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Abstract

We demonstrate that for a broad class of local Calabi–Yau geometries
built around a string of P

1’s — those whose toric diagrams are given
by triangulations of a strip — we can derive simple rules, based on the
topological vertex, for obtaining expressions for the topological string
partition function in which the sums over Young tableaux have been
performed. By allowing non-trivial tableaux on the external legs of the
corresponding web diagrams, these strips can be used as building blocks
for more general geometries. As applications of our result, we study the
behavior of topological string amplitudes under flops, as well as check
Nekrasov’s conjecture in its most general form.

1 Introduction

In the last few years, dramatic progress has been made in techniques for
calculating the partition function of the topological string on toric (hence,
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non-compact) Calabi–Yau manifolds [1–3]. The culmination of this effort
has been the formulation of the topological vertex [4] (see [5] for a recent
mathematical treatment). With it, a set of diagrammatic rules can be
formulated, which allow an expression for the topological string partition
function to be read off from the web diagram of the toric manifold. While
the expressions obtained such are algorithmically complete, they contain
unwieldy sums over Young tableaux, one sum for each internal line of the
web diagram. Starting with [6], methods were developed to perform a
portion of these sums [7–10]. In this note, we show how to perform all sums
which arise in an arbitrary smooth triangulation of a strip toric diagram,
such as

with arbitrary representations on all external legs but the first and the last.

The ultimate goal of this program is to provide a technique for efficiently
extracting the Gopakumar–Vafa invariants from the expressions the topo-
logical vertex yields for the topological string partition function. We will
outline the obstacles to this goal using the methods of this paper as we
proceed.

As other applications, we offer an analysis of the behavior of the topo-
logical amplitude under flops of the target manifold. We demonstrate that
the Gopakumar–Vafa invariants for all toric geometries decomposable into
strips are invariant under flops. We also show that our results provide
the framework to check Nekrasov’s results [11] in the most general case of
product U(N) gauge groups with any number of allowed hypermultiplets.

The organization of this paper is as follows. In Section 2, we elucidate
the geometries we are considering and present and interpret the rules for
obtaining the topological string partition function on them. In Section 3,
we derive these results. We include a brief review of the topological vertex
at the beginning of this section and end it with a comparison to the natural
4-vertex obtained from the Chern–Simons theory. We discuss the behavior
of Gopakumar–Vafa invariants under flops on geometries decomposable into
strips in Section 4.1. Section 4.2 provides the basic building blocks to study
Nekrasov’s conjecture. We end with conclusions. An appendix gives a brief
introduction to Schur functions and collects the identities for the Schur
functions used throughout the paper.



THE VERTEX ON A STRIP 319

2 Results

2.1 Geometry of the strip

Recall that a simple way of visualizing the geometries given by toric diagrams
is to think of them as Tn fibrations over n-dimensional base manifolds with
corners (see e.g., Section 4.1 of [19]). Locally, one can introduce complex
coordinates on the toric manifold. The base manifold is then locally given
by the absolute value of these coordinates, the Tn by the phases. The
boundary of the base is where some of these coordinates vanish, entailing a
degeneration of the corresponding number of fiber directions.

In three complex dimensions, the three real dimensional base has a two-
dimensional boundary with edges and corner. Web diagrams, easily obtained
from toric diagrams as sketched in figure 1, represent the projection of the
edges and corners of the base on to the plane. There is a full T 3 fibered
over each point above the plane, corresponding to the interior of the base
manifold. On a generic point on the plane, representing a generic point
on the boundary, one cycle of the fiber degenerates, two degenerate on the
lines of the web diagram, which correspond to the edges of the base, and
the entire fiber degenerates at the vertices of the diagram, the corners of
the base.

Returning to figure 1, we now see the string of P
1’s (in red and blue)

emerging by following the S1 fibration along the internal line running
through the web diagram. It is capped off to P

1’s by the S1’s degen-
erating at each vertex. The two non-compact directions of the geometry
locally correspond to the sum over two line bundles over each P

1. The two
local geometries that arise on the strip are (O(−2) ⊕ O) → P

1 (in red) and
(O(−1) ⊕ O(−1)) → P

1 (in blue). We refer to the respective P
1’s as (−2, 0)

and (−1,−1) curves in the following.

Figure 1: Relation between toric and web diagram.
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2.2 Rules on the strip

Each vertex has one non-trivial Young tableau associated to it, the two
outer vertices in addition have one leg carrying the trivial tableau. All other
indices of the vertices are summed over. We label the non-trivial tableaux
by βi, with i indexing the vertex. The internal lines carry a factor Qi = e−ti ,
where ti is the Kähler parameter of the curve the internal line represents.

• Each vertex contributes a factor of Wβi
= sβi

(qρ) (the notation for the
argument of the Schur function is explained in the next section).

• Each pair of vertices (not just adjacent ones) contributes a factor to
the amplitude, which is a pairing of the non-trivial tableaux carried by
the pair. The interpretation of this observation is that branes wrapping
the curves consisting of touching P

1’s in the web diagram contribute
to the Gopakumar–Vafa index just as those wrapping the individual
P

1’s.
• While the pairing itself is symmetric, for the purpose of book keeping,

we will choose one of the two natural ordering of the vertices along
the string of P

1’s. We will speak of the first or second slot of the
pairing with reference to this ordering. To determine the pairing factor,
note that two types of curves occur on the strip: (−2, 0) curves and
(−1,−1) curves. Up to SL(2, Z) transformations, these are represented
by the toric/web diagrams depicted in figure 2. The contribution of
the pairing to the amplitude depends essentially on whether an even
or odd number of (−1,−1) curves lie between the two vertices. The
geometric interpretation of this fact is that the curves consisting of
touching P

1’s in the web diagram have normal bundle O(−2) ⊕ O or
O(−1) ⊕ O(−1), depending on whether the string of P

1’s contains an
even or odd number of smooth (−1,−1) curves. This is suggested both
by the toric diagram and by the expressions for the two pairings, as
we will see next.

