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Abstract

In this paper, we prove that the five-dimensional Schwarzschild–
Tangherlini solution of the Einstein vacuum equations is orbitally sta-
ble (in the fully non-linear theory) with respect to vacuum perturbations
of initial data preserving triaxial Bianchi-IX symmetry. More generally,
we prove that five-dimensional vacuum spacetimes developing from suit-
able asymptotically flat triaxial Bianchi-IX symmetric initial data and
containing a trapped or marginally trapped homogeneous 3-surface neces-
sarily possess a complete null infinity I+, whose past J−(I+) is bounded
to the future by a regular event horizon H+, whose cross-sectional volume
in turn satisfies a Penrose inequality, relating it to the final Bondi mass.
In particular, the results of this paper give the first examples of vacuum
black holes which are not stationary exact solutions.
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1 Introduction

The study of higher dimensional gravity has attracted much attention in
recent years, motivated mainly by speculations from high-energy physics.
The variety of possible end-states for vacuum gravitational collapse in higher
dimensions appears richer [10] than in four dimensions and gives rise to
many interesting questions. All analytical work, thus far, however, has
centred on the question of the existence and uniqueness of static [11] or
stationary [18, 14] solutions or has been based on study of the linearized
equations [13, 15]. While such results are suggestive as to what may occur
dynamically, they do not directly address the problem of evolution and leave
open the possibility that the non-linear theory admits phenomena of a com-
pletely different and unexpected nature.

The purpose of this paper is to initiate the rigorous study of dynamical
vacuum black holes in higher dimensions in the fully non-linear theory.
Specifically, we will study the problem of evolution for the Einstein vacuum
equations

Rµν = 0, (1.1)

for asymptotically flat initial data possessing triaxial Bianchi-IX symmetry.
This model has been recently introduced by Bizon et al. [2]. They show that
vacuum solutions with this symmetry have two dynamic degrees of freedom,
and the Einstein equations can be written (see [2]) as a system of non-
linear pde’s on a two-dimensional Lorentzian quotient of five-dimensional
spacetime by an SU(2) action with three-dimensional orbits.

The system of equations thus obtained is studied numerically in [2], where
analogues of critical behaviour have been discovered. Proving rigorously
the kind of behaviour suggested by these numerics appears a formidable
problem, beyond the scope of current techniques. Implicit in the discussion
of [2], however, is the notion that there is an open set of initial data that
leads to black hole formation. It is this aspect of [2] that we will formulate
and rigorously prove in this paper.

The main result is

Theorem 1.1. Consider asymptotically flat smooth initial data (S, ḡ, K) for
the vacuum Einstein equations, possessing triaxial Bianchi-IX symmetry.
Let (M, g) denote the maximal Cauchy development, and let π : M → Q
denote the projection map to the two-dimensional Lorentzian quotient Q.
Suppose there exists an asymptotically flat spacelike Cauchy surface S̃ ⊂ Q,
and a point p ∈ S̃ such that π−1(p) is trapped or marginally trapped, and (at
least) one of the connected components S̃ \ {p} contains an asymptotically
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flat end such that π−1(q) is not outer antitrapped or marginally antitrapped
for any q in the component. Then Q contains a subset with Penrose diagram:

S̃

i+

i0

H+

p

I+

Moreover, the null infinity I+ corresponding to the above end is complete,
and the Penrose inequality

r ≤
√

2Mf

holds on H+, where r denotes the volume-radius function and where Mf
denotes the final Bondi mass.

Note that one can construct a large family of initial data such that the
assumptions of the theorem are satisfied with S̃ = π(S), for instance.

The region J−(I+) depicted above is what is typically called a black hole
exterior, the region Q \ J−(I+) is called the black hole, and H+ is the event
horizon. Thus, the statement of the theorem can be paraphrased by

Asymptotically flat triaxial Bianchi-IX symmetric spacetimes evolving from
suitable data, with an SU(2)-invariant trapped or marginally trapped 3-
surface, possess a black hole with a regular event horizon (satisfying a
Penrose inequality) and a complete null infinity.

Theorem 1.1 can in fact be specialized to yield

Corollary 1.1. Let (S, ḡ, K) denote initial data evolving to the
Schwarzschild–Tangherlini metric. Then for smooth triaxial Bianchi-IX
symmetric initial data (S ′, ḡ′, K ′), sufficiently close to (S, ḡ, K) in a suitable
norm, the result of the previous theorem holds for the maximal development
(M′, g′), and moreover, the black hole exterior of (M′, g′) remains close in
a suitable sense to Schwarzschild–Tangherlini.

Corollary 1.1 can be paraphrased by the statement:

Schwarzschild–Tangherlini is orbitally stable within the class of triaxial
Bianchi-IX symmetric spacetimes.

