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Abstract

A two-dimensional topological sigma-model on a generalized Calabi–
Yau target space X is defined. The model is constructed in a Batalin–
Vilkovisky formalism using only a generalized complex structure J and a
pure spinor ρ on X. In the present construction, the algebra of
Q-transformations automatically closes off-shell, the model transparently
depends only on J , the algebra of observables and correlation func-
tions for topologically trivial maps in genus zero are easily defined. The
extended moduli space appears naturally. The familiar action of the
twisted N = 2 conformal field theory (CFT) can be recovered after a
gauge fixing. In the open case, we consider an example of generalized
deformation of complex structure by a holomorphic Poisson bivector β
and recover holomorphic noncommutative Kontsevich ∗-product.
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1 Introduction

The topological [1, 2] A/B-sigma models [3] were introduced by Witten as
twists of the N = 2 two-dimensional supersymmetric conformal field the-
ory of maps from the worldsheet Σ into the target space X. Topological
strings [4] are obtained by coupling topological sigma models to topological
2D gravity on Σ, so that in the path integral one integrates over the moduli
space of complex structures on Σ. See [5] for references and an extensive
review of the progress in the subject.

The topological A-model can be defined for any almost Kahler manifold
X. An almost Kahler structure is a pair (ω, J) of a symplectic structure
ω and a compatible almost complex structure J . In the Batalin–Vilkovisky
approach, the almost complex structure J is used for the gauge fixing of
the A-model, so the correlation functions depend only on the symplectic
structure ω. The observables t of the A-model are identified with the de
Rham cohomology classes t ∈ H∗(X, C). The A-model free energy Fg(t) is
the generating function of genus g Gromov–Witten invariants of X [6, 7].

On a Kahler manifold, the space of physical observables φ(x)i1...ip ī1...̄iq

χi1 . . . χipχī1 · · ·χīq of the A-model [3] is conveniently graded by a pair (p, q)
according to the Hodge decomposition of the de Rham cohomology Hk

(X, C) = ⊕p+q=kH
p,q(X, C). The cohomology class of symplectic structure

ω can be deformed by an element of H2(X, C), which corresponds to an
observable of degree p + q = 2. Physically, such observables give rise to
ghost number zero deformations of the action [3] for the A-model. The
deformations corresponding to the observables of degree p + q = 2 will be
called geometrical deformations. The hermitian observables of type (1, 1)
are deformations of the Kahler structure. If we include the B-field, then the
hermitian condition can be dropped. In other words, the real B-field and
the real symplectic structure ω can be combined together into a complex
two-form ω + iB.

If H2,0(X, C) is trivial, then deformations of type (1, 1) are the only geo-
metrical deformations of the A-model. However, if H2,0(X, C) is not trivial,
then there are also observables of type (2, 0) and (0, 2). Let us call the
moduli space generated by the observables of degree (1,1)—the ordinary
geometric moduli space, for the degrees (2, 0), (1, 1), (0, 2)—the geometric
moduli space, and for all (p, q)—the extended moduli space following [3].

Now consider the topological B-model on a Calabi–Yau manifold X. The
B-model couples to a complex structure J on X. Its observables φ

i1...ip
j̄1...j̄q

(x)

θi1 · · · θipηj̄1 · · · ηj̄q [3] of type (−p, q) are identified with the Dolbeault
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cohomology classes Hq(ΛpTX1,0).1 The ordinary geometric moduli space of
complex structures is generated by Beltrami differentials μi

j̄
. They deform

the Dolbeault differential ∂̄j̄ → ∂̄j̄ + μi
j̄
∂i. The genus g free energy Fg of

the B-model does not have such a clear geometrical description as in the
case of the A-model. For the recent mathematical progress in definition of
the B-model, see [8–11]. In genus zero, the extended moduli space of the
B-model was studied in [12–14].

Again, the observables of type (−1, 1) correspond to ordinary geometrical
deformations of complex structure generated by Beltrami differentials μi

j̄
. If

H0(Λ2TX1,0) or H0,2(X) are nontrivial, then there exist generalized defor-
mations of complex structure generated by a holomorphic Poisson bivector
βij or by a closed two-form Bīj̄ .

ordinary geometric moduli
(p, q) = (1, 1) ⊂

(Hitchin’s generalized) geometric moduli
p + q = 2 ⊂

extended moduli
all (p, q)

(1.1)

The geometrical meaning of these deformations was unclear in [3, 4]. The
missing notions appeared in the studies of the homological mirror symme-
try [15] and the generalized complex geometry [16].2

In the framework of the Kontsevich homological mirror symmetry conjec-
ture [15], we need to consider not only closed strings, but also open strings
together with all possible branes. Physically, branes are the boundary con-
ditions for the open strings. Mathematically, branes are described by certain
derived categories. For example, in the case of the B-model, branes could be
holomorphic vector bundles supported on holomorphic submanifolds. The
full category of B-branes is the bounded derived category Db(X) of coherent
sheaves on X. Physically, the worldsheet path integral defines the structure
of algebra on the space of open string states A. For example, the product
A ⊗ A → A can be defined in terms of the open string three-point function.
The worldsheet action in the path integral can be deformed by closed string
observables. By definition, this deforms the open string algebra. There-
fore, deformations of the open string algebra (modulo some symmetry) are
described by the closed string states [8, 9, 17–21].

Mathematically, these deformations of the category of branes are computed
by the Hochschild cohomology HH(Db(X)) [14, 20–25]. In [24], it was

1For convenience, we will call sections of Λp(TX1,0) ⊗ Λq(T ∗X0,1) by (−p, q) forms.
2Let us remark that these deformations were often neglected in the literature, since

usually the target space X was taken to have b1(X) = 0.
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argued that computation of HH(Db(X)) can be reduced to the computa-
tion of the Hochschild cohomology of the single space-filling brane. The
algebra of observables on such a brane is just an algebra of holomorphic
functions O(X). Thus, the hard computation of HH(Db(X)) reduces to an
easier computation of HH(O(X)) and gives the result [24, 26]

HH(O(X)) = ⊕Hq(Λp(TX1,0)).

This is precisely the moduli space of the closed B-model [3]. Given this
observation, the geometrical nature of (−2, 0) and (0, 2) deformations of the
closed B-model might be interpreted in terms of equivalent deformation of
the open B-model algebra. It was claimed in [27, 28] that (0, 2) deformations
by a closed two-form bīj̄ transform a sheaf structure on a brane into a more
general gerby structure. On the other hand, (−2, 0) deformations by a holo-
morphic bivector βij deform the ordinary product of functions on a brane
into the noncommutative Kontsevich ∗-product [21–23, 29, 30]. See [31] for
a review of noncommutative field theories and [32–34] for the study of mirror
symmetry in the context of generalized complex structures.

The notion of a generalized complex structure and generalized Calabi–
Yau manifold was defined by Hitchin [16, 35] and then fully developed in
Gualtieri’s thesis [36]. There are two ideas behind the notion of generalized
complex structure. The first, coming from theory of constrained systems,
is to generalize structures on the tangent bundle TX to structures on the
direct sum of the tangent and the cotangent bundle E = TX ⊕ T ∗X and
consider Dirac structure on E [37]. The second, coming from string theory,
is to extend the diffeomorphism group by action of B-field.

An almost complex structure is a section I of End(TX) such that I2 =
−1. Similarly, an almost generalized complex structure is a section J of
End(TX ⊕ T ∗X) such that J ∗ = −J ,J 2 = −1. An almost complex struc-
ture is integrable if +i-eigenbundle of J (holomorphic subbundle of TX)
is involutive under the Lie bracket on TX. Similarly, an almost general-
ized complex structure is integrable if +i-eigenbundle L of J (holomorphic
subbundle of TX ⊕ T ∗X) is involutive under the Courant bracket [37].

The generalized complex geometry incorporates symplectic structures and
ordinary complex structures as particular cases. Therefore, the topological
A-model and the topological B-model could be particular cases of a certain
generalized topological model [30, 38, 39]. This topological sigma-model of
maps from Σ to X depends on a generalized complex structure J , so let
us call it the topological J -model. See [40] for the analogue of the present
construction in the real case and [41] for studies of the current algebra
associated with J .
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If J is an ordinary symplectic (complex) structure, let us call it to be of
A (B)-type. Gualtieri [36] shows that deformations of a generalized complex
structure at the symplectic point (A-type) are parameterized by H2(X, C),
whereas deformations in the complex point (B-type) are parameterized by
⊕p+q=2H

q(ΛpTX1,0). This is the space of p + q = 2 deformations of the
topological A/B-model [3]. Thus it is very natural to suggest that the topo-
logical A/B-model is a particular case of the generalized J -model.

Then one can also ask the following question. If the Hitchin’s generalized
complex geometry corresponds to p + q = 2 deformations of the A/B-model,
then what could be the extended complex geometry that corresponds to
arbitrary (p, q) deformations? The answer is known under the name BV
geometry. It first appeared in papers of Batalin and Vilkovisky [42, 43], who
suggested a powerful generalization of Becchi-Rouet-Stora-Tyupin (BRST)
quantization method for the case when gauge symmetries are reducible. A
clear geometric interpretation of the BV formalism was given in [44–46].
A general method to construct a topological sigma-model for a BV target
manifold was suggested in [47] by Alexandrov, Kontsevich, Schwarz and
Zaboronsky (AKSZ). They illustrated the method by example of Chern–
Simons theory and the topological A/B-model. Later AKSZ method was
used by Kontsevich [22] to find the ∗-product formula in the context of
deformation quantization (see also [48–50]).

This is a summary of the steps to get the J -model

generalized CY structure 1−→ Lie bialgebroid 2−→ BV geometry

3−→ J -model .

1. A generalized complex structure J defines decomposition of
the bundle E = (TX ⊕ T ∗X) ⊗ C into the +i-eigenbundle L and its
conjugate L∗ 	 L̄, so E = L ⊕ L̄ [16, 36]. Each of the bundles L
and L̄ has a structure of Lie algebroid [37, 51–53]. The Lie bracket
{, } : Γ(L) ⊗ Γ(L) → Γ(L) is equal to the restriction of the Courant
bracket from TX ⊕ T ∗X to L. The Lie bracket on L∗ is also the
restriction of the Courant bracket. The Lie algebroid differential ∂̄ :
Γ(ΛkL∗) → Γ(Λk+1L∗) is canonically defined by the Lie bracket on L.
It satisfies ∂̄2 = 0. The pair (L, L∗) has the structure of Lie bialge-
broid (L, L∗) [54], which means that the operator ∂̄, defined by the Lie
bracket on L, satisfies the Leibnitz’s rule for the Lie bracket on L∗.

2. A BV manifold (M, ω, ρ) is generally defined as a supermanifold M
equipped with a nondegenerate symplectic structure ω and a measure
ρ such that the corresponding odd Laplacian Δ squares to zero Δ2 =
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0 [45, 46]. Here the Laplacian of a function f is the divergence Δf :=
divXf of the vector field Xf generated by f , where the divergence
of a vector field X is defined by the formula ρ divX := d(iXρ). The
Poisson bracket {, } and the solution S of the BV classical master
equation {S, S} = 0 define the operator Q on functions on M as Qf :=
{S, f}. The operator Q is a derivation of the Poisson bracket {, }
and satisfies Q2 = 0. The space of functions A := C∞(M) on such a
manifold M is a differential BV algebra [49, 55–57]. This algebra has
an odd Lie bracket {, } : A ⊗ A → A, canonically defined by the odd
Poisson structure {f, g} := ∂ifωij∂jg, and the differential Q : A → A,
defined by the solution of the classical master equation Qf := {S, f}.
The Poisson bracket in A is generated by the BV Laplacian Δ as
{a, b} = (−1)|a|(Δ(ab) − (Δa)b − (−1)aa(Δb)).

Now consider the supermanifold N = ΠL, which is the total space
of the bundle L with parity reversed on the fibers. In other words,
coordinates in the fibers are odd (fermionic) variables. The space of
functions A = C∞(N) is naturally identified with the space of sections
of ⊕kΛkL∗. The Lie algebroid differential ∂̄ : Γ(ΛkL∗) → Γ(Λk+1L∗)
is equivalent to the BV differential Q of degree 1 on A. The Lie
algebroid bracket {, } : Γ(L∗) ⊗ Γ(L∗) → Γ(L∗) is equivalent to the
BV bracket A ⊗ A → A of degree −1. The generalized CY condi-
tion is equivalent to the existence of BV measure ρ. It allows us to
define the BV Laplacian Δ. In terms of the Lie algebroid one has
Δ = ∂, where ∂ is the generalized ∂-divergence Γ(ΛkL∗) → Γ(Λk−1L∗).
Actually, the generators of the Poisson bracket on ΠL are in one-
to-one correspondence with flat Lie algebroid L∗-connections on the
top external power Λdeg L(L∗)—generalized divergence operators
[56, 58–60].

Thus for any generalized CY manifold, there is a corresponding BV
supermanifold N = ΠL equipped with a homological differential Q.
Assume that the odd Poisson structure on N is invertible, so N is a
symplectic manifold. If it is not, then we will take symplectic real-
ization M of N [61–63]. Since the odd vector field Q preserves the
symplectic structure, the form iQω is closed. If it is also exact, then
iQω = dS. The function S is a Hamiltonian function for the vector
field Q, so Q = {S, ·}.