Figure 2: The two building blocks of a web diagram on the strip.
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• We denote the two types of pairings between vertices carrying the
Young tableaux α and β as {αβ} and [αβ] = {αβ}−1 (we use the nota-
tion [{αβ}] when we make statements valid for both types of pairing).
The pairing {αβ} is given by the expression

{αβ}Q =
∏

k

(1 − Qqk)Ck(α,β) exp

[ ∞∑

n=1

Qn

n(2 sin(ngs/2))2

]
. (2.1)

The product over k is over a finite range of integers (possibly negative),
Ck(α, β) are numbers which depend on the two Young tableaux that
are being paired, given by

∑

k

Ck(α, β)qk =
q

(q − 1)2

⎛

⎝1 + (q − 1)2
dα∑

i=1

q−i
αi−1∑

j=0

qj

⎞

⎠

⎛

⎝1 + (q − 1)2
dβ∑

i=1

q−i
βi−1∑

j=0

qj

⎞

⎠ − q

(1 − q)2
. (2.2)

The factor Q is the product of all Qi labeling the internal lines con-
necting the two vertices. Note that, as advertised above, if we take
the two Young tableaux to be trivial, the contribution from the pairing
{··} is exactly that of a (−1,−1) curve, and likewise, the contribution
of [··] = {··}−1 is that of a (−2, 0) curve.

• To keep track of the contribution from two paired vertices, we can
divide the vertices into two relatives types, A and B, such that the
type of a vertex depends on that of the preceding vertex: two vertices
connected by a (−2, 0) curve are of the same type and two connected
by a (−1,−1) curve of the opposite type. If the vertices i and j are of
the same type (i.e., have an even number of (−1,−1) curves between
them), the pairing factor is [β·

iβ
·
j ], else {β·

iβ
·
j} = [β·

iβ
·
j ]

−1.
• The upper case dot indicates that either β or βt is the correct entry.

Either all pairings involving βi are of the forms [{βi·}] and [{·βt
i}] or

they are of the forms [{βt
i ·}] and [{·βi}]. To determine which of the two

options apply to βi for each i, we anchor the relative types A and B
as follows: we will take the first vertex of the string of P

1’s to be of
type A if, labeling the legs in clockwise order, it is given by Cα1•β1 .
Otherwise, it must be given by C•α1β1 , and we will classify it as type
B. With this convention,

i-th vertex of type A ←→ [{βi·}] and [{·βt
i}],

i-th vertex of type B ←→ [{βt
i ·}] and [{·βi}].

As an example, consider the diagram in figure 3. Starting from the left, the
curves are of type (−2, 0), (−1,−1), (−2, 0). The first vertex is Cα1•β1 , hence
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Figure 3: A possible triangulation of a strip of length two.

of type A. This determines the sequence of vertices to be (A, A, B, B). By
the rules above, we now obtain the following expression for the amplitude,

sβ1sβ2sβ3sβ4 [β1β
t
2]Q1{β1β3}Q1Q2{β1β4}Q1Q2Q3{β2β3}Q2{β2β4}Q2Q3 [β

t
3β4]Q3

= sβ1sβ2sβ3sβ4

{β1β3}Q1Q2{β1β4}Q1Q2Q3{β2β3}Q2{β2β4}Q2Q3

{β1βt
2}Q1{βt

3β4}Q3

, (2.3)

where we have omitted the arguments qρ of the Schur functions.

3 Derivation

3.1 Review of the vertex

Locally, any complex manifold is isomorphic to C
n. The topology and

complex structure of the manifold are obtained by specifying how these
C

n-patches are to be glued together. The insight underlying the topologi-
cal vertex [4] is that the topological string partition function on a toric CY
can also be pieced together patchwise. The patching conditions are imple-
mented by placing non-compact Lagrangian D-branes along the three legs
of the web diagram of C

3, intersecting the curves extending along these legs
(recall that the legs indicate where two of the three cycles of the T 3 fibration
have degenerated) in S1’s. The topological string on each such patch counts
the holomorphic curves ending on the branes, weighted by the appropriate
Wilson lines from the boundaries of the worldsheet,

Zpatch =
∑

�k(1),�k(2),�k(3)

C�k(1)�k(2)�k(3) × Wilson loop factors. (3.1)
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The vectors �k(i) encode that k
(i)
j holes of winding number j are ending on

the i-th brane. The Wilson loop factors are given by

Wilson loop factors =
3∏

i=1

1
∏

j k
(i)
j !jk

(i)
j

∞∏

j=1

(Tr V j)k
(i)
j . (3.2)

The trace here is taken in the fundamental representation. The definition
of the vertex we will use in the following arises when rewriting (3.1) in the
representation basis [4],

∑

α1,α2,α3

Cα1α2α3

3∏

i=1

TrαiVi =
∑

�k(1),�k(2),�k(3)

C�k(1)�k(2)�k(3)

3∏

i=1

1
∏

j k
(i)
j !jk

(i)
j

∞∏

j=1

(Tr V j)k
(i)
j , (3.3)

where the αi now denote the Young tableaux. This equation is to be under-
stood in the limit when the number of D-branes on each leg is taken to
infinity, such that the sum extends over the Young tableaux with an arbi-
trary number of rows. An application of the Frobenius formula lets us solve
equation (3.3) for Cα1α2α3 .

The non-compactness of the Lagrangian D-branes gives rise to an integer
ambiguity [12, 13], which necessitates specifying one integer per leg to full
determine the vertex. Aganagi, et al. [4] refer to this choice as the framing
of the vertex, as the integer ambiguity maps to the framing ambiguity of the
Chern–Simons theory under geometric transitions. The vertex in canonical
framing is given by [14]

Cλµν = qκ(λ)/2sν(qρ)
∑

η

sλt/η(q
ν+ρ)sµ/η

(
qνt+ρ

)
. (3.4)

The notation is s(qν+ρ) = s({qνi−i+1/2}). The sµ/η are skew Schur functions,
defined by

sµ/η =
∑

ν

cµ
ηνsν , (3.5)

where the cµ
ην are tensor product coefficients, and κ(λ) =

∑
λi(λi − 2i +

1). In the following, we will use the abbreviated notation sµ/η(qν+ρ) =
µ/η(qν+ρ) = µ/η(ν) whenever convenient and imply a sum over repeated
tableaux.

