢t ). (5.5)

The transition function between both patches is evidently fi_ = z4, and
therefore we have (};2 = z+§i’2. Thus, the space CP'2 is the total space of
the rank 0|2 vector bundle

o(1) @ IO(1) — CPL. (5.6)

For more details on the definition of super Gramannians and flag super-
manifolds, see [32].

For simplicity, we restrict our attention to the case n =N =4 in the
following. Using the description of super Gramannians given above, it is
easy to determine the dimensions of the various flag supermanifolds in (5.2)
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for n = 4. We have

Fajoyaa) 314 Fiajoys(aja © 4I8

Foojayaja) - 418 Fiajo)(2ja);aia) * 4116

Fajoy@loy:(aja) * 518 Fsjaysap) : 3[4 (5.7)

Flajay@jayapa) © 518 Flajo)3jays(aja) : 5|16
Faj0)210)2/4)(3/4);(414) * 6[16.

The minimal numbers of patches covering the flag supermanifolds are the
same as the ones for their bodies.

5.2 The Pliicker and super Pliicker embeddings

Before discussing the super variant of the Pliicker embedding, let us briefly
recall its common form; see also the review article [33]. A GraBmannian
GJ.n is the space of all k-dimensional vector subspaces in V' = C". Each

such space is spanned by a basis fi,..., fr and we can combine this basis
into an element of the kth exterior power of V'
A=FfiNNfp, AcAV (5.8)

Each element of this form describes a point on Gf.,, however, not every
element of A*V is of this form. In particular, a sum of two different such
elements will not in general be decomposable into a single wedge product
of k vectors. One thus needs additional conditions to decide, whether an
element of A*V is fully decomposable. Physically, this question is completely
analogous to the question, whether a k-fermion state can be decomposed into
a product of k single particle states.

It is well known that the necessary and sufficient condition for A € AV
to be of the form (5.8) is

(BJAYAA=0 forall Be A*1VY, (5.9)

where V'V denotes the space dual to V. The proof of this statement is a
simplification of the one in the graded case, which we will give below. The
equations arising from (5.9) are called the Plicker relations. In the case
k = 2, this condition simplifies to (BuoA) A A= 1B (AAA) and thus to
ANA= z—:,-jklAijAkl = 0, the condition we used in Section 2.3

Consider now a basis (e1,...,e,) of V with a dual basis (e}, ...,el)
of V*, (e;,el)) =46]. It is obviously sufficient to consider (5.9) only for
elements B of the form e} A--- Ael. Writing A = Al e, N Nej
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(5.9) reduces to

k
Z(_l)tAjl"‘jkflitAil'“{;"'ikJrl — Adrdk-alin gizeigal 0, (5.10)
t=0

where - indicates an omission as usual.

Note that not all of these equations are independent, but one can eas-
ily read off the number of independent ones. As the Pliicker relations are
evidently projective, one can fix a nonvanishing component to unity, e.g.,
APrPk = 1. Then it follows that one can solve for all coordinates with
m > 2 indices different from all of the p, [33]: Consider a sequence ¢ - - - i
of indices, m of which are not in the sequence p;---pg. From (5.10),
we obtain for (jx) = (q1-- ¢ ---qx) and (ix) = (g-p1---px) the following
equation:

k
AdU@rqkGr APLPE — Z(_1)tAq1---tfr"-QkptAp1---ﬁt"'pk_ (5.11)
t=1

If p,. is contained in the sequence ¢ ---qg, the right hand side vanishes,
otherwise exactly m — 1 of the elements in the sequence ¢ - - - ¢ - - - qppt are
not in the sequence pp ---pg. Iterating this prescription, we find that all
Pliicker coordinates can be expressed in terms of A% % with at most one
qs not in the sequence pi ---pg. That is, of the (z) coordinates on A*C",
only 1+ k(n — k) are relevant, and this is the number of (homogeneous)
coordinates on the Grafimannian Gy.,.

For the discussion of flag supermanifolds, we need a similar picture at
hands, and we will find that for Graimannians G|y, for which x € {0,v},
the Pliicker embedding can be straightforwardly extended. This fact is men-
tioned in [32], but beyond this, we are not aware of any explicit discussion
of super Pliicker embeddings in the literature.

The GraBmannian Gyy,n|, consists of spaces spanned by k even and r

odd supervectors in V = C"". Given a basis e/ = (¢/,¢), we can write a
point!® A € AFRCY € Gy, as

A=Al DY Tegh o copele peTt AL peTr, (5.12)

where I, and T, range each from 1 to n + v. The Pliicker relations we are
looking for are supposed to be the necessary and sufficient conditions that

A=fA A APLA Ay, (5.13)

10 A discussion of wedge products of supervector spaces and their duals is found in [34].
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where f, and ¢, are linearly independent'! even and odd supervectors,
respectively. We now claim that for x € {0, v} (and these are the only cases
we are interested in), the necessary and sufficient condition reads as

(BLA)AA =0 forany B e AF~lryY, (5.14)

First, note that an even supervector v with nonvanishing body v° divides an
element A of A¥1"VV with A° #£0, i.e., A = v Aw for some w € AF—2l%
with w® = 0, if and only if v A A =0. Let us assume that xk = 0. If A is
of the form f; A --- Afy, then we can complete the f, to an (orthonormal)
basis of V by even supervectors fyy1 -« - f,4,. If B is composed only of Y
with oo < k, (5.14) is satisfied. If there is one or more of the f, with a > k,
(5.14) is also true. Since (5.14) is linear in B and the span of the cases we
discussed comprises all of A*~1%VY (5.14) is true in general.

