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Abstract

We extend the conformal gluing construction of Isenberg et al. [19]
by establishing an analogous gluing result for field theories obtained by
minimally coupling Einstein’s gravitational theory with matter fields. We
treat classical fields such as perfect fluids and the Yang–Mills equations
as well as the Einstein–Vlasov system, which is an important example
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coming from kinetic theory. In carrying out these extensions, we extend
the conformal gluing technique to higher dimensions and codify it in such
a way as to make more transparent where it can, and cannot, be applied.
In particular, we show exactly what criteria need to be met in order to
apply the construction, in its present form, to any other non-vacuum field
theory.

1 Introduction

One of the effective tools which have been recently developed and employed
for the construction and study of initial data for solutions of Einstein’s
gravitational field equations is the method of gluing. This is a technique
which has had a long and fruitful history in geometric analysis, but which
has been only recently successfully applied to general relativity. The idea
of the gluing method (in its simplest form) is that given a pair of sets of
initial data which satisfy the Einstein constraint equations, we may use it to
construct a new set of initial data, which (a) lives on a connected sum of the
manifolds of the given sets of data, (b) solves the constraint equations and
(c) closely approximates the original sets of data on the parts of the new
manifold, which correspond to the original manifolds (i.e., away from the
tubular “neck” of the connected sum). The work of Isenberg et al. [19, 20]
shows that this sort of gluing can be carried out for fairly general sets of
vacuum initial data. That work also it describes a number of applications of
gluing, such as producing multi-black hole initial data, adding wormholes to
given sets of data and showing that an arbitrary closed manifold with a point
removed always admits both asymptotically Euclidean and asymptotically
hyperbolic solutions of the vacuum constraint equations.

In this work, we show that the gluing results and the gluing applications
which are discussed for vacuum initial data in [19] can be extended to fairly
general sets of non-vacuum data as well. We do this here for a number of spe-
cial cases, including Einstein–Maxwell, Einstein–Yang–Mills, Einstein-fluids
and Einstein-Vlasov, as well as for any of these theories with a cosmological
constant added. We also discuss the features which a general field theory
should have if, when it is coupled to Einstein’s equations, solutions of the
corresponding constraint equations should allow gluing.

As for vacuum data, the gluing procedure applied to non-vacuum data
relies quite heavily on the conformal method for obtaining solutions of the
constraint equations. Thus, after commenting in Section 2 on the general
form of the constraint equations for non-vacuum field theories, we proceed in
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that section to describe the application of the conformal method to such the-
ories. For the non-vacuum theories listed earlier, Einstein–Maxwell, etc., the
conformal method leads to determined sets of (non-linear) elliptic equations,
which, at least for constant mean curvature (CMC) data, are readily ana-
lyzed for solubility. This is not true for all non-vacuum field theories; indeed,
for any non-vacuum field theory which involves derivative coupling (e.g., the
Einstein-vector–Klein–Gordon theory), the conformal method leads to equa-
tions which are intractable using known techniques [18]. Thus, the gluing
procedure which we use does not work for such theories.

Note that in our discussion of the conformal method, we focus on the
situation in which the initial data have CMC. We do this because, as with the
vacuum case, even when the constraint solutions we are gluing together have
non-CMC, the analysis we rely on to carry out the gluing is based primarily
on the CMC version of the conformal treatment of the constraints [20].

While the details of the analysis differ from one non-vacuum field theory
to another, the basic steps of the gluing procedure are largely the same for
those non-vacuum field theories with the appropriate form for the constraint
equations (in conformal form). Thus, for these field theories, we can present
a general discussion of these basic steps: (i) conformal blowup at the gluing
points; (ii) connected sum of the manifolds and patching of the conformal
metrics; (iii) patching of the non-gravitational fields, solution of the non-
gravitational constraints and deformation estimates; (iv) patching of the
extrinsic curvatures, solution of the momentum constraint and deformation
estimates; (v) patching of the conformal factor, solution of the Hamiltonian
constraint (in Lichnerowicz form) and deformation estimates; (vi) conformal
recomposition of the initial data, forming the glued solution (Section 3).
Also in that section, we outline the general analysis which leads to a proof
that the gluing can be carried out for appropriate sets of initial data for
these theories. The section culminates with a general statement of our gluing
results for general theories.

We discuss some of the details of gluing for various particular non-vacuum
field theories in Section 4. Included are discussions of the field theories listed
earlier. However, to avoid repetition, we focus primarily on two of them:
Einstein perfect fluids and Einstein–Yang–Mills.

Although the physically important versions of most of the field theories
we discuss here are defined on 3 + 1 dimensional spacetimes, our results hold
for arbitrary dimension. Hence, we state most of our formulations and our
results for n + 1 dimensional spacetimes where n ≥ 3.

A very different and important type of gluing construction has been devel-
oped by Corvino and Schoen [10, 12] and adapted and applied by Chruściel
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and Delay [6, 7]. These results exploit the underdetermined nature of the
constraint equations as opposed to using the conformal method to convert
them into a determined system. This has led to a number of remark-
able results beginning with the existence of a large class of asymptotically
Euclidean spacetimes, which are exactly Schwarzchild near infinity.
Recently, by combining these techniques with the results of [19] and with
the previous work of Bartnik [2], Chruściel et al. [8, 9] have obtained a glu-
ing construction of the type described here, which is optimal in two distinct
ways. First, it applies to generic initial data sets and the required (generi-
cally satisfied) hypotheses are geometrically and physically natural. Second,
the construction is completely local in the sense that the initial data are left
unaltered on the complement of arbitrarily small neighborhoods of the points
about which the gluing takes place. Using this construction, they have been
able to establish the existence of cosmological, maximal globally hyperbolic,
vacuum spacetimes with no CMC space-like Cauchy surfaces. Except for
the case of generic non-gravitational fields described entirely by an energy
density function ρ and a current density vector field J (satisfying a strict
energy condition ρ > |J |), the Corvino–Schoen techniques have not yet been
generalized away from the vacuum case. It is, however, expected that this
can be done; it would then follow that the gluing theorems obtained for
vacuum data in [9] would extend to non-vacuum data.