A framing must be specified for each leg of the vertex. If we represent each
leg by an integer vector v, we can encode the framing by an integer vector f
that satisfies f ∧ v = 1. The notation f ∧ v denotes the symplectic product
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f1v2 − f2v1. The condition f ∧ v = 1 determines f up to integer multiples of
v. Having chosen a canonical framing, we can hence classify relative framing
by an integer n. To this end, we label the legs of the vertex in counter-
clockwise order by v1, v2, v3, s.t. vi ∧ vi+1 = 1. The natural choice for a
framing is then (f1, f2, f3) = (v3, v1, v2). Given a framing fi = vi−1 − nvi,
the integer n (the framing relative to the fiducial choice) is determined via
n = fi ∧ vi−1. Under shifts of framing, the vertex transforms as follows [4],

Cf1−n1v1,f2−n2v2,f3−n3v3
α1α2α3

= (−1)
∑

i ni|αi|q
∑

i ni(καi/2)Cf1,f2,f3
α1α2α3

. (3.6)

Gluing two vertices together along v1 and v′
1 requires the framings along

this leg to be opposite. If we are gluing along v1 and have canonical framing
f1 = v3 along v1 for the first vertex, then the second vertex must have non-
canonical framing −v3 = v′

3 − nv′
1. We thus obtain the gluing rule

∑

α1

Cα2α3α1e
−|α1|t(−1)|α1|C

−f1,f ′
2,f ′

3
αt

1α′
2α′

3

=
∑

α1

Cα2α3α1e
−|α1|t(−1)|α1|C

−v3,f ′
2,f ′

3
αt

1α′
2α′

3

=
∑

α1

Cα2α3α1e
−|α1|t(−1)|α1|C

v′
3−nv′

1,f ′
2,f ′

3
αt

1α′
2α′

3

=
∑

α1

Cα2α3α1e
−|α1|t(−1)(n+1)|α1|q−nκα1/2C

f ′
1,f ′

2,f ′
3

αt
1α′

2α′
3
, (3.7)

with n = v′
3 ∧ (v′

3 + v3) = v′
3 ∧ v3.

3.2 Performing the sums

In performing the sums, we will make use of the following two identities for
skew Schur polynomials [20],

∑

α

sα/η1(x)sα/η2(y) =
∏

i,j

(1 − xiyj)−1
∑

κ

sη2/κ(x)sη1/κ(y), (3.8)

∑

α

sαt/η1(x)sα/η2(y) =
∏

i,j

(1 + xiyj)
∑

κ

sηt
2/κt(x)sηt

1/κ(y). (3.9)

In the abbreviated notation introduced above, these sum rules become
α

η1
(x)

α

η2
(y) =

∏

i,j

(1 − xiyj)−1 η2

κ
(x)

η1

κ
(y), (3.10)

αt

η1
(x)

α

η2
(y) =

∏

i,j

(1 + xiyj)
ηt
2

κt
(x)

ηt
1
κ

(y). (3.11)
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In the following, it will be convenient to rewrite the infinite products as
follows,

∏
(1 − xiyj)−1 =

∏
exp [− log(1 − xiyj)] (3.12)

= exp

⎡

⎣
∑

n

1
n

∑

i

xn
i

∑

j

yn
j

⎤

⎦

= exp

[
∑

n

1
n

s�(xn)s�(yn)

]
,

∏
(1 + xiyj) = exp

[
−

∑

n

(−1)n

n
s�(xn)s�(yn)

]
. (3.13)

Aside from the skew Schur functions, the expression for the topological
vertex contains two additional elements: powers of the exponential of the
Kähler parameters, (±Q)|α|, and powers of the exponential of the string
coupling, qκ(α). With recourse to the homogeneity property of the skew
Schur polynomials, the former is easy to deal with. The latter poses a
greater difficulty and is at the root of our calculations being confined to the
strip. We hope to return to this difficulty in forthcoming work. For the
two types of pairing occurring on the strip, the dependence on this factor
cancels, as we demonstrate next.

3.2.1 Type [βiβj ]: (−2, 0) curves

Consider figure 4. According to the rules reviewed above, the corresponding
partition function is

∑

α2

Cα2α1β1Cα3αt
2β2

(−1)|α2|Q|α2|(−1)n|α2|q−nκ(α2)/2. (3.14)

The n-dependence arises from the framing factors, where n is given by

n = vβ2 ∧ vα1 = (0, 1) ∧ (−1,−1) = 1. (3.15)

β2

α2
α3α1

β1

Figure 4: (−2, 0) curve.
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Inserting the expression for the vertex, this yields
∑

α2

[
qκ(α2)/2β1

∑

η1

αt
2

η1
(β1)

α1

η1
(βt

1)
]
Q|α2|q−κ(α2)/2 (3.16)

[
qκ(α3)/2β2(qρ)

∑

η2

αt
3

η2
(β2)

αt
2

η2
(βt

2)
]
.

