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Abstract

We study the physics of D-branes in the presence of constant Ramond–
Ramond potentials. In the string field theory context, we first develop a
general formalism to analyze open strings in gauge trivial closed string
backgrounds, and then apply it both to the RNS string and within
Berkovits’ covariant formalism, where the results have the most natu-
ral interpretation. The most remarkable finding is that, in the presence
of a Dp-brane, both a constant parallel NSNS B-field and RR C(p−1)-field
do not solve the open/closed equations of motion, and induce the same
non-vanishing open string tadpole. After solving the open string equa-
tions in the presence of this tadpole, and after gauging away the closed
string fields, one is left with a U (1) field strength on the brane given by
F = 1

2

(
B − �C(p−1)

)
, where � is Hodge duality along the brane world-

volume. One observes that this result differs from the usually assumed
result F = B. Technically, this is due to the fact that supersymmet-
ric and bosonic string world-sheet theories are different. Note, however,
that the usual F + B combination is still the combination which remains
gauge invariant at the σ-model level. Also, the standard result F = B is,
in the D3-brane case, not compatible with S-duality. On the other hand
our result, which is derived automatically given the general formalism,
offers a non-trivial check of S-duality, to all orders in F , and this leads
to an S-dual invariant Moyal deformation. In an appendix, we solve
the source equation describing the open superstring in a generic NSNS
and RR closed string background, within the super-Poincaré covariant
formalism.

1 Introduction and motivation

The dynamics of D-branes in a constant Neveu–Schwarz–Neveu–Schwarz
(NSNS) B-field has been extensively analyzed in the literature. It leads to
non-trivial physics on the brane which can be described, at low energies, by
noncommutative Yang–Mills theory. In this paper we wish to analyze the
physics of open strings in the presence of gauge trivial Ramond–Ramond
(RR) potentials. At first sight one expects the dynamics of strings to be
completely unaltered by the presence of gauge trivial potentials, since the
string does not carry any RR charge. On the other hand, the following
arguments based on S-duality suggest that the issue is more subtle, and
that one should expect, in certain cases, physical effects.

As a first simple example of the kind of questions we wish to address,
let us consider a D9-brane in a flat type IIB background. Let us suppose
that we turn on a gauge trivial NSNS B-field B = dλ, which we assume to
be localized in spacetime. From the closed string point of view nothing is
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changed, since the new background is a gauge transformation of the standard
flat background. On the other hand, the open string equations of motion
are not satisfied in general, unless we turn on a U(1) potential am on the
brane which must satisfy

∂mfmn = Jn, (1)

where

Jn = −∂mBmn = −�λn + ∂n (∂ · λ) .

Equation (1) is nothing but Maxwell equations coupled to a conserved cur-
rent Jm, and it is therefore natural to assume that the physically relevant
solution is the one obtained using retarded propagators. The solution in
Lorentz gauge just reads

an =
1

� ± iε
Jn = −λn + ∂n

(
∂ · λ

� ± iε

)

and we therefore easily conclude that f = −B and that the brane U(1) field
strength screens completely the perturbation due to B. This process can
be understood pictorially following figure 1, where we show on the left the
original B-field and in the center the induced current which behaves—as
shown on the right—as a pair of capacitor plates creating a field f equal
and opposite to the original B-field. Note that, since the low-energy effective
action is written in terms of the field f + B, the general solution to (1) is
clearly f = −B + δf , where δf satisfies the free Maxwell equations. The
basic point of this first example is that, if we consider the D-branes as
reacting to a pre-existing closed string background, and if they do so following
a causal retarded propagation of the world-volume fields, then we single out
the specific solution with δf = 0.

A second, more physical, example is given by the dynamics of a D3-brane
positioned at x4 = · · · = x9 = 0, in the presence of a B-field shock wave,

Bmn FmnJm

Figure 1: Backreaction of the open string field fmn to the presence of a
current Jm generated by a localized gauge trivial NSNS B-field.
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given by

B = φ
(
x+)

dx2 ∧ dx3,

where x± = x0 ± x9. We choose the function φ (x+) to interpolate from
φ (−∞) = 0 to φ (+∞) = φ. The NSNS field strength

H = φ ′ dx+ ∧ dx2 ∧ dx3

satisfies d � H = 0 for any choice of the function φ (x+) so that, by turning
on the B-field infinitesimally slowly (adiabatically), we can solve the closed
equations of motion to arbitrary accuracy without deviating from the flat
metric. It is easy to see that the current Ja vanishes in this particular
example1 and therefore, following again the prescription described in the
previous example, we have that fab = 0. The full solution then adiabatically
interpolates between a vanishing B-field and a constant field B = φ dx2 ∧
dx3 on the brane, which leads to the usual noncommutative behavior of the
brane gauge theory.

Let us consider also the S-dual description of the above process. This
involves looking at the RR shock wave

C(2) = −φ
(
x+)

dx2 ∧ dx3 .

In this case there is an induced current Jm, due to the Wess–Zumino coupling
−

∫
D3 C(2) ∧ f , which is non vanishing and is

J = φ′(x0) dx1 .

The Maxwell problem (1) is simply solved, again with retarded propagators,
by

f = φ(x0) dx0 ∧ dx1 ,

so that one now sees that the noncommutativity in the future is due to the
reaction of the open string U(1) gauge potential to the current induced by
the non vanishing RR field.

In these two examples, we have considered the process of turning on some
closed string fields (always satisfying the equations of motion for the closed
string) which are time dependent and which vanish in the far past. These
fields induce a current J which acts as a source for the open string fields,
and we analyzed the unique reaction of the brane to this current by solving
the corresponding Maxwell equation (1) using the physical requirement of
causality, and therefore using retarded propagators. The example of the
shock wave is particularly illuminating: one observes that, in order to obtain

1Throughout the paper we consider type IIB theory in flat space, together with a Dp-
brane stretched in the directions x0, x1, . . . , xp. We use indices m, n, · · · = 0, . . . , 9, for
spacetime, a, b, · · · = 0, . . . , p, for the brane worldvolume and i, j, · · · = p + 1, . . . , 9, for
the transverse directions.
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the standard noncommutative behavior to the future of the S-dual RR wave,
which is expected by S-duality, we must incorporate the solution to equation
(1) due to the current Jm. We should point out at this stage that the only
principle we follow is a basic prescription on how to solve the open string
equations uniquely, given a current J . We then notice that if we turn
on two closed string field configurations, which are S-dual, then the final
backgrounds including the backreaction of the brane will also be S-dual, as
one expects.

The situation is not as straightforward when the closed string deformation
does not vanish in the far past, and in particular is constant in spacetime.
We shall thus mostly focus, from now on, on gauge trivial closed string
deformations. We have seen with the first example that, for gauge trivial
deformations which are localized in spacetime, nothing happens after one
takes into account the open strings backreaction. On the other hand, as was
just mentioned, we are interested in closed string deformations which are
constant in spacetime. In the presence of a constant current, one does not
have a simple physical principle (like retarded propagation of world-volume
fields) to determine the backreaction of the open string, aside from the only
requirement that:

: (A) Whenever the induced current on the brane is the same, then the
open string reaction should also be identical.

We have seen that, in the shock wave example, the final result compatible
with (A) was also compatible with S-duality, in the sense that:

: (B) Given two deformations of the closed string background which are
S-dual then, after inserting a D-brane, the total backgrounds—i.e.,
the ones which include the backreaction of the open strings—are also
S-dual.

On the other hand, just on the basis of Born–Infeld theory, it seems
impossible to reconcile requirements (A) and (B) whenever the closed string
perturbation is independent of time, as the following example shows.
Consider a D3-brane in flat space stretched in the directions 0, 1, 2, 3, and
let us turn on an NSNS field B23. The current Ja vanishes and we then
use (A) to insist that the backreaction of the open strings should also
vanish. The full system will then exhibit noncommutative behavior in the
scattering processes of open string states, in the form of the well-known
Moyal phase factors. The S-dual closed string background is, on the other
hand, a constant RR 2-form field C01, which again induces no current. This
time, however, the dynamics on the brane is completely unaltered since the
background U(1) field strength vanishes and since the Wess–Zumino action
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is a total derivative for gauge trivial RR fields, and therefore does not con-
tribute to perturbative scattering amplitudes, unlike the previous situation.

In this paper we shall show that, if we consider the full string fields (open
and closed) as opposed to only the low energy fields (meaning the massless
fields in the low energy effective action with massive modes integrated out),
then the situation is quite different and is in fact compatible with S-duality,
in the sense of (B). In particular we shall show, both in the RNS and in
the pure spinor covariant formulation of Berkovits, that constant NSNS and
RR fields do induce a non vanishing current, which is the same for both the
B and the C field backgrounds. Following (A) we must then only consider a
single reaction from the open strings. We will then show, quite non-trivially,
that the resulting total deformation of the background will be compatible
with S-duality independently of the initial configurations of closed and open
strings. More precisely, we will consider a Dp-brane stretched in directions
x0, . . . , xp with an initial background U (1) flux Fab, and we will consider
turning on constant NSNS and RR fields B and C(q). After computing
the backreaction of the open strings following (A), we consider the final
configuration which, quite naturally, corresponds to the original brane with
a new gauge field

Fab + δFab

(
F, B, C(q)

)
,

and possibly also with a rotated world-volume. We will then show that,
in the case of a D3-brane, the result δFab is compatible with S-duality,
independently of F . To leading order, for fields B and C(2) parallel to the
brane, one has (� in here is Hodge duality on the brane)

δF =
1
2

(
B − �C(2)

)
+ O (F ) ,

which is compatible with B → C(2), C(2) → −B and δF → �δF . The higher
order terms in O (F ) are computed explicitly and provide a strong check on
the full construction.

This expression corresponds to the linear terms in an NSNS and RR
noncommutative parameter Θ. In order to compute the full nonlinear result
one has to solve a complicated differential equation. Let us also comment on
the factor of 1

2 (which makes our result differ from the lore that one should
have F = B). This factor arises due the fact that the world-sheet theory
for the superstring (be it RNS or pure spinor) is quite different from the
world-sheet theory for the bosonic string where there is no RR sector, the
current J vanishes, and one has F = B. Moreover, we should point out that
the canonically normalized F + B combination is still the σ-model gauge
invariant expression to consider, as we show later in the paper.
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This paper is organized as follows. We begin in Section 2 with a brief
summary of our results, for the reader who wishes to skip the technical
details at first reading. In Section 3 we describe the string field theoretic
setting which allows us to describe open string physics in gauge trivial closed
string backgrounds. This setting will be the basis for the calculations we
shall perform in the following sections. We begin the calculations within the
familiar RNS language [1–12], in Section 4. We shall focus our study on the
case of a D9-brane in a constant RR C-field and observe that the boundary
deformation, arising from the closed string background in the open string
disk diagrams, precisely corresponds to that of an effective δF , as previously
described. In order to analyze the most general picture, we switch to the
pure spinor covariant formalism [13–29] in Section 5. The power of this
formalism allows us to fully describe D-brane physics in constant NSNS and
RR potentials. The analysis of both Sections 4 and 5 is done for background
field strength Fab = 0 on the brane. In Section 6 we consider the general
case of finite Fab, and set up the differential equation δFab to determine the
full nonlinear corrections to the background Fab and therefore to the open
string parameters G and Θ [30–38]. This last result then gives us the tools
to perform the non-trivial check of S-duality in the D3-brane case, which
we have discussed at length2 . We end in Section 7 with some conclusions
and open problems for future research. In Appendix B it is shown how to
solve a source equation describing the motion of an open superstring in a
generic NSNS and RR closed string background.