The results of this paper can be thought to complement previous results
of Gibbons and Hartnoll [13] suggesting linear stability1 and also to the

1See also Ishibashi and Kodama [15].
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uniqueness of Schwarzschild–Tangherlini as a static black hole vacuum
spacetime [11]. Finally, we note that Theorem 1.1 gives, in particular, the
first examples of vacuum black holes which are not static or stationary exact
solutions.2

An outline of the paper is given as follows: In Section 2, the vacuum
five-dimensional Einstein equations under triaxial Bianchi-IX symmetry are
written as a system of pde’s on a quotient two-dimensional Lorentzian
manifold, where the latter is endowed with a null coordinate system. Triaxial
Bianchi-IX symmetric initial data give rise to a triaxial Bianchi-IX
symmetric maximal development, and this is discussed in Sections 3 and 4.
Fundamental for understanding the global behaviour of this maximal devel-
opment is the existence of a quantity m with good monotonicity properties in
null directions, analogous to the classical Hawking mass. This quantity was
first identified in [2]. This is discussed in Section 5. Borrowing from ideas
of [3, 7], one can exploit the structure provided by m to estimate all quanti-
ties in the regular region (defined in Section 6) and thus derive an extension
criterion which prohibits “boundary” points of the maximal development in
the “closure” of the regular region, unless these lie on a future directed null
ray emanating from the centre. This is the content of Section 7. The words
boundary and closure can be interpreted in the topology of the Penrose
diagrams. The completeness of null infinity is then shown in Sections 8 and
9, adapting ideas of [6] to higher dimensions. This completes the proof of
Theorem 1.1. Corollary 1.1 is shown in Section 10, and final comments are
given in Section 11.

2 Triaxial Bianchi-IX

We will say that a globally hyperbolic spacetime (M, g) admits triaxial
Bianchi-IX symmetry if M = Q × SU(2) topologically, for Q a two-
dimensional manifold possibly with boundary on which global coordinates
u and v can be chosen such that

g = −Ω2 du dv +
1
4
r2(e2Bσ2

1 + e2Cσ2
2 + e−2(B+C)σ2

3) (2.1)

where B, C, Ω, and r are functions Q → R and the σi are a standard basis
of left invariant one-forms on SU(2), i.e., the σi are such that coordinates

2Such solutions are yet to be constructed in 3 + 1-dimensions, as, in view of Birkhoff’s
theorem, it is impossible to reduce the problem to a 1 + 1-dimensional system of pde’s.
Solutions with a future complete, but not past complete, I+ have been constructed,
however, by Chruściel [5], by solving a certain parabolic problem.
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(θ, φ, ψ) can be chosen on SU(2) with

σ1 = sin θ sin ψ dφ + cos ψ dθ,

σ2 = sin θ cos ψ dφ − sin ψ dθ,

σ3 = cos θ dφ + dψ.

(2.2)

If there is a boundary Γ to Q, it is to be a timelike curve, characterized
by r = 0.

From the above, it is clear that the metric (2.1) admits an SU(2) action by
isometry. The boundary Γ corresponds to fixed points of the group action.
We call it the centre. The angular part of the metric can be understood as a
“squashed” 3-sphere. In the case that B = C, the so-called biaxial case, the
system enjoys an additional U(1) symmetry. If B = C = 0, we have SO(4)
symmetry, and the unique solution to the Einstein vacuum equations is five-
dimensional Schwarzschild, which we will here refer to as the Schwarzschild–
Tangherlini solution.

From the Einstein equations (1.1), we derive the following equations:

∂u

(
Ω−2∂ur

)
= − 2r

3Ω2

(
(B,u)2 + B,uC,u + (C,u)2

)
, (2.3)

∂v

(
Ω−2∂vr

)
= − 2r

3Ω2

(
(B,v)2 + B,vC,v + (C,v)2

)
, (2.4)

−2∂u∂v log Ω − 3
r
r,uv = B,v (2B,u + C,u) + C,v (2C,u + B,u) , (2.5)

∂u∂v log Ω +
3
r
r,uv + 3

r,ur,v

r2 = −Ω2ρ

2r2 − 1
2
(B,v(2B,u + C,u)

+ C,v(2C,u + B,u)), (2.6)

where ρ denotes the scalar curvature of the group orbit:

ρ = e2B+2C + e−2B + e−2C − 1
2
e−(4B+4C) − 1

2
e4B − 1

2
e4C . (2.7)

From these equations, we can derive a system of nonlinear wave equations
for the four quantities r, Ω, B, and C:

r,uv = −1
3

Ω2ρ

r
− 2r,ur,v

r
, (2.8)