We end this introduction by remarking that we have, for simplicity,
restricted ourselves here to the consideration of initial data on compact man-
ifolds (i.e., the cosmological setting). The gluing results presented here have
analogous statements, which are valid for either asymptotically Euclidean
or asymptotically hyperbolic initial data sets. The required adaptations,
which are similar to those discussed in detail in [19], are left to the inter-
ested reader.

2 Constraint equations and conformal method

We restrict our attention in this work to classical field theories, which
are obtained by minimally coupling a spacetime covariant field theory to
Einstein’s gravitational theory and which have a well-posed Cauchy formu-
lation. For such theories, if one is given a set of initial data which satisfy the
constraint equations corresponding to that theory, one can always evolve to
obtain a spacetime solution of the full PDE system. Our main interest here
is primarily in the construction of solutions of the constraints.

For the theories we are interested in here, the initial data consist of a
choice of an n-dimensional manifold Σn, together with a Riemannian metric
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γ, a symmetric tensor K and a collection of non-gravitational fields which
we collectively label F , all specified on Σn. These non-gravitational fields
are usually, but not always, sections of a bundle over Σn. The constraint
equations which these initial data must satisfy generally take the form

div K − d tr K = J(F , γ) (2.1)

Rγ − |K|2γ + (trK)2 = 2ρ(F , γ) (2.2)

C(F , γ) = 0, (2.3)

where J is the current density of the non-gravitational fields, ρ their energy
density and C denotes the set of additional constraints that come from the
non-gravitational part of the theory.1 Note that the first of these constraint
equations is known as the momentum constraint, the second is often referred
to as the Hamiltonian constraint while the last are collectively labeled as
the non-gravitational constraints.

As an example, for the Einstein–Maxwell theory in 3 + 1 dimensions, the
non-gravitational fields consist of the electric and magnetic vector fields E
and B, respectively, we have ρ = 1

2(|E|2γ + |B|2γ) and J = (E × B)γ and we
have the extra (non-gravitational) constraints div γLE = 0 and div γFB = 0.

The system of constraint Eqs. (2.1) to (2.3), vacuum or non-vacuum,
is an underdetermined PDE system. The idea of the conformal method is
to split the initial data fields into two sets of fields: the “conformal data,”
which is freely chosen, and the “determined data,” which is to be found
by solving the constraints. In the familiar vacuum case [5], the conformal
data consist of the manifold Σn, a Riemannian metric γ, a divergence-free
trace-free symmetric tensor σ and a function τ , whereas the determined
data consist of a positive definite function φ and a vector field W . With the
conformal data (Σn, γ, σ, τ) chosen, one determines (φ, W ) by solving the
equations

divγ (DW ) =
n − 1

n
φq+2∇τ (2.4)

and

∆γ φ − 1
q(n − 1)

Rγφ +
1

q(n − 1)
|σ + DW |2γ φ−q−3 − 1

qn
τ2ψq+1 = 0, (2.5)

where DW is the conformal Killing (CK) operator, with coordinate
representation

DWab = ∇aWb + ∇bWa − 2
n

γab∇cW
c, (2.6)

1If we use T to denote the stress-energy tensor for the non-gravitational fields and we
use e⊥ to denote the unit normal to the hypersurface Σ embedded in the spacetime solution
generated from the initial data (Σn, γ, K, F), then J = −T (e⊥, ) and ρ = T (e⊥, e⊥). Note
that we have chosen units so that 8πG = 1 = c.
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and q = 4
n−2 is a dimensional constant. If for a given choice of the conformal

data one does determine W and φ satisfying (2.4) and (2.5), then the fields

γ̃ = φqγ (2.7)

K̃ = φ−2(σ + DW ) +
τ

n
φqγ (2.8)

satisfy the vacuum constraints, consisting of (2.1) and (2.2) with vanishing
ρ and J . Note that the explicit form of Eqs. (2.4) and (2.5) is determined
by the form of the field decomposition, expressed in (2.7) and (2.8). The
explicit choice of the form of the field decomposition is in turn determined
to a large extent by the two identities (for γ̃ = φqγ)

Rγ̃ = −φ−q−1(q(n − 1)∆γφ − Rγφ) (2.9)

(with q = 4
n−2 being the unique exponent, which avoids |∇φ|2 terms in (2.9))

and
∇a

γ̃(φ−2Bab) = φ−q−2∇a
γBab, (2.10)

which holds for any trace-free tensor B.

The extent to which there exist unique solutions to Eqs. (2.4) and (2.5)
for various classes of conformal data has been studied extensively; see [3]
for a recent review. Here, we note primarily that while although the issue
is fairly well understood for CMC conformal data and near-CMC conformal
data, very little is known more generally. Consequently, the earliest gluing
results for the vacuum constraints [19] pertain to CMC data sets, and later
results rely primarily on CMC analysis. Hence, we focus on CMC data sets
here.

A set of initial data has CMC if tr K̃ = τ is constant on Σn. This con-
dition significantly simplifies the analysis of the vacuum constraint equa-
tions, because it decouples Eqs. (2.4) and (2.5). As W ≡ 0 is a solution
to (2.4) with vanishing right-hand side, the analysis reduces to first finding
a divergence-free trace-free symmetric tensor and then solving (2.5) (often
referred to as the Lichnerowicz equation) with DW = 0.

To extend the conformal method to the non-vacuum constraints, with
non-gravitational fields F present, one needs to extend the field decomposi-
tion (2.7) and (2.8) to F . The chief criteria generally used to decide how to
do this are the following [18]: (a) In the CMC case, the constraint system
should be semi-decoupled, in the sense that one can first solve the non-
gravitational constraints independently of W and φ, then one can solve the
momentum constraint for W independently of φ, and then finally, one solves
the Lichnerowicz equation for φ. (b) The addition of the non-gravitational
terms to the Hamiltonian constraint should not result in the Lichnerowicz
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equation containing either derivatives of φ or those powers of φ which would
lead to insurmountable difficulties in the subsequent analysis.