3. Given the BV target manifold N and the Hamiltonian function S that
satisfies {S, S} = 0, the topological J -model is obtained along the lines
of [47, 49]. The BV fields of the model are maps from ΠTΣ to N , where
the supermanifold ΠTΣ is the total space of the tangent bundle of a
Riemann surface Σ with parity reversed on the fibers. Let Xi and pi be
local coordinates on N , which are canonically conjugate with respect
to the BV odd symplectic structure. Then the BV action of the model
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is simply

S =
∫

ΠTΣ
pidX i + S(pi, X

i). (1.2)

The physical action of the sigma-model is obtained after the gauge
fixing of this BV master action. See [40, 64, 65] on the Poisson sigma-
model.

In Section 2, we consider in more details the algebraic and geometric
structures mentioned above. In Section 3, we will construct the J -model.
In Section 4, we will compute the correlation functions on the boundary of
the disk for the J -model obtained by a finite deformation of the B-model by
a holomorphic Poisson bivector βij and reproduce the Kontsevich ∗-product
formula. Section 5 concludes the paper.

2 A differential BV algebra A of a generalized
CY manifold

A generalized complex structure [16, 36] on a manifold X is a section of
J ∈ End(TX ⊕ T ∗X) such that J ∗ = −J and J 2 = −1 with a certain inte-
grability condition: the +i-eigenbundle L ⊂ (TX ⊕ T ∗X) ⊗ C is involutive
with respect to Courant bracket [37]:

[X + ξ, Y + η] = [X, Y ] + LXη − LY ξ − 1
2
d(iXη − iY ξ) (2.1)

where X, Y ∈ Γ(TX) and ξ, η ∈ Γ(T ∗X).

Then (TX ⊕ T ∗X) ⊗ C = L ⊕ L̄, where L̄ can be identified with L∗, since
L is maximal isotropic3 and L ∩ L̄ = 0.

The bundle L has a structure of a Lie algebroid [16, 36, 52, 53, 59]. The Lie
algebroid bracket is the restriction of the Courant bracket on L. The anchor
map a : L → TX is the restriction of the projection TX ⊕ T ∗X → TX.

Generally speaking, the structure of Lie algebroid on a bundle L can be
conveniently described by an odd 2-nilpotent vector field Q of degree 1 on

3With respect to the canonical metric on (TX ⊕ T ∗X) ⊗ C.
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ΠL [47]. Let (xμ, ψa) be coordinates in ΠL. Functions f ∈ C∞(ΠL) can be
expanded in ψa

f(x, ψ) =
∑ 1

k!
fa1,...,ak

(x)ψa1 · · ·ψak (2.2)

and the coefficients fa1,...,ak
are identified with sections of ΛkL∗, so C∞

(ΠL) = Γ(Λ•L∗).

The vector field Q defines the operator, which acts on the space of func-
tions C∞(ΠL) = Γ(Λ•L∗) as Lie derivative. Note that any vector field Q of
degree 1 can be represented as

Q = eμ
aψa ∂

∂xμ
− 1

2
fa

bcψ
bψc ∂

∂ψa
(2.3)

and it corresponds to the Lie algebroid differential

· · · ∂̄−→ ΛkL∗ ∂̄−→ Λk+1L∗ ∂̄−→ · · · . (2.4)

The cohomology groups of this complex are called the Lie algebroid coho-
mology groups Hk(L). The structure functions eμ

a and fa
bc define the anchor

map L → TX and the Lie algebroid bracket. The notion of Lie algebroid
generalizes the notion of Lie algebra and the tangent bundle. For a Lie alge-
bra L, one can put eμ

a = 0 and fa
bc to be the structure constants of L. For

the tangent bundle, one can put eμ
a to be the identity map and fa

bc = 0.

For the case when L is the Lie algebroid that describes the +i-eigenbundle
of a generalized complex structure on X, we will use the supermanifold ΠL
to construct the target space of the J -model. (In the case of A-model, ΠL
is actually the target space.) The algebra A of functions on ΠL is (super-)
associative, commutative algebra with the differential Q.

The differential Q on ΠL is not enough to define a quantum field theory
in the BV formalism. One also needs a BV bracket on the algebra A =
C∞(ΠL) = Γ(Λ•L∗).4 There is a natural notion to define simultaneously
the compatible differential and the bracket on ΠL—a Lie bialgebroid [52,
53, 56, 58]. A Lie bialgebroid is a pair (L, L∗) of Lie algebroid L and its
dual L∗, such that the differential Q : ΛkL∗ → Λk+1L∗ of the Lie algebroid
L satisfies the Leibnitz’s rule for the Lie algebroid bracket on L∗. This is the
case for the pair (L, L∗) associated with generalized complex structure [36,
52, 53]. The Lie bracket {, }L∗ on L∗ can be extended to Λ•L∗. That
equips the algebra A = C∞(ΠL) with the odd Poisson bracket of degree
−1. This is the BV bracket. It satisfies the Leibnitz’s rule for the Lie
algebroid differential ∂̄. To summarize, a Lie bialgebroid structure (L, L∗)

4The differential Q : ΛkL∗ → Λk+1L∗ is equivalent to the Lie algebroid structure on L,
so Q defines a bracket on Λ•L, but not on Λ•L∗.
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is equivalent to the structure on A = C∞(ΠL) of a differential odd Poisson
algebra5 (A, ∂̄, [, ]L∗) [56, 58, 59].

A (differential) Batalin–Vilkovisky algebra is a special case of a (differ-
ential) odd Poisson algebra. In a BV algebra [44–46], the Poisson bracket
is generated by an odd 2-nilpotent differential operator of the second-order
Δ, which is called BV Laplacian [56, 58]. It generates BV bracket on A
according to the formula

{a, b} = (−1)|a|Δ(a ∧ b) − Δa ∧ b − (−1)|a|a ∧ Δb for a, b ∈ A. (2.5)

Such an operator Δ can be naturally constructed for a generalized CY
manifold as follows. The spinors of Spin(TX, T ∗X) are identified with all
differential forms Ω•(X) ≡ Λ•T ∗X. The canonical line bundle U0 [16, 36]
is a pure spinor line bundle U0 defined as a subbundle of those spinors of
Spin(TX, T ∗X), which are annihilated by all sections of L. In the Fock
space spin representation, the U0 is the vacuum line bundle, the sections
of L are lowering operators and the sections of L∗ are increasing operators.
The canonical line bundle U0 defines the alternative grading on Λ•T ∗X as
follows:

Λ•T ∗X = U0 ⊕ U1 ⊕ · · · ⊕ U2n,

where Uk = ΛkL∗ ⊗ U0. It is explained in [36] that integrability
of L is equivalent to the condition d(Γ(U0)) ⊂ d(Γ(U1)). Then one can
define generalized ∂ and ∂̄ operators on Λ•(T ∗X) in such a way that d = ∂ +
∂̄ and ∂̄ : Γ(Uk) → Γ(Uk+1) and ∂ : Γ(Uk) → Γ(Uk−1) [36].A generalized CY
manifold X is defined [16, 36] by the condition that on X exists a
nowhere-vanishing closed section ρ of the canonical bundle
U0—“pure spinor”. (In the case of CY manifold ρ is the holomorphic
(3, 0) form. In the case of a symplectic manifold ρ is eiω, where ω is a
symplectic structure.) Using ρ, the operators ∂ and ∂̄ on the differential
forms Λ•T ∗X can be mapped to the operators ∂ and ∂̄ on sections of Λ•L∗

by the formula

∂̄(μ · ρ) = ∂̄μ · ρ, ∂(μ · ρ) = ∂μ · ρ for μ ∈ Γ(Λ•L∗). (2.6)

To summarize, a generalized CY structure defines a differential BV algebra
(A, Q,Δ) where A = Γ(Λ•L∗), Q = ∂̄, Δ = ∂ [12, 36, 53, 55, 56, 58]. The
BV bracket {, } is defined in terms of Δ = ∂ by (2.5). Since ∂∂̄ + ∂̄∂ = 0, the
operator ∂̄ is a derivation of the bracket {, }, and since ∂2 = 0, the operator
∂ is a derivation of the bracket {, }.

5Sometimes, it is called Gerstenhaber algebra. See also [57, 66].
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To describe quantum field theory in BV formalism, one also needs a mea-
sure on the space of fields A. It is called trace map tr : A → C on the algebra
A. It satisfies

tr((Δa)b) = (−1)a tr(aΔb), (2.7)

tr((Qa)b) = (−1)a+1 tr(a Qb). (2.8)

For a generalized CY manifold, the trace map is defined by a section ρ of
the canonical line bundle U0. Contracting with ρ, one can map an element
μ of A = Γ(Λ•L∗) to a differential form in Ω•(X). This differential form
μ · ρ is also a spinor of Spin(TX, T ∗X). There is a natural Spin(TX, T ∗X)-
invariant bilinear form on Ω•(X) [16, 36] with values in Ωdim X(X). It is
given by the wedge product with a certain sign

(a, b) = ã ∧ b, (2.9)

where ã = a for deg a = 4k, 4k + 1, and ã = −a for deg a = 4k + 2, 4k + 3.
This bilinear form is symmetric in dimension 4k, 4k + 1 and antisymmetric
otherwise.

Using the bilinear form (, ) and the canonical pure spinor ρ, we define

tr a ≡
∫

X
(a · Ω, Ω). (2.10)

2.1 Examples

2.1.1 The complex case (the B-model)

A generalized complex structure J that corresponds to an ordinary complex
structure has the following matrix J ∈ End(TX ⊕ T ∗X):

J =
(

−I 0
0 IT

)
, (2.11)

with +i-eigenbundle L = TX01 ⊕ T ∗X10, so that L∗ = TX10 ⊕ T ∗X01. We
consider the case of Calabi–Yau, then the canonical pure spinor is a nowhere
vanishing holomorphic (n, 0) form ρ. The algebra A = C∞(ΠL) = Γ(Λ•L∗)
is the familiar complex [3, 12, 55] of the observables of the B-model Λ•L∗ =
Λ•(TX10 ⊕ T ∗X01) = Ω•(Λ•TX10).

The Lie algebroid differential Q = ∂̄ is the standard Dolbeault differential
∂̄ : Ω−p,q → Ω−p,q+1. The BV Laplacian Δ is the holomorphic divergence
Δ = ∂· : Ω−p,q → Ω−p+1,q. The BV bracket on A is generated by Δ = ∂
and can be viewed as the Lie bracket on holomorphic polyvector fields with
coefficients in (0, q)-forms. As explained above, the definition of Δ depends
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on the existence of the pure spinor, or, equivalently, measure ρ on the BV
manifold. For the B-model, we take the pure spinor to be the holomorphic
(n, 0)-form. The Lie algebroid cohomology is the Dolbeault cohomology
Hq

∂̄
(ΛpTX10).

Explicitly, let (xi, xī) be complex coordinates on a CY manifold X and
let (ψi, ψī) be coordinates in the fibers of L = TX10 ⊕ T ∗X01. Then the
algebra A = C∞(ΠL) is the algebra of functions f(xi, xī, ψi, ψ

ī). If we take
local coordinates, where the coefficients of the holomorphic (n, 0) form are
constant functions, then the BV operators Q and Δ have the following form:6

Q = ∂̄ = ψī ∂

∂xī
, (2.12)

Δ = ∂ =
∂

∂ψi

∂

∂xi
. (2.13)

The trace map on A is familiar from the standard path integral of the
B-model [3] tr a =

∫
X(a · Ω) ∧ Ω. It can be written as a Berezian ρ on the

superspace ΠL

tr a =
∫

ΠL
ρa(xi, xj̄ , ψi, ψ

j̄), (2.14)

where

ρ = Ωi1,...,in

∂

∂ψi1
· · · ∂

∂ψin
Ωj1,...,jndxj1 · · · dxjndxk̄1 · · · dxk̄n

∂

∂ψk̄1

∂

∂ψk̄n

.

(2.15)

2.1.2 The symplectic case (the A-model)

A generalized complex structure that corresponds to a symplectic structure
ω has the following matrix J ∈ End(TX ⊕ T ∗X):

J =
(

0 −ω−1

ω 0

)
. (2.16)

The sections of the +i-eigenbundle L ⊂ TX ⊕ T ∗X are given by pairs (X,
−iωX) where X ∈ Γ(TX) is an arbitrary vector field. The Lie algebroid L

6The expression for Q is the same in any coordinates. However, the expression for
Δ involves holomorphic (n, 0)-form ρ. For example, if ρ := ρ dx1 ∧ dx2 · · · ∧ dxn, then
the divergence of the vector field μi is defined as Δμ = ∂iμ

i + μi∂i log ρ. To simplify
formulas, in the text below, we will always assume that the formula for Δ is written in the
local coordinates where ρ is a constant. It is easy to recover the general formula, using
the definition of Δ by means of the Dolbeault differential ∂ and the isomorphism map
ρ : Λ•(L∗) � Λ•(TX∗).
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of the A-model is isomorphic to the tangent bundle TX. The Lie algebroid
bracket on L is mapped to the standard Lie bracket on vector fields: one
can check that the restriction of the Courant bracket on L satisfies

[X − iωX, Y − iωY ] = [X, Y ] − iω[X, Y ] (2.17)

for vector fields X, Y ∈ Γ(TX). The Lie algebroid differential Q: Γ(ΛkL∗) →
Γ(Λk+1L∗) is mapped to the de Rham differential d : Ωk(X) → Ωk+1(X).
The algebra A = C∞(ΠL) = Γ(Λ•L∗) is isomorphic to the de Rham complex
Ω•(X). The Lie algebroid cohomology groups Hk(L) are the de Rham coho-
mology groups Hk(L) = Hk

DR(X). The Lie algebroid bracket on Λ•L∗ 	
Λ•(T ∗X) = Ω•(X) is the generalization of the Poisson bracket on functions
to the space of differential forms Ω•(X). The BV Laplacian Δ : Ωk(X) →
Ωk−1(X) generates this bracket on Ω•(X) [67, 68]. Explicitly Δ = [Λ, d],
where Λ : Ωk(X) → Ωk−2(X) is the operator of contraction with the Pois-
son structure ω−1 and d : Ωk(X) → Ωk+1(X) is the de Rham differential.
The cohomology of Δ are called canonical cohomology in [67, 68].