2 Summary of results

Let us summarize the main results we obtain in this paper. All formulae
apply to type IIB theory, for infinitesimal B and C-fields. The extension to
type IIA is trivial.

We first consider a Dp-brane with no background U (1) field strength F =
0, immersed in a parallel B field and in a general but constant RR potential

C = C
(q)
‖ ∧ C

(k)
⊥ ,

where C
(q)
‖ and C

(k)
⊥ are, respectively, a q and a k-form parallel and

transverse to the brane. Let also � be Hodge duality on the brane world-
volume. The only non-trivial open string physics coming from the RR sector
arises for the cases (q, k) = (p − 1, 0) and (q, k) = (p, 1). In the first case, the

2Previous work concerning S-duality in the context of noncommutative geometry can
be found in [39–41].
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two-form �C
(p−1)
‖ is parallel to the brane and can be gauged away, together

with the B-field, to a constant field strength

δF =
1
2

(
B − �C(p−1)

)
,

on the brane world-volume. Note that the normalization of the above fields
is canonical, and that the non-standard factor of 1/2 differs from the usually
assumed result δF = B. This leads to the usual Moyal deformation also for
RR fields and is compatible with S-duality, as discussed in the previous
section. The other non-trivial case (q, k) = (p, 1) corresponds to a rotation
of the brane world-volume. More precisely, if we define the two-form

Ω = �C
(p)
‖ ∧ C

(1)
⊥ ,

and if xa are the world-volume coordinates and zi the transverse scalars,
then the displacement is

zi =
1
2

xa Ωai .

We also consider Dp-branes in the presence of a finite background U (1)
field strength F . In the bulk of the paper we describe the general result, but
here let us discuss the most relevant case, for p = 3 with parallel background
fields B and C(0), C(2) and C(4). We discovered that the total induced
variation δF of the field strength F is given by

δF
(
F, B, C(0), C(2), C(4)

)
=

1
2

(
B − �C(2)

)
− 1

2
F ∧ �C(4)

+
1
2

� F ∧ C(0) + · · · ,

where the dots represent terms of higher order in F which can be com-
puted explicitly. The most remarkable feature of the above result is its
compatibility with S-duality, in the sense described qualitatively in the
Introduction and to be made precise in Section 6.2. In fact, using the
explicit formulae in this paper, we have checked S-duality to all orders in F !
This leads to an S-dual invariant prescription for a Moyal noncommutative
deformation.

3 Basic string field theory setting

In order to understand the issue more clearly, we first need to discuss, from
a general and qualitative point of view, what we mean by the motion of
an open string in a closed string background, and in particular in a gauge
trivial closed string background.
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In general, strings at weak coupling are described by an open-closed string
field theory action [42–45] which is written in terms of a closed and an open
string field, Ψ and Φ (in bosonic string theory, respectively of ghost number
2 and 1), and which is of the general form

1
g2 Sc +

1
g
So +

1
g
Soc,

where Sc represents the closed string field theory action, coming from
interactions with sphere diagrams, and where So and Soc correspond to
the open string field action and to the interaction terms between open and
closed strings, and are related to disk diagrams. This explains the different
powers of the string coupling in front of the various terms. Focusing on the
linearized classical equations of motion in the free g → 0 limit, we have in
general the equations

QΨ = 0, (2)

QΦ = −J, (3)

where Q is the (either open or closed) BRST operator, and where we have
defined

J ≡ π (Ψ) .

The map π relates closed to open string states. One can think of this map
as a projection map, projecting the closed string vertex operators in the
world-sheet bulk to the world-sheet boundary (implementing appropriate
boundary conditions between left and right movers). Its detailed properties
depend on the specific string field theory in question, but π generically will
preserve ghost number and will have the property that

Qπ (Ξ) = π (QΞ) .

It is clear that equations (2) and (3) are asymmetric and one can, in
particular, choose Ψ to satisfy the closed string equations of motion
completely forgetting about the open string sector (this is true also in the
interacting theory). This asymmetry is directly related to the different
powers of g corresponding to closed and open string interactions, and it
is the very reason why one can talk about open strings in a closed string
background but not vice-versa. Given a solution, Ψ, in order to find a
consistent vacuum one must solve equation (3) for Φ. We now recall that,
for the massless bosonic sector, the on-shell equation QΦ = 0 corresponds to
the free Maxwell equations of motion. This implies that we should consider J
as a source term for the Maxwell equations, or as a current. Then, current
conservation is nothing but the statement that QJ = π (QΨ) = 0. These
facts are the generalization, using the full string field, of the setup described
in the introduction, and we shall see, in the following sections, concrete
examples both in the RNS and in the pure spinor formalism.
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Let us now consider the gauge invariance of the string field theory
equations of motion, focusing on the linear part of the gauge transformations
(since we are looking only at the linear equations of motion in this
discussion). We clearly have the usual open string gauge transformations
Φ → Φ + Qκ. We will be, on the other hand, more interested in the closed
string gauge transformations which read, in the presence of the open string
sector,

Ψ → Ψ − Qη, Φ → Φ + π (η) . (4)
Clearly any two vacua related by the above gauge transformations will be
completely equivalent and will yield the same physical results.

We may now discuss more clearly what we mean by open strings
propagating in a gauge trivial closed background. Consider a closed string
background given by

Ψ = Qη.

As we pointed out, one can choose this background before talking about
open strings. As a second step we need to solve equation (3) for the open
string field. Denoting the solution with Φr, we need to solve

QΦr = −J = −QΦc, (5)

where we have defined the open string state

Φc ≡ π (η) . (6)

Clearly one solution of (5) is given by Φ = −Φc. Recalling the first example
in the introduction, this solution will be the natural one whenever Ψ is
localized in spacetime. This case is, on the other hand, quite uninteresting
since the vacuum Ψ = Qη, Φ = −π (η) is a gauge transform of the Ψ = Φ = 0
vacuum. For more general configurations, as we have already discussed at
length in the introduction, we must have a general principle on how to
solve (5), which must be compatible at least with requirement (A) in the
introduction. At any rate, we will later discuss more generally how to solve
equation (5), but for now we just denote with Φr the solution, which we
assume unique given J . We have the new, in general physically different
vacuum Ψ = Qη, Φ = Φr. We can then apply the gauge transformation (4)
to bring the solution to the form

Ψ = 0 ,

Φ = Φc + Φr .

In this way, we can associate to any gauge trivial closed string state Ψ = Qη
a corresponding on-shell deformation of the open string Φc + Φr by using
equations (6) and (5). We therefore have a map which sends gauge trivial
closed string deformations into on-shell physical open string deformations.
We want to show that, whenever Ψ and Ψ̃ are S-dual closed gauge-trivial
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deformations, then our procedure will yield S-dual open string deformations
Φc + Φr and Φ̃c + Φ̃r, under the requirement (A) that equal currents J go
into equal solutions Φr of (5). We will show that this is possible for the case
of constant NSNS and RR gauge field backgrounds. A word on the notation.
We have divided the open string field Φ in a part coming from the closed
string and a part coming from the reaction of the open string. This explains
the choice of subscripts Φc and Φr.

To illustrate this procedure in a familiar setting, let us consider the
bosonic string and show how to obtain the well-known (infinitesimal)
deformation of F = B. This will make clear, in a simplified case, how the
above reasoning works. Given the constant B-field bosonic closed string
background, described at zero momentum by

Ψ =
1
2

cc
[
Bmn∂Xm∂Xn

]
,

it is simple to compute that the corresponding current will vanish, J =
π(Ψ) = 0. Indeed, the π map brings the closed string vertex operator to the
boundary of the world-sheet, where c = c. Following the procedure outlined
above one now computes, in a unique way, the open string reaction via
QΦr = −J = 0, which yields Φr = 0. The open string deformation will thus
be given by Φ = Φc + Φr = Φc, where one still needs to find Φc = π(η). First
observe that with

η =
1
4

Bmn

[
Xm c∂Xn − c∂Xm Xn

]

it follows that Ψ = Qη. Then, it is simple to compute the open string
deformation as

Φ = π(η) =
1
2

Bmn Xm∂Xn.

This is the expected final result of F = B open string deformation, for the
bosonic string. In the superstring case one will find that the current J is
actually non-vanishing (though equal in the two cases of NSNS and RR
deformations), and the whole story will be very different from this simple
bosonic case. In fact, Φc alone will no longer be a solution of the open string
equations of motion, and one will have to endure a much harder analysis in
order to add the Φr contribution.

We now have the general framework to address our main problem at
hand. We need to understand better, in specific cases, the map π and, more
importantly, how to solve equation (5) or, more generally, equation (3). We
shall first start by performing such an analysis in the familiar setting of
the RNS formalism, and will only later proceed to use the more powerful
pure spinor covariant formalism, where the whole picture will become much
clearer.
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4 Analysis in the RNS formalism

In the RNS formulation of the superstring [1–4] the matter fields organize
into the action

1
2π

∫
d2z

(
2
α′ ∂Xµ∂̄Xµ + ψµ∂̄ψµ + ψ

µ
∂ψµ

)
,

whereas the ghost fields are the usual bc and βγ systems. It is standard to
fermionize the βγ superconformal ghosts as β = ∂ξe−φ and γ = ηeφ. Also,
we shall work in α′ = 2 units. The BRST operator Q = QL + QR naturally
decomposes into three pieces [1],

QL = Q0 + Q1 + Q2, (7)

labeled by their spinor ghost charges

Q0 =
∮

dz

2πi
[c (TX + Tψ + Tηξ + Tφ) + c∂cb] ,

Q1 =
1
2

∮
dz

2πi
eφηψµ∂Xµ,

Q2 =
1
4

∮
dz

2πi
bη∂ηe2φ.

The BRST operator has total ghost number 1 and total picture number 0.

4.1 Vertex operator Ψ for the B and C-fields in superstring
theory

In this section we analyze the vertex operators ΨB and ΨC for a constant
B-field and a constant C-field.

We recall first that scattering amplitudes on the disk are saturated with
the insertion of three ghost fields c, c and with a total picture number of
(−2) [4]. In particular, for closed string vertex operators, picture number
is counted by summing the left and right sector picture numbers p, p. We
shall subsequently be interested in world-sheet bulk vertex operators Ψ such
that p + p = −2. Therefore, if one considers the disk interaction of n gluons
and 2m gluinos, in the presence of the closed vertex Ψ, the total picture
number for the gluons and the gluinos must vanish and the correlator will
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look schematically like

〈 V(0) · · · V(0)︸ ︷︷ ︸
n

V(+ 1
2 ) V(− 1

2 ) · · · V(+ 1
2 ) V(− 1

2 )
︸ ︷︷ ︸

2m

Ψ 〉.