∂u∂v log Ω =
Ω2ρ

2r2 +
3
r2 r,ur,v − 1

2
(B,v (2B,u + C,u) + C,v (2C,u + B,u)) ,

(2.9)
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B,uv = −3
2

r,u

r
B,v − 3

2
r,v

r
B,u +

Ω2

3r2 (e2B+2C + e−4B−4C

− 2e−2B − 2e4B + e−2C + e4C), (2.10)

C,uv = −3
2

r,u

r
C,v − 3

2
r,v

r
C,u +

Ω2

3r2 (e2B+2C + e−4B−4C

− 2e−2C − 2e4C + e−2B + e4B). (2.11)

Note that the last two equations become identical in the biaxial case. Equa-
tions (2.3) and (2.4) are to be thought of as constraints which are preserved
by the evolution of (2.8)–(2.11).

The system of equations (2.3)–(2.11) should be compared to the equations
originally derived in [2] in r, t coordinates.

3 The initial value problem

Consider an asymptotically flat triaxial Bianchi-IX vacuum initial data set3

(S, ḡ, K). Let (M, g) denote the maximal development of (S, ḡ, K). By
standard arguments, it follows that (M, g) is triaxial Bianchi-IX symmetric
in the sense of the previous section. Moreover, the range of the null co-
ordinates can be chosen to be bounded, defining i.e., a conformal embedding
of Q into a bounded subset of R

1+1. The two possibilities for the global
structure of the image of such an embedding are depicted,

i0
Si0

i0

Γ
S

depending on the number of asymptotically flat ends. S denotes π(S). In
what follows, the notations J+, closure, etc., will refer to the topology and
causal structure of R

1+1. By the definition of asymptotic flatness, it follows
that r tends monotonically to infinity along S, sufficiently close to the points

3We leave to the reader the correct formulation of this notion.
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labeled i0. Moreover, Q ∩ J+(S) is foliated by constant-v curves emanating
from S and constant-u curves emanating from S ∪ Γ.

4 Local existence and extension

We wish to understand future boundary points of Q (in the topology of the
Penrose diagram) which do not “emanate” from the centre Γ.4 For this,
the following local existence theorem in null coordinates shall suffice for our
purposes.

Proposition 4.1. Let Ω, r, B, and C be functions defined on X = [0, d] ×
{0} ∪ {0} × [0, d]. Let k ≥ 0, and assume r > 0 is Ck+2(u) on [0, d] × {0}
and Ck+2(v) on {0} × [0, d], and assume that Ω, B, and C are Ck+1(u) on
[0, d] × {0} and Ck+1(v) on {0} × [0, d]. Suppose that equations (2.3) and
(2.4) hold initially on [0, d] × {0} and {0} × [0, d], respectively. Let |f |n,u

denote the Cn(u) norm of f on [0, d] × {0}, |f |n,v the Cn(v) norm of f on
{0} × [0, d], etc. Define

N = sup{|Ω|1,u, |Ω|1,v, |Ω−1|0, |r|2,u, |r|2,v, |r−1|0, |B|1,u, |B|1,v, |C|1,u, |C|1,v}.

Then there exists a δ, depending only on N, and a Ck+2 function (unique
among C2 functions) r, and Ck+1 functions (unique among C1 functions)
Ω, B, and C, satisfying equations (2.3)–(2.11) in [0, δ∗] × [0, δ∗], where δ∗ =
min{d, δ}, such that the restriction of these functions to [0, d] × {0} ∪ {0} ×
[0, d] is as prescribed.

Proof. The proof is by standard methods and is omitted. For a similar proof
of a local existence theorem in this framework, see Appendix B of [8]. �

From Proposition 4.1 and the maximality of the Cauchy development, the
following extension principle follows. Given a subset Y ⊂ Q \ Γ, define

N(Y ) = sup{|Ω|1, |Ω−1|0, |r|2, |r−1|0, |B|1, |C|1},

where, for f defined on Q+, |f |k denotes the restriction of the Ck norm to Y .

Proposition 4.2. Let p ∈ Q \ Γ and q ∈ Q ∩ I−(p) such that J−(p) ∩ J+(q)
\ {p} ⊂ Q, and N(J−(p) ∩ J+(q) \ {p}) < ∞. Then p ∈ Q.