Explicitly, let (xi, ψi) be coordinates in ΠTX 	 ΠL. Then

∂̄ = Q = d = ψi ∂

∂xi
, (2.18)

Λ = ωij ∂

∂ψi

∂

∂ψj
, (2.19)

and ∂ = Δ = δ = [Λ, d]. In Darboux coordinates, where ω is a constant,
one simply has Δ = ωij(∂/∂xi)∂/∂ψi. In other words, Δ is the symplectic
conjugate of d.

The trace map on the algebra A 	 Γ(Ω(X)) is defined as the integral of
the top degree component

tr a =
∫

X
a for a ∈ Ω•(X). (2.20)

One can also take a dual point of view and consider the isomorphism
ΠL 	 ΠT ∗X induced by ω. Then in the coordinates (xi, ψi) one has Δ =
(∂/∂ψi)∂/∂xj and ∂̄ = Q = {S, ·} with S = ωijψiψj .

Other types of generalized complex structure in the
example of K3

Let X be a generalized CY manifold equipped with a generalized complex
structure J and a canonical pure spinor Ω [16, 36]. There is a notion of
type of generalized complex structure J [16, 36]. The type of J is defined
as the codimension of projection of the associated Lie algebroid L on TX ⊗
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C. The sections of L for an ordinary symplectic structure are represented
by (Xμ,−iωμνX

ν) ∈ Γ(TX ⊕ T ∗X) ⊗ C, so L is mapped on TX, so the
codimension is 0, so the type is 0. The sections of L of an ordinary complex
structure structure are represented by (X ī, ξi) ∈ Γ(TX01, T ∗X10), so the
codimension is n = dimC X. The type 0 of an ordinary symplectic structure
is the most general type, and the type n of an ordinary complex structure is
the most singular type. Under deformation, the type of complex structure
changes by even numbers. There is well defined notion of chirality of a given
complex structure.

A canonical pure spinor of Spin(TX, T ∗X), which is a spinor annihilated
by all sections of L, can be represented by a differential form of mixed
degree in Ωodd/even(X). The type is the degree of the lowest component of
this differential form. For an ordinary symplectic structure Ω = eiω. For an
ordinary complex structure Ω is a holomorphic (n, 0) form.

Since the A-model generalized CY structure is of type 0, and the B-model
generalized CY structure is of type dimC X, we see that if dimC X is odd,
the A-model and B-model are of different chiralities, therefore, a generalized
J -model in odd complex dimension cannot interpolate between the A-model
and the B-model. Still it might interpolate if dimC X is even. For example,
we can take the B-model and deform it by a holomorphic Poisson bivector
β. This deformation on the other hand can be viewed as B-field deformation
of the A-model.

For example, consider the complex dimension two, and take ΩA = eb+iω

and ΩB = σ, where σ is the holomorphic (2, 0) form. Now consider a defor-
mation of B-model by the holomorphic bivector βij such that β · σ = 1.
Under this deformation ΩB → eβσ = 1 + σ. On the other hand take the
symplectic structure of the A-model ω = Im σ, and then consider deforma-
tion of this A-model with ΩA = eiω by the B-field b = Re σ. Under such a
deformation ΩA → eb+iω = eσ = 1 + σ, since σ ∧ σ = 0. Therefore, a holo-
morphic Poisson bivector β-field deformation of the B-model is the B-field
deformation of the A-model7 .

In complex dimension two, we can take, for example, X to be the K3
surface [71]. Then moduli space of generalized complex structures is of even

7In [69] it argued that the relation holds for D-branes. More precisely, let X is a
complex manifold equipped with holomorphic (2, 0) form σ = b + iω. Then the b-field
transformation of the A-model (X, ω) is equivalent to the β-transformation by β = σ−1 of
the B-model. In terms of matrices of generalized complex structure for b-transformation of
symplectic structure ω we have J =

(
ω−1b −ω−1

ω+bω−1b −bω−1

)
. This is actually a β-transformation

of the complex structure I = ω−1b. (One has ω + bω−1b = 0 as the condition for the
existence of space-filling coisotropic branes in the A-model [70].)
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type (which is the type of the A-model and the B-model in two dimensions),
is parameterized by the Grassmanian Gr2(R24) of real 2-planes in the real
24-dimensional space H•(K3) = Heven(K3) 	 R

24. A 2-plane is spanned
by real and imaginary parts of the canonical pure spinor Ω. The physical
N = (2, 2) CFT with K3-surface target space requires existence of two gener-
alized orthogonal complex structures (J ,J ′) represented by two orthogonal
pure spinors Ω1 and Ω2. Each of these spinors spans a 2-plane in H•(K3) and
these planes must be orthogonal. Therefore, the moduli space of N = (2, 2)
CFT is locally parameterized by the Grassmanian Gr2,2(R24) of two orthog-
onal 2-planes in R

24. The moduli space of N = (4, 4) CFTs is locally the
space of 4-planes Gr4(R24). The moduli space of N = (2, 2) CFTs fibers
over the moduli space of N = (4, 4) CFTs. The fibers S2 × S2 parameterize
decomposition of a 4-plane into two orthogonal 2-planes [72, 73].

The topological twisting [3] makes theory to depend only on a half of this
N = (2, 2) CFT structure. That is, the twisted theory couples only to J
and does not couple to J ′. Thus, we see that in the case of K3 surface,
the present construction is in agreement with the traditional considerations
[30, 72, 73].

3 The two-dimensional topological J -model

The data (X, Q, Δ, ρ) associated with a generalized CY manifold X allow
us to construct a topological J -model using the AKSZ method [47].

3.1 The AKSZ construction of sigma-model for Maps(Σ̂,M ) for
a target space M with a PQ-structure

A PQ-manifold is a supermanifold equipped with an odd symplectic struc-
ture ω and a Hamiltonian vector field Q. In [47], a topological sigma-model
was constructed for any such target space M .

Let us review the key properties of a PQ-target space. The symplectic
structure defines the odd Poisson bracket {·, ·}. Since ω is Q-invariant

LQω = (diQ + iQd)ω = d(iQω) = 0, (3.1)

the one-form iQω is closed. We consider the case when iQω is exact, so there
is a function S such that iQω = dS. Such a function on X is called Hamil-
tonian function for the vector field Q. For any function f ∈ C∞(M), its Lie



TOPOLOGICAL STRINGS 413

derivative LQf can be computed as a bracket with the Hamiltonian function
S associated with Q

LQf = {S, f}. (3.2)

The homological property Q2 = 0 of the Q-structure can be written as the
BV classical master equation [44–46]

{S, S} = 0. (3.3)

A canonical example of a Q-manifold is a tangent bundle with parity
reversed on the fibers ΠTX. In coordinates (xμ, ψμ), one has Q = ψμ∂μ. As
discussed in the previous section, the tangent bundle is an example of a Lie
algebroid. The total space ΠL of any Lie algebroid is a particular case of
Q-manifold with the vector field Q of degree 1.

A canonical example of a P -manifold is a cotangent bundle with parity
reversed on the fibers ΠT ∗X. In coordinates (xμ, πμ), the canonical sym-
plectic form is ω(δx, δπ) = δxμδπμ.

A PQ-manifold M can be constructed starting from any Q-manifold N
as M = ΠT ∗N . If (xμ, πμ) are coordinates on ΠT ∗N , then for any vector
field Q = vμ(∂/∂xμ) on N , there is a Hamiltonian function S = vμπμ on M
which generates Q on N .

Let Σ be a two-dimensional bosonic worldsheet. We extend it by fermionic
directions and consider the Q-supermanifold Σ̂ = ΠTX with a canonical
measure. That is, we take the total space ΠTΣ of the tangent bundle of Σ
with parity reversed on the fibers. We equip Σ̂ = ΠTΣ with the standard
Berezian measure. If (σ, θ) are coordinates on Σ̂, the standard measure
is ρ = dσ1dσ2(∂/∂θ1)∂/∂θ2. Functions on Σ̂ = ΠTΣ are differential forms
Γ(Ω•(Σ)). The product of functions on ΠTΣ is the wedge product of dif-
ferential forms on Σ. For any function f on ΠTΣ, which is a collection
of differential forms f (i) of all degrees f = f (0) + f (1) + f (2), one can take
the highest component f (2) and integrate over Σ, so we define the integral∫

f :=
∫
Σ f (2). Equivalently, it is the integral over Σ̂ with the standard

Berezian measure ∫
f :=

∫
Σ̂

ρf. (3.4)

In the following formulas, the standard Berezian measure ρ = dσ1dσ2(∂/∂θ1)
∂/∂θ2 on the worldsheet will be omitted under the sign of integral. The
Q-structure QΣ = θi∂/∂σi on Σ̂ is the standard de Rham differential d on Σ.

The idea of [47] is to construct the BV structure on the space Maps(Σ̂, M)
using the Q-structure QΣ on the worldsheet, the Q-structure QM on the
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target space is generated by the Hamiltonian function SM , the odd symplec-
tic structure on the target space ω and the integral on the worldsheet

∫
Σ̂.

The space Maps(Σ̂, M) is the BV phase space of the model. The odd
symplectic structure ω̂ on Maps(Σ̂, M) is defined by the integral of the pull-
back of the odd symplectic structure ω from the target space. For variations
δφ1 and δφ2 of a map φ ∈ Maps(Σ̂, M), we define the value of ω̂ on δφ1 and
δφ2 to be the integral over Σ̂

ω̃(δφ1, δφ2) =
∫

Σ̂
ω(δφ1, δφ2). (3.5)

As for the Q-structure on Maps(Σ̂, M), we can take

Q = QΣ + QM . (3.6)

Any Q-structure generates diffeomorphism. There is a natural action of
Diff(Σ̂) and Diff(M) on the space Maps(Σ̂, M). The Q-structure (3.6) cor-
responds to composition of two diffeomorphisms [47, 49]. For any such Q,
there is a corresponding Hamiltonian function S. The function S is the BV
master action [42, 43].

To write down SΣ, it is convenient to represent the odd symplectic target
space M as ΠT ∗N for some manifold N . Let xμ be coordinates on N and
pμ be coordinates on the fiber of ΠT ∗N . Then xμ and pμ are canonically
conjugate fields on Σ̂. The Hamiltonian function SΣ, which generates the
de Rham differential QΣ = d, is

SΣ[p, x] =
∫

Σ̂
pμ dxμ. (3.7)

The Hamiltonian function SM for the structure QM is the integral over
Σ̂ of the pullback of SM

SM [p, x] =
∫

Σ̂
SM (p, x). (3.8)

The total BV master action of the topological model is S = SΣ + SQ:

S[p, x] =
∫

Σ̂
pμ dxμ + SM (p, x). (3.9)

Let us check that S = SΣ + SM satisfies the BV classical master equa-
tion {S, S} = 0. That is equivalent to {SΣ, SΣ} = 0, {SM , SM} = 0 and
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{SΣ, SM} = 0. The first two equations are satisfied because Q2
Σ = 0 and

Q2
M = 0. The third equation

{SΣ, SM} = QΣSM =
∫

Σ̂
dSM =

∮
∂Σ

SM

is automatically true for a closed surface. If Σ has a boundary, then in order
to satisfy the BV classical master equation for S, we need to impose the
boundary conditions SM |∂Σ = 0. The model is a BV version of the Poisson
sigma-model [40, 49, 64, 74–78]. The functional integral is supposed to be
taken over a Lagrangian submanifold in the BV phase space [42, 43, 45, 46]
of fields (pμ, xμ) on Σ̂.

The space of functions on a PQ-manifold M with a measure is a differ-
ential BV algebra. More precisely [45, 56, 58], the algebra C∞(M) for a
general PQ-manifold is a differential odd Poisson algebra. However, it is
not always a BV algebra. It is a BV algebra if M is equipped with a gen-
erator of the Poisson bracket—BV Laplacian Δ, which can be constructed
by a measure. A BV Laplacian is an odd differential 2-nilpotent operator Δ
of the second-order generating the Poisson bracket. The canonical example
ΠT ∗N of a P -manifold with coordinates (xμ, pμ) does have such an operator
Δ. It has explicit form Δ = (∂/∂pμ)∂/∂xμ.

3.2 Construction of target space with PQ-structure for a
generalized CY manifold

We reviewed the AKSZ procedure [47] of constructing a topological sigma-
model for a target space M with PQ-structure. Now we need to construct
such a space M starting from a generalized CY manifold X.

As explained in Section 2, there is a differential BV algebra (A, Q,Δ, ρ)
of functions on N = ΠL, which is the total space of the Lie algebroid L with
parity reversed on the fibers. In other words, N is equipped with the odd
Poisson bracket {, } and the Q-structure ∂̄. Recall that a PQ-manifold is a
supermanifold equipped with an odd symplectic structure ω and a Hamil-
tonian vector field Q. That means that N = ΠL is a PQ-manifold if the
Poisson structure is an inverse of some symplectic structure ω and Q is
generated by some Hamiltonian function S.