The B-field vertex operator in the (−1,−1) picture is standard and is
given, at zero momentum, by the expression

ΨB = −cc
[
Bmnψmψ

n
e−φe−φ

]
. (8)

Consider now the C-field bulk vertex operator. In the standard (−1
2 ,−1

2)
symmetric picture this vertex operator will contain the RR field strength
Fq+1 = dCq, and not the RR gauge potential Cq, as is well known, for exam-
ple, from many D-brane scattering calculations [5–8]. In order to obtain a
vertex operator which depends on the RR gauge potential one needs to
change to an asymmetric picture [9–11]. Due to the nature of our calcula-
tions, this asymmetric picture vertex operator is precisely the one we are
interested in. It has, as we shall see, total picture number (−2) and it is
therefore the natural companion of the operator ΨB for constant B-field.
We will present explicit formulae for type IIB, the extension to IIA being
trivial.

Let us first introduce some notation for the RR potentials. For spinor
conventions, please refer to Appendix A. We let Cm1···mq , with q even, be
the RR q-form potential, and we define as usual the bi-spinor

Cα
β =

∑

q even

1
q!

Cm1···mq (γm1···mq)α
β,

and similarly for the dual version Cα
β. Also, we will find convenient to use,

together with Cα
β, its transpose Cα

β = Cβ
α given by

Cα
β =

∑

q even

(−)
q
2

q!
Cm1···mq (γm1···mq)α

β.

The C-field vertex operator ΨC , at zero momentum, is a sum of two pieces
at picture number (−3

2 ,−1
2) and (−1

2 ,−3
2) [9–11]

ΨC =
1
16

cc
[
Sα Cα

βSβe− 3
2φe− 1

2φ − Sα Cα
βS

β
e− 1

2φe− 3
2φ

]
, (9)

where S are the spin fields.

In the language of Section 3, we now have the closed string field Ψ. It is
pure gauge, so we proceed to compute the corresponding open string current
J = π(Ψ) (Section 4.2) and the BRST potential η and Φc = π(η) (Section
4.3).



368 LORENZO CORNALBA ET AL.

4.2 Boundary OPE’s for ΨB and ΨC : computation of the
current J

In this section we wish to compute the open string current J = π(Ψ)
generated by the closed string field Ψ. Therefore we must introduce open
strings by restricting the CFT to the upper half complex plane H and by
imposing boundary conditions on ∂H. We will then define the closed-open
projection π(Ψ) to be simply the boundary OPE of the operator Ψ as it
approaches ∂H. This definition is clearly valid only if the OPE is non-
singular, which will be true for the applications which follow.

We will discuss in this section the specific case of the D9-brane in type
IIB. The more general cases are discussed in Section 5 using the covariant
formalism. The D9-brane boundary conditions on ∂H are

∂Xm = ∂Xm, ψ
m = ψm,

S
α = Sα, Sα = Sα,

together with the boundary conditions for the ghost fields,

Ghost = Ghost.

Let us start by computing the current JB = π(ΨB) related to a constant
B-field background. As we discussed above the definition of π implies that
we must compute the following OPE

JB = lim
z→z̄

ΨB(z, z̄).

Using the boundary conditions we get that

lim
z→z̄

ΨB(z, z̄) = Bmn lim
z→z̄

(
c∂c(z̄) +

1
2

(z − z̄) c∂2c(z̄) + O(z − z̄)2
)

·

·
(

gmn

z − z̄
− gmn∂φ(z̄) + ψmψn(z̄) + O(z − z̄)

)
e−2φ(z̄).

Besides the standard OPE’s [1], we have used the relation3

ψm(z)ψn(w) =
gmn

z − w
+ : ψmψn : (w) + · · · .

The final result for the current JB reads

JB = Bmn c∂c ψmψn e−2φ. (10)

Note that JB is an open string operator at picture number (−2) and ghost
number (+2) as expected.

3We are using the notation gmn for the flat diagonal spacetime metric throughout this
paper.
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We now turn to the C-field case. The treatment is identical to the previous
situation, with the exception that the analysis involves the OPE’s of the spin
fields

Sα(z)Sβ(w) ∼ (z − w)− 5
4 δα

β + (z − w)− 1
4

1
2
[γmn]αβ ψmψn(w) + · · · .

We may then compute the limit

lim
z→z̄

ΨC(z, z̄) = − 1
16

Cα
β lim

z→z̄

(
c∂c(z̄) +

1
2

(z − z̄) c∂2c(z̄) + O(z − z̄)2
)

×
( δα

β

z − z̄
− 3

2
δα

β ∂φ(z̄) +
1
2
[γmn]αβ ψmψn(z̄) + O(z − z̄)

)

× e−2φ(z̄) − · · · ,

where the terms in · · · are similar and come from the picture number
(−1

2 ,−3
2) part of ΨC . To get a regular OPE we will assume4 that Cα

α = 0.
In this case we conclude that

JC = − 1
32

(
Cα

β [γmn]αβ − Cα
β [γmn]α

β
)

c∂c ψmψne−2φ (11)

=
1
32

Tr
[
(C + C)γmn

]
c∂c ψmψne−2φ. (12)

Clearly, the only RR-field that contributes to JC is the 8-form potential
(since the sum C + C does not include the 2-form potential). Moreover it
is easy to show that JC has the same form of JB with an effective B-field
given by

Beff = − 1
64

Tr
[
(C + C)γmn

]
dxm ∧ dxn = − � C(8).

This is the first instance of the results we have discussed in Section 1.

Two comments are now in order. Firstly, we are discussing only the D9-
brane case, for clarity of exposition. We will discuss the general case in the
(simpler) framework of the covariant formalism, which we shall describe in
Section 5. Secondly, we should note that these results are only valid to linear
order in the background fields. In order to determine the full nonlinear RR
noncommutativity extra work is required. In fact, using the general results
in the covariant formalism one can write down a differential equation for the
noncommutativity parameter, as the background fields B and C are turned
on. When one has only B-field the full non-linear result is known. We shall
discuss the non-linear result with both fields in Section 6.

4This implies that C(0) = 0. This case is easily treatable in the covariant formalism to
follow.
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4.3 BRST potentials for vertex operators: computing η and Φc

In the last section we have studied the open string current J . Since we are
dealing with constant B and C-fields, we expect that the vertex operators
(8) and (9) are BRST exact. In this section we address the question of
finding the BRST potential, η, for these operators, satisfying Ψ = Qη, and
then study their boundary OPE, Φc = π(η).

Let us begin with the vertex operator for the B-field, (8). Counting of con-
formal dimension, ghost and picture numbers suggests that one should con-
sider the operator of ghost number (−1) (concentrating on the left-movers
for the moment)

2c∂ξe−2φf(X).
The only non-trivial commutation is with the Q1 component of the BRST
operator, which will produce

[
Q1, 2c∂ξe−2φf(X)

]
= cψme−φ∂mf(X).

If we introduce a one-form Λ such that B = dΛ with ∂ · Λ = �Λ = 0 (for
example 2Λn = xmBmn) it is quite easy to show that

ΨB =
[
QL + QR, ηB

]
,

where
ηB = −2Λm(X) cc

[
∂ξe−2φ ψ

m
e−φ + ψme−φ ∂̄ξe−2φ

]
.

To compute Φc = π(η) we take the boundary OPE of the BRST potential
and we get

ΦB
c = lim

z→z̄
ηB(z, z̄) = 2Λm(X) c∂c ψm ∂φ∂ξ e−3φ. (13)

Next, we turn our attention to the C-field vertex operator (9). Conformal
dimension, and ghost and picture number counting now tell us that the
natural operator to consider is

2 c∂c ∂ξ∂2ξ SA e− 7
2φ f(X).

This time the relevant non-trivial commutation relation is with the Q2
component of the BRST operator (7), where one finds as expected

[
Q2, 2 c∂c ∂ξ∂2ξ SA e− 7

2φ f(X)
]

= c SA e− 3
2φ f(X).

Thus, if one considers the operator

ηC = −1
8
c∂c ∂ξ∂2ξ e− 7

2φ Sα Cα
β c Sβ e− 1

2φ + · · · ,

(the · · · are the symmetric term with left and right movers interchanged)
commutation of QL + QR with this operator then yields the C-field vertex
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operator
ΨC =

[
QL + QR, ηC

]
.

As we take the boundary OPE of this BRST potential one finds

ΦC
c = lim

z→z̄
ηC(z, z̄) =

1
32

Tr
[
(C + C)γmn

]
c∂c∂2c ∂ξ∂2ξ ψmψn(z) e−4φ.

(14)

Observe that, as expected, both (13) and (14) live at picture (−2).

To conclude the general procedure discussed in Section 3, we must now
understand the reaction term Φr of the open strings, and the total defor-
mation Φc + Φr. In order to do so, we analyze in the next section the gluon
vertex operator at picture number (−2).

4.4 The gluon vertex operator at picture number (−2)

The boundary operators we have obtained in the previous section are

am(X) c∂c ψm ∂φ∂ξ e−3φ,

and
fmn(X) c∂c∂2c ∂ξ∂2ξ ψmψn e−4φ.

Recall that the ghost number assignment of eqφ is q [1], so that both these
operators are at ghost number (−1) and picture number (−2). The question
we face is whether picture raising will bring a linear combination of these
operators to the canonical gluon vertex operator at picture number (−1)

Φ(−1) = 2am(X) cψm e−φ. (15)

Let us consider the following ansätz for the gluon vertex operator at picture
number (−2),

Φ(−2) = k1 am(X) c∂c ψm ∂φ∂ξ e−3φ

+ k2 fmn(X) c∂c∂2c ∂ξ∂2ξ ψmψn e−4φ,

where k1 and k2 are two constants to be determined and, at the moment,
we are assuming no relation between am and fmn. We need to show that
the picture raising operation will take Φ(−2) to Φ(−1) or, more specifically,
that

Φ(−1) =
[
Q, 2ξΦ(−2)

]
.

As expected, we will have to impose that f = da as well as the on-shell
relations ∂ · a = 0 = �a for the gluon field.

We shall begin with the piece proportional to am. Assuming �a = 0, it
is simple to realize that the commutation with the Q0 component of (7), in
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the formula above, will vanish. To analyze the commutation with Q1, one
has to use the fermion OPE,

ψm(z)ψn(w) =
gmn

z − w
+ : ψmψn : (w) + · · · .

The term which arises from the singular part above will be proportional to
∂ · a, which we take to be zero in the Lorentz gauge. The term that arises
from the normal ordered piece is non-vanishing and reads

[
Q1, 2ξ am c∂c ψm ∂φ∂ξ e−3φ

]
= −

(
∂man − ∂nam

)
ξc∂cψmψne−2φ.

At first sight the above result seems strange, as the right hand side is a
vertex operator off the small Hilbert space. As we shall see in a moment,
this term will cancel out in the final expression exactly when Φ(−2) is BRST
closed. This is simple to understand since the terms proportional to ξ
arise, schematically, from [Q, 2ξΦ(−2)] 	 2ξ[Q,Φ(−2)] + · · · and vanish when
[Q,Φ(−2)] = 0. As to the commutation with the last component of (7), Q2, it
yields the expected expression for the gluon vertex operator at the canonical
(−1) picture,

[
Q2, 2ξ am c∂c ψm ∂φ∂ξ e−3φ

]
= am cψme−φ.