To prove the remaining direction, we follow the proof in the bosonic
case [33] and explicitly construct the Graimannian G|y, from the coor-
dinates ATtk First, note that we can again fix a bosonic coordinate
which has nonvanishing body (at least one such component exists, if A
has nonvanishing body), say A% % =1, since the equations are projec-
tive. Furthermore, all coordinates A”1/k with a sequence J - - - Jj, of more
than one index different from 41 - - -4x can again be written in terms of the
remaining coordinates; the proof is the same as in the bosonic case. We
now construct k vectors spanning a k-plane in A¥IOC™¥ by putting p,,(J) =
Abnim—1Jimerik gy — 1.k J=1---n+wv. This evidently yields & lin-
early independent vectors with nonvanishing bodies, as they differ in the
k components J = i;: it is py,(i;) = 0 for m # 1 and pi(i;) = 1. It remains
to show that the plane corresponding to these vectors is indeed compati-
ble with all the Pliicker coordinates. First, it is straightforward to see that
the components A im-1Jim+1-% a]] are compatible with our definition. As
shown above, the remaining coordinates are derived from these and thus all
the Pliicker coordinates are the ones corresponding to the Graimannian we
constructed. Altogether, if the equation is satisfied, then the multivector A
describes a Grafimannian, which completes our proof for k = 0.

For k = v, it is sufficient to note that the wedge product of the v odd
supervectors in A either vanishes, if they are linearly dependent, or spans
all of the odd supspace. Therefore, it suffices again to focus on the even
supervectors in A, which is done by contracting with a dual multivector
B € A*~1"VV and there is nothing left to prove.

11Gee Appendix A for a discussion of linear independence of supervectors.
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5.3 Pliicker coordinates and projector description
of irreducible flag supermanifolds

From the discussion in Section 5.1., the description of CP3* is evident:
homogeneous coordinates on CP31* are provided by the components of an
even supervector (normalized and in a representation of type I, i.e., in a
pure even basis) al = (a’,7®). From the discussion above, we know that the

space CP31* is the fermionic rank-4 vector bundle
C*®IIO(1) — CP?, (5.15)

and its sections are given by homogeneous polynomials of degree one in the
coordinates on CP3. We can therefore rewrite the fermionic components of

the even supervector al as

n® = nf‘ai with n* € cols, (5.16)

In the following, however, we will not be interested in sections of this bundle
but rather in the algebra of functions on its total space.

We therefore continue along the lines of the bosonic case and construct a
projector using the supervector a according to

Pio =aa’. (5.17)

Note that the description of a flag manifold using projectors trivially
generalizes to the supercase. First of all, the bodies of even and odd super-
vectors of dimension 4|4 have nonzero components in the first and the last
four components, respectively. This property is preserved by the action of
U(4/4). Thus, given a projector

_(Pa Ps
po (2 ) 615

we can read off the dimension k| of the subspace of C** onto which it
projects to be tr (P4)|tr (Pp), where -° denotes the body of the projector.
We will define the rank of such a projector to be k|x.

Also, there is a subgroup U(4 — k|4 — k) of U(4]4), which leaves invariant a
projector of rank k|k. This is easily seen by the usual identification of u(4|4)
with u(4 + 4) after combining the odd generators with an odd parameter and
the fact that the rank of a projector is left invariant by the action of U(4[4).
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For Pyp to be a projector, we have to demand that
(a,a) = aa = a'a’ +i7"n™ = 1, (5.19)

see Appendix A for a definition of the scalar product of complex super-
vectors. This condition can also be understood from the construction of
CP™ yia

Cn—&—l\n—f—l N 52n+1\2n+2 N Cpn\n—&-l (5 20)

, .

as the first projection, see also [35]. We can in fact introduce coordinates
x4 =al )\’IL‘JaJ in the superspace R32132, where the A? are the generators
of U(4]4) as described in the appendix. The coordinates x” describe an

embedding of CP3* in R32132 and due to A'[Z‘J)\ELQAB = 0;1.07K, we have

Pijo =x"Ag,5 =aa’. (5.21)
Underlying this construction is again a generalized Hopf fibration
1—UQ1) — S§2nHilnt2 _, cprintl _, q, (5.22)

Let us now turn to the GraBmannians, whose description is rather straight-
forward using the super Pliicker embedding. We start with Gyg)g,4/4, and the
Pliicker coordinates are given by

AL =allb? =alb’ — (-1)7a’b! = a'b’ - bla’, (5.23)
where a = (a,7n) and b = (b, () are two even supervectors, {-, ]} is the super-
commutator and I denotes the parity of the corresponding index. That is,
1 =0 and @ =1, plus the parity of the supervector under consideration,
modulo 2. In more detail, we have

Ay =alV, Al = —ASh =5 (a'¢ b)) and  AZ=nlo¢7,
(5.24)
where {-} denotes symmetrization, in particular of Gramann-odd quanti-
ties. Note that this super-antisymmetrized combination of a and b indeed

eliminates all components of b parallel to a and in the following, we will
assume that b and a are perpendicular

a'b’ = a'v’ +i¢*n* = 0. (5.25)
Together with a® # 0 # b°, this equation implies that both supervectors are
linearly independent. The (internal) stabilizer subgroup of U(4|4) leaving
Aéié invariant is U(2]0), which rotates the supervector a into b and vice
versa; see the discussion of the fuzzy case for more details.