In the AKSZ approach, the symplectic structure is required to construct
the BV master action and its gauge fixed version. It is possible, however,
that one could define amplitudes of the generalized topological sigma-model
starting from any differential BV algebra (A, Q,Δ, ρ), without assumption,
that the Poisson structure generated by Δ is invertible. As we will see
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later, this is indeed the case for tree level amplitudes in the large volume
limit. Using only BV algebra (A, Q,Δ, ρ), it is possible8 to define closed
topological string filed theory, which generalizes the Kodaira–Spencer theory
of [4]. It definitely works in the genus zero and in the sector of topologically
trivial maps, but it is not yet clear whether the BV algebra (A, Q,Δ, ρ)
completely defines the full theory, however there are some indications [10].

So far we will take more pragmatic approach and will try to reduce the
problem to the AKSZ framework. The problem with the manifold N = ΠL
is that the Poisson structure on it is not always invertible. For example,
it is invertible in the case of the A-model, where ΠL 	 ΠT ∗X. However,
it is not invertible in the case of the B-model, where ΠL = TX01 ⊕ T ∗X10.
Indeed, in the coordinates (xi, xī, ψi, ψi) the odd Poisson bracket is generated
by the BV Laplacian Δ = (∂/∂xi)∂/∂ψi. We can see that xi and ψi are
conjugate fields to each other, but xī and ψī do not have conjugates. The
Poisson structure degenerates on the fields xī and ψī. In this case, it is
impossible to find a Hamiltonian function S, such that it generates the
operator Q = ψi∂/∂xi via the Poisson bracket as Q = {S, ·}. The AKSZ
construction cannot be used directly.

One way to solve this problem is to extend the set of fields ΠL by auxiliary
fields and to make the Poisson structure nondegenerate.

To construct M , let us recall that any Poisson manifold N in the vicinity
of a regular point is a symplectic fibration. Let K be the space of symplectic
leaves. The Poisson bracket vanishes for functions that are constant along
the leaves, i.e., for functions that depend only on K. Explicitly, near regular
point of N , one can pick up the local coordinates (pi, q

j , za) on N in such
a way9 that the Poisson structure has the standard form: the only non-
vanishing bracket is {pi, q

j} = δj
i . Here (pi, q

j) are the local coordinates
on the symplectic fibers and za are the local coordinates on the base K,
i.e., {za} are Casimir functions on N . Let us introduce the new fields z∗

a,
which are conjugate to za, and then consider the manifold M with the
local coordinates (pi, q

j , za, z∗
a). The manifold M is a symplectic manifold;

moreover the projection π : M → N is a Poisson map.10 The manifold M is
a symplectic realization of N [61–63], moreover N ↪→ M is a leaf-symplectic
embedding [79]. This local construction might fail to work at non-regular
points of N , where the rank of the Poisson structure is not constant, and
there also could be global obstructions [79]. We leave these two important

8With some additional mild assumption similar to the ∂̄∂-lemma, see [10].
9By the Darboux theorem for Poisson manifolds.
10A map π : M → N is called Poisson if π∗({f, g}N ) = {π∗(f), π∗(g)}M .



TOPOLOGICAL STRINGS 417

and interesting questions for the future study and assume in the present
work that such symplectic realization M is well defined globally.

The vector field Q on N can be generated by a Hamiltonian function S
on M , i.e., for functions on N one has Q = {S, ·}. The function S on M

defines the vector field Q̃ on M . The cohomology of Q̃ on M is isomorphic
to the cohomology of Q on N , so the physical states in the algebra C∞(M)
are the same as in the algebra C∞(N).

3.2.1 Example: the B-model

Let X be a CY manifold, dimC X = n. Consider the generalized complex
structure J corresponding to the complex structure on X. The Lie alge-
broid of the +i-eigenbundle J is L = TX01 ⊕ T ∗X10. The total space of
L with fermionic fibers is the supermanifold N = ΠL. The BV algebra of
observables is the algebra of functions A = C∞(ΠTX01 ⊕ ΠT ∗X10), equiv-
alently the algebra of sections of Λk(L∗) = ⊕p+q=kΛp(TX10) ⊗ Λq(T ∗X01).
We pick up local coordinates (xi, xī, ψi, ψ

ī) on ΠL, then functions on ΠL are
expanded as f

i1...ip
ī1,...,̄iq

ψī1 · · ·ψīqψi1 · · ·ψip . The Lie algebroid differential Q is

the Dolbeault differential ∂̄

Q ≡ ∂̄ = ψī ∂

∂xī
. (3.10)

The Q-cohomology of the algebra A is the familiar space of physical observ-
ables of the B-model [3, 12].

The BV Laplacian Δ is the holomorphic divergence ∂ on holomorphic
vector fields Λp(TX10) ⊗ Λq(T ∗X01) that can be mapped by the holomor-
phic (n, 0) form to the Dolbeault differential ∂ on the differential forms
Λn−p(T ∗X10) ⊗ Λq(T ∗X01). In coordinates, where the holomorphic (n, 0)
form is constant, the operator Δ can be written as

Δ ≡ ∂ =
∂

∂ψi

∂

∂xi
. (3.11)

The Poisson bracket, generated as in (2.5) by Δ, is equivalent to the Lie
bracket on holomorphic polyvector fields.

Looking at (3.11), we see that the Poisson structure is non-degenerate
on the space (xi, ψi), but it is degenerate on the space (xī, ψī). In other
words, xi and ψi are antifields to each other, but xī and ψī are missing their
antifields. So we extend the bundle ΠL by additional fields canonically con-
jugate to xī and ψī. Let us call them x∗

ī
and ψ∗

ī
. To summarize, M is a direct

sum of the vector bundles ΠTX01 ⊕ ΠT ∗X10 ⊕ ΠT ∗X01 ⊕ T ∗X01 over the
base X. If local coordinates on X are (xi, xī), then the local coordinates
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on the fibers of M are correspondingly (ψī, ψi, x
∗
ī
, ψ∗

ī
). The total space of

fields of the BV sigma-model is (xi, xī, ψī, ψi, x
∗
ī
, ψ∗

ī
). The present example

of the construction of the B-model differs from the AKSZ [47],11 but agrees
with [21]. The odd symplectic structure ω on M has a local form

ω = δxiδψi + δxīδx∗
ī + δψīδψ∗

ī . (3.12)

The Poisson bracket generated by (3.12) and restricted for functions on ΠL
is the same as the Poisson bracket generated by (3.11). The Hamiltonian
function S for the vector field Q (3.10) is quadratic in the coordinates of the
fibers of M

SM = ψīx∗
ī . (3.13)

This function SM gives us the master action of the B-model. More precisely,
as explained above, the action of the B-model is obtained by pulling back
the function SM to a super Riemann surface Σ̂ by means of Maps(Σ̂, M).
One can also add the term SΣ for the de Rham differential d on Σ. Finally,
the BV master action of the B-model is

SB =
∫

Σ̂
ψidxi + ψīx∗

ī . (3.14)

The fields xi and xī are treated as independent variables and the complex
conjugate condition is relaxed. In the classical limit of the BV formalism,
one usually considers deformations of the master action satisfying the condi-
tion {S, S} = 0 and keeps the same measure and the odd Poisson bracket on
the space of antifields. In the language of the B-model, that means to deform
the operator Q = ∂̄, but to keep fixed the operator Δ = ∂ and the holomor-
phic (n, 0)-form of the base point. This issue is related to the holomorphic
anomaly of the B-model [3, 4]. Given a base point in the moduli space of
CY structures on X, the nearby complex structures can be parameterized
as deformations of the operator Q = ∂̄, and the corresponding observables
can be identified with deformations of the master action S. However, in
this approach, in the definition of the BV path integral, one keeps fixed
the measure and the odd Poisson bracket defined by the base point. If the
base point is changed, then the definition of the Laplacian, the odd Poisson
bracket, and, thus, the measure in the functional integral in the BV phase
space are changed, that is, the origin of the holomorphic anomaly [3, 4].
There is a dependence of the partition function on the base point, since the
base point defines the measure in the BV path integral. It is possible that a
background independent model could be formulated along the lines of [11,
16, 35, 80–82].

11In their construction, the authors start from eight fields instead of six.
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In the present formulation, it is convenient to study the generalized topo-
logical J -model with respect to a simple base point on the moduli space
of generalized complex structures. In some cases, it might be possible to
take the ordinary B-model as a base point. Then topological J -model is
nothing else but a finite deformation of the B-model in generalized complex
directions. At the classical level, it was studied in details in [12].

We will consider an explicit example of a generalized complex structure
J = (I, β) described by means of an ordinary complex structure I and the
holomorphic Poisson bivector β. The type of such generalized complex struc-
ture jumps where β vanishes: the description of the manifold N = ΠL is
complicated. However, if we take the base point to be the ordinary complex
structure I, then the full J -model can be described by means of defor-
mations of the master action S only. Explicitly SJ = SI + βijψiψj . That
describes generalized deformation of the homological vector field Q = ∂̄ in
the frame where the odd Poisson bracket is fixed to be the same as defined
by I. The target space and the measure of such J -model is the same as of
the ordinary B-model. The difference is only in the master action.

We will leave the study of the dependence of the J -model on the base
point for the future work. That should bring a generalization of the holo-
morphic anomaly equation. Physically, the holomorphic anomaly equation
was explained in [83] by a change of holomorphic polarization in H3(X, C)
with a change of the base point. In the BV formulation that corresponds
to a change of the definition of the BV Laplacian Δ and the BV bracket, if
one changes the base point.

3.2.2 Example: the A-model

Consider a generalized complex structure J defined by a non-degenerate
symplectic structure ω. The symplectic structure provides the isomorphism
between the tangent TX and cotangent T ∗X bundle of X. The Lie alge-
broid L is isomorphic to each of them, and each of TX or T ∗X can be used
as a model for the target space of the A-model. Let us take the ΠL 	 T ∗X
and consider the canonical coordinates on it (xi, pi). The odd symplectic
structure is simply ω = δxiδpi. The Q-structure is generated by the Hamil-
tonian function SM = ωijpipj . For the A-model the BV Poisson structure is
nondegenerate on N = ΠL, therefore no completion of N is required. The
target space of J -model is simply M = N . The BV action of the A-model
is the same as of the Poisson sigma-model [47, 75, 76, 84]

S =
∫

Σ̂
pidxi + ωijpipj . (3.15)
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3.3 The BV gauge fixing

The quantization in the BV formalism [42–45] is done by taking path integral
over a Lagrangian submanifold L in the BV phase space of the theory

Z =
∫

L
e−(1/�)S . (3.16)

The partition function does not depend on a deformation of the Lagrangian
submanifold L. Indeed, let us represent M as T ∗L with the coordinates
(xi, pi). The Lagrangian manifold L is the zero section of T ∗L. A Lagrangian
deformation is defined by a function Ψ on L as pi = (∂/∂xi)Ψ. A deforma-
tion of the integral

∫
L f of any harmonic function Δf = 0 vanishes

∫
L+δL

f −
∫

L
f =

∫
L

∂f

∂pi
pi =

∫
L

∂f

∂pi

∂

∂xi
Ψ =

∫
L

Ψ
∂

∂xi

∂f

∂pi
=

∫
L

ΨΔf = 0.

(3.17)

A restriction of the BV master action S to a Lagrangian submanifold
is called gauge fixing. Locally, a deformation of a Lagrangian submanifold
L can be described by a function Ψ on L which is called the gauge fixing
fermion.

To show the idea, let us consider the BV gauge fixing of the ordinary
B-model defined on a Kahler manifold X. The Kahler metric of X will be
used to conveniently describe a Lagrangian submanifold in the BV phase
space of fields on Σ̂. In a general case, the J -model might be gauge fixed
using another generalized complex structure J ′ which commutes with J .
In the case of the B-model, such a generalized complex structure J ′ is a
compatible symplectic structure. In the case of A-model, such a general-
ized complex structure J ′ is a compatible complex structure. The geom-
etry of (J ,J ′) is a generalized Kahler geometry [36]. In [30, 38, 39], it
was suggested to make a generalized topological B-model by twisting a cer-
tain sigma-model. This sigma-model a priori depends on both (J ,J ′), but
dependence on J ′ disappears after a twist. As Gualtieri showed [36] the
generalized Kahler geometry (I,J ) is equivalent to the data (g, b, I+, I−)
with certain compatibility conditions, where g is an ordinary metric, B is a
two-form and I+ and I− are the ordinary complex structures. This geometry
was encountered in a study of N = (2, 2) CFT in [85], and recently studied
in works [86–99].

From the example of the A-model (Gromov–Witten invariants) which
exists on any almost Kahler manifold, where J is a symplectic structure
and J ′ is a almost complex structure, we know that J ′ does not have to be
integrable. Therefore, an existence of integrable J ′ that together with J
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makes a generalized Kahler geometry seems not to be generally required for
a definition of the topological model. However, in the case when integrable
J ′ is used for the gauge fixing of the topological J -model, one should recover
a twisted version of sigma-model with generalized Kahler space like in [97].

For an illustration, let us consider the ordinary B-model. The BV master
action is written as

SB =
∫

Σ̂
μ(ψidxi + ψīx∗

ī ) (3.18)

in terms of the fields (xi, xī, ψī, ψi, x
∗
ī
, ψ∗

ī
) in the phase space Maps(Σ̂, M),

where M was described above. A field on Σ̂ is a collection of differential
forms of all degrees on Σ. The symplectic pairing is given by the wedge
product and integral over Σ in each of the pairs (xi, ψi), (xī, x∗

ī
), (ψī, ψ∗

ī
).