Let us now turn to the term proportional to fmn in Φ(−2). Again, with
�f = 0, one quickly shows that the commutation with the Q0 component
of the BRST operator vanishes. Commutation with the Q1 component, on
the other hand, yields a term proportional to the Yang–Mills equation of
motion ∂mfmn, which vanishes for f = da with an on-shell gluon. The final
commutation with the Q2 component of the BRST operator results in an
operator that is again off the small Hilbert space, namely

[
Q2, 2ξ(z) fmn c∂c∂2c ∂ξ∂2ξ ψmψn e−4φ

]
= −2 fmn ξc∂cψmψne−2φ.

Because we are looking for the physical gluon vertex operator, at picture
(−1), we cannot allow for terms which are outside the small Hilbert space,
so we require that the two terms proportional to ξ(z) cancel with each other.
This requirement is fulfilled when

k1 + 2k2 = 0

and f = da. Moreover, under this condition, as we discussed above, the
state Φ(−2) is BRST closed. In conclusion, fixing the overall normalization,
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the gluon vertex operator at picture (−2) is simply

Φ(−2) = 2 am(X) c∂c ψm ∂φ∂ξ e−3φ

− fmn(X) c∂c∂2c ∂ξ∂2ξ ψmψn e−4φ.

We shall, moreover, denote with Φ(−2)(F ) the gluon vertex operator corre-
sponding to a constant field strength fmn(X) = Fmn, 2am(X) = −FmnXn.

To conclude the argument and to prove that, in the presence of a C-field
(in particular in the example we are discussing, of an 8-form RR potential),
the open strings react and behave as in the presence of an effective B-
field Beff = − � C(8), we must solve the source equation QΦr = −J . We
shall later develop a general strategy to solve this equation in the covariant
formalism, so for the moment we are forced to borrow one result from Section
5, which is based both on this general formalism as well as on arguments of
S-duality. More precisely, we will show in Section 5.5 that, in the presence
of a B-field, the total boundary deformation will be

ΦB
c + ΦB

r =
1
2
Φ(−2)(B).

We remark that in this superstring case there is an extra factor of 1/2,
which differs from the usual result given in [30–38], but is unequivocally
determined within the pure spinor formalism. Given the above equation,
the reaction term ΦB

r to the current JB must be given by

ΦB
r = −1

2
BmnXm c∂c ψn ∂φ∂ξ e−3φ

− 1
2

Bmn c∂c∂2c ∂ξ∂2ξ ψmψn e−4φ.

Note that the relative sign between the two terms is different from the one
in Φ(−2). This must be so since Φ(−2) is BRST closed, whereas QΦr = −J .
In the C-field case one has an identical current J (up to an overall sign and
the replacement B → Beff), and therefore the reaction must be identical.
Thus, we conclude that

ΦC
c + ΦC

r =
1
2
Φ(−2)(Beff),

as we wanted to show.

One would like to develop better these arguments, in a context where RR
fields appear naturally, in order to fully understand the most general cases.
This shall be studied next, in the context of the pure spinor formalism,
which allows for a manifest super Poincaré covariant quantization of the
superstring and where RR fields can be studied most simply.
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5 Analysis in the covariant formalism

Let us start by reviewing the basics of the pure spinor covariant formalism,
as developed by Berkovits in an extensive list of papers [13–25]. We shall
write all the formulae for type IIB string theory, but the generalization to
type IIA is straightforward.

5.1 The underlying conformal field theory

In this section we recall the conformal field theory underlying the covariant
formalism in flat space. We shall again use units such that α′ = 2. First of
all, we have the usual matter part

1
2π

∫
d2z ∂xm∂xn gmn,

of central charge +10. The spacetime coordinates xm are completed, to form
the IIB ten dimensional superspace, with the addition of the fermionic chiral
spinor coordinates θα, θ

α (see Appendix A for spinor conventions). These
fermionic coordinates are promoted to conformal fields of the underlying
CFT, together with their respective conjugate momenta pα, pα, with the
action

1
π

∫
d2z

(
pα∂θα + pα∂θ

α
)

.

The fields θα and pα form 16 fermionic holomorphic bc systems of conformal
dimension 0 and 1 respectively, which contribute −32 to the central charge
(−2 for each of the 16 pairs). The same holds for the pairs θ

α, pα on the
anti-holomorphic side. Finally we have the bosonic pure spinors λα, λ

α

together with their conjugate pairs wα, wα and with an action of the sort

“
1
π

∫
d2z

(
wα∂λα + wα∂λ

α
)
”. (16)

We should think of the pairs λα and wα as bosonic βγ systems of conformal
dimension 0 and 1. The reason for the quotation marks around the above
action is that the fields λ and λ are not free, but constrained to be pure
spinors satisfying the equation

λγmλ = 0 = λγmλ. (17)

Without this constraint, the action (16) would contribute +32 to the central
charge. However, given the above constraints, the number of degrees of
freedom is reduced and the contribution to the central charge is +22, as
expected for a critical string theory. One of the useful results of the covariant
formalism is that one can actually solve the constraint (17) using only free
fields, in which case λ and λ become composite fields and the action (16)
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is replaced by a honest action of the underlying free fields. We shall not
need the details of this construction, which can be found in [14]. For future
reference, and to fix normalizations, let us record some of the basic OPE’s
of the CFT

∂xm (z) ∂xn (w) ∼ − gmn

(z − w)2
,

pα (z) θβ (w) ∼ δα
β

z − w
.

5.2 BRST operator and closed string spectrum

Central to the construction of any string theory is the description of phys-
ical states in terms of BRST cohomology, and the same holds true for the
covariant formulation [14, 16, 20]. More precisely, the conserved BRST
current on the world-sheet is given, in terms of the basic fields given
above, by

JBRST = (λd) dz −
(
λd

)
dz,

where the spinor current dα is defined by

λd = λp − (λγmθ) ∂xm − (λγmθ) (θγm∂θ)

and a similar equation holds for dα. The BRST operator is then given by

Q = QL + QR =
1

2πi

∮
JBRST .

The second ingredient in the construction of the physical spectrum is the
grading of the states by ghost number g = gL + gR. This is defined by
declaring gL(λ) = gR(λ) = 1 and gL(w) = gR(w) = −1, with the conformal
vacuum of ghost number zero as usual. With this definition, gL(QL) =
gR(QR) = 1 as expected. Then, the closed string states are identified with
the BRST cohomology at total ghost number g = 2.

The massless spectrum, in the covariant formulation, is particularly
simple as states are constructed uniquely from the zero modes of the fields
and therefore are represented by functions in type II superspace (xm, θ, θ),
which also depend non-trivially on the pure spinor coordinates λ and λ.
We can then expand any such function in powers of λ and λ, where the
coefficients of the power series are functions in superspace, and where terms
proportional to λmλ

n have ghost number (gL, gR) = (m, n). The action of
the BRST operator on these states constructed from the zero modes is quite
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simple, since the operators QL and QR act as differential operators λαDα

and λ
α
Dα given by

QL → λD = λ
∂

∂θ
+ (λγmθ) ∂m,

QR → λD = λ
∂

∂θ
+

(
λγmθ

)
∂m.

5.3 Open strings in the covariant formalism

So far we have only described the closed string sector, and we have
consequently considered the CFT as defined on the whole complex plane.
We shall now introduce open strings by restricting our CFT to the upper half
plane H and by imposing boundary conditions which relate the left-moving
to the right-moving modes. We shall work from now on with a Dp-brane
stretched in the directions 0, 1, . . . , p, and we will use indices a, b, . . ., for the
directions parallel to the brane and indices i, j, . . ., for the transverse ones.
For convenience we shall place the brane at xi = 0. Also we define

Dm
n =

(
δa

b 0
0 −δi

j

)
.

Then, D-brane boundary conditions on ∂H read

∂xm = Dm
n∂xm,

θ = γ0 · · · γpθ,

p = −γ0 · · · γpp,

λ = γ0 · · · γpλ. (18)

One can check that the current JBRST does not flow through the boundary
∂H and therefore one has a well defined conserved BRST operator acting on
the open string sector. Moreover, the above boundary conditions naturally
define the projection operator π for a closed string state which has a regular
OPE with the boundary ∂H.

Again we shall focus on the massless sector, so we focus on states built
from the zero modes of the parallel coordinates xa, the spinor θ and the pure
spinor λ. The massless states are the BRST cohomology at ghost number 1,
i.e., with only one λ. As in the closed string sector, the BRST operator Q is
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represented, on states built from the zero modes, by a differential operator5

λαDα given by

Q → λD = λ
∂

∂θ
+ 2 (λγaθ) ∂a.

Note the extra factor of 2 relative to the analogous expression for closed
strings, and the fact that the differentiation ∂a is only with respect to
the parallel coordinates. A massless state of ghost number one is then
represented by

Φ = λαAα(xa, θ),

where Aα is correctly interpreted as the spinor part of a U(1) connection on
superspace (x, θ). The covariant derivatives are ∇α = Dα + Aα and ∇a =
∂a + Aa. One may easily check that {Dα, Dβ} = 4γa

αβ∂a, so it is natural to
impose the constraint {∇α,∇β} = 4γa

αβ∇a. Therefore the space part Aa of
the gauge potential is given by

Aa =
1
32

γαβ
a DαAβ.

For future reference, we record the expression for the gluon vertex operator

Φ = 2 (λγaθ) aa − 1
2
(λγaθ)(θγabcθ)fbc + · · · , (19)

where aa is the U(1) gauge field on the brane and where · · · represents terms
of higher order in θ. The equation QΦ = 0 implies f = da and the Maxwell
equations ∂afab = 0. Moreover the terms in · · · depend, on-shell, on the
derivatives ∂afbc of the field strength. Therefore, the gluon vertex operator
for a constant field strength Fab is given explicitly by

Φ = Fabx
a(λγbθ) − 1

2
(λγaθ) (θγabcθ)Fbc. (20)

5.4 Vertex operators for constant B and C-fields

In this section we describe in detail the vertex operators which correspond
to constant NSNS B-field and constant RR C-field backgrounds. We shall
only state the basic facts which we shall need in the remainder of the paper,
and we refer the reader to the basic references [14, 17] for further details.
Clearly from the point of view of closed strings these backgrounds are gauge
trivial, and do not affect the closed string physics. They will on the other
hand affect the dynamics of open strings, as we shall prove later.

5We slightly abuse notation by using the same symbol λD for the open and closed string
sectors, with the hope that it will be clear from context which is the relevant operator
used in the expressions to follow.
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The gauge trivial vertex operator Ψ = Qη for a constant NSNS B-field
Bmn is given by

Ψ = Qη = Bmn (λγmθ)
(
λγnθ

)
, (21)

where the gauge parameter η is

η =
1
2
Bmnxm (λγnθ) − 1

8
(λγpθ) (θγpmnθ) Bmn

+
1
2
Bmnxm

(
λγnθ

)
− 1

8
(
λγpθ

) (
θγpmnθ

)
Bmn.