‘We observed before that the Pliicker coordinates Aéj on (2.4 contain some
redundancy: first there is a scaling, which renders them effectively coordi-
nates on CP®, and second, there is the identity &1, A5 A5 =0. In the
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present case, the redundancy is somewhat larger, but from the discussion
of the super Pliicker embedding, we can be specific about the number of
redundant coordinates. First of all, we have 16 even and 16 odd homoge-

neous coordinates and thus we are using a Pliicker embedding into CPois,
Assuming that Al2 =1 fixes the scaling, only the coordinates
2]0
13 14 15 18
A2|0 A2\0 A2|0 A2\0
23 24 25 28 (5.26)
A2|0 AQ\O A2|0 AQ\O

are independent and we thus arrive at a 4|8-dimensional space, G'5|o4/4-

From the bi-supervector Ay|g, one can again construct a projector
IJ;KL IJ XKL
(@2\0;4\4) ' = A2‘0A2|0 (5.27)

and with our choice and the orthonormality of a and b, %5g4)4 satisfies
indeed (332|0;4|4)2 = P9j044- Underlying the construction of this projector
is again a generalized Hopf fibration, which is evidently a superextension of
the one for Ga.4:

1 — U(200) — ST xS — Fyoyy — 1. (5.28)

It is now necessary to introduce a super-antisymmetrized tensor product
defined as

(AMB) kL = L(AxkByr — (-1)" A By
- (_1)RLAILBJK + (—1)ij(—1)RZAJLBIK)-

As in the case of the antisymmetric product of the generators of U(4), we
also have here various Fierz identities, see Appendix A. Using one of these
identities, we can introduce the projector

_ AKLAILIJ
(Paj0a10) 17:K 1L = Aglg Agj

= AS O N o pr AL N M AP) kL gac 98D

(5.29)

=: XAB()\C m AD)[J;KL 9gAC 9BD- (5.30)

The next Grafmannian to be described is the space Gyjs,44. This space
is certainly “dual” to Ggjg.4p4, as one easily guesses from the description in
terms of coordinate matrices Z; given in the previous section. To describe
this space, one needs to take two even and four odd normalized supervec-
tors and then super-antisymmetrize them. A short remark is in order to
show that super-antisymmetrizing indeed yields a projection on their mutu-
ally orthogonal components. We saw above that this is true for two even
supervectors. Since the bodies of normalized even and odd supervectors are
nonvanishing exactly in the even and odd indices, respectively, a pair of an
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even and an odd normalized supervector are always linearly independent;
antisupersymmetrization just eliminates redundancies in the description of
1]1-dimensional subspaces via Pliicker relations. Given two odd supervec-
tors, super-antisymmetrization has the same effect on the even and odd
components as it had on two even supervectors and thus projects out non-
orthogonal components.

Altogether, we have Pliicker coordinates

AG T = allp/gT. g, (5.31)
where a’, b’ and 1T are even and odd supervectors, respectively. We
assume that A%|235678 =1 to fix the scale. From the discussion of the super

Pliicker embedding, it then follows that the independent coordinates here
are given by

135678 145678 155678 .. 185678
A2|4 A2|4 A2|4 A2|4 5 39
A 235678 A 245678 A255678 . A 285678 (5.32)

2)4 2)4 24 2[4

In the case of the dual complex projective superspace (CPEM, we add to

this picture another even supervector ¢/ and obtain the Pliicker coordinates
TJKY1-T InJ K T T

AR = allp gl (5.33)

where a’, b’ and 5T are even and odd supervectors, respectively. We fix the

scale by A§|24345678 = 1 and the remaining independent coordinates here are

1245678 1345678 2345678 155678 185678

Asly Agy Ay Ajl AT (5.34)

We refrain from going into any further detail at this point and refer to the
discussion of the fuzzy pictures of these super Gralmannians.

5.4 The reducible flag supermanifolds

As in the bosonic case, the description of the reducible flag supermanifolds
is merely a combination of the underlying “elementary” Gralmannians.

The complexified, compactified super Minkowski space F{(0)(2/4);(4)4) 1S @
reducible flag supermanifold, although its body is an irreducible flag mani-
fold. Combining the sets of Pliicker coordinates on G454 and Gg)y,44 and
factoring out redundancies arising from the fact that the even supervectors
in both cases are the same, one arrives at the Pliicker coordinates on the
space F(9)0)(2/4);44> Which is of superdimension 4/16.
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Similarly, the remaining flag supermanifolds are constructed by combining
the coordinates of the Grafimannians corresponding to the various subflags.
Again, a more detailed discussion will be presented, when we develop the
fuzzy versions of these spaces.

5.5 Geometric structures on the flag supermanifolds

The description of the flag supermanifolds in terms of projectors allows us to
proceed similarly to the case of ordinary flag manifolds in the description of
their geometry. That is, we describe a point on a flag supermanifold M again
by a projector Py, and the action of G = U(4]4) on this point produces all
of M. The coordinates x* provide an embedding of M in R™" (e.g., cp3i
is embedded in R32|32). The tangent vectors at Py are naturally obtained
from an appropriate action R(A) on Py and we define analogously to the
bosonic case

Tp,M = {R(A)Po|A € u(4]4)}. (5.35)

The generators of the subgroup H in M = G/H will leave Py invariant, and
thus Tp,M is of the same dimension as M. In the case of CP3!*, R(A) is
the superadjoint action, and since Py is an even supermatrix, it is thus clear
that a vector V € T’p,M satisfies

{Pop,V}=V and strV =0. (5.36)

From this point, it is rather obvious that we can proceed with the definition
of the complex structure, the metric, as well as the Kéhler structure, exactly
as in the bosonic case. We thus go over to an arbitrary projector P describing
any point on M and define the complex structure as