4Such “boundary” points can also be described without reference to this topology, in
the language of TIPs. See [16].
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5 The Hawking mass

A remarkable feature of the system of equations (2.8)–(2.11) is the existence
of energy estimates for B and C. For this, we first define the so-called
Hawking mass

m =
r2

2

(
1 +

4r,ur,v

Ω2

)
. (5.1)

We compute the identities:

∂um = −4
3

r3

Ω2 r,v[(B,u)2 + B,uC,u + (C,u)2] + r · r,u

[
1 − 2

3
ρ

]
, (5.2)

∂vm = −4
3

r3

Ω2 r,u[(B,v)2 + B,vC,v + (C,v)2] + r · r,v

[
1 − 2

3
ρ

]
. (5.3)

Note that ρ is bounded above:

ρ ≤ 3
2
. (5.4)

(A straightforward way to show this is to set x = e2B, y = e2C , and to study
the function ρ(x, y). First one shows that ρ(x, y) < 3/2 in the region

R =
{

x ≤ 1
10

, y ≤ 1
10

}
∪ {x ≥ 10, y ≥ 10}. (5.5)

Next, one determines the critical points of ρ(x, y). It turns out that that
there is only one extremum at x = 1, y = 1, which is shown to be a maximum.
This proves ρ(x, y) ≤ (3/2) with equality only for the round sphere,
B = C = 0.)

By (5.4), we now see that all terms in square brackets are manifestly
non-negative. Thus, if, say ∂ur < 0 and ∂vr ≥ 0, we have

∂um ≤ 0, ∂vm ≥ 0. (5.6)

The monotonicity (5.6) can be compared with the monotonicity in the
r-direction for the (r, t) coordinates given by formula (2.7) of [2].
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6 The regions R, T , and A

Let us define the regular region

R = {p ∈ Q such that ∂vr > 0, ∂ur < 0},

the trapped region

T = {p ∈ Q such that ∂vr < 0, ∂ur < 0},

and the marginally trapped region

A = {p ∈ Q such that ∂vr = 0, ∂ur < 0}.

The reader is warned that the term regular is meant with reference to
the asymptotically flat end in the direction of which the vector ∂v points.
By the results of the previous section, the inequalities (5.6) hold in R ∪ A.
In the next section, we will show how this leads to a stronger extension
theorem than Proposition 4.2.

7 Extension in the non-trapped region

The monotonicity (5.6) indicates that our systems (2.3)–(2.11) share a formal
similarity with spherically symmetric 3 + 1-dimensional Einstein-matter sys-
tems for suitable matter fields satisfying the dominant energy condition [6,
17]. In particular, one might conjecture that an extension principle analo-
gous to the one formulated in [6] holds in the non-trapped region. This is
what we show in this section.

We have

Proposition 7.1. Let p ∈ R \ Γ and q ∈ R ∪ A ∩ I−(p) such that J−(p) ∩
J+(q) \ {p} ⊂ R ∪ A. Then p ∈ R ∪ A.

Proof. The proof adapts techniques introduced in [7]. The strategy is as
follows: one first obtains bounds for the mass via the monotonicity (5.6).
Then one revisits equations (5.2) and (5.3) to obtain a priori L2-type bounds
on weighted null derivatives of B and C. Finally, one controls from below
these weights with the help of the Raychaudhuri equation (7.6), and this
allows one to estimate all quantities needed to apply Proposition 4.2.
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Let us introduce the following notation:

ν = ∂ur,

λ = ∂vr,

κ = −1
4

Ω2

ν
,

µ =
2m

r2 ,

ζB = r3/2∂uB,

ζC = r3/2∂uC,

θB = r3/2∂vB,

θC = r3/2∂vC.

Note that κ(1 − µ) = λ.

Let X denote (J+(q) \ I+(q)) ∩ Q. Setting p = (u1, v1) and q = (uε, vε),
we have X = {uε} × [vε, v1] ∪ [uε, u1] × {vε}. Since X is compact, the quan-
tities

r, κ, λ, ν, m, B, C, ζB, ζC , θB, θC , ∂uΩ, ∂vΩ, ∂vλ, ∂uν (7.1)

are uniformly bounded above and below on X:

0 < r0 ≤ r ≤ R,

0 ≤ λ ≤ Λ,

0 > ν0 ≥ ν ≥ N,

|B| ≤ PB,

|C| ≤ PC ,

|θB| ≤ TB,

|θC | ≤ TC ,

|ζB| ≤ ZB,

|ζC | ≤ ZC ,

|m| ≤ M,

0 < κ0 ≤ κ ≤ K,

|∂uΩ| ≤ H,

|∂vΩ| ≤ H,

|∂uν| ≤ H,

|∂vλ| ≤ H.

(7.2)
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By Proposition 4.2, in view also of the fact that Ω2 = −4κν, to prove Propo-
sition 7.1, it suffices to show that the quantities (7.1) are uniformly bounded
everywhere in [uε, u1] × [vε, v1] \ {(u1, v1)}, with bounds similar to (7.2).