The vertex operator for a constant RR potential Cα
β reads, on the other

hand,

Ψ = Qη = −1
4

(
λCγmθ

) (
θγmλ

)
− 1

4
(
λCγmθ

)
(θγmλ) , (22)

where

η = −1
4

(
θCγmθ

) (
θγmλ

)
− 1

4
(
θCγmθ

)
(θγmλ) . (23)

Let us comment on the form of the vertex operators (21) and (22). As
in every version of type II string theory, closed string vertex operators are
tensor products of the left and the right sector, which are similar in structure
to open string vertex operators. In fact, one usually has the correspondence

ΨNSNS ∼ Bmn(Gluon)m ⊗ (Gluon)n,

ΨRR ∼ Fαβ(Gluino)α ⊗ (Gluino)β,

where 2Fαβ = (
−→�∂ C)αβ + (C

←−�∂ )αβ is the RR field strength F = dC. In the
covariant formalism one has that

(Gluon)m ∼ (λγmθ), (Gluino)α ∼ (λγmθ)(θγm)α,

and one might therefore expect that the RR vertex operator is given by

ΨRR ∼ (λγmθ)(θγmFγnθ)(θγnλ).

The above expression is indeed useful when considering configurations which
are not gauge trivial, since it contains explicitly the field strength. On the
other hand, following [46, 47] and in analogy with similar results in the RNS
formalism [9–11], there is a useful form of the vertex operator which depends
on the RR potential C and which is written as a tensor product,

ΨRR ∼ Cα
β(Gauge)α ⊗ (Gluino)β + dual,

of a right (left) gluino times a left (right) fermion gauge field (Gauge)α, which
is nothing but the lowest component of the open string gauge potential λαAα

(Gauge)α ∼ λα.

This is indeed expression (22), which is used in the rest of the paper.
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Let us conclude this subsection with a word on the normalization of the
states (19) and (21). The states Ψ and Φ represent, in the language of the
covariant formalism, the unintegrated vertex operators or the string fields.
These states are canonically associated to the integrated form of the vertex
operators Vc and Vo, which represent the linear deformation to the bulk and
boundary sigma model respectively,

∫
dz ∧ dz Vc +

∮
dτ Vo.

The defining relations for Vc and Vo are [14]

QLQRVc = ∂∂Ψ, QVo =
d

dτ
Φ.

Given the form of the BRST operator, one may easily check that

Vc = Bmn∂xm∂xn, Vo = am
dxm

dτ
,

and therefore that the linear deformation of the sigma model is given by
∫

B +
∮

a.

Hence the fields Bmn and am are canonically normalized. Finally note that
the same reasoning can be applied to the RNS string, thus showing that the
states in Section 4 are also correctly normalized.

5.5 Open strings in a constant B-field

In this section we use the covariant formalism which we have reviewed to
derive the behavior of open strings in the presence of a constant NSNS
B-field. We shall work, for simplicity of exposition, with the maximal D9-
brane, but we will comment on the cases p < 9 at the end of this section.
The closed string background is then given by (21) and, in order to compute
the current J and the closed string part of the boundary excitation Φc we
must bring the operators Ψ and η to the boundary ∂H of the string world-
sheet using the boundary conditions described in Section 5.3 for p = 9. We
then obtain that

J = Bmn (λγmθ) (λγnθ) = − 1
96

(θγmnpθ) (λγmnpqrλ) Bqr, (24)

and that
Φc = Bmnxm (λγnθ) − 1

4
(λγpθ) (θγpmnθ) Bmn.

Let us note that the state Φc has the same structure as the open state (20),
but since the relative weights of the two terms are different it is therefore
not on-shell from the open string point of view. In fact, in the covariant
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formalism, one must add a reaction boundary term Φr in the case of a
constant B-field bulk perturbation, differently from the bosonic case where
the corresponding Φc is already on-shell. As we shall show later, in the
covariant formalism the B and C bulk perturbations look quite similar from
the open string perspective, and can be treated symmetrically. One must
then solve the basic equation

QΦr = −J, Φr = λA(x, θ). (25)

In Appendix B we describe the general strategy to solve the above source
equation, but in this section we shall solve equation (25) directly. It will
be convenient to consider (25) for a more general current J , which we take
to be of the same form as in (24), but with a space dependent field B
with vanishing field strength dB = 0. One can show that the current J
is still BRST closed, i.e., QJ = 0. This is simple to see noting that the
combination (λγmθ) is an odd object which acts in many respects like an
ordinary differential dxm, and that the BRST operator (or, more precisely,
the operator (λγmθ) ∂m) acts as the ordinary exterior derivative. To solve
(25) we expand the gauge field λA as

λA = 2 (λγmθ) am(x) − 1
2

(λγmθ) (θγmnpθ) fnp(x) + O(θ5).

As we discussed in the previous section, in the absence of a current J the
equation Q(λA) = 0 implies that f = da and that ∂mfmn = 0. On the other
hand, in the presence of the current (24) one obtains

da +
1
2
B = f, ∂mfmn = 0 .

We wish to solve the above equations in the Lorentz gauge ∂mAm = 0,
where we recall that 32 Am = γαβ

m DαAβ. At the level of component fields
this simply implies that ∂mam = 0. If we differentiate the equation ∂pan −
∂nap + 1

2Bpn = fpn with respect to ∂p, and we use the gauge condition and
the equation of motion for f we arrive at the solution for an,

an = −1
2

1
�∂pBpn,

which may be used to compute da:

2(da)mn =
1
�∂p (−∂mBpn + ∂nBpm)

= − 1
�∂p∂pBmn = −Bmn.

This implies that f vanishes, as well as the terms in λA of higher order in
θ. Therefore, the final solution is given by

Φr = 2 (λγmθ) am,
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where
da = −1

2
B, (∂ · a) = 0 .

In particular, for a constant field B, the solution reads

Φr = −1
2
Bmnxm (λγnθ) . (26)

We have therefore derived that the total open string deformation is given
by

Φ = Φc + Φr =
1
2
Bmnxm (λγnθ) − 1

4
(λγpθ) (θγpmnθ) Bmn,

which corresponds to an on-shell gluon with a constant field strength 1
2Bmn.

Note that this differs from the usually assumed result Bmn. The extra
factor of 1/2, which naturally arises in this formalism, is also responsible for
the non-vanishing effect in the C-field case, and will make all the formulae
compatible with S-duality for the D3-brane (to be discussed later). The
above argument is very much dependent on the extension of the current J
away from the zero momentum case of constant B-field. The reader might
object that this is arbitrary. On the other hand, we will show in section
6 that equation (25) for constant B is the only equation we need to solve
whenever considering constant NSNS and RR fields. Therefore, if we assume
that the solution of (25) is given as above, and we use principle (A) of the
introduction, we are able to treat all the possible cases at hand. We will
then show, again in Section 6, that S-duality is non-trivially satisfied using
the result for (25) given above. This is the most compelling proof of the
correctness of the results in this section.

Let us conclude by commenting on the case p < 9. In this case the form
of the current J is modified to J = BmnDn

p (λγmθ) (λγpθ) since, using
the projection π, one shows simply that

(
λγnθ

)
�→ Dn

p (λγpθ). As usual
one must distinguish between a B-field transverse and parallel to the brane.
The parallel case is identical to the case above, whereas the transverse case
can be analyzed with a similar computation. In this latter case though
one finds that the resulting deformation of the open string Φ is BRST trivial,
and therefore the B-field induces no physical effect on the open strings. This
is in agreement with the usual result described in [36].

5.6 D-branes in an arbitrary constant C-field

We are ready to consider the central problem of this paper, i.e., the behavior
of open strings in the presence of a constant RR potential. In the first part of
this section we shall discuss in detail the D9-brane case, leaving the analysis
of the lower dimensional branes to the second part of this section.
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5.6.1 The D9-brane

Using the D9-brane boundary conditions we can deduce that the current
J is

J = −1
4

(
λ[C + C]γmθ

)
(θγmλ)

=
1
96

(θγmnpθ)
(
λ[C + C]γmnpλ

)
,

and that Φc is

Φc = −1
4

(λγmθ)
(
θ[C + C]γmθ

)
.

The combination C + C is non-zero only for a q-form potential C(q) with
q = 0, 4, 8. The case q = 0 gives immediately J = Φc = 0, which implies
that the open string physics is unaltered. Let us consider the other two
cases starting with the case q = 8 = p − 1, which should lead to a Moyal
noncommutativity on the brane. Using the fact that

1
8!

C
(8)
m1···m8 (γm1···m8)α

β = − 1
2!

(�C(8))mn (γmn)α
β,

we deduce that

J = − 1
96

(θγmnpθ) (λγmnpqrλ) (�C(8))qr,

Φc =
1
4

(λγmθ) (θγmnpθ) (�C(8))np.

We note that J has the same form as (24) with the replacement of B with
�C(8). This means that we can use the results of the previous section to
deduce that Φr is given by the expression (26), again up to the replacement
B �→ �C(8). This then implies that the total open string deformation is
given by

Φ = Φc + Φr =
1
2
(Beff)mnxm (λγnθ) − 1

4
(λγpθ) (θγpmnθ) (Beff)mn,

where
Beff = − � C(8).

This shows that the effect of a C(8)-field on a D9-brane is equivalent to an
effective B-field, as claimed at the beginning of the paper.

Next let us consider the case q = 4. This leads to

J =
1

1152
Cq1···q4 (θγmnpθ) (λγq1···q4γmnpλ) ,

Φc =
1
12

Cq1···q4 (λγq1θ) (θγq2···q4θ) .

One may follow the general procedure, and solve the reaction equation
QΦr = −J using the general techniques of Appendix B. On the other hand,
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in this case, there is a short-cut which allows us to avoid the use of the
general machinery. As for the case q = 8, the general reaction term can only
be a linear combination of a term linear in θ and a term cubic in θ, so that
the final boundary deformation is

Φ = α Cq1···q4 [xq1 (λγq2···q4θ) + (λγq1θ) (θγq2···q4θ)] ,

where α is a constant, and where the relative coefficient between the two
terms is fixed by the on-shell condition QΦ = 0. The precise value of the
constant α can be determined by explicitly solving the equation QΦr = −J .
On the other hand we will not need the value of α since the deformation Φ
is BRST trivial for any value of α, since Φ = QΛ, where

Λ =
1
2
α Cq1···q4x

q1 (θγq2···q4θ) .

Therefore, a C(4) RR potential has no effect on the D9-brane open string
dynamics.

5.6.2 Dp-branes for p < 9 with parallel RR potential

We now move to the general case of arbitrary p. Using the appropriate
boundary conditions we deduce that

J = −1
4

(
λ[γp···0Cγm + Dn

mCγnγ0···p]θ
)
(θγmλ)

=
1
96

(θγmnpθ)
(
λ[γp···0C − Cγ0···p]γmnpλ

)
,

and similarly

Φc = −1
4

(λγmθ)
(
θ[γp···0C − Cγ0···p]γmθ

)
.

As before, we will assume that we have a C(q)-form potential, and we will
start to analyze the case of a form potential parallel to the brane. It is
tedious but easy to show that

γp···0C(q) = (−)
(p−q+1)(p−q)

2 � C(q),

−C
(q)

γ0···p = − � C(q),

where � is the Hodge dual on the brane world-volume. Therefore the
sum γp···0C − Cγ0···p vanishes if p − q = 3 + 4n and is equal to −2(�C(q)) if
p − q = 1 + 4n. The two relevant cases are therefore q = p − 1 and q = p − 5.
If q = p − 1 one can show, using a reasoning analogous to the one used for
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the D9 case, that the effective deformation has a physical effect and corre-
sponds to a gluon with a constant field strength

Beff = − � Cp−1.