To make these criteria more precise, let us presume that the field decompo-
sition for the non-gravitational fields is defined by an action Φ of the group of
conformal factors (C∞

+ (Σ) under multiplication) on the set of matter fields,
so that the physical fields F̃ which together with γ̃ and K̃ must satisfy the
constraints (2.1) to (2.3) are given by F̃ = Φ(F , φ), where Φ(F , 1) = F and
Φ(Φ(F , φ1), φ2) = Φ(F , φ1φ2). Note that the data F is included in the set
of conformal data (along with γ, σ and τ); the explicit form of the action Φ
is to be chosen for each theory.

In this language, the first of our criteria is satisfied so long as C, Φ and J
satisfy the conditions

C(Φ(F , φ), φqγ) = φpC(F , γ) (C1)

and

J(Φ(F , φ), φqγ) = φ−q−2J(F , γ), (C2)

for some number p. As a consequence of (C1), if we choose the conformal
data (γ, σ, τ,F), so that C (F , γ) = 0, then whatever φ and W are determined
to be, the constraint C

(
F̃ , γ̃

)
= 0 is satisfied by the physical initial data.

As a consequence of (C2), the conformal form of the momentum constraint
is (cf. (2.4))

divγ (DW ) =
n − 1

n
φq+2∇τ + J(F , γ), (2.11)

which, in the CMC case, can be solved for W independent of φ.

Satisfaction of the second criteria depends on the form of the term
ρ(Φ(F , φ), φqγ). It is crucial, first of all, that this quantity involves nei-
ther W nor any derivatives of φ. We formalize this by assuming that for
each choice of the matter field F and the metric γ, there exists a function
nF ,γ : R

+ × Σ → R such that at any point p of Σ,

φq+12ρ(Φ(F , φ), φqγ) = nF ,γ(φ(p), p). (C3)

Note that in practice, to ensure that this condition holds for a given field
theory, it is generally sufficient that the non-gravitational fields do not
involve derivative coupling.
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Assuming that condition (C3) holds, the Lichnerowicz equation takes the
form

∆γ φ − a1Rγφ + a1 |σ + DW |2γ φ−q−3 + −a2τ
2φq+1 + a1nF ,γ(φ) = 0,

(2.12)

where for convenience, we set a1 = 1
q(n−1) = n−2

4(n−1) and a2 = 1
qn = n−2

4n and
also we suppress the dependence of nF ,γ on its second argument. To ensure
that this equation is analytically tractable, it is important that for fixed γ
and F , nF ,γ(φ) is a monotonically decreasing function of φ. In practice, we
find that this condition is often satisfied by nF ,γ(φ) being expressible as a
sum of negative powers of φ, with non-negative coefficients.

While the two criteria and their consequent conditions (C1) to (C3) on
Φ(F , φ) and its interaction with C, J and ρ appear quite restrictive, it is
shown in [18] that for most familiar physical fields, a choice of Φ(F , φ)
which satisfies these criteria can be found. We shall discuss a number of
such examples in this article. Before proceeding, we illustrate how this
works for a simple example: Einstein–Maxwell in three space dimensions.

The conformal data for the Einstein–Maxwell theory consists of (Σ3, γ, σ,
τ, B, E), where (Σn, γ, σ, τ) are the usual vacuum conformal data and both B
and E are vector fields, which are required to be divergence free with respect
to the metric γ. To satisfy the two criteria, we choose Φ(Ba, φ) = Baφ−6 and
Φ(Ea, φ) = Eaφ−6. It follows then that (i) the extra constraints div γ B̃ = 0
and div γ Ẽ = 0 are satisfied automatically so long as B and E are both
divergence free with respect to the metric γ; (ii) the momentum constraint
takes the form

divγ (DW ) =
2
3
φ6∇τ + (E × B), (2.13)

which is independent of φ in the CMC case; and (iii) the Lichnerowicz
equation takes the form

∆λ φ − 1
8
Rγφ +

1
8

|σ + DW |2γ φ−7 − 1
12

τ2φ5 +
1
8
(E2 + B2)φ−3 = 0. (2.14)

We note that the extra term in (2.14) involves φ with a negative power and
a positive coefficient, much like the |σ + LW | term. As discussed in [16],
existence and uniqueness of solutions of (2.13) and (2.14) in the CMC case
then closely follows the pattern of the vacuum case.
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3 Gluing construction for non-vacuum solutions

3.1 Overview

Before generalizing the gluing construction from [19] to apply to non-vacuum
fields, we briefly summarize the original technique, modified to arbitrary
spatial dimension n ≥ 3. We start with an n-manifold Σ and a CMC solution
(γ, K) of the vacuum Einstein constraint equations (so K = σ + τ

nγ, with σ
divergence free and trace free and with τ constant). We fix two points p1
and p2 of Σ and a small radius R. Let Bj = BR(pj) be the balls on which
we will do surgery, let Σ∗ = Σ\{p1, p2} and let Σ∗

r = Σ\(Br(p1) ∪ Br(p2)).
The construction then proceeds as follows.

• We first construct a conformally related metric on Σ∗ agreeing with γ
away from the surgery site and having two asymptotically cylindrical
ends at the puncture locations. Let ψc be a conformal factor equal to 1
on Σ∗

2R and equal to r
2/q
j on Bj , where rj is the geodesic distance from

pj and where q = 4
n−2 as earlier. Then, γc = ψ−q

c γ is the desired metric.
Setting σc = ψ2

cσ and Kc = σc + τ
nγ, we see that (γc, Kc) satisfy the

momentum constraint and that ψc satisfies the Lichnerowicz equation
with respect to (γc, Kc).