As in [47], we will choose a Lagrangian submanifold in two steps. First, let
us algebraically choose one-half of the fields in such a way that the symplectic
form vanishes on them. This set of fields will be called antifields Φ∗. The
submanifold of the phase space, where all antifields vanish, is a Lagrangian
submanifold L : Φ∗ = 0. Such naive choice of L gives a degenerate physical
action. To get a nondegenerate physical action, we can deform L by a gauge
fixing fermion to get

LΨ : Φ∗ =
∂Ψ
∂Φ

. (3.19)

For illustration purposes, let us write the usual derivatives instead of
covariant, which one has to use in a non-flat case.

The full set of fields represented by differential forms on Σ is written in
this diagram.12

xi xi
z xi

z̄ xi
zz̄

ψi ψiz ψiz̄ ψizz̄

xī xī
z xī

z̄ xī
zz̄

x∗
ī

x∗
īz

x∗
īz̄

x∗
īzz̄

ψī ψī
z ψī

z̄ ψī
zz̄

ψ∗
ī

ψ∗
ī

ψ∗
īz̄

ψ∗
īzz̄

(3.20)

The canonically conjugate variables are written as three pairs of rows,
and in each pair of rows the conjugate fields have an opposite horizontal
position. (If we enumerate the rows from 0 to 5 and the columns from 0 to
3 in this diagram, then the fields in positions (2i, j) and (2i + 1, 3 − j) are

12Hopefully, the mixing of notation xi for a field on Σ̂ and its zero degree component
on Σ will not cause confusion, but will be clear from the context. If we need to distinguish
a field φ on Σ̂ from its zero component, then we will use the notation φ̂ for a field on Σ̂.
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canonically conjugate pairs of a field and antifield. As usual, they have oppo-
site statistics.) The statistics of the zero forms xi, xī, ψ∗

ī
is even (bosonic).

The statistics of the remaining zero forms ψi, x
∗
ī
, ψī is odd (fermionic). It

alternates with the degree of the differential form on Σ in the each row.

Let us make the first step and choose the physical fields Φ by a box around
their symbols

xi xi
z xi

z̄ xi
zz̄

ψi ψiz ψiz̄ ψizz̄

xī xī
z xī

z̄ xī
zz̄

x∗
ī x∗

īz x∗
īz̄ x∗

īzz̄

ψī ψī
z ψī

z̄ ψī
zz̄

ψ∗
ī

ψ∗
ī

ψ∗
īz̄

ψ∗
īzz̄

(3.21)

In each pair of conjugate fields, only one field is boxed, therefore the boxed
fields make a Lagrangian submanifold in the full BV phase space. The boxed
fields Φ are left in the theory after the gauge fixing. At the second step,
the unboxed fields Φ∗ are expressed in terms of Φ as in (3.19) via a suitable
gauge fixing function Ψ(Φ).

Let us take Ψ(Φ) similar to the ordinary B-model [3]

Ψ = gij̄(x
i
z∂z̄x

ī + xi
z̄∂zx

ī). (3.22)

That gives

x∗
īzz̄ = gīi(∂zx

i
z̄ + ∂z̄x

i
z), (3.23)

ψi
z̄ = gīi∂z̄x

ī, ψi
z = gīi∂zx

ī. (3.24)

The remaining unboxed fields are zero on the Lagrangian LΨ. We get the
physical Lagrangian of the B-model13

(ψ̂idx̂i + x̂∗
ī ψ̂

i)|LΨ = [gīi(∂z̄x
ī∂zx

i + ∂zx
ī∂z̄x

i) + ψi(∂zx
i
z̄ − ∂z̄x

i
z)ψ

ī] (3.25)

+ [gīiψ
ī(∂zx

i
z̄ + ∂z̄x

i
z) + x∗

ī ψ
ī
zz̄ + x∗

īzψ
ī
z + x∗

īz̄ψ
ī
z]

(3.26)

The last three quadratic terms can be physically interpreted as auxiliary.
In the remaining action, we recognize that of [3] with a change of notations
xi

z → ρi
z, x

i
z̄ → ρi

z̄, ψ
ī → ηī, ψi → θi. The algebra of physical observables is

13The present construction of the B-model differs from [47]. In [47], the BV action was
written in terms of 8n fields on Σ̂ corresponding to the coordinates in the target space
ΠT ∗ΠTX. The present construction takes the target space M to be a certain extension
of N = ΠL that has a nondegenerate symplectic structure. The dimension of the target
space M in this work is 6n compared to 8n in [47].
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given by the Q-cohomology of C∞(M), which is the same as Q-cohomology
of C∞(N), which is the Q-cohomology of the algebra of functions of (xi, xī,
ψī, ψi). This is the same space as [3] where the primary observables O(0)

were identified with the Q-cohomology of functions of (xi, xī, ηī, θi).

One can also see that the deformation of the master action of the B-model
by a holomorphic function f(x) corresponds to the deformation of the oper-
ator Q to the topological Landau–Ginzburg model with the superpoten-
tial f(x). The physical observables are identified with cohomologies of
Q = ψ̄i∂/∂xī + (∂f/∂xi)∂/∂ψi. For polynomial f(x) on X = C

n, the coho-
mology of Q in degree 0 is the polynomial ring C[xi] factorized over the ideal
generated by ∂if(x). The ring C[xi]/df(xi) is the familiar ring of observables
of the topological Landau–Ginzburg model [100].

3.4 Observables and deformations

What are the observables of the model? In the path integral formulation of
a quantum field theory, observables can be associated with deformations of
the action. If the theory is gauge-invariant, then the deformed action must
be again a gauge-invariant functional.

Let us see what happens concretely in the BV approach [45, 47]. After
the gauge fixing, the partition function is the integral over a Lagrangian
submanifold in the BV phase space

Z =
∫

L
e−(1/�)S[φ]. (3.27)

The gauge invariance of the theory means that Z does not change with
a change of the gauge fixing condition. Thus, the partition function Z
has to be invariant under deformations of the Lagrangian submanifold L in
the space of fields. For any function f , the integral

∫
L f is invariant under

such deformations if Δf = 0. Taking f = e−(1/�)S , one obtains BV quantum
master equation Δe−(1/�)S = 0, or

−�ΔS +
1
2
{S, S} = 0. (3.28)

Let us assume that S0 satisfy (3.28) and let us consider a deformation S0 →
S0 + δS. We obtain

−�Δ(S0 + δS) +
1
2
{S0 + δS, S0 + δS} = 0, (3.29)

so

−�ΔδS + QδS +
1
2
{δS, δS} = 0, (3.30)
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where we used the definition of the operator Q· = {S0, ·}. In the limit � = 0,
the BV quantum master equation becomes the BV classical master equation

QδS +
1
2
{δS, δS} = 0, (3.31)

which is also well known under the name Maurer–Cartan equation in defor-
mation theory. Deformation of S corresponds to the deformation of Q
according to the definition Q = {S, ·}. The classical BV equation is the
homological property Q2 = 0. Not all deformations of S lead to a new
theory. Consider deformation of S by a diffeomorphism that preserves the
symplectic structure, that is, by a Hamiltonian vector field. The vector field,
generated by a function δS, acts on S as S → S + {δS, S}. We see that such
diffeomorphisms corresponds to deformations S of the form QδS. The theory
is invariant under Q-exact deformations S → S + QδS. From (3.31), infini-
tesimal deformations have to be Q-closed QδS = 0. Therefore, the physical
space of non-equivalent gauge-invariant infinitesimal deformations (=infin-
itesimal observables) is the cohomology group of the operator Q. On the
moduli space of physical non-equivalent theories, infinitesimal observables
can be viewed as vector fields.

Example. Consider the point in the moduli space of generalized complex
structures corresponding to the ordinary complex structure—the B-model.
The space of functions C∞(ΠL) is the space of Ω−p,q forms μ

j1...jp

ī1...̄iq
, the oper-

ator Q is ∂̄, the Laplacian Δ is the holomorphic divergence ∂ and the bracket
{, } is the Lie bracket on the holomorphic polyvector fields. The deforma-
tions S are functions on C∞(ΠL) = Γ(ΛpTX10 ⊗ ΛqT ∗X01) ≡ Ω−p,q(X).

The case (p, q) = (−1, 1) corresponds to an ordinary deformation of the
complex structure by a Beltrami differential ∂̄ → ∂̄ + μ · ∂. Equation (3.31)
is the requirement that the new Dolbeault operator ∂̄ squares to zero. It is
called the Kodaira–Spencer equation.

The other deformations of degree 2, the types (−2, 0) and (0, 2), are geo-
metrical deformations of the underlying Lie bialgebroid structure (L, L∗).
Indeed, functions S on ΠL of degree 2 by the relation Q = {μ, ·} correspond
to operators Q of degree 1. Such an operator defines a Lie algebroid structure
on the vector bundle L. Deformations S of other degrees are not described
by a Lie algebroid structure and do not correspond to a generalized complex
structure. The moduli space of generalized complex structures is locally
generated by deformations (observables) of degree 2. The moduli space of
deformations of arbitrary degrees is the extended moduli space [3, 12].
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Consider a (−2, 0) deformation by a bivector field βij . Contrary to the
(−1, 1) case, the equation ∂̄β + 1/2{β, β} = 0 is now equivalent to two sep-
arate equations ∂̄β = 0 and {β, β} = 0, since the first term has the grade
(−2, 1), whereas the second term has the grade (−3, 0). The equation tells
us that βij is the holomorphic bivector. The second condition tells us that
βij is holomorphic Poisson. Therefore, the space of (−2, 0) deformations is
the space of holomorphic Poisson bivector fields. In Section 4, we consider
the open B-model deformed by βij .

The space of (0, 2) deformations is the space of ∂̄-closed (0, 2) forms bīj̄ .

3.5 The extended moduli space

Here we will review the geometrical structure of the extended moduli space.

Witten [3] introduced the notion of the extended moduli space. Baran-
nikov and Kontsevich [12] showed that the extended moduli space M has
a structure of Frobenius manifold : there is a potential Φ and metric gij on
M such that the structure functions Ci

jk = gilCljk, obtained from the third-
derivative Cijk = ∂ijkΦ, define an associative product on the space of vector
fields. In [101], the same property was shown for the moduli space of gener-
alized complex structure. Manin [55] showed that the Frobenius structure
naturally appears on the moduli space of deformations of any differential
BV algebra.14 Since any generalized CY manifold is associated with a dif-
ferential BV algebra, the moduli space of generalized complex structures
is also Frobenius manifold. Physically, the structure function Cijk is the
three-point function of the topological J -model in genus zero.

We consider a quantum theory in the BV formalism
∫
L e−(1/h)S . The

space of BV functionals is differential BV algebra (A, Q,Δ, tr), where Q
and Δ are the corresponding BV operators as defined above. The trace map
is defined in terms of the path integral

∫
L over some Lagrangian submanifold

L in the BV phase space.

Consider a deformation S0 → S0 + δS. We observed above that δS must
satisfy the quantum master equation

−�ΔδS + QδS +
1
2
{δS, δS} = 0. (3.32)

Looking at this equation, one can keep in mind the familiar case of the
ordinary B-model, where Q = ∂̄ and Δ = ∂. All arguments are parallel.

14With an additional technical requirement similar to the ∂̄∂-lemma.
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Let us require that δS solves both the quantum and the classical BV
equations, so ΔδS = 0.15 Note that since Δ is of degree −1, Q is of degree
1, and {, } is of degree −1, then for geometrical deformations δS of degree 2
the equations QδS + (1/2){δS, δS} = 0 and ΔδS = 0 follow automatically
from the BV quantum master equation. Let us denote δS = μ, Q = ∂̄ and
Δ = ∂. We still remember that (A, ∂̄, ∂, tr) is an arbitrary differential BV
algebra corresponding to an arbitrary generalized complex structure. The
equations on μ ∈ A are written as

∂̄μ +
1
2
{μ, μ} = 0, (3.33)

∂μ = 0. (3.34)

Infinitesimal deformations μ are represented by cohomology classes of ∂̄
restricted to the kernel of ∂. What about finite deformations? Let μ = x + a,
where x is a harmonic representative of a ∂̄-cohomology and a is a ∂-exact
correction that we have to find. The equation on a is

∂̄a +
1
2
{x + a, x + a} = 0. (3.35)

Let us use the definition of the BV bracket (2.5) in terms of the BV Laplacian
∂. Since x is harmonic and a is ∂-exact, one has ∂(x + a) = 0, therefore

∂̄a +
1
2
∂((x + a) · (x + a)) = 0. (3.36)

Then we can get a formula to recursively solve for a order in order in x:

a = −1
2
∂̄−1∂((x + a) · (x + a)) (3.37)

This Kodaira–Spencer method was used in [4] in the context of deformations
of the B-model. It works exactly in the same way for any differential BV
algebra [55]. The harmonic representatives x of the cohomology classes
physically correspond to the external background. The recursive solution
of (3.37) can be drawn in terms of tree level Feynman diagrams [4].

The solution μ(x) exists if we assume that the analogue of ∂∂̄-lemma
holds. The solution defines a map from the ∂̄-cohomology H•

∂̄
(A) to ele-

ments of the BV algebra which satisfy the classical and the quantum BV
master equation. The master action S0 + μ solves simultaneously the classi-
cal and quantum BV master equations, and thus corresponds to a topological
model.