IV = —-i{P,V} = —i[P, V], (5.37)
which trivially satisfies 2 = —1 and the hermitian supermetric as
g(V1,V2) = —str (IV1[V2), (538)

which satisfies ¢(I'V1,IVa) =¢(V1,Vy), is invariant under the
action of U(4[4) on the vectors Vi and Vy and defines a supersymmetric

even tensor: g(Vi,Va) = (—l)vvaQ(Vg, V1). Evidently, there is the super-
symplectic structure

Q(V1,V2) = g(IV1, V2), (5.39)
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satisfying Q(V1,Vy) = —(—1)V1VQQ(V2,V1), from which we obtain the
super Kéhler structure J as

J(V1,Va) = $(g(V1,V2) +iQ(V1, V3)) = str (PVi(1 —P)Vy). (5.40)

Note that for any normalized supervector a, there is a transformation
g € U(4/4) mapping it to the vector a’ = (1,0,...)T. This implies that by
an appropriate action of g, one can turn P into diag(1,0,...) and therefore
we have again the formula str (PAPB) = str (PA)str (PB), which allows
us to write

J(Vl, Vz) = str (PV1V2) — str (PVl) str (PVQ) (5.41)

Furthermore, we introduce the obvious components J4Z = J ()\A, AB ) etc.,
for which we have e.g., the identity

JABNp = str (PAY(1 — P)AE)Ap = PAY (1 - P). (5.42)

Note that a projection onto the body of all the structures introduced in
this section naturally reduces them to their ordinary counterparts on bosonic
flag manifolds. These geometric structures are thus (unique) supersymmet-
ric extensions. Furthermore, the above discussion naturally extends to the
case of all other flag supermanifolds involving super-antisymmetrized tensor
products of the type A2 MAB @ ---.

6 Fuzzy flag supermanifolds

Having a description of flag supermanifolds using the Pliicker embedding, we
obtain quite straightforwardly the description of fuzzy flag supermanifolds.
We will be rather concise and essentially stress the differences with the
bosonic case. For earlier accounts of quantizing CP?, see e.g. [36].

6.1 Supercoherent states

The discussion of supercoherent states is done in close analogy to the case of
bosonic coherent states. Consider the generators of the supergroup U(4/4).
After taking out the matrix diag(14, —14), we are left with 31 bosonic and 32
fermionic generators. There are seven generators of the Cartan subalgebra:
the six Cartan generators of the two SU(4)s contained in U(4]|4) together
with 1g. We pair the remaining 24 bosonic and 30 fermionic generators
into raising and lowering operators. Seven of them are fundamental, the
remaining ones are generated by supercommutators of these. All of the
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fundamental and Cartan generators are of the form

.0 0 0 .00 0
o 1 0 o + 1o o1 o0
H=109 0 1 0 =000 o

0 0 0 0 00

00 0
_ 0 00 0
E-=10 10 o

0 00

The lines mark the boundaries between the four blocks of the supermatrices.

Correspondingly, we can introduce a super Dynkin diagram of the form

ai a2 as q0 aq as ae
O O O ® O O O (6:1)

where the Dynkin labels indicate again the number of nontrivial actions of
E; on a highest weight state. Setting these labels to zero, we evidently
enlarge the isotropy group of the highest weight states in the same way as
in the bosonic case. That is, the highest weight state in the representation
(L,0,0,0,0,0,0) has isotropy group SU(3|4), while the highest weight state
in the representation (0, L,0,0,0,0,0) has isotropy group SU(2) x SU(2/4).
These are thus the representations, in which the coherent states correspond
to points on the flag supermanifolds Fyjg.44 and Fyg.4)4-

The remaining representations for the flag manifolds Fj|44)4 and Fy4.4)4
are given by representations with the Dynkin labels (0,0,0,0,0,0,L) and
(0,0,0,0,0,L,0). The representations corresponding to flag manifolds are
derived by choosing the Dynkin labels corresponding to all the contained
Grafimannians to be nonvanishing.



QUANTIZATION OF FLAG MANIFOLDS 693

The further discussion of the construction of coherent states as well as the
treatment of the various patches (choosing dominant weight states instead
of highest weight states) is evident. Instead of going into details, we con-
tinue directly with the construction of fuzzy matrix algebras on the flag
supermanifolds in the next section.

6.2 The fuzzy complex projective superspace CP?I’,-!4

The fuzzification of CP?* is obtained by promoting its homogeneous coor-
dinates to creation and annihilation operators of bosonic and fermionic
harmonic oscillators:

al = (ai,n®) — al =(@,4*) with {a/,a’t} =67 (6.2)

The total number operator reads then as N = alfal = afal + 4of7*, and
commutes with the auxiliary coordinate operator

1

GA . ATty A aJ

X" i= = )\ a . 63
N 1J (6.3)

We can thus restrict the algebra of functions to the L-particle Hilbert space

jfl%ﬂl‘l spanned by the states
aht... éILT‘0> or ahf... diLfk,f]OélT .. -ﬁo‘kT‘O>, (6.4)

where, evidently, k¥ < 4. Using the Schwinger construction for Lie superal-
gebras, we can define an action of u(4/4) on this space:

LA =alfadal. (6.5)

12 for Young supertableaux, the representations

In the standard notation
space %”1'% m corresponds to

L

——
] (6.6

The algebra of functions on CP3* is given by the matrix algebra
alht...alttjoyola” - a't, (6.7)

which corresponds to the tensor product
L L

sAsls © A A (6.8)
where stands for the dual (contragredient) representation of [ «/

Z25ee, e.g., [37,38]
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For simplicity, let us give the star product on this space only for the
complex coordinates a’ = (a’,n®). The algebra of functions is spanned by
the monomials

ali...alta’t...a't, (6.9)

and the star product is defined as

1 0 0 1 0 0

i Tigal aaIL®Eﬁ”'a:7L(f®g) : (6.10)