• We next perform surgery on the cylindrical ends by identifying finite
segments of length T , to construct a family of topologically identical
manifolds ΣT . To do this, we first construct maps from Bj\pj to the
half cylinder (0,∞) × Sn−1 by sending points at the ball radius rj to
the cylinder length tj = − log rj + log R and by using Riemann normal
coordinates to determine the projections onto Sn−1. We then identify the
finite segments {(tj , θ): 0 < tj < T} via the map (t1, θ) �→ (T − t1,−θ),
resulting in the smooth manifold ΣT . Letting s = t1 − T/2 = T/2 − t2,
we denote by Ql,a the cylindrical segment {(s, θ) : a − l < s < a + l} of
length 2l centered at a. We use the shorthand notation Ql = Ql,0 for
centered segments, Q = Q1 for a short collar in the middle and CT =
QT/2 for the entire cylindrical region.

• We now construct approximate solutions (γT , KT , ψT ) of the momentum
constraint and the Lichnerowicz equation on ΣT by using the confor-
mally modified solution away from the surgery site and using cutoff func-
tions to piece together an approximation along the identified cylindrical
segment.

• In preparation for using the CMC-conformal technique, to map the
approximate solutions to full solutions, we perturb the trace-free part of
KT to obtain a constant trace second fundamental form K̂T = σ̂T + τ

nγT

which, together with γT , satisfies the momentum constraint.
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• Finally, we solve the Lichnerowicz equation using a contraction-map
argument to arrive at a T parameterized set of solutions of the con-
straints, which, for large T , is “close” to the original one away from the
surgery site.

The last step is quite delicate; the contraction-map argument demands
some analytic conditions on the linearization LT about ψT of the Lichnerow-
icz operator NT on ΣT . In particular, LT must be surjective, and there must
exist bounds uniform in T for the norm of its inverse on certain weighted
Hölder spaces. The argument also imposes some stringent conditions on
the size of the error terms which arise from the earlier approximations and
corrections. Substantial work in [19] is devoted to constructing and obtain-
ing precise estimates for the perturbation of σT to σ̂T that enter into this
analysis.

To extend the technique to include matter fields, we start as earlier with a
CMC solution (γ, K,F) of the Einstein-matter constraints on an n-manifold
Σ and a fiber bundle E over Σ. We also assume that we have chosen a
conformal group action Φ for the non-gravitational fields, which satisfies the
criteria discussed in Section 2.

The topological step that constructs ΣT must generally be supplemented
with a construction of appropriate fiber bundles ET over ΣT . As each of the
balls Bi is contractible, there exists a local trivialization over each of them.
We can then use these trivializations to identify fibers: if q1 ∈ B1 is identified
with q2 ∈ B2 in the connected sum to create ΣT , we can identify the fiber
over q1 with the fiber over q2 via our pair of fixed local trivializations. On
the other hand, if q ∈ ΣT is outside of the neck, then we take the fiber to
be the one over q in E. The result is a smooth fiber bundle ET over ΣT .

Together with the conformally modified gravitational fields γc and Kc, we
define on Σ∗ the conformally modified non-gravitational fields

Fc = Φ(F , ψ−1
c ).

Then, as a consequence of the choice of Φ, we verify that (γc, Kc,Fc) satisfy
the non-gravitational and momentum constraints on Σ∗, and in addition, ψc

satisfies the Lichnerowicz equation corresponding to these data:

∆γc ψc − a1Rγcψc + a1|σc + DW |2γc
ψ−q−3

c − a2τ
2ψq+1

c + a1nFc,γc(ψc) = 0.
(3.1)

To construct from (γc, Kc,Fc) on Σ∗ a parameterized set of conformal data
(γT , KT ,FT ) on ΣT , we use a cutoff function procedure as in the vacuum
case. That is, we first set (γT , KT ,FT ) = (γc, Kc,Fc) on ΣT \Q. Then,
on Q (recalling the definition of s in terms of T ), we let χ(s) be a cutoff
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function on R equal to 0 for s > 1 and equal to 1 for s < −1 and we define (i)
γT = χ(s)γ1 + (1 − χ(s))γ2; (ii) σT = χ(s)σ1 + (1 − χ(s))σ2 in Q and KT =
σT + τ

nγT (recall that τ is a constant); and finally (iii) FT = χ(s)F1 + (1 −
χ(s))F2. Note that γi, σi and Fi (for i ∈ {1, 2}) are all defined by identifying
CT with a subset first of B1 and then of B2. If we do the same with ψc,
and then set ψT = χ(t2 − 1)ψ1 + χ(t1 − 1)ψ2 in CT and 1 outside, then we
can verify (as discussed in further detail subsequently) that for each value of
T , (γT , KT ,FT ) together with ψT constitute an approximate solution of the
constraints, including the Lichnerowicz equation. Note that ψT = ψ1 + ψ2
on most of CT .

To go from these approximate solutions to a parameterized set of exact
solutions, we proceed as follows. First, we perturb FT and thereby obtain
a set of matter fields F̂T , which closely approximate Fc outside the neck
and which together with γT solve the non-gravitational constraints globally
on ΣT . Then, we perturb KT in order to obtain a set of symmetric ten-
sors K̂T , which closely approximate K outside the neck and which together
with γT and F̂T satisfy the momentum constraint globally on ΣT . Note
that both of these two perturbations involve solving PDEs for the pertur-
bation terms (in order to satisfy the non-gravitational constraints and the
momentum constraint respectively). The solvability of these equations (for
the perturbation terms, given the approximate solutions) is an issue that
must be addressed at this stage. Finally, provided that various error terms
in the Lichnerowicz equation have been kept under control after substitut-
ing in γT , K̂T , F̂T and ψT , we use a contraction mapping argument to show
that there exists a solution ψ̂T to this equation with the conformal data
(γT , K̂T , F̂T ) and we show further that away from the gluing region Q,
the solution data (γ̃T = ψ̂q

T γT , K̃T = ψ̂−2
T σ̂T + 1

n ψ̂q
T γT τ , F̃T = Φ(F̂T , ψ̂T ))

approaches arbitrarily closely the original data (γ, K,F).

We discuss some of the details of these steps for generic non-gravitational
fields in the rest of this section and discuss them for particular examples in
Section 4.