In the case q = p − 5 we obtain, as for the case p = 9 of the last subsection,
a gauge trivial deformation on the boundary which does not effect the open
string dynamics.

5.6.3 Dp-branes for p < 9 with general RR potential

In this last subsection we are going to study some examples of the most
general case of a Dp-brane immersed in a constant RR field which is not
necessarily parallel to the brane. In particular we shall be interested in the
case where the form

γp···0C

is a two-form6 . More precisely we will consider the potential

C(q+k) = C
(q)
‖ ∧ C

(k)
⊥ ,

where C
(q)
‖ and C

(k)
⊥ are, respectively, the parallel and perpendicular q-form

and k-form parts of the RR (q + k)-form potential C(q+k). Since the matrix
γp···0 effectively computes the Hodge dual � on the brane world-volume,
we are requiring that �

(
C

(q)
‖ ∧ C

(k)
⊥

)
is a two-form. We have then three

possibilities for the values of the pair (q, k). First we have (p − 1, 0) which
is the case studied in the previous section. The other two possibilities are
(p, 1) and (p + 1, 2). In all three cases we define the two-form

Ω = (−)
(p−q+1)(p−q)

2 �
(
C

(q)
‖ ∧ C

(k)
⊥

)
=

1
2
Ωmndxm ∧ dxn,

which can have components both parallel and transverse to the brane world-
volume. Then we have that

J =
1
96

(θγmnpθ) (λγmnpqrλ) Ωqr,

and similarly

Φc = −1
4

(λγmθ) (θγmnpθ) Ωnp.

6One has a vanishing contribution when γp···0C is a 0, 4 or an 8-form. The other
non-trivial contributions, which we are not considering, come from a 6 or a 10-form.
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We consider again the source equation QΦr = −J with Φr given in general
by

Φr = 2 (λγaθ) aa + 2
(
λγiθ

)
zi

− 1
2
(λγmθ)(θγmabθ)fab − (λγmθ)(θγmaiθ)gai

− 1
2
(λγmθ)(θγmijθ)hij + · · · .

The fields aa and zi are the gluon field and the transverse scalars of the
brane world-volume, respectively. The source equation then reads

(da)ab − 1
2
Ωab = fab,

∂azi − 1
2
Ωai = gai,

−1
2
Ωij = hij ,

together with
∂afab = ∂agai = 0.

Following a reasoning similar to the one used in Section 5.3, or using the
general solution technique of Appendix B, we conclude that

ab =
1
4
xaΩab, zi =

1
2
xaΩai.

Therefore the total open string deformation Φ = Φc + Φr is given by

Φ =
1
2
Ωabx

a(λγbθ) − 1
4
(λγmθ)(θγmabθ)Ωab

+ Ωaix
a(λγiθ) − 1

2
(λγmθ)(θγmaiθ)Ωai. (27)

Let us comment on this result. The first line, which comes from the case
(q, k) = (p − 1, 0), represents a gluon field with constant field strength, and
is the result of the last section. The case (q, k) = (p + 1, 2) gives no defor-
mation since, in this case, Ω only has components Ωij transverse to the
brane. The second line of (27), coming from the case (q, k) = (p, 1) is quite
interesting and different from the B-field case. It represents a transverse
displacement of the brane zi = 1

2xaΩai. Recall that in the B-field case, a
field Bai gives no deformation. This can be seen easily by noting that the
current

J = BmnDn
p (λγmθ) (λγpθ)

vanishes since BanDn
i = BinDn

a. The same holds for the corresponding
state Φc.
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6 The non-linear open string parameters and S-duality

In the previous section we have analyzed the effect on the open strings to
leading order in the bulk perturbation. In the following we wish to address
the complete solution to the problem, by extending the previous results to
general boundary conditions on the brane and, as we describe below, to all
orders in the closed string vertex operators.

Let us describe the general strategy. We shall concentrate first on the
D9-brane case, on which we introduce a constant U (1) gauge field strength
Fmn. As is well known [30], a constant field strength is described by an
exact boundary CFT, in which the boundary conditions (18) are altered by
introducing a finite Lorentz rotation between the left and right-movers

(g − F )mn ∂xn = (g + F )mn ∂xn,

θ = eω·γθ , (28)

λ = eω·γλ.

The SO (1, 9) rotation matrix is parametrized by the field strength Fmn on
the brane and is given explicitly by

(
e2ω

)m

n
=

(
1 + 1

gF

1 − 1
gF

)m

n

,

where we use the short-hand notation ω · γ = 1
2ωmnγmn. A bulk insertion of

a gauge trivial closed string vertex operator will have the effect of changing
the rotation matrix, and therefore the two-form F . Therefore, we will be
able to write down, as discussed in the introduction, an explicit equation for
the variation δF of F , of the schematic form

δF = δF (F, B, C) , (29)

which will yield the corrections to F due to the constant fields B and C.
The function δF (F, B, C) will be linear in the bulk fields B, C (treated as
small perturbations) but will contain arbitrary powers of F . The results
from the previous sections imply that

δF =
1
2

(
B − �C(8)

)
+ O (F ) .

In this section we shall describe how to compute the O (F ) terms, and we will
explicitly write down the first terms linear in F . Moreover we shall extend
these results to the D3-brane case, and we will show how the explicit form
of δF is compatible with S-duality. This is a strong check that our method
is compatible with the requirements (A) and (B) in the introduction. More-
over, notice that this check of S-duality does not require the analysis of string
theory at strong coupling, but only requires knowledge of the underlying
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conformal field theory. Finally one can, in principle, integrate equation (29)
by considering a large closed string background as a sum of infinitesimal
deformations. One then obtains the full deformation F as a non-linear func-
tion of the background fields B, C. One may compute accordingly the open
string parameters G and Θ by the usual equation [30, 34, 36]

1
G

+
Θ

2πα′ =
1

g + F
.

In order to compute δF we first note that, given the general boundary
conditions (28), the boundary BRST operator differs from the F = 0 case
since the part coming from QR is rotated with respect to the part coming
from QL. More specifically, for massless states built only from the zero
modes of the world-sheet fields, the BRST operator reads

Q → λ
∂

∂θ
+

[
δm

n +
(
e2ω

)m
n

]
(λγnθ)

∂

∂xm

= λ
∂

∂θ
+ 2 (λγmθ)

∂

∂ym
,

where the new coordinates ym are defined via

ym =
(

1 − 1
g
F

)m

n

xn.

It is then clear from the general arguments of the previous sections that the
on-shell constant field strength open string field is of the form

Φ =
[
1
2
ym (λγnθ) − 1

4
(λγrθ) (θγmnrθ)

]
Ωmn , (30)

where Ω is a constant two-form. The above string field is associated, in a
canonical way, to an integrated vertex operator V which must be

V =
1
2
δFmnxmdxn,

in order to produce, when exponentiated in the sigma model, the correct
change in the boundary conditions. The relation between V and Φ is given,
like in bosonic string theory, by the equation [14]

QV = dΦ,

which, in turn, determines the relation

δF =
1
2

(
1 + F

1
g

)
Ω

(
1 − 1

g
F

)
(31)

between Ω and δF . Therefore, as long as the boundary deformation is of the
form (30), the deformation δF is given by the equation above. This is the
main equation to integrate in order to determine the full deformation as a
non-linear function of the closed string background fields. In the following,
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we shall study the integration of this differential equation to linear order
in F .

Let us discuss the B-field case first. The boundary current J is given by

J = Bmp

(
e2ω

)p
n (λγmθ) (λγnθ) ,

and therefore the reaction term Φr is

Φr = −1
4

[
Bmp

(
e2ω

)p
n − Bnp

(
e2ω

)p
m

]
ym (λγnθ) .

Using crucially requirement (A) of the introduction, it is straightforward
to compute the closed part Φc = π (η) of the full open string deformation
Φ = Φc + Φr, which is given by

Φc = −1
2

(
1

1 − 1
gF

)p

m

Bpq

[
δq

n +
(
e2ω

)q
n

]
ym (λγnθ)

− 1
8

(λγrθ) (θγmnrθ) Bpq

[
δp

mδq
n +

(
e2ω

)p
m

(
e2ω

)q
n

]
.

Adding the two contributions we obtain Φ of the form (30), where

Ω =
1

1 + F 1
g

(
B − F

1
g
B

1
g
F

)
1

1 − 1
gF

.

Therefore we conclude that, for the B-field case, one has7

δF =
1
2

(
B − F

1
g
B

1
g
F

)
. (32)

We now turn to the analysis of δF in the presence of the RR fields C.
Starting with the explicit form of η in the C-field case (23), one can use the
boundary conditions above to conclude that

Φc = −1
4

(λγrθ)
(
θ
[
e−ω·γC + Ceω·γ]

γrθ
)
,

where we have used the fact that e−ω·γγmeω·γ =
(
e2ω

)m
nγn. One can then

conclude, without computations, that the form of Φ = Φc + Φr in the C-field

7Let us note that the naive integration of equation (32) yields

F = g tanh
(

1
2

1
g
B

)
.

It is interesting to observe that, for a time-like B-field B = b dx0 ∧ dx1, the induced F–field
becomes F = tanh

( 1
2 b

)
dx0 ∧ dx1, and therefore never generates a super-critical electric

field on the brane.
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case is again identical to (30), where Ω is now defined by

1
2
Ωmnγmn =

1
2

[
e−ω·γC + Ceω·γ]

2-form . (33)

This follows simply from the fact that Φr is linear in θ and does not affect the
θ3 terms in Φ, which, again using requirement (A), come uniquely from Φc.
Equation (33), together with (31), determines δF as a function of the back-
ground C-field, to all orders in F . Let us compute explicitly the corrections
to δF which are linear in F . We start by expanding Ω (recalling that
ω = F + 1

3F 3 + · · · ) to linear order in F , and obtain

1
2
Ωmnγmn = −1

2
� C(8)

mnγmn − 1
4
Fpq

[
γpqC − Cγpq

]
2-form .

Concentrating on the terms linear in F we have

−1
4
Fpq

∑

k=0,4,8

[
γpq, C(k)

]

2-form
− 1

4
Fpq

∑

k=2,6,10

{
γpq, C(k)

}

2-form
,

which yields for Ω

− F ∧ �C(10) − 8 �

(
1
8!

C
(8)
m1···m7nFn

m8dxm1 · · · dxm8

)

+ �
(
F ∧ C(6)

)
.

Contributions for k < 6 vanish. Moving to the equation for δF , one can
expand (31) to linear order in F in order to finally obtain

δF = −1
2

� C(8) − 1
2
F ∧ �C(10) +

1
2

�
(
F ∧ C(6)

)

− 1
2

1
7!

�
(
C

(8)
m1···m7nFn

m8dxm1 · · · dxm8
)

+
1
2

(
�C(8)

mp F p
n

)
dxmdxn + O

(
F 2) .

The last two lines of the equation above actually sum to zero. This is easily
shown by considering the dual identity

1
2

1
7!