We see that the qκ(α2) dependence of the vertex cancels against the framing
factor, so that we can apply (3.8) to perform the sum over α2, once we deal
with the Q|α2| dependence. As alluded to above, this does not pose any
difficulty due to the homogeneity of the Schur functions, sλ(cx) = c|λ|sλ(x).
As the tensor product coefficients cµ

ην vanish unless |µ| = |η| + |ν|, we eas-
ily deduce the homogeneity property of the skew Schur polynomials to
be sµ/η(cx) =

∑
ν cµ

ηνsν(cx) = c|µ|−|η|sµ/η(x). We can now incorporate the
Kähler parameters into our calculation. We obtain

∑

α

α

η1
(β1)

α

η2
(β2)Q|α| =

∑

α

α

η1
(qρ+β1Q)

α

η2
(qρ+β2)Q|η1| (3.17)

= exp

[
∑

n

1
n

s�
(
(qρ+β1Q)n

)
s�

(
(qρ+β2)n

)]

×
∑

κ

η2

κ
(qρ+β1Q)

η1

κ
(qρ+β2)Q|η1|

= exp

[
∑

n

Qn

n
s�

(
(qρ+β1)n

)
s�

(
(qρ+β2)n

)]

×
∑

κ

η2

κ
(qρ+β1)

η1

κ
(qρ+β2)Q|η1|+|η2|−|κ|

= [β1β2]Q
∑

κ

η2

κ
(qρ+β1)

η1

κ
(qρ+β2)Q|η1|+|η2|−|κ|,

where in the last step, we have defined the pairing [··]Q.

3.2.2 Type {βiβj}: (−1, −1) curves:

The second type of pairing arises for (−1,−1) curves, as depicted in figure 5.
The corresponding expression is

Cα2α1β1Cαt
2α3β2

(−1)|α2|Q|α2| =
[
β1

αt
2

η1
(β1)

α1

η1
(βt

1)
]
(−1)|α2|Q|α2|

×
[
β2

α2

η2
(β2)

α3

η2
(βt

2)
]
. (3.18)

Note that here the κ(α2) dependence cancels between the two vertices by
κ(αt) = −κ(α). The framing factor n vanishes. Again, this allows us to
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β2

α1

β1

α2

α3

Figure 5: (−1,−1) curve.

perform the sum over α2, utilizing (3.9). We obtain

∑

α

αt

η1
(β1)

α

η2
(β2)(−Q)|α| = exp

[
−

∑

n

Qn

n
s�

(
(qρ+β1)n

)
s�

(
(qρ+β2)n

)]

(3.19)

×
∑

κ

ηt
2
κ

((−Q)qρ+β1)
η1

κ
(qρ+β2)(−Q)|η1|

= {β1β2}Q

∑

κ

ηt
2
κ

(qρ+β1)
η1

κ
(qρ+β2)(−Q)|η1|+|η2|−|κ|.

The last step defines the pairing {··}Q = 1
[··]Q .

3.3 Stringing the curves together

The rules we have proposed in Section 2 are easily proved by induction.
Here, we wish to give some intuition as to how they arise. This is best done
by considering an example. Let us therefore revisit figure 3. We organize
the calculation in a diagram, see figure 6. The following items should help
explain and interpret the diagram.

• The dominos in the first row correspond to the vertices of the web
diagram describing the geometry. The connecting lines in between
dominos indicate applications of the rules (3.8,3.9) for summing over
skew Schur polynomials. The dominos in the second row arise after a
depth one application of the summing rules, etc.

• In each domino in the first row, either both of the top representations of
the skew Schur functions (this terminology is to refer to the α in α/η)
are transposed or neither of them are. The former are vertices of type
Cαi+1αt

iβi
(type A) and the latter of type Cαt

iαi+1βi
(type B). In all the

following rows, whether a skew Schur function carrying the argument
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Figure 6: The gluing rules exemplified in a flow diagram.

β·
i has transposed top representation or not depends on what is the

case for the Schur function in the first row with argument β·
i. Hence,

whether the pairing of β·
i with β·

j is of type {··} or [··] is determined
by the relative type of vertex the β’s descended from in the first row.

• All [{·β·
i}] pairings descend from the Schur function α·

i
ηi

(β·
i) in the i-th

vertex in the first row of the diagram, all [{β·
i·}] pairings from the Schur

function
α·

i+1
ηi

(β·
i) in the same vertex. Hence, whether the correct entry

is βi or βt
i again depends on whether the i-th vertex is of type Cαi+1αt

iβi

(type A) or Cαt
iαi+1βi

(type B).
• The calculation terminates because the first and last domino in each

row contain a trivial skew Schur function •
η , s.t. the sum over η

collapses.
• The factors of Q can be thought of as flowing along the connecting

lines. Consider the second domino in the second line of the diagram.
After applying (3.9), we obtain the Q factor Q

|η2|+|η3|−|κ2|
2 . The dia-

gram shows into which pairing these factors are incorporated. Note
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that the factors Q
|η2|
2 and Q

|η3|
2 enter into the next level of evaluation

(sums over η2 and η3), whereas Q
−|κ2|
2 , as indicated by the arrows,

enters in the level after next (the sum over κ2).
• Finally, a word on the factors (−1)|α| that appear in sums that lead

to the pairing {··}, see (3.18). One could combine these with their
kin factors Q|α|, such that all Q’s associated to (−1,−1) curves would
come with a minus sign. The sign of the product of all Q factors con-
tributing to a pairing would then depend on whether an odd or even
number of (−1,−1) curves lie between the two vertices being paired.
This of course is the criterion that distinguishes between the two pair-
ings {··} and [··]. Hence, this sign is taken into account correctly by
incorporating it into the definition of {··} in (3.19).