We first derive a bound for r. Integrating ν along u and λ along v, we
obtain from (7.2), in view of the signs of ν, λ in R ∪ A, that

0 < r0 ≤ r ≤ R (7.3)

in [uε, u1] × [vε, v1] \ {(u1, v1)}. A similar argument can be given for the
mass: Integrating (5.2) along u yields

m(u�, v�) − m(uε, v
�) ≤ 0

and integrating (5.3) along v yields

m(u�, v�) − m(u�, vε) ≥ 0. (7.4)

We conclude the bound
−M ≤ m ≤ M (7.5)

on [uε, u1] × [vε, v1] \ {(u1, v1)}.

A bound on κ can be derived as follows: Note that κ > 0 by definition,
in view of the ν < 0. On the other hand, we compute from (2.3)

κ,u = −1
6

r

ν2 Ω2 (
(B,u)2 + B,uC,u + (C,u)2

)
≤ 0. (7.6)

Thus, integrating in u from X, in view of (7.2), we obtain

0 < κ ≤ K (7.7)

in [uε, u1] × [vε, v1] \ {(u1, v1)}.

Next, we bound the quantity ν using the evolution equation (2.8), written:

∂vν = r,uv = −1
3

Ω2ρ

r
− 2νλ

r
= ν

(
4κρ

3r
− 2λ

r

)
.

Integrating this equation in v, we get

ν(u�, v�) = ν(u�, vε) exp

(∫ v�

vε

(
4κρ

3r
− 2λ

r

)
(u�, v)dv

)

. (7.8)

Since ρ ≤ (3/2), λ ≥ 0, we obtain the upper bound

−ν ≤ |N | · exp
(

2εK

r0

)
≡ N ′.

From the above and (7.7), it follows that the quantity Ω2 = −4κν is also
bounded from above.
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To estimate B and C, we revisit equations (5.2) and (5.3), in view of
(7.5), to infer a priori integral estimates for derivatives of these quantities.
Equation (5.3) gives
∫ v�

vε

(
−4

3
ν

r3

Ω2

(
(B,v)2 + B,vC,v + (C,v)2

)
+ λr

(
1 − 2

3
ρ

))
(u�, v) dv ≤ 2M,

(7.9)
and therefore, since

(B,v)2 + B,vC,v + (C,v)2 ≥ 1
2
(B,v)2 +

1
2
(C,v)2 ≥ 0,

we have
∫ v�

vε

1
3

r3

κ
(B,v)2 (u�, v) dv =

∫ v�

vε

1
3κ

(θB)2 (u�, v) dv ≤ 4M. (7.10)

Obviously, the same inequality holds with B replaced by C. In the same
way, integrating equation (5.2) along u using the mass-bound (7.5) leads to
the estimate

∫ u�

uε

1
3

(1 − µ)
(

ζB

ν

)2

(−ν) (u, v�) du ≤ 4M. (7.11)

Again, the same inequality holds with B replaced by C.

We may now integrate the equation B,v = r−3/2θB in v to obtain

|B(u�, v�)| ≤ |B(u�, vε)| +

∣∣∣∣∣

∫ v�

vε

θB

r3/2 (u�, v) dv

∣∣∣∣∣

≤ PB +

√∫
θ2
B

κ
dv

√∫
κ

r3 dv ≤ PB +
√

12M

√
Kε

r3
0

≡ Pb,

where we used the Schwarz inequality in the step from the first to the second
line and (7.10) for the last step. In a completely analogous fashion —
integrating C,v = r−3/2θC in v — we obtain the same bound for C. Having
bounded B and C, it follows from (2.7) that ρ is also bounded in [uε, u1] ×
[vε, v1] \ {(u1, v1)}. This enables us to bound λ. Rewriting the evolution
equation (2.8) for r,uv in terms of quantities we already control, we obtain

∂uλ = r,uv = ν

(
4κ

3r
ρ − 2

r
κ

(
1 − 2m

r2

))

which we can integrate along u. Because we already control all the quantities
appearing in the integrand, we immediately obtain a bound for λ in [uε, u1] ×
[vε, v1] \ {(u1, v1)}:

λ ≤ L.
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The determination of a suitable constant L is left to the reader.

We turn to bound |ν| and κ from below, away from zero. In view of the
bound on |ρ|, we may derive immediately from (7.8) a bound

ν ≤ ν̃0 < 0.

For κ, we integrate (7.6), rewritten as

∂uκ = κ

(
2
3
rν−1((B,u)2 + B,uC,u + (C,u)2)

)
(7.12)

to obtain

κ(u, v) = κ(uε, v) exp
∫ u

uε

2
3
rν−1((B,u)2 + B,uC,u + (C,u)2) du

≥ κ̃0,

where, for the last inequality, we use (7.2) and the bounds proved above, in
particular, the u-analogue of (7.9).