3.2 Satisfying the non-gravitational constraints

As we presumably have chosen the action of the conformal map Φ on
the matter fields, so that the non-gravitational constraints decouple from
the others in the conformal representation, the first step in going from
(γT , KT ,FT ) to (γT , K̂T , F̂T ) is to choose F̂T , so that C(F̂T , γT ) = 0. In
obtaining F̂T , we want it to be arbitrarily close (for T sufficiently large)
to FT on Σ∗

R, in order to minimize the errors that are introduced into the
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other constraints. In particular, it is crucial for the gluing procedure that
the error estimates (M1) and (M2), (E1) and (E2) and (N1)–(N4) described
subsequently be satisfied.

The details of the construction of F̂T are field specific; we discuss a number
of cases in Section 4. Here, we note what happens in the Einstein–Maxwell
case: while although the original E and B fields are divergence free with
respect to γ, and consequently, the conformally mapped fields Ec and Bc

are divergence free with respect to γc, the fields ET and BT constructed
using cutoff functions are not divergence free with respect to γT (or any
metric). Effectively, the non-gravitational constraints are equivalent to this
divergence-free property. We obtain new fields ÊT and B̂T , which satisfy the
conditions divγT ÊT = 0 and divγT B̂T = 0 by carrying through the standard
linear procedure. That is, we solve the linear equation

∆γT µT = divγT ET (3.2)

for the scalar µT and then set

ÊT = ET − ∇µT ; (3.3)

the divergence-free condition immediately follows. We carry out a simi-
lar procedure to obtain B̂T . Noting that the supports of divγT ET and of
divγT BT are contained in Q, one can carry through the analysis which veri-
fies the estimates (M1) and (M2), (E1) and (E2), and (N1)–(N4) as detailed
subsequently.

3.3 Repairing the momentum constraint

With F̂T determined, we next need to find K̂T , for which the momentum
constraint is satisfied. We may do this by finding a symmetric trace-free
(0,2) tensor ν̂T , which satisfies

divγT (ν̂T ) = J(F̂T , γT ) − divγT σT . (3.4)

If we can obtain a tensor ν̂T which satisfies this condition, and if we then
set K̂T = σT + ν̂T + τ

nγT , then we do have a solution of the momentum
constraint.

To solve this equation for ν̂T , we let D be the (γT compatible) CK operator
on vector fields X, so DX = LXγT − 2

ndivγT (X)γT , where LX is the Lie
derivative. Its formal adjoint D∗ is −divγT and we set L = D∗D. If WT is
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a vector field solving

LWT = J(F̂T , γT ) − divγT σT

(where we freely identify, via γT , vectors and covectors), then we can set
ν̂T = −DWT to obtain a solution to (3.4), and consequently, a solution K̂T

to the momentum constraint.

Besides obtaining ν̂T , we need to establish control of its size. Lemma 3.2,
proved in [19] for 3-manifolds Σ, provides this estimate in terms of the
following Hölder norm.

Definition 3.1. Let ||X||k,α,Ω denote the Hölder norm (computed with res-
pect to the metric γT ) of the vector field X on an open subset Ω of Σ. Then,
we define

||X||k,α = ||X||k,α,Σ∗
R/2

+ sup
−T/2+1≤a≤T/2−1

||X||k,α,Q1,a .

Lemma 3.2. Suppose there are no CK fields that vanish at the points pj

of Σ. Then, for T sufficiently large and for each X ∈ Ck,α(ΣT ), there is
a unique solution W ∈ Ck+2,α(ΣT ) to LW = X. Moreover, there exists a
constant C independent of W and T such that

||W ||k+2,α ≤ CT 3||X||k,α.

The proof of Lemma 3.2 in general dimensions, which we skip now for the
sake of exposition, is presented in Section 5.

Since we wish ν̂T to be small, we therefore require that J(F̂T , γT ) −
divγT σT be small. Outside Q, we have divγT σT = J(Fc, γc). Inside Q, it is
relatively easy to see that σT has norm and derivatives comparable to ψ2+q

T ∼
e−nT/2. This motivates the following conditions on the matter field F̂T .

Definition 3.3. We say that F̂T satisfies the momentum error estimates if
for each k and α, there exist constants C > 0 and κ > n−1

2 independent of
T such that

||J(F̂T , γT ) − J(Fc, γc)||k,α,ΣT \Q < C e−κT (M1)

and such that (recalling that Qr is the centered collar of length 2r)

||J(F̂T , γT )||k,α,Q2 < C e−κT . (M2)
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If F̂T satisfies the momentum error estimates, it follows that

||J(F̂T , γT ) − divγT σT ||k,α < C e−κT .

The threshold κ > n−1
2 is the lower limit, which will allow the subsequent

analysis of the Lichnerowicz equation to go forward. From the momentum
error estimates and Lemma 3.2 we immediately obtain Proposition 3.4.

Proposition 3.4. Suppose F̂T satisfies the momentum error estimates.
Then, there exists a tensor ν̂T on ΣT such that

divγT (ν̂T ) = J(F̂T , γT ) − divγT (σT ).

In particular, K̂T = σT + ν̂T + τ
nγT together with γT and F̂T is a CMC solu-

tion of the momentum and non-gravitational constraints. Moreover, defining
σ̂T = ν̂T + σT , we find that there exist constants C > 0 and κ > n−1

2
independent of T such that

||σ̂T − σT ||k,α < C e−κT . (3.5)

The method of proof has been outlined earlier; the details can be found
in [19]. We note that the existence of ν̂T – and therefore the existence of
σ̂T –follows even without F̂T satisfying the momentum error estimates. The
key point is that if we impose these estimates, the solution necessarily
satisfies (3.5).

3.4 Repairing the energy constraint

Up to this point, we have constructed a CMC solution (γT , K̂T , F̂T ) of the
momentum and non-gravitational constraints; we also have an approximate
solution ψT of the Lichnerowicz equation in terms of the conformal data
(γT , K̂T , F̂T ). Our goal is to find a perturbation ηT of ψT , so that ψT + ηT

solves the Lichnerowicz equation.