3.4 Simplifying the two pairings

The two pairings {αβ} and [αβ] are exponentials of the argument

±
[ ∞∑

n=1

Qn

n
s�(qn(ρ+α))s�(qn(ρ+β))

]
. (3.20)

In this section, we perform the representation dependent part of this infinite
sum. The calculation already appeared in [6, 7]. Our goal will be to write the
product of Schur functions (up to a correction term) as a sum

∑
finite Ckq

kn,
which will allow us to subsume the infinite sum over n in a logarithm. First,
let us take a closer look at the Schur polynomials. s�(x) =

∑
i xi, and hence,

s�(qρ+α) =
∞∑

i=1

qαi−i+(1/2). (3.21)

Apart from the finite number of terms involving the Young tableau α, this
is a geometric series,

s�(qρ+α) =
√

q

( ∞∑

i=1

q−i +
dα∑

i=1

(qαi−i − q−i)
)

(3.22)

=
√

q

(
1

q − 1
+ (q − 1)

dα∑

i=1

q−i q
αi − 1
q − 1

)

=
√

q

q − 1

(
1 + (q − 1)2

dα∑

i=1

q−i
αi−1∑

j=0

qj

)
.
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Here, dα denotes the number of rows of α. We now see the desired structure
in the product s�(qn(ρ+α))s�(qn(ρ+β)) emerging,

s�(qρ+α)s�(qρ+β) =
∑

k

Ck(α, β)qk +
q

(1 − q)2
, (3.23)

where

∑

k

Ck(α, β)qk =
q

(q − 1)2

⎛

⎝1 + (q − 1)2
dα∑

i=1

q−i
αi−1∑

j=0

qj

⎞

⎠

×

⎛

⎝1 + (q − 1)2
dβ∑

i=1

q−i
βi−1∑

j=0

qj

⎞

⎠ − q

(1 − q)2
. (3.24)

The infinite sum in (3.20) can now be expressed in a more compelling form.
For the minus sign which corresponds to the pairing {··}, we obtain

−
∞∑

n=1

Qn

n
s�(qn(ρ+α))s�(qn(ρ+β))

= −
∞∑

n=1

Qn

n

[
∑

k

Ck(α, β)qnk +
qn

(1 − qn)2

]
(3.25)

=
∑

k

Ck(α, β) log(1 − Qqk) −
∞∑

n=1

(Qq)n

n(1 − qn)2
.

Recalling that q = eigs , the remaining infinite sum takes a familiar form,
∞∑

n=1

(Qq)n

(1 − qn)2
= −

∞∑

n=1

Qn

n(2 sin(ngs/2))2
. (3.26)

We hence obtain the tidy expression,

{αβ}Q =
∏

k

(1 − Qqk)Ck(α,β) exp

[ ∞∑

n=1

Qn

n(2 sin(ngs/2))2

]
. (3.27)

When considering flops further below, we will need the relation between
{αβ} and {αtβt}. The sum (3.24) satisfies the property

∑

k

Ck(α, β)qk =
∑

k

Ck(αt, βt)q−k. (3.28)

By the symmetry of the correction term q
(1−q)2 under q → 1

q , it follows that

{αtβt}(q) = {αβ}
(

1
q

)
. (3.29)
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3.5 CS calculations in the light of the vertex

All genus results for the topological string on non-compact Calabi–Yau
were originally obtained using the Chern–Simons theory as the target space
description of the open topological string, combined with open/closed dual-
ity via geometric transitions [1–3]. In the context of the Chern–Simons
theory, the natural object is a 4-vertex, the normalized expectation value of
a Hopf link with gauge fields in representations α and β on the two unknots.
It is given by

Wαβ(q, λ) = Wα(q, λ)(qλ)|β|/2Sβ(Eα(t)), (3.30)

where

Eα(t) =

(
1 +

∞∑

n=1

(
n∏

i=1

1 − λ−1qi−1

qi − 1

)
tn

)⎛

⎝
d∏

j=1

1 + qαj−jt

1 + q−jt

⎞

⎠ , (3.31)

and
Wα = (qλ)|α|/2Sα(E•(t)). (3.32)

We explain the relation of Sα(E(t)) to the Schur functions sα(x) of the
previous sections in the appendix. The relevant fact for our purposes is that
for E(t) =

∏
(1 + xit), Sα(E(t)) = sα(x). To bring (3.31) into this form, we

note that the first factor in that expression can be expressed as (see page
27, example 5 in [20]),

1 +
∞∑

n=1

(
n∏

i=1

1 − λ−1qi−1

qi − 1

)
tn =

∞∏

i=0

1 + λ−1qit

1 + qit
(3.33)

=
∞∏

i=0

(1 + λ−1qit)
∞∏

i=1

(1 + q−it).

Hence,

Eα(t) =
∞∏

i=0

(1 + λ−1qit)
∞∏

j=1

(1 + qαj−jt). (3.34)

In this equation, we have set αj = 0 for j > d. By absorbing the factor of
q|α|/2 in (3.30) into the definition of E,

Ẽα(t) =
∞∏

i=1

(1 + λ−1qi−(1/2)t)
∞∏

j=1

(1 + qαj−j+(1/2)t), (3.35)

we can now express Wαβ in terms of ordinary Schur functions,

Wαβ = λ(|α|+|β|)/2Sα(Ẽ•(t))Sβ(Ẽα(t)) (3.36)

= λ(|α|+|β|)/2sα(λ−1q−ρ, qρ)sβ(λ−1q−ρ, qρ+α).
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Figure 7: The relation between the CS 4-vertex and the topological vertex.

Through a series of transformations, we can bring this expression into a form
in which it can readily be related to the topological vertex,

Wαβ = λ(|α|+|β|)/2 α

η
(qρ)ηt

(
(−λ)−1qρ

) β

κ
(qρ+α)κt

(
(−λ)−1qρ

)
(3.37)

= λ(|α|+|β|)/2 α

η
(qρ)

(δ/η)(qρ)δt(−Qqρ)
{••}Q

β

κ
(qρ+α)

× (γ/κ)(qρ+αt
)γt(qρ)(−1)|γ|Q|γ|

{αt•}Q

= λ(|α|+|β|)/2α(qρ)δt(qρ+αt
)

δ(−Qqρ)
{••}Q{αt•}Q

β

κ
(qρ+α)

γ

κ
(qρ+αt

)

× γt(qρ)(−1)|γ|Q|γ|

= λ(|α|+|β|)/2 CβtγαC••γt(−1)|γ|Q|γ|

{••}Q
,

where Q = λ−1. In the course of these manipulations, we have used virtually
all of the identities listed in the appendix. The relation (3.37) between the
CS 4-vertex and the topological vertex is depicted in figure 7.