(
C

(8)
m1···m7nFn

m8dxm1 · · · dxm8
)

+
1
2

�
[(

�C(8)
mp F p

n

)
dxmdxn

]
= 0.

If one writes the second term of the equation above in components, using the
ε-symbol for the duals, and one uses the usual expression for the contraction
of two ε-symbols in terms of δ’s, one recovers the first term with the opposite
sign. We conclude that the total deformation δF , to linear order in F , is
given by

δF = −1
2

� C(8) − 1
2
F ∧ �C(10) +

1
2

�
(
F ∧ C(6)

)
+ O

(
F 2) .
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6.1 The D3-brane case

Let us review the results of the last subsection as they apply to the D3-brane
case. We consider, for simplicity, only fields B, C along the brane world-
volume. The results in this case can be naively obtained using T -duality, as
we show below. The correct boundary conditions for the world-sheet fields
are clearly

(g − F )ab ∂xb = (g + F )ab ∂xb ,

θ = eω·γ γ9 · · · γ4 θ ,

λ = eω·γ γ9 · · · γ4 λ ,

where Fab is also along the brane directions 0, . . . , 3. The result

δF =
1
2

(
B − F

1
g
B

1
g
F

)

in the case of a small B-field bulk deformation goes through without change.
The C-field case is only slightly more complex. Following the usual
procedure, and using the boundary conditions above we conclude that

Ωmnγmn = e−ω·γ C γ4 · · · γ9 − C γ4 · · · γ9 eω·γ∣
∣
2-form .

Given Ω, one may then compute δF using (31). It is clear from the equation
above that, in the presence of fields C(k) parallel to the brane, with k =
0, 2, 4, one may immediately use the results obtained for the D9-brane case,
with the 6, 8, 10 RR-forms now given by C(k) ∧ dx4 ∧ · · · ∧ dx9. We may
therefore readily write down the result for δF to linear order in F as

δF =
1
2

(
B − �C(2)

)
− 1

2
F ∧ �C(4) +

1
2

� F ∧ C(0) + O(F 2), (34)

where � is, as always, the Hodge dual along the brane world-volume.

6.2 A perturbative check of S-duality

To conclude this section, we wish to check the compatibility of the above
result for the D3-brane with S-duality. We set C(0) = 0, since under
S-duality C(0) mixes with the coupling constant and we wish on the other
hand to make statements purely in CFT, at zero coupling. Let us first recall
that, under S-duality, the bulk fields B, C(2) and C(4) are mapped to C(2),
−B and C(4), respectively. Moreover, for vanishing closed string fields the
field F is mapped (to leading order in derivatives, but to all orders in F ) to
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the two-form [48–50]

S (F ) =
√

− det (g + F ) �

(
1

1 + F 1
g

F
1

1 − 1
gF

)

= �F + O
(
F 3) .

Consider then a D3-brane with a background U(1) gauge field strength F ,
and let us turn on some closed string fields, collectively denoted by Ψ. We
might also consider the S-dual process, where we start with the D3-brane
with field strength S (F ) and we turn on closed fields S (Ψ). In the first case
we arrive, after backreaction of the open strings, to a variation of the field
strength from F to

F ′ = F + δF (F, Ψ) .

In the second case we arrive at the field strength

F̃ ′ = S (F ) + δF (S (F ) , S (Ψ)) .

Then, S-duality implies that S (F ′) = F̃ ′ or, infinitesimally, that

δF (S (F ) , S (Ψ)) = δF (F, Ψ)
∂S

∂F
(F ) . (35)

To linear order in F , the above equation reads δF (�F, S (Ψ)) = �δF (F, Ψ),
so that the following relation must hold

�δF
(
F, B, C(2), C(4)

)
= δF

(
�F, C(2),−B, C(4)

)
.

Clearly equation (34) satisfies the above requirement, therefore being com-
patible with S-duality.

Next we wish to extend the check of equation (35) to all orders in F . For
simplicity of exposition, we shall work from now on with C(4) set to zero,
and we will concentrate on the following illustrative example

F = f dx2 ∧ dx3, C(2) = ε dx1 ∧ dx2, (36)

where f is an arbitrary constant and where ε is an infinitesimal parameter.
For later convenience we also introduce the angle θ defined by tan θ = f or,
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equivalently, by

e2iθ =
1 + if

1 − if
.

Under S-duality the field strength F is mapped to

S (F ) = sin θ dx0 ∧ dx1 . (37)

Let us introduce the constant two-form κab with non-zero entries κ23 =
−κ32 = 1. Then Fab = f κab and one notes that, since κ2 = −1,

ω = F +
1
3
F 3 + · · · = κ

(
f − 1

3
f3 + · · ·

)
= κ

1
2i

ln
(

1 + if

1 − if

)
= κθ,

and that

e2ω = cos (2θ) + κ sin (2θ) ,

e±ω·γ = e±θγ2γ3
= cos θ ± sin θ γ2γ3 .

Now we can compute the two-form Ω

1
2
Ωmnγmn = ε

[(
cos θ C(2) − 1

2
sin θ

[
γ2γ3, C(2)

])
γ4 · · · γ9

]

2-form

= ε sin θ γ0γ2 − ε cos θ γ0γ3

so that, finally,

Ω = ε sin θ dx0 ∧ dx2 − ε cos θ dx0 ∧ dx3.

We are now in a position to compute the two sides of (35). The LHS reads

δF
(
sin θ dx0dx1, ε dx1dx2, 0, 0

)
=

1
2
ε dx1dx2 .

To compute the RHS, it is convenient to first compute

F + δF
(
f dx2dx3, 0, ε dx1dx2, 0

)
= tan θ dx2dx3 − ε

2 cos θ
dx0dx3,

which is mapped, under S, to

sin θ dx0dx1 +
ε

2
dx1dx2 + O

(
ε2) .

Therefore, the RHS of (35) is also equal to 1
2ε dx1 dx2, thus proving, in this

example, S-duality to all orders in F . For this check, it is crucial that the
C field induces a boundary deformation δF .
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Let us consider a second example, where we set C(2) = 0 and we consider
a background with a constant C(4) field,

C(4) = ε dx0 ∧ · · · ∧ dx3,

and the same U (1) field strength F = f dx2 ∧ dx3. First of all we must
compute the two-form Ω given this time by

1
2

Ωmnγmn = −ε sin θ γ2γ3γ0 · · · γ9,

or by
Ω = ε sin θ dx2 ∧ dx3 .

Therefore, using equation (31), we conclude that

δF
(
f dx2 dx3, 0, 0, ε dx0 · · · dx3) =

ε

2
tan θ

cos θ
dx2 ∧ dx3. (38)

It is quite easy to compute the S-dual field strength S (F + δF ) using for-
mulae (36) and (37), with f replaced by f

(
1 + 1

2ε cos−1 θ
)

S (F + δF ) = sin
(

arctan
(

tan θ +
ε

2
tan θ

cos θ

))
dx0 ∧ dx1

	 sin θ dx0 ∧ dx1 +
ε

2
sin θ cos θ dx0 ∧ dx1 ,

so that the RHS of equation (35) is given by
ε

2
sin θ cos θ dx0 ∧ dx1 . (39)

The LHS of (35) reads, on the other hand,

δF
(
sin θ dx0dx1, 0, 0, ε dx0 · · · dx3) . (40)

This is easily computed by noting that all the formulae which are valid
for the Euclidean directions of the brane world-volume are also valid for
the Minkowski directions, with the replacement of all the trigonometric
functions with the corresponding hyperbolic functions. Therefore, if we
define the angle θ̃ by

tanh θ̃ = sin θ ,

then the result for (40) is given by the (hyperbolic version of) equation (38)

ε

2
tanh θ̃

cosh θ̃
dx0 ∧ dx1 .

Noting that
1

cosh θ̃
= cos θ

we recover the RHS (39), as we wanted to show.
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7 Conclusions and future directions

We have shown in this paper that, contrary to naive expectations, closed
string backgrounds with constant NSNS or RR potentials do not satisfy, in
the presence of D-branes, the open/closed equations of motion, since B and
C-fields induce non-vanishing identical open string tadpoles and currents.
Open strings then must react also in the presence of gauge trivial RR fields8 .
Careful computations are carried out both in the RNS and in the pure spinor
covariant formalisms in order to check these statements. While the infin-
itesimal results are quite simple, the full non-linear deformation produced
by the closed string background NSNS and RR fields is obtained by solving
an algebraically complex differential equation, which requires a perturbative
treatment. We have analyzed this equation for the case of a D3-brane and
we have shown that our result is indeed compatible with S-duality to all
orders in the background fields. This is a strong check of the validity of the
method.

A schematic summary of our reasoning is the following. One starts with
a given D-brane with boundary conditions B. After turning on a closed
string field background, Ψ, one is thus led to different boundary conditions
B′. When looking at this situation from the S-dual point of view, we have
the following. One begins with some S-dual boundary conditions B̃, which
are driven to new boundary conditions B̃′ after turning on the S-dual closed
string background Ψ̃. Our main point is that the boundary conditions B̃′

should be S-dual to B′.

Even though the basic results can be found in both the RNS and pure
spinor formalisms, the latter covariant formalism is much simpler and more
powerful. Let us briefly comment on this matter. The pure spinor formalism
and the RNS formalism are related via a specific map [19], where the RNS
operator

c∂c∂2c e−2φ

is mapped to the pure spinor operator

λγmθ λγnθ λγpθ θγmnpθ,

yielding the unusual zero mode saturation of the pure spinor formalism [14].
As to the BRST operator, the pure spinor

Q =
∮

λαdα

8The fact that the world-sheet string action could include couplings to the RR gauge
potentials, was previously observed in the different context of matrix string theory in
weakly curved backgrounds [51, 52].
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is mapped, under the field redefinition of [19], to

Q′ = QRNS +
∮

η.

Here QRNS is the RNS BRST operator (7), and one observes that the
cohomology of Q′ in the large Hilbert space exactly coincides with the
cohomology of QRNS, which acts in the small Hilbert space [19].

In the large Hilbert space, where Q′ acts, picture changing is a gauge
transformation. So, although physical states can be represented by vertex
operators in different pictures in the cohomology of QRNS, all such vertex
operators are equivalent in the cohomology of Q′ (as needs to be, due to the
well known fact that space-time supersymmetry in the RNS formalism only
closes modulo picture changing) [19]. In light of this result, one observes
that the pure spinor formalism is summing over all the different possible
pictures of the RNS formalism. That is why this calculation seems to arise
in a more natural way from the pure spinor formalism rather than the RNS
formalism.

Let us comment on the peculiar factor of 1/2 which differs from the usual
lore, and which is crucial in our test of S-duality. That such a factor needs
to be present is clear from a technical point of view. While in the bosonic
string a constant B solves the equations of motion, in the superstring there is
a current so that this will no longer be a solution to the equations of motion
(the reason for this is, of course, the fact that the world-sheet theories are
different). As we have seen this is true for canonically normalized fields, as
the combination F + B is still gauge invariant at the σ-model level. Regard-
ing the reason why this factor has never been encountered before, we just
note in here that most of the literature on noncommutative gauge theory
only deals with the boundary CFT, and what is called B parametrizes the
boundary condition, just like F does in Section 6. It remains an open prob-
lem to find a clearer physical manifestation of this factor.