(fxg) =

Although the second-order Casimir still labels representations to some
extend, the Laplacian in the continuum does not have any immediate mean-
ing. We are thus more interested in translating all the various derivatives,
written in terms of the embedding coordinates to the fuzzy picture. This
is easily done using the generators L£4 described in Appendix B. One can
show in complete analogy to the case of CP? that

Lafr(x)= \% (XA * fr(x) — (‘UAEfL(X) *XA)

= tr (pL(X1|0;4\4){[ﬁA’f]}) :

Together with the Killing metric g4, this sufficiently describes the geometry
on fuzzy CP3* embedded in R32132,

(6.11)

6.3 The remaining fuzzy Graf3imannian supermanifolds

The next flag manifold in our list is Ggj,4)4, which is of complex dimension
4|8. From the super Pliicker embedding of this space into A20CH4 the fuzzi-
fication is immediately obvious. We start from two sets of supersymmetric
oscillators

{al,a’ 1} = 6%/, {[BI,BJT]} = o1/ (6.12)

with components al = (a’,7*) and b! = (b%,0%). From these, we construct

the composite annihilation and creation operators

Al =alpt, AJ = allTp/H, (6.13)

or, in more detail,

A, =al, Al —ade il A=A, Ag)e 97,
(6.14)
together with their hermitian conjugates. The construction of the usual

L-particle Hilbert space is now again straightforward and this space forms a
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representation of U(4|4). Combining this Hilbert space with a dual copy, we
obtain the algebra of functions on G§|0, gja B8 2 matrix algebra of the form

L L

N

ydvd
vl (6.15)

SAA A
A8

From this construction, the deformed algebra of functions on G414
together with the star product are also obvious.

The construction for the remaining two Grafimannians Gyjg44 and

G3jaaps = (CPi5|4 uses composite creation and annihilation operators obtained
from super-antisymmetrizing two even and four odd, and three even and four
odd sets of superoscillators, respectively

ALIT1-Ts _ A {IRJaT1 4} ATJKY1- Ty _ a{IfJaK 21 4}
A2\4 =atb'n -0, and A3|4 =at'b ¢ n; -1y

?

(6.16)

where the §T = (7%, a®) are sets of odd annihilation operators satisfying with
their hermitian conjugate the algebra

{n", 7"t = (6.17)

From the discussion above, the representations are clear.

6.4 The fuzzy reducible flag supermanifolds

The discussion of the fuzzy reducible flag supermanifolds is now completely
obvious. By combining sets of oscillators from the various super Grafiman-
nians, we obtain the appropriate sets of oscillators (and thus the relevant
Fock spaces from which the algebras of functions are constructed) for the
flag supermanifolds naturally projecting on these Gramannians. Instead of
repeating the discussion for all the flag supermanifolds, let us merely study
the example of F(l‘())(2|0);4‘4'

For this flag supermanifold, we need the oscillators of Gyjgu4 = cp3i
together with the ones of Gyjg.4):

al, all, Al —alb, AL = alip/H, (6.18)



696 SEAN MURRAY AND CHRISTIAN SAMANN

Using L; operators a’f and L, operators Agigr we construct the (L1, Lo)-
particle Fock space and its dual. Tensoring them yields the algebra of func-
tions on F(y)0)(2/0);4)4 s the matrix algebra

Lo+1+4 Lo+IL4
S A S S A NN (6.19)
2o dvavdva

6.5 Fuzzy Calabi—Yau supermanifolds

Calabi—Yau supermanifolds received much attention recently in twistor
string theory [39], where CP3* was used as a target space for the topo-
logical B-model. The interest in this particular space is due to the fact
that CP3!* is simultaneously a supertwistor space and a Calabi—Yau super-
manifold. The latter spaces are defined as spaces whose canonical bundle is
trivial and thus have a nowhere vanishing holomorphic volume form. It was
furthermore conjectured [39,40] that there is a mirror symmetry between
CP?* and the superambitwistor space £516 := F1j0y(313);413- (Note that in
our above constructions, we instead considered the space F{(1|0)(3/4);44-) The
space L6 is of real dimension 1012 and a coset space of U(4|3), as defined
in (5.1). The corresponding fuzzy space is obtained from merging the fuzzy
versions of CP3P = Fijo,43 and CPZ{Z’B = F33.43 in the same way fuzzy flag
manifolds are obtained from their sub-Grafimannians. Since the construc-
tion is again rather trivial, we stop here and postpone the analysis of fuzzy
mirror symmetry to future work.
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Appendix A Supermathematics, conventions and definitions

We denote even objects by Latin letters and odd objects by Greek ones.
Boldface symbols will represent superobjects. Furthermore, a tilde over an
index or an object will denote the naturally assigned parity, and -° attached
to an object refers to its body.
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A.1 Supernumbers

A supernumber is an element of the Grafimann algebra Ay, N €
NU {oo} which has generators ¢!, i =1,..., N satisfying £'¢/ + £7¢8 = 0.
The Grafimann algebra decomposes into an even and an odd part, Axg =
AN, An1 = AN, which are the subsets of supernumbers built from an
even and an odd number of Grafimann generators, respectively. The body of
a supernumber is denoted by z° and consists of the purely complex part of z
containing no Grafimann generator. For complex conjugation of Graffimann
odd quantities, there are essentially two conventions used throughout the
literature. First, and most commonly, there is

(01(92)* = §2§1 = —élég, (Al)
which is used, e.g., in [38,41]. Second, there is
(9192)* = —529_1 = +9_19_2, (AQ)

which is used in [34,42]. The latter convention respects the sign rule that
interchanging two Grafimann-odd objects in a monomial should always be
accompanied by an additional sign. There is a discussion of this issue in [42].
Manin in his book [32] also discusses all of these conventions. In this paper,
we use the second convention.