Finally, we note at this stage that from (2.8), it follows immediately r,uv

is bounded in [uε, u1] × [vε, v1] \ {(u1, v1)}.

We turn now to bound the derivatives of B and C. First let us con-
sider ∂vB, ∂vC. Differentiating θB = r3/2∂vB in u and using the evolution
equation (2.10), we get

∂uθB = −3
2

λζB

r
+

Ω2

3
√

r

(
e2B+2C + e−4B−4C − 2e−2B − 2e4B

+ e−2C + e4C
)
,

which can be integrated in u to give

|θB(u�, v�)| ≤ |θB(uε, v
�)| +

3
2

∣∣∣∣∣

∫ u�

uε

λζB

r
(u, v�) du

∣∣∣∣∣
+

∣∣∣∣∣

∫ u�

uε

Ω2

3
√

r
(e2B+2C

+ e−4B−4C − 2e−2B − 2e4B + e−2C + e4C) (u, v�) du

∣∣∣∣∣
.

The third term on the right hand side is bounded because we control all
quantities in the integrand. We estimate it say by the constant F . For the
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second term, we use the Schwarz inequality and the a priori bound (7.11):

|θB(u�, v�)| ≤ TB + F +
3
2

∣
∣
∣
∣
∣

∫ u�

uε

νκ(1 − µ)ζB

rν
(u, v�) du

∣
∣
∣
∣
∣

≤ TB + F +
3
2

√∫ u�

uε

(−ν)(1 − µ)
(

ζB

ν

)2

(u, v�) du

·

√∫ u�

uε

(−ν)κ2(1 − µ)
r2 (u, v�) du

≤ TB + F +
3
2

√
12M · K ·

√
r−1
0 + Mr−3

0 ≡ V.

Hence, we bounded θB and therefore ∂vB. The bound for ∂vC is obtained
completely analogously.

Next we turn to ∂uB, ∂uC. Differentiating ζB = r3/2∂uB with respect to
v using the evolution equation (2.10), we obtain

∂vζB = −3
2

νθB

r
+

Ω2

3
√

r
(e2B+2C + e−4B−4C − 2e−2B − 2e4B + e−2C + e4C).

Integration in v now yields a bound for ζB since all the quantities on the
right have already been shown to be bounded. (Alternatively, we could use
the Schwarz inequality and the a priori bound (7.10).) The bound for ζC

and therefore C,u is obtained in a completely analogous manner. Having
bounded B, C and their first derivatives, equation (2.10) yields that B,uv is
also bounded.

Bounds for Ω,u and Ω,v follow by integrating (2.9) in v and u, respectively.
Finally, bounds for r,uu and r,vv follow from (2.3), respectively, (2.4) and
the previous bounds.

As remarked at the beginning, the proof now follows by applying Propo-
sition 4.2. �

8 Null infinity

Let S̃ be as in the statement of Theorem 1.1. Without loss of generality, let
the asymptotically flat end in question be such that ∂v points “outwards”.
We define a set I+ ⊂ (Q \ Q) ∩ J+(S̃), as follows: Let

U =

{

u : sup
v : (u,v)∈Q+

r(u, v) = ∞
}

. (8.1)
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For each u ∈ U , there is a unique v�(u) such that

(u, v�(u)) ∈ (Q \ Q) ∩ J+(S̃). (8.2)

Let the end in question have limit point on S given by i0 = (û, V ). Then
the null infinity corresponding to i0 is defined as the set

I+ =
⋃

u∈U :v�(u)=V

(u, v�(u)). (8.3)

Arguments similar to [3] show that I+ is non-empty for the data consid-
ered here.5 It is straightforward to show, adapting [6], that I+ is then a
connected ingoing null ray with past-limit point i0. Denote the future limit
point of I+ by i+. A priori, it could be that i+ ∈ I+.

Adapting [6], one shows from the monotonicity properties (5.6) of m that
the Bondi mass6

M(u) = lim sup
v→V

m(u, v)

is a finite (not necessarily continuous) function on I+, non-increasing in u.
We define Mf = inf M(u) to be the final Bondi mass.

9 Proof of Theorem 1.1

This proof is an adaptation of methods introduced in [6].

As above, let S̃ be as in the statement of Theorem 1.1, let ∂v be the
outward direction, and consider the set

D = J+(S̃) ∩ J−(I+) ∩ Q.

This set is non-empty. On the other hand, by the Raychaudhuri equations
(2.3) and (2.4) and the assumption that ∂ur < 0 along S̃, it follows that
∂ur < 0 along future-directed constant-v curves in Q emanating from S̃ ∩
{v ≥ v(p)}, and

D ⊂ R.