15This restriction appeared in [4] in the target-space formulation of the B-model
(Kodaira–Spencer theory) from the string field theory point of view. The target space
fields μ ∈ Γ(Ω−p,q) in [4] were restricted by the condition ∂A = 0, which was interpreted
as a condition for a string field to be in b0 cohomology.
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In other words, the solution μ(x) provides us with linear coordinates
H•

∂̄
(A) 	 TMS0 on the extended moduli space. The definition of this linear

structure depends on the base point S0 ∈ M. The linear coordinates on the
classical geometrical moduli are called canonical coordinates in the context
of the B-model in [4].

Example. Let us consider X = T 2. A generalized complex structure on T 2

could be only of the ordinary or symplectic type. As a reference point, let
us take the complex structure with a period τ . The linear coordinates in M
are bosonic for H0,0 and H−1,1 and fermionic for H−1,0 and H0,1. The space
H−1,1(X) describes ordinary deformations of complex structure by Beltrami
differentials. The space H0,0 describes constant terms that could be added
to the BV master action. Such constant terms correspond to a dilatation of
the BV measure.

A deformation of a complex structure of a CY manifold ∂j̄ → ∂j̄ + μi
j̄
∂i

corresponds to a deformation of the holomorphic (n, 0)-form Ω → e−μΩ.16

For T 2 let (x, y) be real coordinates on the standard unit square. The com-
plex structure τ0 corresponds to the complex coordinate z = x + τ0y and
the holomorphic (1, 0) form Ω0 = dz = dx + τ0 dy. The periods are a0 =∫
A dz = 1 and b0 =

∫
B dz τ0. Let α ≡ μ0,0 and β ≡ μ−1,1. After the defor-

mation Ω = e−μΩ0 = e−α(dz − β dz̄). The new periods are a = e−α(1 − β)
and b = e−α(τ0 − βτ̄0). The new complex structure is τ = b/a = (τ0 − βτ̄0)/
(1 − β). If we assume that the definition domain of τ is the upper half
plane (neglecting discrete SL(2, Z) transformations), then the domain for
β = (τ − τ0)/(τ − τ̄0) is the unit disk D : |β| < 1. The boundary |β| = 1 is
the degenerate complex structure Im τ = 0. The scale is parameterized by
a complex plane C. The total bosonic moduli space is D × C.

In this example, deformations of the complex structure were mapped to
deformations of the canonical holomorphic form Ω0 → e−μΩ0. The same
can be done in the extended moduli space. The coordinates are the periods
Xi(μ) =

∫
Ai Ω, where Ai is a basis of cycles H•(X). The formula Xi(x|Ω0) =∫

Ai e−μ(x)Ω0 gives a period map H•(L) → H•(X, C). The dimension of
H•(L) and H•(X, C) is the same (recall that multiplication map by the
canonical pure spinor Ω0 in the generalized CY case provides isomorphism

16A generalized complex structure J defines +i-eigenbundle L = TX01 ⊕ T ∗X10. The
term TX01 corresponds to the z̄-direction in the tangent space. It is described by the
vector field ∂ī. The deformation by μi

j̄ is a deformation of the z̄-direction in the tangent
bundle. A new z̄-direction ∂̃ī in the old basis is represented by the vector field ∂j̄ + μi

j̄∂i.
The new holomorphic one-forms dz must annihilate antiholomorphic vector fields ∂j̄ +
μi

j̄∂i. Therefore, they can be locally written in the old basis as dzi − μi
j̄ dzj̄ . Therefore, a

new holomorphic (n, 0) form Ω is e−μΩ0 up to a scale.
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between Λ•(L∗) and Ω•(X, C)). The formula Ω0 → e−μΩ0 can be interpreted
as the action in the spinor representation of the group element e−μ that cor-
responds to the algebra element μ. The bosonic part of M is mapped to
Hodd/even(X) if Ω0 is of the odd/even type.

The dimension counting in the T 2 example is as follows. There are two
complex bosonic directions in M: deformations β of the complex structure
and rescaling α of the canonical pure spinor Ω0. They are mapped into
H1(X) and parameterized by two periods a and b.

Usually the B-model is considered in dimC X = 3. What is special in the
geometry of the extended moduli space if dimC X = 3? Let the reference
point be an ordinary CY manifold X with a holomorphic (3, 0)-form Ω0.
The geometrical deformations of the generalized complex structure (which
are of degree 2) and dilatations (which are of degree 0) are parameterized
by H−2,0 ⊕ H−1,1 ⊕ H0,2 and H0,0. Using the map by Ω0, this space is iso-
morphic to H1,0 ⊕ H2,1 ⊕ H3,2 and H3,0. If dimC X = 3, the space of geo-
metrical deformations of generalized CY structure is the half of all bosonic
deformations Hodd(X). Therefore, precisely in dimension 3, the geometrical
moduli space of generalized CY structures can be parameterized by half of
all odd periods Xi =

∫
Ai

Ω, where Ai is a basis in Hodd(X).

In the case of ordinary CY structures in dimension 3, this is a very well-
known parameterization by half of all 3-cycles Ai that make basis in H3(X)

Xi =
∫

Ai

Ω0. (3.38)

The complementary periods Fi are defined for the dual17 3-cycles Bi

Fi =
∫

Bi

Ω0. (3.39)

Here Fi are functions of Xi.

In the case of generalized CY structures in dimension 3, one needs to
consider the half of all odd cycles. We can choose a basis Ai ◦ Bj = δj

i ,
Ai ◦ Aj = Bi ◦ Bj = 0, where Ai, B

j ∈ H1 ⊕ H3 ⊕ H5 and write

Xi =
∫

Ai

Ω, Fi =
∫

Bi

Ω, (3.40)

where Ω0 is the canonical pure spinor on X[16, 36]. Xi can be taken
as coordinates on the generalized geometrical moduli space of J -model.
As usual, one can get rid of scale and consider the projective coordinates
(X0 : X1 : · · · : Xh1,0+h2,1+h3,2). Alternatively, instead of Xi, one can use

17We use the basis Ai ◦ Aj = Bi ◦ Bj = 0, Ai ◦ Bj = δj
i .
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(Re Xi, Re Fi). It was shown by Hitchin [16] that this parameterization of
generalized CY structures by Hodd(X, R) is not degenerate. He also con-
structed a certain explicit map18 that takes a real 1+3+5-form ρ and gives
a real 1+3+5-form ρ̂, such that the spinor Ω = ρ + iρ̂ is pure and closed.
Therefore, Ω defines a generalized complex structure.

Moreover, Hitchin [16] showed that for dimC X = 3 the moduli space
of generalized CY structures is a special Kahler manifold. A special Kahler
geometry [102, 103] is a familiar attribute of N = 2 theories [104, 105] and
integrability [11, 106].

Intrinsically, a special Kahler [102, 103, 105, 107] structure19 on a Kahler
manifold (M, J, ω) is defined as a flat torsion-free connection ∇ on TM such
that (i) the symplectic structure is covariantly constant ∇ω = 0 and (ii) the
complex structure is d∇-closed d∇J = 0. This definition is related with the
commonly used extrinsic definition of a special Kahler geometry by means of
a holomorphic prepotential F as follows. Consider a 2n-complex dimensional
space V = C

2n with a canonical holomorphic symplectic form

Ω = dX i ∧ dFi, (3.41)

where (Xi, Fi) are coordinates on C
2n. Consider a Hermitian form h(u, v) =

−iΩ(u, v̄) for u, v ∈ V . Then any special Kahler manifold M locally is
realized as a submanifold φ : M → C

2n such that (i) it is holomorphic,
(ii) the restriction φ∗h of the Hermitian form on M is nondegenerate and
(iii) it is holomorphic Lagrangian φ∗Ω = 0. The conditions (i) and (ii)
give a Kahler structure φ∗h on M and the condition (iii) gives the special
property of the Kahler structure. In real coordinates (xi, yi, ui, vi), where
Xi = xi + iyi and Fi = ui + ivi, we have the Kahler form ω = − Im φ∗h =
dxi ∧ dui + dyi ∧ dvi. Since M is Lagrangian, φ∗Ω = 0, and since Re Ω =
dxi ∧ dui − dyi ∧ dvi, the Kahler form on M is

ω = 2dxi ∧ dui. (3.42)

Since dui = Re dFi = Re(Fijdzj) = Re Fijdxi − Im Fijdyj , we get

ω = −2 Im Fijdxi ∧ dyj = −i Im Fijdzi ∧ dzj . (3.43)

18It is a critical point of a certain functional. See [82] for a one-loop study of that
functional.

19A special Kahler geometry is sometimes called “rigid special” Kahler geometry (global
N = 2), whereas a projective special Kahler geometry is called “local special” Kahler
geometry (local N = 2). A projective special Kahler can be obtained from a special
Kahler that admit a certain C∗-action.
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The symplectic form ω on M can also be expressed in terms of the Kahler
potential ω = i∂∂̄K, where

K = − Im(FiXi). (3.44)

The real part of the Kahler form Reφ∗h is the Kahler metric on M . In real
flat coordinates (x = Re X, u = Re F ), the metric gij is given by the second
derivative gij = ∂i∂jK.

The real coordinates xi = Re Xi, ui = Im Fi define a flat symplectic torsion-
free connection ∇ on M by the condition ∇dxi = 0,∇dui = 0. This connec-
tion can be extended to the complexified tangent bundle TM ⊗ C, and then
(0, 1) part of ∇ is the ∂̄-operator ∇ = ∂̄, and Christoffel symbol of (1, 0) part
of ∇ is ∂kτij = ∂kijF , so this is the familiar connection on the moduli space
of an ordinary topological B-model [4]. The moduli space of generalized CY
structures for dimC X = 3 has exactly the same geometry.

Locally, a holomorphic Lagrangian submanifold M ⊂ C
2n is defined by

a holomorphic function F(Xi) and equation Fi = ∂F/∂Xi. The Xi are
holomorphic coordinates on M . They are called special coordinates [4].

To summarize, in complex dimension 3, the geometrical moduli space
of the generalized J -model is precisely half-dimensional subspace of the
bosonic part of the extended moduli space. This half-dimensional subspace is
realized as a holomorphic Lagrangian submanifold with respect to the canon-
ical holomorphic structure in Hodd/even(X, C). It is Lagrangian, because in
complex dimension 3, the canonical symplectic form20 on M vanishes for
geometrical deformations.

Note that the definition of special and canonical coordinates is very dif-
ferent. The canonical coordinates x are defined in tangent space to the
extended moduli space TMΩ0 at the reference point Ω0. A finite deforma-
tion is given by solution μ(x) of the BV-Maurer–Cartan equation (3.33). As
we will see, the holomorphic metric tr μaμb in the extended moduli space is
a constant matrix in canonical coordinates.

On the other hand, the special coordinates are defined only for dimC X =
3 and only for geometrical deformations of generalized CY structures. In
this case, the geometrical moduli space is the half-dimensional holomorphic

20ω(μ1, μ2) = tr μ1μ2 for μ1, μ2 ∈ A. It is non-zero only if deg μ1 + deg μ2 = 2n, where
dimC X = n. The geometrical deformations by definition are of degree 0 and 2. That is a
half of all bosonic deformations of degrees 0, 2, 4, 6 if dimR X = 6. And that is a Lagrangian
submanifold since the degrees 0 and 2 cannot make 6, thus the symplectic structure on
M vanishes.
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Lagrangian submanifold of the extended moduli space. The special coor-
dinates are convenient to compare the generalized J -model and the N = 2
four-dimensional supergravity in the type IIA/B string compactifications on
X [95, 108–112].

There are other related reasons why the six real dimensions is a spe-
cial case. Nekrasov [81] conjectures Z-theory (a topological analogue of
M -theory), which should provide a non-perturbative completion of topo-
logical strings. It is possible that this theory should be formulated in
terms of some G2 theory on a real seven-dimensional manifold X7. The
six-dimensional theory on X6 arises after compactification of one dimension
for X7 = S1 × X6 (see also [11, 80]).

Geometrically, infinitesimal observables of the J -model are vector fields
Γ(TM). Using the trace map of the BV algebra A, we can define n-point
function of observables. Let xi ∈ H•

∂̄
(A) 	 TMΩ0 be local coordinates on

the moduli space M near the point Ω0 ∈ M. The n-point function of vector
fields vi

1, . . . , v
i
n is defined in terms of the trace map tr and the map μ(x)

〈v1, . . . , vn〉 = vi1
1 · · · vin

n tr ∂i1μ(x)∂i2μ(x) · · · ∂inμ(x). (3.45)

The one-point function defines the identity vector field, the two-point
function defines the metric on M and the three-point function defines the
Frobenius structure [55]. In the canonical coordinates x, the metric is a
constant matrix

gij = tr ∂iμ(x)∂jμ(x) = tr ∂i(x + a(x))∂j(x + a(x)) = tr ∂ix∂jx. (3.46)

The terms with a(x) vanish since they contain a product of ∂-exact and
∂-closed terms, but tr(∂a)b = ± tr a(∂b). The three-point function is not
generally constant.

The n-point function is the n-point function of the toy version of the
J -model on the zero-dimensional worldsheet—point. The space of maps
is simply the target space M and the BV algebra of the model is the BV
algebra A of functions on M .

Of course, the J -model on a two-dimensional worldsheet is more compli-
cated. Instead of M , one has to consider the space Maps(Σ̂, M).