A.2 Supervectors

A supervector space is a free module over a supercommutative ring. We
restrict our considerations to supervector spaces which are endowed with
a so-called pure basis. In particular, consider a supervector space V with a
so-called class I (even) basis (ed) of n even and v odd elements:
(ed) = (el,...,e" el,...,e). The supervector space V is then said to be
of dimension n|v.

A n|v-dimensional supervector consists of n + v components. If the first
n of the components of a supervector are even and the remaining v odd, the
supervector is called even. If the inverse statement is true, the supervector
is said to be odd

x=a%"+£%" = x=0 and x=¢%"+2%" = x=1, (A3

where 2! and &' are complex even and odd supernumbers, respectively. If
the supervector is neither odd nor even, it is of mixed parity.

We will also allow for class II bases, in which the parity of the even and
odd basis elements is interchanged: (e?) = (e!,...,e" e!,...,e"). Here, the
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dependence of the parity of a supervector on the parity of its components is
evidently inverted.

Two supervectors (ef), (e4') are called linearly independent, if and only if

el +fe =0 = a=p=0, (A.4)

where a, 3 € Ay. This is equivalent to their bodies ef, €5 being linearly inde-
pendent. A scalar product between two complex supervectors is supposed
to be graded antilinear, i.e.,

(a,b) = (—1)%P(b,a)*. (A.5)

For even supervectors with components a = (a’,7%) and b = (b%, (%), where
a',b' € Ay and n, (% € Ay, we can thus define

(a,b) := a'b := a'd’ + i7*¢°. (A.6)

Two supervectors are perpendicular, if they have nonvanishing bodies and
the scalar product between them vanishes. It follows that they are linearly
independent.

A general supermatrix acting on the elements of an n|v-dimensional super-
vector space is of the block form

where A is of dimension n x n and D of dimension v x v. The supermatrix
M is called even, if A and D have only even components and B and C' consist
only of odd components; it thus preserves the parity of any supervector
it acts on. Furthermore, if it inverts the parity of the supervector, it is
called odd.

Note that the space C™ is defined in two different ways throughout the
literature. Most commonly, it denotes a space described by a set of coordi-
nates consisting of n even and complex numbers and v complex Grafimann
variables. On the other hand, it is a n|v-dimensional supervector space
over a complex supercommutative ring, as, e.g., the ring of complex super-
numbers. For the description of flag supermanifolds, we need the latter
definition.

A.3 The supergroup U(4|4)

In our conventions for supergroups, we follow essentially [38], see also [43].
The Lie superalgebra u(n|v) is given by block supermatrices of the form
(A.7), where A and D are elements of u(n) and u(v), respectively, while B
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and C are hermitian conjugates of each other. This algebra is generated
by n? + v? generators for the components A and C, which are even super-
matrices, as well as 2nv generators for the components B and C, which
are odd supermatrices. Exponentiating these generators with even and odd
parameters, respectively, yields the supergroup U(n|v). To obtain the super-
analogue of su(n|v), one linearly combines the identities A and A0 of u(n)

and u(v) into
-1, 0 -1, 0
(‘/% S and \/EO g (A.8)
Vs Vs

Imposing the condition str(-) = 0 on the generators, eliminates the second
generator. For n # v, this yields a semisimple super Lie algebra su(n|v).
For n = v, however, the first factor becomes %ﬂgn and generates an invariant
Abelian subgroup. For this reason, one excludes this generator and arrives
at psu(n|n). However, the lowest dimensional representation is the adjoint,
see, e.g., [38,41] for more details. To avoid these complications, we choose
to work with u(4/4).

The Killing form for u(n|n) is easily evaluated to be

1, 0 0
0 1,
9ip = sr(Marg) = | e _‘3}2 8 . (A9)
0 0 AiB
and we also define gAB with g 459 3¢ — 5#. The Killing form is furthermore
supersymmetric, i.e., g 45 = (—1);‘];9314 and nondegenerate.

A.4 Supermanifolds

We define a (complex) supermanifold as a topological space X together
with a sheaf Oy of Zs-graded supercommutative rings on X, satisfying the
following two conditions

(i) There is a projection on the “body” of X, which is an ordinary complex
manifold of dimension m. More explicitly, consider the reduced struc-
ture sheaf O° := On/Z, where Z is the ideal of nilpotent elements in
Opn. We demand that (X, 0°) is a complex manifold of dimension m.

(ii) Locally, the structure sheaf is the structure sheaf of the body with
values in a Grafmann algebra. That is, for every point x in X, there
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is an open neighbourhood U such that
Onlv & Ored|lu(A*C™). (A.10)

We will define the dimension of such a supermanifold to be m|n. For more
details on supermanifolds, see [32,34,41].

A.5 Riemannian supergeometry

A supermetric on a (real) supermanifold M := (M,Op) is an Oy-linear,
even map g : TM ®p, TM satisfying the following properties:

(i) g is supersymmetric: g(X ® Y) = (—1)X?9(Y ® X).
(ii) ¢ induces a Riemannian metric on (M, O°).
(iii) g induces a symplectic form on the fermionic tangent directions of 7M.

An almost complex structure on a (real) supermanifold M := (M, Oy) is
an even, smooth map I : TM — TM, which satisfies 1> = —1. As in ordi-
nary complex geometry, a real supermanifold underlying a complex super-
manifold has a natural almost complex structure.