Since, by assumption, p ∈ T ∪ A, it follows that p �∈ D, and thus D has a
non-empty future boundary in Q. Denote this boundary H+. Note also that
m ≥ r2(p) > 0 in D, and thus, in particular, Mf > 0.

5If one further specializes to data for which B, C, ∇B, ∇C have compact support
initially, then this follows immediately from the domain of dependence theorem.

6Note that with our normalization of m, this differs from its standard definition by a
constant factor.
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Proposition 7.1 shows immediately that H+ cannot terminate before
reaching i+, i.e., the Penrose diagram is as:

i+

I+H+

or
i+

I+H+
.

We will first show that the latter is the case, i.e., i+ �∈ I+, in fact, that the
Penrose inequality

r2 ≤ 2Mf (9.1)

holds on the event horizon H+.

To show (9.1) on H+, one assumes the contrary, i.e., the existence of a
point (Ũ , Ṽ ) with r2(Ũ , Ṽ ) = R2 > 2Mf on the horizon, and as in [6], one
infers (using monotonicity properties of r and m, together with Proposi-
tion 7.1) the existence of a neighbourhood of the horizon which is part of
the regular region:

N :=
[
u0, u

′′] × [Ṽ , V ) ⊂ R
with u0 < Ũ < u′′. In particular, this neighbourhood can be chosen such
that there exists an R′ < R with the property that in

[
Ũ , u′′

]
× [Ṽ , V ) ⊂ R

r ≥ R′ and 1 − 2m

r2 ≥ 1 − 2M

(R′)2
(9.2)

holds. The last step is to show that for any u� ∈ [u0, u
′′], limv�→∞ r(u�, v�) =

∞, i.e., H+ cannot be the event horizon, as defined, a contradiction.

To show this last step, having shown (9.2), we proceed as follows: Inte-
grating (5.2) along u from u0 to a point u� < u′′, we obtain the estimate

sup
v≥˜V

∫ u�

u0

4r3

3Ω2 λ((B,u)2 + B,uC,u + (C,u)2)(u, v) du ≤ M,

which can be written as

sup
v≥˜V

∫ u�

u0

r3

3(−ν)
(1 − µ)((B,u)2 + B,uC,u + (C,u)2) (u, v) du ≤ M.

Taking (9.2) into account, we can derive the estimate

sup
v≥˜V

∫ u�

u0

1
3

r((B,u)2 + B,uC,u + (C,u)2)
ν

(u, v) du ≥ −M

(R′)2 − 2M
(9.3)
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valid for any u� ∈ [u0, u
′′). Integrating (7.12), we obtain

κ(u�, v�) ≥ κ(u0, v
�) · exp

(
−2M

(R′)2 − 2M

)
,

and therefore

λ(u�, v�) ≥
(

1 − 2M

R2

)
exp

(
−2M

(R′)2 − 2M

)
λ(u0, v

�). (9.4)

Integrating (9.4) in v, we see that

lim
v�→V

r(u�, v�) −→ ∞,

since
lim

v�→V
r(u0, v

�) −→ ∞

by the definition of I+. We conclude (u�, V ) ∈ I+. Therefore, H+ is not
the event horizon and we have arrived at the desired contradiction.

The only thing left in the proof of Theorem 1.1 is to show the completeness
of I+. (Completeness here refers to an adaptation in [6] of the concept
defined in [4].) When restricted to the present symmetry class, this notion of
completeness states that the suitably normalized affine length, as measured
from a fixed outgoing null curve u = u0, of the null curves v = const in
J−(I+) ∩ J+(S̃) should tend to infinity in both past and future, as v → V .
The past completeness can be deduced easily from the methods of [3],7 so
we discuss here only future completeness. Define the vector field

X(u, v) =
Ω2(u0, v)
Ω2(u, v)

∂

∂u

on J−(I+) ∩ Q+. Note that this vector field is parallel along all ingoing null
rays and along the curve u = u0. The desired statement of future complete-
ness to be proven here is precisely

lim
v→V

∫
˜U

u0

(X(u, v) · u)−1 du = ∞. (9.5)

From equation (2.3), we can derive

Ω2(u, v)Ω−2(u0, v) = ν(u, v)ν−1(u0, v)

· exp
(∫ u

u0

2r

3ν

(
(B,u)2 + B,uC,u + (C,u)2

)
(u, v) du

)
.