The mismatch of the factor λ(|α|+|β|)/2 was first noticed in [1].

4 Applications

4.1 Flops

A natural question to study is the behavior of the string partition function
under flops of the target geometry. We can analyze this question for all
geometries whose toric diagrams decompose into strips.
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First, let us recall the behavior of the conifold under a flop. The instanton
piece of the partition function is given by

Z inst
conifold = exp

[ ∞∑

n=1

Qn

n

1
(2 sin(ngs/2))2

]
(4.1)

=
∞∏

k=1

(1 − Qq−k)k.

In addition, the genus 0 and 1 free energy contain further polynomial depen-
dence on t. The behavior of the polynomial contributions to F0 under
flops can be considered separately from that of the instanton contributions
[15, 16]. It turns out that the polynomial contribution to F1, 1

24 t, is nat-
urally considered together with the instanton contribution to the partition
function. By analytic continuation, we obtain the partition function of the
topological string on the flopped geometry from the partition function on
the pre-flop geometry,

Q1/24Z inst
conifold(Q) −→ Q−1/24Z inst

conifold

(
1
Q

)
.

To obtain the Gopakumar–Vafa invariants of the flopped geometry, we must
now expand the RHS in the correct variable, Q,

Q−1/24Z inst
conifold(Q

−1) = Q−1/24
∞∏

k=1

(
1 − q−k

Q

)k

(4.2)

= Q−1/24Q−ζ(−1)q−ζ(−2)
∞∏

k=1

(Qqk − 1)k

= (−1)ζ(−1)Q1/24
∞∏

k=1

(1 − Qq−k)k.

In the last line, we have used that Z instanton
conifold is invariant under q → 1

q , and
ζ(−1) = − 1

12 . We see that up to a phase, the partition function is invariant
when analytically continued from Q to Q−1 and then re-expanded in powers
of Q. It follows that the Gopakumar–Vafa invariants are in fact invariant
under this flop.

Now let us turn to flops on the strip. The normal bundles of the curves
neighboring the flopped curve are affected by the flop. On the strip, two
geometries are to be distinguished: the (−1,−1) curve to be flopped is
connected along the strip to a (−1,−1) curve on both sides (figure 8), or to
a (−1,−1) curve on one side, and a (−2, 0) curve on the other (figure 9).
After the flop, the (−1,−1) curves become (−2, 0) curves in the former
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Figure 8: (−1,−1)(−1,−1)Q(−1,−1) flopped to (−2, 0)(−1,−1)Q−1(−2, 0).

case, and the (−1,−1) and (−2, 0) curves are swapped in the latter. We
will consider the first case in detail. The second works out in exact analogy.
Before the flop, we have three (−1,−1) curves. The first vertex is C•α1β1 ,
hence of type B, from which we can determine the type of all vertices to be
BABA, yielding

{βt
1β

t
2}Q1{βt

1β
t
4}Q1Q2Q3{β2β3}Q2{βt

3β
t
4}Q3

{βt
1β3}Q1Q2{β2βt

4}Q2Q3

. (4.3)

After the flop, note the important fact that the ordering of the vertices does
not coincide with the ordering of the indices of the external Young tableaux
the vertices carry. Assembling the data required to apply our rules in short
hand: {(−2, 0), (−1,−1), (−2, 0) curves, first vertex of type B} → BBAA,
we obtain

{βt
1β

t
2}Q̃1Q̃2

{βt
1β

t
4}Q̃1Q̃2Q̃3

{βt
3β

t
2}Q̃2

{βt
3β

t
4}Q̃2Q̃3

{βt
1β3}Q̃1

{β2βt
4}Q̃3

. (4.4)

To compare these two expressions, we can express the post-flop expression in
terms of the pre-flop Kähler parameters, and then re-expand as in the case of
the conifold considered above. The identification of the Kähler parameters
that we propose is obtained by matching corresponding curves before and
after the flop. Considering e.g., the (−1,−1) curves before and after the

Figure 9: (−2, 0)(−1,−1)Q(−1,−1) flopped to (−1,−1)(−1,−1)Q−1(−2, 0).



THE VERTEX ON A STRIP 335

flop, we obtain the relations

Q1 = Q̃1Q̃2,

Q2 =
1

Q̃2
,

Q3 = Q̃2Q̃3,

which are consistent with the identification we obtain by considering (−2, 0)
curves,

Q1Q2 = Q̃1,

Q2Q3 = Q̃3.

This identification of Kähler parameters is to be contrasted to the naive sub-
stitution Q2 �→ Q−1

2 for each curve whose Kähler parameter has Q2 depen-
dence. Upon making these substitutions, the only factor in (4.4) which
must be re-expanded is {βt

2β
t
3}Q−1

2
. Using relation (3.29) and the definition

of the pairing, we obtain (dropping indices and renaming tableaux for ease
of notation),

{αtβt}Q−1(q)

= {αβ}Q−1

(
1
q

)
(4.5)

=
∏

k

(1 − Q−1q−k)Ck(α,β) exp

[ ∞∑

n=1

Q−n

n(2 sin(ngs/2))2

]

=
∏

k

(Q−1q−k)Ck(α,β)(Qqk−1)Ck(α,β)(−Q)1/12 exp

[ ∞∑

n=1

Qn

n(2 sin(ngs/2))2

]

= Q−|α|−|β|q−(κ(α)+κ(β))/2
∏

k

(Qqk − 1)Ck(α,β)(−Q)1/12

× exp

[ ∞∑

n=1

Qn

n(2 sin(ngs/2))2

]

= (−Q)−|α|−|β|q−(κ(α)+κ(β))/2(−Q)1/12{αβ}Q(q),

where we have used [6]
∑

k

Ck(α, β) = |α| + |β|, (4.6)