We begin with the study of topologically trivial maps in genus zero. By
topologically trivial we mean maps which are homotopic to constant maps.
The three-point function is given by the same formula (3.45), since the
moduli space of Riemann surfaces of genus zero with three marked points is
a point, and the BV path integral is reduced to the integral over M . Let us
consider the simple case in more details.
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3.6 The topologically trivial maps in genus zero

This problem was essentially solved already in [4] where the Kodaira–Spencer
action, evaluated in a critical point, was suggested as a free energy of B-
model in genus zero. Geometrically, the moduli space of the J -model is
a Frobenius manifold. The construction was generalized for the extended
moduli space of B-model in [12] and for the moduli space of any differential
BV algebra in [55]. Generalized CY structure is associated with a differential
BV algebra, so by the construction of [55] the moduli space of generalized
CY structures is also Frobenius. Thus, it is automatically equipped with a
certain potential function Φ. The derivative Φijk is the three-point function,
which was defined above in terms of the trace map tr and μ(x)-map. Li [101]
directly studied the moduli space of generalized CY structures.

Let us review the generalized Kodaira–Spencer construction. Let Ω0 in
M be the reference point and x ∈ TMΩ0 = H•(LΩ0) be the canonical coor-
dinates. The three-point function Cijk is defined as

Cijk(x|Ω0) = trΩ0 μiμjμk, (3.47)

where μi ≡ ∂μ(x)/∂xi. The index trΩ0 is written to remember that the
trace map (2.10) is defined in terms of the canonical pure spinor Ω0 of the
reference point in M.

Is there a potential function Φ(x|Ω0) such that the three-point function
is the third derivative? That is

Cijk(x|Ω0) = ∂i∂j∂kΦ(x|Ω0). (3.48)

The answer is very natural from the BV point of view [44].

Namely, let us consider the classical BV master equation

∂̄μ +
1
2
{μ, μ} = 0 (3.49)

for deformations of the master action S0 → S0 + μ. We can think about this
equation in analogy with the flat curvature equation dA + A ∧ A = 0 for a
connection A. What is the functional on a space of connections that has the
equation of motion dA + A ∧ A = 0? This is the Chern–Simons [113, 114]
functional

S[A] =
∫

1
2

trA dA +
1
6

trA[A, A]. (3.50)
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For any special differential BV algebra, we can consider Chern–Simons like
functional,21

SCS[μ|Ω0] =
1
2

trμ∂̄μ +
1
6

trμ{μ, μ} (3.51)

whose equation of motion is the BV master equation [44]. Let us impose
the constraint ∂μ = 0 (3.33), which makes 1/∂ to be well defined. Then
{μ, μ} = ∂(μ · μ). We can pull out ∂ and get the action

SCS[μ|Ω0] =
1
2

trμ
∂̄

∂
μ +

1
6

trμμμ. (3.52)

The equation of motion of (3.52) is the BV classical master equation (3.49).
This action in the context of an ordinary B-model was written in [4] and
was called Kodaira–Spencer target space action. Here, as in [55], it is writ-
ten in the context of any differential BV algebra (A, ∂̄, ∂, tr). The case of
generalized CY structures is a particular case of the general construction.
The abstract generalized Chern–Simons theory was studied in [115].

Let us rewrite (3.52) more carefully. Let us assume that the BV algebra A
satisfies the analogue of the ∂∂̄-lemma [116]. Let x ∈ H•(A) be harmonic, so
∂̄x = 0, ∂x = 0. Let us represent the ∂-closed element μ ∈ A as μ = x + a,
where a is ∂-exact. Using the relation {μ, μ} = ∂(μ · μ) for ∂-closed μ, we get

SCS[a|x,Ω0] =
1
2

tr a
∂̄

∂
a +

1
6

tr(x + a) · (x + a) · (x + a). (3.53)

As explained in the previous section, the solution μ(x) = x + a(x) of the
equation (3.49) for a critical point of (3.53) can be found perturbatively. By
the standard field theoretical argument, the solution is a generating function
of tree Feynmann diagrams of the cubic theory (3.53). The vertex in these
diagrams is tr μμμ, the propagator is ∂̄−1∂. The three-point function Cijk is
the third derivative of the action (3.53) evaluated at the critical point a(x)

Cijk(x|Ω0) = ∂i∂j∂kΦ(x|Ω0), (3.54)

Φ(x|Ω0) = SCS[a(x)|x,Ω0]. (3.55)

In different, but similar contexts, this fact was shown in [4, 12, 55]. Let
us briefly remind the computation. Let ḟ(x) = (d/dτ)f(x) be the deriv-
ative in an arbitrary constant direction ∂τ = vi∂i in H•(A). We need to

21The functional on space of BV actions!
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show that
...
Φ(x) = tr μ̇3(x) (3.56)

We have
...
Φ =

(
1
2

tr a∂̄∂−1a +
1
6

trμμμ

)...

(3.57)

Let us compute derivatives
1
6
(trμ3)... = tr μ̇3 + 3 tr μ̈μ̇μ +

1
2

tr
...
μμ2, (3.58)

1
2
(tr a∂̄∂−1a)... = 3 tr ä∂̄∂−1ȧ + tr

...
a ∂̄∂−1a. (3.59)

Since μ = x + a, we have μ̈ = ä and
...
μ =

...
a , therefore

...
Φ(x) = tr μ̇3 + 3 tr μ̈(∂̄∂−1ȧ + μμ̇) + tr

...
μ

(
∂̄∂−1a +

1
2
μ2

)
. (3.60)

The factors in the brackets of μ̈ and
...
μ terms vanish at the critical point

(3.49). Indeed, starting from (3.49), we have ∂̄∂−1a + 1/2μ · μ = 0, and
taking the derivative ∂τ we get ∂̄∂−1ȧ + μμ̇ = 0.

Thus, for any special differential BV algebra, in particular, for any that
comes from a generalized CY manifold, there is a secondly quantized theory
of the Chern–Simons type. This theory was studied in more details in [10].

There is one interesting remark about loop computations in (3.52). Count-
ing degrees in the cubic vertices and propagators, one can see that there is
a selection rule for nonzero correlation functions

1
2

n∑
i=1

di = (dimC X − 3)(1 − g) + n. (3.61)

Proof. Let D = dimR X, the degree of μi ∈ Λk(L∗) be k. Let us mark degrees
at the incoming line of each vertex. Each propagator has two marks on its
ends. In each vertex, we have dj1 + dj2 + dj3 = 2D, where j1, j2, j3 enu-
merate the incoming lines to that vertex. In each propagator we have
di1 + di2 + 2 = 2D, where di1, di2 are degrees at the ends of a given prop-
agator i. This condition is due to the form tr a∂−1∂̄a of the kinetic term,
where ∂−1∂̄ has degree 2. Let di be degrees of fields in the external lines
entering the diagram, n be the number of external lines, V be the number
of vertexes, E be the number of propagators, g be the number of loops.
The total sum of degrees over ends of all lines can be computed as sum
over vertexes or the sum over lines. Since the result is the same we have
the equation 2V D = 2E(D − 1) +

∑
di. Plugging relations for a trivalent

graph V = 2(g − 1) + n and E = n − 3 + 3g we get (3.61).
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This is precisely the condition on degrees of observables in the A-model
with non-vanishing Gromov–Witten invariants. In Gromov–Witten theory
(dimC X − 3)(1 − g) + n +

∫
β c1(TX) is the dimension of the fundamental

class in the moduli space of Riemann surfaces Mg,n of genus g and degree β.

For maps of degree 0, the Chern–Simons like theory (3.52) gives the
same condition. Moreover, that condition holds in arbitrary dimC X and
for an arbitrary generalized CY structure. It is not specific to the A-model.
That tells us that dimC X = 3 is not crucial for the existence of the tar-
get space theory of the Chern–Simons form (3.52). Indeed, we never used
condition dimC X = 3 to write the action (see also [115]). The peculiarity
of dimC X = 3 is that this CS theory is nontrivial in the sector of purely
geometric deformations of generalized CY structure.

In the case when J -model is the B-model, the theory (3.52) reduces to
the Kodaira–Spencer theory of gravity of [4], in the case when J -model is
the A-model, it reduces to the Kahler gravity of [117].

The Chern–Simons theory for BV actions again satisfies the BV master
equation [4]. In [4], the action was written initially only for ordinary geo-
metric deformations given by Beltrami differentials, then by arguments from
string field theory all other degrees were introduced that had interpretation
of BV ghosts and antifields. Here we obtain the complete Chern–Simons
functional with all degrees included from the very beginning.

In a spirit similar to [82], one can also compute the 1-loop partition func-
tion in (3.53) and find a certain product of generalized Ray–Singer torsions
in terms of determinants of generalized ∂̄L, ∂L operators of the Lie alge-
broid [118].

3.7 The dimCX = 3 case

In case dimC X = 3 there exists additional structure on the moduli space of
J -model. The logic below closely follows the standard considerations of the
B-model [4]. The difference is that a holomorphic (3, 0) form is replaced by
a canonical pure spinor (a mixed differential form). The familiar basis of all
3-cycles is replaced by the basis of all odd (even) cycles.

It was explained in Section 3.5 that the moduli space of geometrical defor-
mations is a holomorphic Lagrangian half-dimensional submanifold L in the
bosonic slice of the total extended moduli space. We can parameterize the
bosonic extended moduli space Hodd/even(X) by periods of the canonical
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pure spinor

XI =
∫

AI

Ω, FI =
∫

BI

Ω, (3.62)

where AI and BI satisfying AI ◦ AI = BI ◦ BI = 0, AI ◦ BI = δJ
I is a basis

of cycles in Hodd/even(X). The number of Xi is the half of dimHodd/even,
so we can consider X to be coordinates on the geometric moduli space. Let
us consider a geometric deformation μ · Ω of the canonical pure spinor. By
degree counting, we see that

∫
X

(μΩ, Ω) = 0, (3.63)

so22 ẊIFI − XI ḞI = 0 for any geometrical deformation Ẋ. A variation
along XI gives

FI = XJ∂IFJ . (3.64)

Let us consider the function

F(X) =
1
2
XIFI , (3.65)

and compute ∂JF

∂JF(X) =
1
2
(∂JFI)XI +

1
2
FJ . (3.66)

Using equation (3.64), we see that

∂JF(X) = FJ , (3.67)

so F(X) is the generating function of the Lagrangian submanifold L embed-
ded into Hodd/even with symplectic coordinates (XI , FI).

We see that the geometrical moduli space of the generalized J -model for
dimC X = 3 has the familiar special Kahler structure. It is equipped by the
holomorphic potential F (X) and the special coordinates XI .

Let us also note that the third derivative CIJK = ∂I∂J∂KF defines the
three-point function that agrees with (3.47). Indeed, consider the third-
derivative

...
F(X) along some constant vector field in XI coordinates. Using

22Actually we adjust signs of cycles such that bilinear pairing defined on pure spinors
gives

∫
(Ω1, Ω2) =

∫
AI

Ω1
∫

BI Ω2 −
∫

BI
Ω2

∫
AI Ω1 for two closed pure spinors Ω1, Ω2.
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the relation F = 1/2XIFI and FI = ∂IF , we get

Ḟ = ḞIX
I = FIẊ

I , (3.68)

F̈ = F̈IX
I + ḞIẊ

I = ḞIẊ
I , F̈IX

I = 0,
...
F IX

I + F̈ Ẋ = 0, (3.69)
...
F =

...
F IX

I + 2F̈IẊ
I = −

...
F IX

I . (3.70)

From the last line, we obtain

...
F =

∫
(
...
Ω, Ω). (3.71)

To make the relation with the three-point function, defined in terms of the
μ(x)-map in the canonical coordinates, let us represent Ω = e−μΩ0. Then
let us compute

...
Ω

(e−μ)... = (−...
μ + 3μ̈μ̈ − μ̇3)e−μ (3.72)

Therefore,
...
F = − trΩ(μ̇3 + 3μ̈μ̈ − μ̇3) = − trΩ(μ̇3), (3.73)

since the second and the third terms in the bracket vanish for geometrical
deformations by a simple degree counting. Explicitly, we can write

CIJK = ∂I∂J∂KF = −
∫

(μIμJμK · Ω, Ω) (3.74)

where μI represents the basis for deformations of Ω, that is, δXIδIΩ = μIΩ.
Up to a sign redefinition, we nearly recovered the standard formula for (3.47)

∂i∂j∂kΦ = Cijk = trΩ0 μiμjμk =
∫

(μiμjμkΩ0, Ω0). (3.75)

The apparent difference is that (3.74) uses the measure Ω for the trace map
of that point x where CIJK is computed, but (3.75) uses the measure Ω0 of
some reference point. However, if Ω = e−μ(x)Ω0 where μ(x) is variation of
the generalized complex structure by means of μ ∈ Λ2L∗, without a change
of the scale of the canonical pure spinor, then

trΩ0 μiμjμk = trΩ μiμjμk. (3.76)

This is easily to seen using dimC X = 3 and counting degrees.

So we showed that the formalism of the previous section, with the Chern–
Simons type formulas (3.52) and (3.54) for the partition function of BV
actions, which is valid in any dimension and for all types of deformations,
reduces for dimC X = 3 and geometrical deformations μ(x) ∈ Λ2L∗ to the
familiar formulas of the special Kahler geometry (3.65) and (3.75).
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It is known that the topological string on a CY threefold X computes the
effective prepotential for vector multiplets of the N = 2 four-dimensional
supergravity arising after compactification of type II string theory on
X [4, 119].

It is also possible to consider compactification of type II string theory on
a generalized CY threefold [95, 108, 109, 111, 120]. One can expect that
the relation between the physical and topological string also holds for such
compactifications. A generalization of the Ooguri-Strominger-Vafa (OSV)
conjecture [121] on the relation between black hole entropy in the type II
string compactifications and the topological strings is considered in [112].