Let NT be the Lichnerowicz operator with respect to γT , σ̂T and F̂T on
ΣT , we write

NT (ψ) = ∆γT ψ − a1RγT ψ + a1 |σ̂T |2γT
ψ−q−3 − a2τ

2ψq+1 + a1n̂T (ψ),
(3.6)

where we abbreviate nF̂T ,γT
(ψ) as n̂T (ψ). Similarly, we let N denote the

Lichnerowicz operator with respect to γ, σ and F on Σ.

Since we will be working with the linearization of NT , it is convenient to
denote by n̂′

T the derivative of n̂T with respect to its last argument. Then,
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the linearization LT of NT about ψT is

LT = ∆γT − a1RγT + a1(−q − 3) |σ̂T |2γT
ψ−q−4

T

− a2(q + 1)τ2ψq
T + a1 n̂′

T (ψT ). (3.7)

We will similarly denote by L the linearization of N about 1.

The contraction mapping argument we use here for the existence of a
solution to the Lichnerowicz equation with data (γT , K̂T , F̂T ) requires that
the error ET := NT (ψT ) decays faster as a function of T than a prescribed
exponential rate; it also requires control of certain mapping properties of
LT . The proofs of these properties follow closely those given in [19], taking
into account the new features of NT , which result from the introduction of
the term nT , as well as the use of higher dimensions. We now outline this
argument.

3.4.1 Bound for the error ET

Corresponding to the momentum error estimates of Definition 3.3, we make
the following definition.

Definition 3.5. Recalling that n̂T (ψT ) := nF̂T ,γT
(ψT ) depends implicitly on

F̂T and setting nc(ψc) := nFc,γc(ψc), we say that F̂T satisfies the energy
error estimates if for each k and α, there exist constants C > 0 and λ > 1/q
independent of T such that

||n̂T (ψT ) − nc(ψc)||k,α,ΣT \Q < C e−λT (E1)

and such that
||n̂T (ψT )||k,α,Q2 < C e−λT . (E2)

Proposition 3.6. Suppose F̂T satisfies the momentum and energy error
estimates. Then, for every k and α, there exists a constant C > 0 and a
constant ρ > 1

q not depending on T such that ||ET ||k,α < C e−ρT .

Proof. The proof follows the approach of the corresponding result in [19].
However, the computations are more involved, because we wish to prove the
result for n ≥ 3 and because of the effects of F̂T in (3.6), both directly via
n̂T and indirectly via σ̂T ; hence, we outline the proof now.

We divide ΣT into three regions, ΣT \CT , CT \Q and Q, and estimate the
various terms of ET in each. For simplicity of presentation, we only discuss
estimates of the C0 norm of ET ; because of the exponential decay rates of the
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terms involved, the estimates for the higher derivative norms are essentially
the same. It is also convenient to pick in advance the exponent

ρ := min
{

λ,
1
2

+
1
q
,
2
q
, 2κ − 1 − 3

q

}
.

One can readily verify that ρ > 1
q . In fact, the restriction 2κ − 1 − 3

q > 1
q is

the source of the choice κ > n−1
2 in Definition 3.3.

We first verify the bound in ΣT \CT , where we have ψT = ψc, γT = γc

and σT = σc. Since ψc solves the Lichnerowicz equation with respect to
(γc, Kc,Fc), it follows that in this region,

ET = NT (ψT ) = a1

(
|σ̂T |2T − |σT |2T

)
ψ−q−3

T + a1 (n̂T (ψT ) − nc(ψc)) ,

where the definition of nc is analogous to that of n̂T . From Proposition 3.1,
we know that

∣∣∣|σ̂T |2 − |σT |2
∣∣∣ ≤ C e−κT in ΣT \CT . From the energy error

estimate (E1), it easily follows that in this region,

|ET | ≤ C max(e−κT , e−λT )

≤ C e−ρT .

Turning now to bounds in the region CT , we first note the following easy
estimates which hold on all of CT :

γT = ds2 + h + O
(
e−T/2 cosh(s)

)
(3.8)

ψT ≤ C e−T/q cosh
(

2s

q

)
(3.9)

|σT | ≤ C e−nT/2
(

cosh
(

2s

q

))q+2

(3.10)

|σ̂T − σT | ≤ C e−κT , (3.11)

where h denotes the round metric on the sphere. In the subregion Q, we
have (recall that ψT = ψ1 + ψ2 in most of QT )

ET = NT (ψT ) = (∆T − a1RT )ψ1 + (∆T − a1RT )ψ2

+ a1 |σ̂T |2 ψ−q−3
T − q2τ

2ψq+1
T + a1n̂T (ψT )

From (3.8) and the definition of γT , it follows that ∆T − a1RT = ∆1 −
a1R1 + O

(
e−T/2

)
. Hence,

(∆T − a1RT )ψ1 = −a1 |σ1|2 ψ−q−3
1 + a2τ

2ψq+1
1 − a1n1(ψ1)

+ O
(
e−(1/2+1/q)T

)
,
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where n1(ψ1) := ρ(Φ(F1, ψ1), ψ
q
1γ1)ψ

q+1
1 . Since n1(ψ1) = ψq+1

1 n0(1), for
n0(1) = ρ(F , γ), we have the easy bound |n1(ψ1)| ≤ C e−(1+1/q)T . Also,
since |σ1| ≤ C e−n/2T and ψj ≤ C e−1/qT , it follows that

|(∆T − a1RT )ψ1| ≤ C max(e−(1/2+1/q)T , e−λT )

≤ C e−ρT ;

an analogous estimate holds for ψ2.

From (3.10) and (3.11), we determine that

|σ̂T |2 ≤ C max(e−nT , e−2κT ),

and hence from (3.9), we have

|σ̂T |2 ψ−q−3
T ≤ C max(e−(1+1/q)T , e−(2κ−1−3/q)T ).

From (3.9), we also know that τ2ψq+1
T ≤ C e−(1+1/q)T , and from (E2), that

|n̂T (ψT )| ≤ C e−λT . Hence, we verify that the estimate

|ET | ≤ C e−ρT

holds in the region Q.