∑

k

kCk(α, β) =
κ(α) + κ(β)

2
. (4.7)

This almost coincides with the partition function (4.3) for the pre-flop
geometry. To interpret the coefficients, let us include the two curves that
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are connected to the flopped curve via a sum over the representations β2
and β3 into our considerations. Figure 10 shows an example. The β2 and
β3 dependent factors from the upper and lower part of the diagram before
the flop are

Q
|β2|
t (−1)nt|β2|q−ntκ(β2)/2Q

|β3|
b (−1)nb|β3|q−nbκ(β3)/2

= Q
|β2|
t (−1)|β2|q−κ(β2)/2Q

|β3|
b , (4.8)

where nt = (−1, 0) ∧ (1,−1) = 1 and nb = (1,−1) ∧ (−1, 1) = 0. After the
flop, we have

Q̃
|β2|
t (−1)ñt|β2|q−ñtκ(β2)/2Q̃

|β3|
b (−1)ñb|β3|q−ñbκ(β3)/2

= Q̃
|β2|
t Q̃

|β3|
b (−1)−|β3|qκ(β3)/2, (4.9)

with ñt = (−1, 0) ∧ (1, 0) = 0 and ñb = (1,−1) ∧ (−1, 0) = −1. Combining
(4.9) with the coefficients from (4.5), we obtain (4.8),

(−Q2)−|β2|−|β3|q−(κ(β2)+κ(β3))/2 × Q̃
|β2|
t Q̃

|β3|
b (−1)−|β3|qκ(β3)/2

= Q
|β2|
t Q

|β3|
b (−1)|β2|q−κ(β2)/2. (4.10)

We see that the coefficients in (4.5) are exactly those needed to maintain
invariance of the Gopakumar–Vafa invariants under flops.

This result continues to hold for the situation depicted in figure 9, as well
as the other possible completions of the lines carrying the Young tableaux
β2 and β3 by curves of type (−2, 0) or (−1,−1).

Figure 10: Embedding the previous figure in a larger geometry.
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Can we conclude that Gopakumar–Vafa invariants for toric Calabi–Yau
are invariant under flops in general? The above arguments were valid
for geometries which contained only (−1,−1) and (−2, 0) curves. For the
general case, the topological string partition functions

Z = exp

[
∑

�n

∑

k

ng
�nQk�n

k(2 sin(kgs/2))2−2g

]
(4.11)

can be put in the product form [17, 18]

Z =
∏

�n

⎛

⎝
∞∏

k=1

(1 − qkQ�n)kn0
�n

∞∏

g=1

2g−2∏

k=0

(1 − qg−1−kQ�n)(−1)k+gng
�n(2g−2

k )

⎞

⎠ ,

(4.12)

where �n encodes the classes of the various holomorphic curves relative to
the basis specified by the Qi. By the same argument as above, the only
factor that needs to be re-expanded after expressing the post-flop partition
function in pre-flop variables is the one counting contributions from just the
flopped curve. As above, this factor is invariant, up to a coefficient, under
this operation. However, it remains to argue that for the curves we identify
before and after the flop, say �n and �̃n, the relation ng

�n = ng
�̃n

holds. For
the case of geometries with only (−1,−1) and (−2, 0) curves, this equality
followed from the comparison of (4.3) and (4.4), and the interpetation of the
coefficients in (4.5).

Note that after an appropriate number of blowups and flops, any toric CY
can be decomposed into the strips we have been considering in this paper.
Hence, if Gopakumar–Vafa invariants indeed prove to be invariant under
flops in general, the vertex calculations on a strip performed in this paper
become relevant for any toric CY.

4.2 Geometric engineering

A natural physical playground for the formalism developed in this paper
is in the context of geometric engineering of N = 2 gauge theories by com-
pactification on local CY. The toric geometries that give rise to linear chains
of U(N) gauge groups (i.e., theories with product gauge group with U(Ni)
factors and bifundamental matter between adjacent gauge groups) can be
decomposed into the strips we consider here. Thanks to Nekrasov’s con-
struction, the full string partition function (versus only its field theory limit)
can be extracted from such gauge theories. The basic building block of the
geometry which engineers such gauge theories is the triangulation of the strip
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given by . The corresponding web diagram is shown in
figure 11. All of the curves in figure 11 are (−1, −1) curves, and the first
vertex is of type A, and hence we have an alternating succession of vertices
ABABAB · · · . By the rules derived above, we obtain

Kα1···αN
β1···βN

=
Kα1···αN

β1···βN

K•···•
•···•

(4.13)

= Wα1Wβ1 · · · WαN WβN
(4.14)

×
∏

k

∏
i≤j(1 − qkQαiβj

)Ck(αi,β
t
j)

∏
i<j(1 − qkQβiαj

)Ck(βt
i ,α

t
j)

∏
i<j(1 − qkQαiαj )

Ck(αi,αt
j)(1 − qkQβiβj

)Ck(βt
i ,βj)

The Kähler parameters Qα,β are given by

Qαiαj = Qij (4.15)
Qαiβj

= QijQm,j

Qβiαj
= QijQ

−1
m,i,

Qβiβj
= QijQ

−1
m,iQm,j ,

where Qij =
∏j−1

k=i Qm,kQf,k.

Kα1···αN
β1···βN

is the building block for the partition function ZNekrasov of N = 2
gauge theories with product gauge groups and bi-fundamental matter. The
partition function is given by products of Kα1,··· ,αN

β1,··· ,βN
, in the field theory limit,

Figure 11: The building block for gauge theories with matter.
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summed over αi, βi, where the field theory limit of Kα1,...,αN

β1,...,βN
is given by

Kα1,...,αN

β1,...,βN
−→ Lα1Lβ1 · · · LαN LβN

×
∏

k

∏
i≤j(ai + mj + k�)Ck(αi,β

t
j)

∏
i<j(aj − mi + k�)Ck(βt

i ,α
t
j)

∏
i<j(aij + k�)C(αi,αt

j)(mj − mi + k�)Ck(βt
i ,βj)

with

Lα = lim
q→1

(q − 1)|α|Wα.