A hermitian supermetric on a supermanifold M := (M, Oy) with almost
complex structure [ is a supermetric g which satisfies g(IX ® IY)=g(X ®Y)
for all vector fields X,Y in TM. A Kadahler supermetric is a supermetric, the
derived Kdhler form J(X,Y) = g(X,IY) of which is closed: dJ = 0. As an
example of a Kahler supermanifold see the discussion of the space CP** in
Section 5.5. For more details on supergeometry, see, e.g., [44].

Appendix B Representations of su(4) and u(4|4)

In this appendix, we briefly recall a few facts on the representation theory
of su(4) and give the necessary background on the superalgebra u(4[4) and
its subalgebra su(4).

B.1 Representation of su(4) in terms of Pliicker
and embedding coordinates

Consider the case CP3 = SU(4)/U(3) C R'6. A representation of SU(4)
acting on functions written in terms of complex Pliicker coordinates a’ € C*
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is given by
9 !
E(I = aZAZ% — a‘j>\% aai,
where )\fj are again the Gell-Mann matrices of SU(4) together with the
identity. One easily verifies that [£%, £%] = iv/2f%.L¢, where %, are the
structure constants of SU(4). In terms of the real coordinates

(B.1)

describing the canonical embedding of CP? in R'®, the above generators
read as

0 0

L= —ivV2fr,— L0~ B.3
vaf b oxe 0x® (B-3)

as one easily verifies. The representations in terms of the embedding coor-

dinates for Goy4 is given in the text, from which also the remaining cases

follow.

B.2 Dynkin and Young diagrams for su(4)

The 15 generators of su(4) split into three generators of the Cartan subal-
gebra H;, i=1,...,3 and 12 raising and lowering operators E.g,, j =
1,...6 satisfying the commutation relations

[H;,H;j] =0, [H;,Ez]=o;FEg,
[Ex,E_q] =Y iH;, [Ea,Ep| = NagEosis. (B.4)

7
Here, @; are the six three-dimensional positive root vectors, ¥, three of
which are simple. The irreducible representations of su(4) can be labeled
by the three eigenvalues p; of a highest weight state |x) under the action of
the H;. Equally well, one can label them by three integers a;, the Dynkin
labels, which are given by
(s, )’

a; = 2 (B.5)

where @; are the three simple roots. The Dynkin diagram labeling irreducible
representations of su(4) is then

ai az as
O O O (B-6)
and these representation are of dimension

ai+las+1lag+1la; +as+2as+as3+2a; +as+az+3
1 1 1 2 2 3 )

d=

(B.7)
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The Dynkin labels indicate, how often one can act with a lowering operator
on the highest weight state without obtaining a trivial state:

(Ba)lu) £0, (B_z)"|u) = 0. (B3)

On the other hand, the Dynkin labels appear naturally in the Young
diagrams of the representation (aq,as, as)

az+az+ai

[T TTTTTITTT]
L] )

(B.9)

and a; counts the number of columns with ¢ boxes.

Due to the existence of the e-tensor, which is invariant under SU(4),
four antisymmetrized boxes combine to a singlet. Furthermore, this tensor
provides a duality between three antisymmetrized indices and one index as
well as two antisymmetric ones and their complement:

B.3 Schwinger construction for Lie superalgebras

Consider a Lie superalgebra having the even generators A* and the odd
generators A% satisfying the commutation relations

AT = fP0 AT A = f29N0 (A% A0 = o A (B.11)

We summarize the generators into A4 = (A% A%) and the commutation
relations to

A AP = fABXC, (B.12)

where {-} denotes the supercommutator. Assume furthermore that the gen-
erators are in a representation acting on an (m|n)-dimensional supervector
space. After introducing a set of m bosonic and n fermionic oscillators
together with the corresponding annihilation and creation operators

al = (@',4%) and a'f = (a',4°"), (B.13)
the Schwinger construction yields a representation of the Lie superalgebra by

LA =altad,a’. (B.14)
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B.4 Representation of u(4|4) in terms of Pliicker
and embedding coordinates

Completely analogously to the representations of u(4) in terms of coordinates
describing CP?, one finds a representation of u(4]4) in terms of coordinates
describing CP?*. We have

i i 0 0
ﬁA = 7[)\1[/_{7? — aJA?JW, (B15)
a a
where al = (a’,7*) € C** and in terms of the real coordinates
x = éIA?JaJ (B.16)

describing the embedding of CcP** in R32132_ the above generators read as

L4 = —iv2fABCx 0 L0~ XAi

B.5 Representations and Dynkin diagrams for psu(4|4)

The representations of supergroups are divided into two classes. In the
first class, the representation space is spanned by an even basis, while in
the second one, the basis is odd and they can be regarded as dual to each
other. Representations are again labelled by highest weights, which are
the eigenvalues of the generators of the Cartan subalgebra. The latter is
generated by two copies of the Cartan subalgebra of su(4) as well as Hy :=
diag(0,0,0,1,1,0,0,0), cf. Section 6.1. Accordingly, the Dynkin diagram
has seven nodes:

al a2 as q0 a4 as ag
O O O & O O O-
(B.18)

It is now evident that a class I representation is dual to a class II represen-
tation provided that

al =dtl, and ¢f = ¢l (B.19)

Since the superdeterminant is no longer a polynomial of finite degree,
there is no invariant totally antisymmetric e-tensor for the SU(m|n) super-
groups. However, the duality between class I and II representation takes
over the role of the duality between the representation and the correspond-
ing conjugate representation. The latter arises from the interchange between
covariant and contravariant indices corresponding to a contraction with an
e-tensor in the SU(4) picture, as we saw above.
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B.6 The second-order Casimir operator on irreducible
representations of su(4)

We constructed the algebra of functions on the fuzzy flag manifolds from
spherical representations of the groups underlying the flag manifolds. These
representations are described by Young diagrams, and given such a Young
diagram with m < 4 rows of ny > --- > n,;, > 0 boxes, the eigenvalue of the
second-order Casimir operator on these representations reads as'?