The remaining region CT \Q has two components, C
(1)
T = [−T/2, 1] ×

Sn−1 and C
(2)
T = [1, T/2] × Sn−1. By symmetry, it suffices to prove the

bound on just one component. In C
(2)
T , we have (recall that ψT = ψ2 + χ1ψ1

in C
(2)
T )

ET = NT (ψT ) = (∆T − a1RT )(χ1ψ1) + a1

(
|σT |2 ψ−q−3

2 − |σ̂T |2 ψq−3
T

)

− a2τ
2
(
ψq+1

2 − ψq+1
T

)
+ a1 (n̂T (ψT ) − nc(ψc)) . (3.12)

The last two terms of (3.12) are easy to estimate. From (E1), we know

|n̂T (ψT ) − nc(ψc)| ≤ C e−λT . (3.13)

As ψT = ψ2 + χ1ψ1 and χ1ψ1 = O
(
e−T/q−2s/q

)
, we have

∣∣∣ψq+1
T − ψq+1

2

∣∣∣ = O
(
e−(1+1/q)T+(2−2/q)s

)

≤ C max(e−2/qT , e−(1+1/q)T ). (3.14)

We now turn to the second term of the right-hand side of (3.12). From
(3.9) to (3.11), we have

∣∣∣|σ̂T |2 − |σT |2
∣∣∣ ψ−q−3

T ≤ C max(e−(κ−1/q)T , e−(2κ−1−3/q)T ). (3.15)
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Also, as

ψ−q−3
T − ψ−q−3

2 = O
(
e(1+3/q)T−(2+10/q)s

)
,

we have from (3.10) that

|σT |2(ψ−q−3
T − ψ−q−3

2 ) ≤ C max(e−2/qT , e−(1+1/q)T ). (3.16)

From (3.15) and (3.16), it then follows that∣∣∣|σ̂T |2 ψ−q−3
T − |σT |2 ψ−q−3

2

∣∣∣ ≤ Ce−ρT . (3.17)

Hence, it remains to estimate

(∆T − a1RT )(χ1ψ1).

Since χ1 ≡ 1 except near s = T/2 and as ψ1 = e−T/q−2s/q on C
(2)
T , it follows

that
χ1ψ1 = e−T/q−2s/q + O

(
e−2/qT

)
. (3.18)

Letting γ0 be the round metric on the cylinder, it follows from (3.8) and
from calculation of the scalar curvature of a round metric that

∆T − c1RT = ∆0 − a1(n − 1)(n − 2) + O
(
es−T/2

)
. (3.19)

Since (∆0 − a1(n − 1)(n − 2))e−T/q−2s/q = 0, we see from (3.18) and (3.19)
that

(∆T − a1RT )(χ1ψ1) ≤ C max(e−(1/2+1/q)T , e−2/qT ). (3.20)

Hence, from (3.13), (3.14), (3.17) and (3.20), it follows that in C
(2)
T (as in

the rest of ΣT ),
|ET | ≤ C e−ρT .

�

3.4.2 Mapping properties of the linearization of NT

The goal of this section is to verify certain properties of the linearization
operator LT : specifically, that it is invertible and that the norm of its inverse
on certain weighted spaces is bounded independent of T . These properties,
which hold in the vacuum case provided K �≡ 0, depend on the form of the
matter term n(γ,F , ψ) and its derivative n′ with respect to ψ. To guarantee
these properties, we add the following assumptions to the momentum error
estimates and the energy error estimates already made.

• For each p ∈ Σ,
nF ,γ(1, p) − n′

F ,γ(1, p) ≥ 0. (N1)
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• As T → ∞, ∣∣∣∣n̂′
T (ψT ) − n′

c(ψc)
∣∣∣∣

k,α,ΣT \Q
→ 0. (N2)

• As T → ∞, ∣∣∣∣n̂′
T (ψT )

∣∣∣∣
k,α,Q2

→ 0. (N3)

We use property (N1) to establish that L (the linearization of N on Σ
about ψ = 1) is invertible, and we use properties (N2) and (N3) to ensure
the convergence of LT to known operators away from the middle of the neck
and on the middle of the neck, respectively.

To see that L is invertible, we note that

L = ∆γ − a1

(
Rγ + (q + 3) |σ|2γ +

a2

a1
(q + 1)τ2 − n′

F ,γ(1)
)

.

Since (γ, σ, τ,F) is a solution of the constraints, we can write Rγ in terms
of γ, σ, τ and F to obtain

L = ∆γ − a1

(
(q + 4) |σ|2γ + q

a2

a1
τ2 +

(
nF ,γ(1) − n′

F ,γ(1)
))

. (3.21)

As a consequence of our assumption (N1), we know that the term in this
expression which involves F is non-negative. Moreover, if the term in paren-
theses is not identically zero, then it follows from the maximum principle
that L has a trivial kernel on Ck+2,α(Ω). This is true if either K �≡ 0
or nF ,γ(1) − n′

F ,γ(1) �≡ 0; we will henceforth assume this non-degeneracy
condition. Note that it often holds that −n′

F ,γ(1) ≥ 0. In this case, as
nF ,γ(1) = 2ρ(F , γ), the non-degeneracy condition holds if either K �≡ 0 or
ρ(F , γ) �≡ 0.

We now show that for sufficiently large T , LT also has trivial kernel. We
also want to control the norm of its inverse, which we can do in terms of the
following weighted Hölder space norm.

Definition 3.7. Let wT be an everywhere positive smooth function on ΣT

which equals e−T/q cosh(2s
q ) on CT , which is uniformly bounded away from

zero on Σ∗
R, and equals one on Σ∗

2R. For any δ ∈ R, and any φ ∈ Ck,α(ΣT ),
we set

||φ||k,α,δ = ||w−δ
T φ||k,α,

and we let Ck,α
δ (ΣT ) be the corresponding normed space.