We did not discuss the question of the holomorphic anomaly [4, 83] in the
generalized complex case. However, as it was demonstrated by Gerasimov
and Shatashvili [11], the holomorphic anomaly equation can be defined on
an arbitrary moduli space that has a structure of a special Kahler manifold
M . Since the geometric moduli space of generalized complex structures
for dimC X = 3 is special Kahler, the holomorphic anomaly is defined in
the same way. Presumably, the specifics of dimC X = 3 and special Kahler
geometry is not important for the holomorphic anomaly equation. The
key point of the holomorphic anomaly equation is a parallel transport of
observables on the moduli space. Given a flat connection on the extended
moduli space for generalized J -model, one should be able to get again the
holomorphic anomaly equation. It would be interesting to see its simple
derivation from the target space perspective of the action (3.52).

4 The Kontsevich ∗-product as a (−2,0) deformation of the
open topological B-model by a holomorphic Poisson
bivector

In this section, we consider an example of the topological J -model, which
is not equivalent to the ordinary A-model or B-model. More specifically,
we will consider J to be a finite deformation of the ordinary B-model by a
holomorphic Poisson bivector βij . We will take the B-model as a reference
point and consider perturbation theory over βij . We expect to get the
Kontsevich ∗-product formula [22, 23] as a deformation of the algebra of the
open B-model in accordance with [20, 29, 30].

The β-perturbed B-model has the BV master action

SB =
∫

Σ̂
μ(ψidxi + ψīx∗

ī + βijψiψj). (4.1)
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Let us stress that β is not supposed to be infinitesimally small. Now we
want to consider the action (4.1) on a disk. The observables are holomorphic
functions on the boundary: we consider the space-filling B-brane.

Let us quantize (4.1). We need to choose a Lagrangian submanifold. In
the conjugate pairs of fields (xī, x∗

ī
) and (ψī, ψ∗

ī
), we set to zero all compo-

nents of xī and ψī∗ :

xī xī
z xī

z̄ xī
zz̄

x∗
ī x∗

īz x∗
īz̄ x∗

īzz̄

ψī ψī
z ψī

z̄ ψī
zz̄

ψ∗
ī

ψ∗
ī

ψ∗
īz̄

ψ∗
īzz̄

(4.2)

The action for the boxed fields is a decoupled quadratic free action cor-
responding to the second term in (4.1). Since it decouples, we will forget
about it.

We are left with the pair of conjugate fields (xi, ψi) and purely holomor-
phic BV action for them

SB =
∫

Σ̂
μ(ψidxi + βij(x)ψiψj). (4.3)

This is consistent, because βij is the holomorphic bivector, so it depends
only on xi, and the observables are holomorphic functions on a boundary,
so they also depend only on xi. In the BV holomorphic symplectic structure,
xi and ψi are conjugate variables.

In the real case precisely the action (4.3) was studied by Cattaneo and
Felder [48, 49] in the context of the deformation quantization. In that case
context xi are real coordinates on a real manifold X and ψi are coordinate
in the fibers of T ∗X. There is the canonical symplectic form for (xi, ψi).
In [48, 49], it is shown that the 2D perturbative diagrams for the 3-point
boundary correlation function 〈h(x(∞))f(x(0))g(x(1))〉 precisely reproduce
the terms in the Kontsevich ∗-product formula [22]

f(x) � g(x) = f(x)g(x) +
i�

2
∂if(x)∂jg(x)βij(x) + · · · . (4.4)

The complete formula [22, 48, 49]

f � g = fg +
∞∑
i=1

(
i�

2

)n ∑
Γ

wΓDΓ(f ⊗ g) (4.5)
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is the perturbative series in �. Each term is given by a certain bi-differential
operator DΓ acting on f and g and associated with a certain Feynman
diagram. The weight wΓ is the amplitude of the diagram Γ. The derivation,
following Cattaneo and Felder [48, 49], goes as follows.

The sum in the formula runs over diagrams Γ. A diagram of order n
has n + 2 vertices. There are n vertices labeled 1, . . . , n and corresponding
to an insertion of βij(x) in the interior of the disk Σ. There are also two
distinguished vertices labeled L and R for insertion of f(x) at two points 0
and 1 at the boundary.

The vertices are connected by oriented propagators. Precisely two prop-
agators start at each vertex and end somewhere else. To such a diagram
corresponds a bi-differential operator ΔΓ that acts on f and g. This oper-
ator is made of βij and its derivatives ∂i1∂i2 · · ·βj1j2 . The arrows indicate
contraction of indices of βij and derivatives ∂i. The beginning of an arrow
stands for an upper index i of βij , and the end of an arrow points to another
β(x) or f(x) that should be acted by ∂i. The coefficient wΓ is given by a
certain integral over position of n points zi on the upper half plane (or disk)
Σ. The integrand is a product of 2n functions φ(zi, zj) for each connecting
arrow in the diagram.

That is just a Feynman diagram of the perturbation theory in β for the
2D theory on the disk (4.3). The free action is

∫
ψi dxi. The propagator

connects ψi and xi. Each insertion of βijψiψj gives two ψ’s. The ψ’s should
be contracted with x’s, so we expand βij(x) and f(x) in x and contract them
with ψ’s. Pulling out one x from βij(x) or f(x) and contracting it with ψ
is the same as taking a derivative of βij(x) or f(x).

The coefficient of each diagram is given by a certain integral over position
of n insertion points over Σ. The propagator φ(z, w) is the appropriately
gauged fixed operator d−1. It has a structure φ(z, w) = log (z − w)(z − w̄)/
(z̄ − w̄)(z̄ − w). The integrals over positions of points z1, . . . , zn of products
of these propagators are computable [22]. They are of a topological nature,
since propagator d−1 is represented by a closed differential form.

Exactly the same perturbation theory holds for (4.3). Indeed, the fields
of (4.3), the BV symplectic structure, the Poisson bivector and the BV
measure in the functional integral are precisely holomorphic analogue of the
Cattaneo and Felder data. The (−2, 0) finite perturbation of the B-model
formally reproduces in all orders the Kontsevich ∗-product formula in the
holomorphic context.

See [122] for discussion of subtleties related with quantization of the Pois-
son sigma-model.
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5 Conclusion

In this paper, we presented the topological sigma-model that depends only
on a generalized complex structure J on the target space. We employed the
AKSZ formalism [47] for construction of the J -model.

The closed sector was studied at the tree level without instanton correc-
tions, reproducing [101]. The relevance of the Chern–Simons like functionals
for closed string field theory was discussed. The observables and correlation
functions are defined in agreement with Barannikov and Kontsevich [12] and
Li [101]. The special properties of the case dimC X = 3 are studied from the
viewpoint of the general framework.

In the open sector, we considered generalized complex structure repre-
sented by an ordinary complex structure and holomorphic Poisson bivector.
The product in the algebra of open strings is deformed into the noncommu-
tative holomorphic Kontsevich ∗-product with [20, 29, 30]. The computation
is completely parallel to the real case of [48, 49].

There were some related developments recently. In [30, 38, 39], it was
suggested to construct the generalized topological J -model by means of the
generalized Kahler geometry, which is described by a pair of commuting gen-
eralized complex structures (J ,J ′). As Gualtieri [36] showed the generalized
Kahler geometry (J ,J ′) is equivalent to the data (g, b, I+, I−) with certain
compatibility conditions, where g is an ordinary metric, B is a two-form, I+
and I− are ordinary complex structures. (This is the geometry discovered in
studies of N = (2, 2) CFT’s in [85], see also recent works [86–93, 97, 123].)

The difference of our approach is that from the very beginning, we require
existence of only one generalized complex structure (and a canonical pure
spinor, i.e., a weak generalized CY structure). A second generalized complex
structure is used only to gauge fix the model. In general, it does not have to
be integrable. It would be very interesting to compare explicitly the gauge
fixed version of J -model with constructions of [93, 97, 99]. It is also possible
that one could find other physically interesting gauge fixing conditions. For
example, the gauge that was used in Section 4 to study βij deformations of
the B-model, is different. It is not yet clear, what is the space L of physically
non-equivalent gauges—Lagrangian submanifolds in the BV phase space of
J -model.

The interesting questions about the possibility of global symplectic reali-
zation [61–63, 79] of ΠL, as well as about the behavior of the model at
the non-regular points, were left out for the future study. The topological
sigma-model on a generalized complex target space might be useful in the
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context of the field theoretical study of geometrical Langlands program [124]
and generalized type II string compactifications [109].

In [46], a generalization of BV formalism was suggested. There is a way
to define amplitudes for cycles in the moduli space L of Lagrangian subman-
ifolds. The original BV construction is a particular case of zero cycles. The
higher genus amplitudes of the J -model coupled with the 2D gravity corre-
spond to the integrals of closed forms over cycles in L. One needs to study
these higher genus contributions. There are some indications [10, 115] that
the generalized CS theory of BV actions might define higher genus ampli-
tudes in the no instanton approximation. The relation [4] with the closed
string field theory needs to be studied in more details. In particular, one has
to find out what are the descendants from the viewpoint of the generalized
CS theory.

The generalized CS theory (3.52) on the space of BV functionals exists
for any theory formulated in the BV way. The classical solutions of this
CS theory correspond to the solutions of the BV classical master equation.
What is the meaning of the generalized CS action for BV functionals at the
quantum level?

Acknowledgements

I thank E. Witten for coordination of the project, many interesting discus-
sions, important comments and suggestions. I am very grateful to
N. Nekrasov for fruitful discussions, ideas and numerous answers to my
questions. I thank M. Grana, F. Denef, A. Kapustin, A. Losev, A. Neitzke,
S. Shatashvili, D. Shih and A. Tomassielo for interesting discussions and
remarks. Part of this research was done during my visits to Institut des
Hautes Etudes Scientifiques, Bures-sur-Yvette, France, and the third Simons
Workshop in Mathematics and Physics at Stony Brook University, NY. I
thank these institutions for their kind hospitality. The work was supported
in part by grant RFBR 04-02-16880 and grant NSF 245-6530.

References

[1] E. Witten, Topological sigma models, Commun. Math. Phys. 118,
(1988), 411.

[2] E. Witten, Topological quantum field Theory, Commun. Math. Phys.
117, (1988), 353.



TOPOLOGICAL STRINGS 443

[3] E. Witten, Mirror manifolds and topological field theory, 1991.
hep-th/9112056.

[4] M. Bershadsky, S. Cecotti, H. Ooguri, and C. Vafa, Kodaira–Spencer
theory of gravity and exact results for quantum string amplitudes,
Commun. Math. Phys. 165, (1994), 311–428. hep-th/9309140.

[5] K. Hori, S. Katz, A. Klemm, R. Pandharipande, R. Thomas,
C. Vafa, R. Vakil, and E. Zaslow, Mirror symmetry, Clay Mathema-
tics Monographs, 1, American Mathematical Society, Providence, RI,
2003.

[6] E. Witten, Two-dimensional gravity and intersection theory on moduli
space. Surveys Diff. Geom. 1, (1991), 243–310.

[7] M. Kontsevich, Enumeration of rational curves via torus actions. The
moduli space of curves (Texel Island, 1994), volume 129 of Progr.
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Acad. Sci. Paris Sér. A-B, 264, (1967), A245–A248.

[52] D. Roytenberg, Courant algebroids, derived brackets and even symplec-
tic supermanifolds, PhD Thesis, Berkeley, 1999, math.DG/9910078.

[53] Z.-J. Liu, A. Weinstein and P. Xu, Manin triples for Lie bialgebroids,
J. Diff. Geom. 45(3), (1997), 547–574, dg-ga/9508013.

[54] K.C.H. Mackenzie and P. Xu, Lie bialgebroids and Poisson groupoids,
Duke Math. J. 73(2), (1994), 415–452.



446 VASILY PESTUN

[55] Y.I. Manin, Three constructions of Frobenius manifolds: a com-
parative study [MR1701927 (2001b:14087)]. Surveys in differential
geometry, Surv. Diff. Geom., VII, Int. Press, Somerville, MA, 2000,
pp. 497–554.

[56] P. Xu, Gerstenhaber algebras and BV-algebras in Poisson geometry,
Comm. Math. Phys. 200(3), (1999), 545–560, dg-ga/9703001.

[57] E. Getzler, Batalin-Vilkovisky algebras and two-dimensional topo-
logical field theories, Commun. Math. Phys. 159, (1994), 265–285,
hep-th/9212043.

[58] J. Huebschmann, Lie-Rinehart algebras, Gerstenhaber algebras and
Batalin-Vilkovisky algebras, Ann. Inst. Fourier (Grenoble) 48(2),
(1998), 425–440, dg-ga/9704005.

[59] Y. Kosmann-Schwarzbach and J. Monterde, Divergence operators and
odd Poisson brackets, Ann. Inst. Fourier (Grenoble) 52(2), (2002),
419–456.

[60] Y. Kosmann-Schwarzbach, Exact Gerstenhaber algebras and Lie bial-
gebroids, Acta Appl. Math. 41(1–3), (1995), 153–165, Geometric and
algebraic structures in differential equations.

[61] A.C. da Silva and A. Weinstein, Geometric models for noncommuta-
tive algebras, Berkeley Mathematics Lecture Notes, Vol. 10, American
Mathematical Society, Providence, RI, 1999.

[62] A. Weinstein, Symplectic groupoids and Poisson manifolds, Bull.
Amer. Math. Soc. (N.S.) 16(1), (1987), 101–104.
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