LS oy L (o )
5 (4;7%4—;7%(1%—}—1—2@)—41) . (B.20)

We will be mostly interested in the representations consisting of a row of
2L boxes and two rows of L boxes. For these diagrams, the above formula
reduces to L(L + 3). The other type of diagrams we will encounter consist
of three rows with a + b+ a, a + b and a boxes, respectively. For them, the
above formula reduces to a? + a(3 +b) + $b(4 + b).

B.7 The second-order Casimir operator on
representations of u(n|n)

We can write the second-order Casimir operator acting on the Hilbert space

c%”lﬁ]_ a4 of (CP;’?‘4 in terms of one set of oscillators using the Schwinger

construction

Cy = gapLL?

n—+1..

n—1- .
N¢(n —Ny)

. 1.
= Ny(Np +n) + =Nj —
n n

1 - N N R
— EN? + (2NN +nNjy — nNy)

where Np, = aifa? and Nf =73 For the other flag supermanifold
we require more than one set of oscillators and the calculation is more
complicated.

13This formula is given, e.g., in [45] with a different normalization of the Lie algebra
generators.
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B.8 Fierz and super Fierz identities

Consider the Gell-Mann matrices A%, a = 1,...,15 of su(4) and extend them
to the generators A% of u(4) by adding A° = 1/4/4. We have the Fierz identity

MiAy = dudjk, (B.21)

which trivially extends in the case of the antisymmetric tensor products
Xab = NG A NP A - .. we defined in Section 2.3 to

()50 ) g = (BinOkm3a0im) ;331 )

R R (B.22)
()‘&bé) ijk;lmn (Aabé) paristu (5is 5lp5jt5mq5ku5m“) [ij k] [lmn][pqr][stu]’
Moreover, we can write
tr (AA)A* = A1 and  tr (A )N = Ay — Ler (A1 (B.23a)
for any hermitian matrix A; € Maty as well as
(XN = 4 (B.23b)

tr (Ag/\di)é))\&éé = A3
for hermitian matrices Ay € Maty A Maty and As € Maty A Maty A Maty.

We can use the Killing form on U(4]4) to establish the following super
Fierz identity:

GABNINEL = TL5TK, (B.24)

To prove this formula quickly, one can, e.g., extend the one for SU(n|n)
given in [38]. From this Fierz identity, we can, as in the purely bosonic case,
immediately derive the further identities

(AAB)IJ;KL ()‘AB)MN;PQ = (01P0KM01QOLN) {1y ey oy Py
(AABC)IJK;LMN (AABé)PQR;STU - (5155LP5JT
X 5MQ5KU5NR) {IJKY{LMNYPQR}MSTU}’
where AAB denotes again the graded antisymmetric tensor product
AB _ yA @ 2B (B.25)

introduced in Section 5.3.
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B.9 Oscillator representation of internal isotropy subgroups

In the description of the various GraBmannians, we needed the following
formula to describe the action of the internal part of the isotropy subgroup
acting on the states of certain Fock spaces

Pq ‘I’

To prove this formula, consider the following form of the generators L,
of U(k):

Ly, = apTaq, (B.27)

where ¢ is summed over. The composite creation operators relevant in the
description of G}, can be written as

At = yem el ;Enﬂ apk” (B.28)
Then
1 .
[ pq> A“ lkT] k|6P1 ma};r [aq’ CL1E7Z11Jr ;’IZH]
TR Zem P ; pZIIT 0™ 8, ;JIZH
= Hequ---pkagﬁa;g o a;)’jjT

— (SquAZl“'ZkT7

and thus the (traceless) generators of SU(k) leave the composite creation
operators invariant.

In the supersymmetric case, the same statement holds. Here, the creation
and annihilation operators satisfy
{ay, 2"} = 6,00". (B.29)
Using the relations
a,bc = qa,bjjc+ (— ab a,cj,
b b 1)%p (B.30)
{[abv C]} = a{[bc]} + (71)1‘)5{[&7 C]}b7

we obtain
JK J K IJj_J K JK
{ay, Aye '} = {a), aibay " + (1) a "), ay '} — (-1)"*(J & K)

= 56" al T 4 6,0(~1)1 6K a]t - (—1)K(J & K).
(B.31)
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With this relation, we can conclude that

JK JK
{ajia), Aye '} = ajf{af, A7 0 T)

2[0 2/0
= dp(aytay - (—1)aTay)
+8((—1)FalTalt — alfal) (B.32)
= S0 Ayg ! + 0002450
= 5qu2J|f)<T'

Similar relations can also be proven for the remaining cases of Ag4 and Ajjy
by observing that, for example,

AJKLT AJKT ay _( )KL‘AJL]L KT+( 1)JK+JL-AKL]L JT (BBS)

3[0 2[0 2[0 200 43
and
JKT L JKty L JK ol
{aytal, Ayq TagT} = {ajta I,AQ‘OT]}aJ—I—AQ‘OT{[aIT al all}  (B.34)
= (0pq — Opdy3) Ag a5 + oAyl (B.35)
Hence,
JKL JKL
{ay'ag, Ags " h = 6,0A50 " (B.36)
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