(9.6)

7Again, if one restricts to data where B, C, ∇B, ∇C have compact support, then past
completeness is immediate.
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Let M be the Bondi mass at u0. We choose an R such that R2 > 2M ≥ 2Mf
and consider the curve {r = R} ∩ J−(I+). For sufficiently large v0 < V , all
ingoing null curves with v > v0 intersect {r = R} ∩ J−(I+) at a unique point
(u�(v), v), depending on v.

Analogously to (9.3), we derive the bound
∫ u

u0

2r

3ν

(
(B,u)2 + B,uC,u + (C,u)2

)
(u, v) du ≥ −2M

R2 − 2M
, (9.7)

which we use to estimate
∫

˜U

u0

(X(u, v) · u)−1 du ≥
∫ u�(v)

u0

(X(u, v) · u)−1 du

= ν−1(u0, v) ·
∫ u�(v)

u0

exp
(∫ u

u0

2r

3(∂ur)
((B,u)2

+ B,uC,u + (C,u)2)(u, v) du

)
ν du

≥ r(u0, v) − R

(−ν)(u0, v)
exp

(
−2M

R2 − 2M

)
. (9.8)

Since r(u0, v) → ∞ as v → ∞, to show (9.5), we only need to show that
(−ν)(u0, v) is uniformly bounded in v. The quantity

ν

1 − µ

satisfies

∂v
ν

1 − µ
=

ν

1 − µ

2r

3λ

(
(B,v)2 + B,vC,v + (C,v)2

)

which integrates to

−ν

1 − µ
(u0, v) = exp

(∫ v

v0

2r

3
1
λ

((B,v)2

+ B,vC,v + (C,v)2)(u0, v) dv

)
−ν

1 − µ
(u0, v0). (9.9)

We can choose v0 (so large) such that

1 − 2M

(r(u0, v0))2
> 0.

Set R′ = r(u0, v0). Analogously to (9.3) and (9.7), we derive the bound
∫ v

v0

2r

3
1
λ

(
(B,v)2 + B,vC,v + (C,v)2

)
(u0, v) dv ≤ 2M

(R′)2 − 2M
,
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which enables us to obtain from (9.9) the estimate

−ν(u0, v) ≤
(

1 − 2M

(R′)2

)−1

exp
(

2M

(R′)2 − 2M

)

for v ≥ v0, which in turn shows uniform boundedness of (−ν)(u0, v) in v.

We have shown (9.5) and thus, the desired completeness of I+.

10 Proof of Corollary 1.1

Let S denote the projection of an arbitrary spherically symmetric Cauchy
surface in a Schwarzschild spacetime, and let S̃ denote the projection of a
second asymptotically flat spherically symmetric Cauchy surface, with the
property that S̃ contains a p satisfying the conditions of Theorem 1.1. (Such
Cauchy surfaces clearly exist.) By Cauchy stability, sufficiently small triaxial
Bianchi-IX perturbations of Schwarzschild data on π−1(S) yield solutions
(M′, g′) possessing a triaxial Bianchi-IX symmetric Cauchy surface S̃′ with
geometry arbitrarily close to that of S̃, in particular, also satisfying the
assumptions of Theorem 1.1. We apply thus this theorem.

Finally, we note that the Hawking mass on S̃′ is arbitrarily close to the
constant value M it takes on Schwarzschild, i.e., we have M − ε ≤ m ≤ M +
ε on S̃. By the monotonicity (5.6), it follows that this bound is preserved
in J+(S̃′) ∩ J−(I+). It is this statement — together with the stability of
the Penrose diagram and the completeness of I+ — that we term “orbital
stability”.

11 Final comments

Besides orbital stability, one is interested in what could be called asymp-
totic stability of the Schwarzschild family, i.e., the statement that pertur-
bations of a Schwarzschild initial data set asymptotically approach another
Schwarzschild solution. An even more ambitious problem would be to under-
stand the rates of approach, as in [9]. These problems remain open.

Another interesting and partly related question is to understand the struc-
ture of the outermost apparent horizon.8 In analogy to [6], we may define

8Here, outermost is with respect to the double null foliation.
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this as the set

A′ = {(u, v) ∈ A : (u�, v) ∈ R for all u� < u

and ∃u′ : (u′, v) ∈ J−(I+) ∩ Q ∩ J+(S̃)}.

As in [6], A′ is now easily shown to be an achronal curve intersecting all
ingoing null curves for v ≥ v0 for sufficiently large v0. In addition, one
shows easily that on A′, the Penrose inequality (9.1) holds. There are many
other issues, however, which are not settled: is it a connected set in a
neighbourhood of i+? Is it “generically” a strictly spacelike curve in a
neighbourhood of i+? Does it terminate at i+ in the topology of the Penrose
diagram? For more on these questions, the reader can consult the literature
on so-called dynamical horizons, in particular [1].
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