As an example, consider the CY in figure 12, which can be used to engi-
neer U(N) with Nf = 2N . The partition function is obtained by gluing
two K type expressions together. Note however that in the upper strip,
the order of vertices is BABABA . . . . A moment’s thought teaches us that
Kupper(α, β) = Klower(αt, βt). Hence,

Z =
∑

α1,...,αN

Q
|α1|+···+|αN |
b Kα1···αN

•···• (Q)K•···•
α1···αN

(Q̃) (4.16)

=
∑

α1,...,αN

Q
|α1|+···+|αN |
b W2

α1
· · · W2

αN

∏

k

N∏

i=1

(1 − qkQm,i)Ck(αi,•)

× (1 − qkQ̃m,i)Ck(•,αi)

×
∏

i<j

(1 − qkQijQm,j)Ck(αi)(1 − qkQijQ̃
−1
m,j)

Ck(αt
i)

(1 − qkQijQ
−1
m,i)

Ck(αt
j)(1 − qkQijQ̃m,i)Ck(αj)

(1 − qkQij)2Ck(αi,αt
j)

.

Figure 12: Two strips glued together to engineer U(N) with matter.
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Defining

Qij = e−β(ai−aj), (4.17)

Qm,i = e−β(ai+mi),

Q̃m,i = e−β(ai+mi+N ),

q = e−β�,

the field theory limit is given by β → 0. In this limit, (4.17) yields

Z =
∑

α1,...,N

Q
|α1|+···+|αN |
b Z(0)

α1···αN

∏

k

∏

i,j

(ai + mj + k�)Ck(αi)

× (ai + mj+N + k�)Ck(αi), (4.18)

which is Nekrasov’s partition function [11, equation (1.8)] for Nf = 2N after
using the identities given in [7].

5 Conclusion

How to move off the strip? We saw that an obstacle to taking a turn off the
strip was performing the sums (3.8) and (3.9) with factors of type qκ(α)/2

included in the sum over α. This obstacle does not appear insurmountable,
and efforts are underway to evaluate such sums. With them, all sums in the
expression for the topological partition function of toric manifolds whose
web diagram consists of a closed loop with external lines attached could be
performed. To go further, one would need to perform sums over the Young
tableaux which are the arguments of the Schur functions which appear in
the topological vertex.
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A Getting to know Schur functions

Since Schur functions feature prominently in this text, we wish to briefly
present them in their natural habitat of symmetric functions in this appen-
dix. Readers who wish to learn more are referred to, e.g., [20, 21].

Schur polynomials sλ(x1, . . . , xk) present a basis of the symmetric polyno-
mials in k variables. They arise in representation theory as the characters of
the Schur functor. Two perhaps more intuitive choices of basis for the sym-
metric polynomials are the following. The complete symmetric polynomials
hr are defined as the sum of all monomials in k variables of degree r, e.g.,
for k = 2, r = 2, h2 = x2

1 + x2
2 + x1x2, and the elementary symmetric poly-

nomials er as the sum of all monomials of degree r in distinct variables, e.g.,
e2 = x1x2. To a Young tableaux λ with at most k rows, one now introduces
the polynomial hλ = hλ1 · · ·hλn , where λi denotes the number of boxes in
the i-th row of λ, and likewise, to a Young tableaux µ such that µt has
at most k rows, eµ = eµ1 · · · eµn . Both sets {hλ}, {eµ} comprise a basis for
symmetric polynomials. The Schur polynomials can be expressed in terms
of these, using the so-called determinantal formulae,

sλ = |hλi+j−i| (A.1)

= |eλt
i+j−i|. (A.2)

The skew Schur polynomials, which we introduced in the text via their rela-
tion to the ordinary Schur polynomials, sλ/µ(x) =

∑
ν cλ

µνsν(x), also satisfy
determinantal identities,1

sλ/µ = |hλi−µj+j−i| (A.3)

= |eλt
i−µt

j+j−i|. (A.4)

The generating function for the elementary symmetric functions ei is
∏

(1 +
xit), i.e., the coefficient of ti in this power series is the i-th elementary
symmetric function ei. We now define the functions Sλ(E(t)), which we
encountered in Section 3.5, in accordance with the determinantal formula
(A.2), where ei is replaced by the coefficient of ti in the power series E(t).
Clearly, for E(t) =

∏
(1 + xit), Sλ(E(t)) = sλ(x).

1The difference of two Young tableaux (performed row-wise), as it appears in the
determinantal formulae (A.3) and (A.4), is also called a skew Young tableau, hence the
name skew Schur polynomials.
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Next, we collect the identities for the Schur functions we use in the text.
∑

α

sα/η1(x)sα/η2(y) =
∏

i,j

(1 − xiyj)−1
∑

κ

sη2/κ(x)sη1/κ(y), (A.5)

∑

α

sαt/η1(x)sα/η2(y) =
∏

i,j

(1 + xiyj)
∑

κ

sηt
2/κt(x)sηt

1/κ(y), (A.6)

∑

α

sα/η(x)sη(y) = s(x, y), (A.7)

sα(qρ+β) = (−1)|α|sαt(q−ρ−βt
), (A.8)

sα(qρ) = eκ(α)/2sαt(qρ). (A.9)

By invoking the cyclicity of the vertex, we further obtain

sα(qρ)sβ(qρ+α) = sβ(qρ)sα(qρ+β), (A.10)

qκβ/2sα(qρ)sβt(qρ+αt
) =

∑

η

sα/η(q
ρ)sβ/η(q

ρ). (A.11)

In our applications, we need to work within the ring of symmetric func-
tions with countably many independent variables. This ring can be obtained
from the rings of symmetric polynomials in finitely many variables via an
inverse limit construction [20].
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