A point that is important to study further is the relation with the
usual supergravity solutions which represent D-branes (and in particular
D3-branes) immersed in a constant B-field [53, 54], together with their
decoupling limit which should be dual to noncommutative SYM on the brane
[55]. To be able to compare the two results, one should thus extend our
results beyond the small B-field regime, in order to match it to the SUGRA
solutions which are most relevant in a decoupling regime, with a large B field.
It seems, as well, that in this supergravity setting one will also not be able
to distinguish the factor of 1/2: by performing a gauge transformation on
the supergravity solution one can eliminate completely the fields at infinity.



396 LORENZO CORNALBA ET AL.

The only invariant object is still the boundary condition and we are therefore
in a situation similar to the one in the preceding paragraph.

Finally one should recall that the usual gauge invariance of Born–Infeld is
compatible, in the presence of branes wrapped on tori, with the periodicity
of B under T -duality and the quantization of F due to the fact that the
gauge group is compact. One should therefore further analyze our methods
in the presence of compact tori, and understand the behavior of our results
under T -duality.

There is still much work to be done in order to fully understand open
string physics in the presence of RR fields. One thing that would be of
interest would be to write down the open string sigma model describing our
situation, and actually solving it. That would be the “integrated vertex
operator” version of the results in our paper. Another point of interest
would be to completely solve the differential equation which deals with the
non-linear open string deformation. This would determine the open string
parameters G and Θ for arbitrary NSNS and RR closed string backgrounds
(pure gauge). Finally, one should attempt to attack this problem for vary-
ing RR fields, along the lines of the work in [56, 57] for the B-field case.
In this regard, the solution to the source equation in Appendix B could
serve as a starting ground in order to generalize [57] to this superstring set-
ting. If this line of reasoning can be pushed far enough, one could envisage
translating the physics of the massless modes of open strings in arbitrary
NSNS and RR backgrounds to noncommutative gauge theory with a very
specific (associative or not) star product deformation.
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Appendix A Spinor conventions

Let Γm be the 10 dimensional 32 × 32 gamma matrices, satisfying

{Γm, Γm} = 2gmn.

They can be constructed starting from the real, symmetric, Euclidean
9 dimensional 16 × 16 matrices γi (with i = 1, . . . , 9), chosen so that
γ1 · · · γ9 = 1. Using the fact that C (9, 0) × C (1, 1) = C (10, 1), one writes

Γ0 = 1 ⊗ iσy =
(

0 1
−1 0

)
,

Γi = γi ⊗ σx =
(

0 γi

γi 0

)
,

Γ = Γ0 · · ·Γ9 = 1 ⊗ σz =
(

1 0
0 −1

)
.

In particular we can define the following matrices

(γm)αβ = 1, γi, (γm)αβ = −1, γi,

so that

Γm =
(

0 (γm)αβ

(γm)αβ 0

)
.

Chiral and anti-chiral spinors will then carry a greek index

ψα, ψα,

and indices can only be raised and lowered with the matrices γm. Finally
the basic self-duality relations read

(γ0 · · · γ9)α
β = δα

β,

(γ0 · · · γ9)α
β = −δα

β.
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Appendix B Solution of the source equation QΦc = − J in
the covariant formalism

The basic equation which we want to solve is

Q(λA) = (λD)(λA) = J, (41)

or, with explicit indices,

λαλβDαAβ =
1
2
λαλβJαβ ,

where λ satisfies the pure spinor constraint λγmλ = 0. The current J is
BRST closed —i.e., it satisfies

QJ =
1
2
λαλβλγDαJβγ = 0. (42)

B.1 Properties of the current J

First, let us analyze the basic consistency properties of the current J . Since
λ is a pure spinor, the current consists only of a self-dual five-form part

Jαβ =
1
5!

Jm1···m5 (γm1···m5)αβ ,

Jm1···m5 =
1
16

Jαβ (γm1···m5)
αβ .

Now consider the derivative DαJβγ . The totally symmetrized part D(αJβγ)
is constrained by (42) to be

1
4

(
DαJβγ + cyclicαβγ

)
= γm

αβJmγ + cyclicαβγ , (43)

where we have defined

Jmγ =
1
40

γαβ
m DαJβγ , Jγm = −Jmγ .

The structure of equation (43) is fixed by group theoretic arguments. The
only thing one needs to check is the relative normalization of the two sides
of the equation. To do this, we contract both sides with γαβ

p . The left-hand
side becomes 20Jpγ . The right-hand side requires more work. First we wish
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to show that

Jmγ =
1

480
(Dγn1···n4)γ Jmn1···n4 .

This follows from the following computation

γαβ
m DαJβγ =

1
5!

(Dγmγn1···n5)γ Jn1···n5

=
1
5!

D (γm
n1···n5 + 5ηm

n1γn2···n5)γ Jn1···n5

=
1
12

(Dγn2···n5)γ Jmn2···n5 ,

where we have used the Hodge duality relation,

Jn1···n5 (γmn1···n5)β
γ = 5Jm

n2···n5 (γn2···n5)β
γ .

Using this result we can evaluate the following quantity

γαβ
p γm

βγJmα =
1

40 · 5!
(Dγmγn1···n5γpγ

m)γ Jn1···n5

=
1

40 · 5!
(Dγm [γn1···n5

p + 5γn1···n4ηn5
p] γm)γ Jn1···n5

=
1

40 · 5!
D (2γp

n1···n5 + 10γn2···n5ηn1
p)γ Jn1···n5

= 2Jpγ ,

which implies that the contraction of the right-hand side of (43) with γαβ
p

is also 20Jpγ .

For future purposes we define

Jmn =
1
32

γαβ
m DαJβn.

We claim that

Jmn = −Jnm =
1

3840
(Dγp1p2p3D) Jmnp1p2p3 .

It is clear from the definition that

Jmn = − 1
5! · 1280

(Dγmγp1···p5γnD) Jp1···p5 .

Moreover, using the fact that DαDβ is a bi-spinor which does not have the
5-form part, we conclude that we can use

γmγp1···p5γnJp1···p5 = (γm
p1···p5

nJp1···p5 − 20γp1···p3Jmnp1p2p3) + 5−form

= −40γp1···p3Jmnp1p2p3 + 5-form,

thus confirming the claim.
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B.2 First Bianchi identity and general solution for Aα

Now, let us start to analyze the constraints coming from the Bianchi
identities. First of all we define the field strengths as

Fαβ = {∇α,∇β} − 4γm
αβ∇m,

Fmα = −Fαm = [∇m,∇α] ,

Fmn = [∇m,∇n] ,

where

∇α = Dα + Aα, ∇m = ∂m + Am.

The basic equation (41) then reads

Fαβ = Jαβ .

We consider the first Bianchi identity

[{∇α,∇β} ,∇γ ] + [{∇β,∇γ} ,∇α] + [{∇β,∇γ} ,∇α] = 0,

which implies that

γm
αβFmγ + cyclicαβγ =

1
4

(
DαJβγ + cyclicαβγ

)
.

We therefore conclude that

Fmα = Jmα − 2 (γm)αβ W β,

Wα =
1
20

(γm)αβ (Fβm − Jβm) .

We may also use the above equation to solve, in Lorentz gauge, for Aα as a
function of W and J . In fact, since

∂mFmα = �Aα − Dα (∂ · A) = −2 (�∂W )α + ∂mJmα,

and if

∂ · A = 0,

one obtains that

Aα =
1
� [−2 (�∂W )α + ∂mJmα] .
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B.3 Second Bianchi identity and the computation of DαWβ

Next we consider the second Bianchi identity

[{∇α,∇β} ,∇m] + {[∇m,∇α] ,∇β} − {[∇β,∇m] ,∇α} = 0,

which reads

4γn
αβFnm = 2

[
(γm)αγ DβW γ + (γm)βγ DαW γ

]

+ DαJβm + DβJαm + ∂mJαβ . (44)

Contracting this equation with γαβ
p we get

DW = 0,

Fpm = Jpm +
1
16

DγpmW.

Now we look at the five-form part of equation (44) by contracting with
(γn1···n4m)αβ . This gives

24 Dγn1···n4W = −16 ∂mJmn1···n4 +
1

240
(Dγn1···n4mγp1···p4D) Jmp1···p4 .

To simplify the expression Dγn1···n4mγp1···p4D we use the fact that DαDβ

has only a one-form and a three-form part, together with the self-duality of
the five-form Jm1···m5 . More precisely one can check that

(Dγn1···n4mγp1···p4D)Jmp1···p4 = −4 · 4! (DγmD)Jmn1···n4

+ 4 · 4! (Dγij[n1D)Jn2n3n4]
ij .

Using the fact that

DγmD = 32 ∂m,

we conclude that

Dγn1···n4W = −6
5
∂mJmn1···n4 +

1
60

(
Dγmp[n1D

)
Jn2n3n4]

mp.
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B.4 Third Bianchi identity and expression for �∂ W

To calculate �∂W we use the expansion

DνW
β =

1
16 · 2!

(γmn)ν
β(DγmnW ) +

1
16 · 4!

(γn1···n4)ν
β(Dγn1···n4W )

to compute

16(�∂W )α =
1
2
(γp)αβDµDνW

β(γp)µν

=
3
32

(Dγmn)α(DγmnW ) +
1

384
(Dγn1···n4)α(Dγn1···n4W )

=
3
2
(Dγmn)αFmn − 3

2
(Dγmn)αJmn − 1

320
∂m(Dγn1···n4)αJmn1···n4

+
1

23040
(Dγn1···n4)α(Dγmpn1D)Jn1n2n3

mp,

where we have used the fact that γpγ
n1···npγp = (−)p(10 − 2p)γn1···np . We

will also need to consider the consequences of the Bianchi identity

[∇α, [∇m,∇n]] + [∇m, [∇n,∇α]] + [∇n, [∇α,∇m]] = 0,

which implies

−DαFmn = 2 α(γm∂n − γn∂m)W + ∂mJnα − ∂nJmα.

Using the above expression, we may then compute

(Dγmn)αFmn = −2(γmn)β
α∂mJnβ − 4(∂nWγmγmn)α

= −2(γmn)β
α∂mJnβ − 36(�∂W )α,

where we have used that γmγmn = 9γn. We then arrive at the result for
�∂W given by

70(�∂W )α = −3(γmn)β
α∂mJnβ − 3

2
(Dγmn)αJmn

− 1
320

∂m(Dγn1···n4)αJmn1···n4

+
1

23040
(Dγn1···n4)α(Dγmpn1D)Jn2n3n4

mp.

In order to simplify the expression given above, we note that

∂mJnβ(γmn)β
α =

1
480

(Dγn1···n4γmn)α∂mJnn1···n4

=
1

480
∂m(Dγn1···n4)αJmn1···n4

= ∂mJmα,
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so that we arrive at the final expression

70(�∂W )α = −9
2
∂mJmα − 3

2
(Dγmn)αJmn

+
1

23040
(Dγn1···n4)α(Dγmpn1D)Jn2n3n4

mp.

We therefore conclude that the expression for �Aα is given by

70�Aα = 79∂mJmα + 3(Dγmn)αJmn

− 1
11520

(Dγn1···n4)α(Dγmpn1D)Jn2n3n4
mp.
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