Proposition 3.8. Fix any δ ∈ R. For T sufficiently large, the mapping

LT : Ck+2,α
δ (ΣT ) −→ Ck,α

δ (ΣT )

is an isomorphism.
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Proof. Since the spaces Ck+2,α
δ (ΣT ) and Ck+2,α(ΣT ) are identical as sets and

the associated norms are equivalent to each other for fixed T and δ, it is
enough to show that LT is an isomorphism for δ = 0. Since LT is Fredholm
of index zero on Ck+2,α(ΣT ), we need only to show that for T sufficiently
large, it has trivial kernel.

Suppose not, there exists a sequence of increasing parameters Tk and
functions ηk (not identically zero) such that LTk

ηk = 0. We assume without
loss of generality that sup |ηk| = 1.

Suppose now that sup |ηk| is bounded away from zero on Σ∗
r for some

r ≤ R. As a consequence of elliptic regularity, together with property (N2),
we conclude that there exists a non-zero function η on Σ∗ such that Lcη = 0.
Using the conformal covariance property ∆γc η − a1Rγcη = ψq+1

c (∆γ (η/ψc)
− a1Rγη/ψc), we conclude that η/ψc satisfies

[∆γ − a1Rγ − (q + 3)a1 |σ|2γ + a2(q + 1)τ2 − a1ψ
−q
c n′

c(ψc)]
(

η

ψc

)
= 0.

Now, it follows from the definition of n that nc(ψ) = ψq+1
c n(ψψ−1

c ), and
hence, that ψ−q

c n′
c(ψc) = n′(1). So η/ψc solves L(η/ψc) = 0 on Σ∗. Since η

is bounded on Σ∗ and since ψc decays like r
(n−2)/2
j near pj , it follows that

η/ψc is less singular than r
(n−2)
j at pj and hence extends to a non-trivial

solution of L(η/ψc) = 0 on all of Σ, which is a contradiction.

If on the other hand ηT converges uniformly to 0 on Σ∗
r for any R > r > 0,

we can consider a sequence of functions on increasing finite length sections
of the cylinder R × Sn−1 by translating ηT , so that its maximum occurs at
s = 0. Then, it follows from elliptic regularity and the properties (N2) and
(N3) that we can extract a subsequence that converges in C2 on compact
sets of the cylinder to a non-trivial bounded solution of the equation

∆γ0 η −
(

n − 2
2

)2

η = 0.

Since there are no such solutions, we again have a contradiction. �

Let GT denote the inverse of LT on Ck+2,α
δ , which exists for T sufficiently

large, as a consequence of Proposition 3.8. The proof that GT has bounded
norm as T goes to ∞ is, using properties (N2) and (N3), identical to the
one appearing in [19], and hence, we will not repeat it.

Proposition 3.9. If 0 < δ < 1, then the norm of the operator GT is
uniformly bounded as T → ∞.
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3.4.3 Deforming the conformal factor ψT to a solution

We deform ψT to a true solution ψ̂T = ψT + ηT of the Lichnerowicz equation
using a contraction map. That is, we wish to solve

NT (ψT + ηT ) = 0.

To do this, we introduce the quadratically vanishing non-linearity QT

defined by
NT (ψT + η) = NT (ψT ) + LT (η) + QT (η).

Then, ψT + ηT is a solution of the Lichnerowicz equation if and only if ηT

satisfies
ηT = −GT (ET + QT (ηT )) ,

and hence is a fixed point of the map TT defined by

TT (η) = −GT (ET + QT (η)) .

The key estimate which leads to a verification that TT is a contraction
map is that for η near zero, the non-linear operator NT differs from its
linear approximation LT by a quadratically small amount. That is, we wish
to show that there is a constant C independent of T such that

||QT (η)||k,α,δ ≤ C||η||2k,α,δ. (3.22)

For the terms in QT involving σ̂ and τ , this estimate follows from the
explicit form of their dependence on η. To argue this, let us, for convenience,
define

wT (x) := a1|σ̂T |2
(
x−q−3 − a2τ

2xq+1) .

We then have

QT (η) = wT (ψT + η) − wT (ψT ) − w′
T (ψT )η + nT (ψT + η)

− nT (ψT ) − n′
T (ψT )η.

The terms involving wT can be rewritten in integral form as

wT (ψT + ηT ) − wT (ψT ) − w′
T (ψT )ηT =

∫ ηT

0
(ηT − s)w′′

T (ψT + s) ds;

hence, an estimate of the type (3.22) for these terms readily follows from
appropriate controls on w′′

T (ψT + s). The only serious difficulty stems from
the negative exponents appearing in the definition of wT . Following [19], we
require that there is a constant c < 1 independent of T such that |η| < cψT .
This restriction ensures that 1 + η/ψT remains uniformly bounded away
from zero and a straightforward computation using this fact shows that an
estimate of the form (3.22) holds for the wT terms.

Since there is no a priori form for the dependence of the matter terms nT

on ψT , to complete the estimate for QT , we need to make a further assump-
tion on nT (thus extending our list of assumptions from Section 3.4.2).
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There exist constants C > 0 and c < 1 independent of T such that
∣∣∣∣nT (ψT + η) − nT (ψT ) − n′

T (ψT )η
∣∣∣∣

k,α,δ
≤ C ||η||2k,α,δ (N4)

whenever |η| < c|ψT |.

With the estimate (3.22) conditionally in hand, we now seek an open
neighborhood about 0 on which TT (as defined earlier) is a contraction map.
This neighborhood must be mapped to itself under the action of TT , and
it must be small enough so that (for all T ) it only contains functions η
such that |η| < c ψT and hence the quadratic estimate holds for it. Fixing
δ > 0, we find from Propositions 3.6 and 3.9 that there are constants C and
M , respectively, such that ||G(ET )||k,α,δ ≤ CM e(−λ+δ/q)T . It is therefore
convenient to set

Bν = {u ∈ Ck,α
δ : ||u||k,α,δ ≤ ν e(−λ+δ/q)T },

and we note for future reference that if ν = 2CM , then GT (ET ) ∈ Bν/2.

Now, for η ∈ Bν , we see that inside the neck

|η| ≤ ν e(−λ+δ/q)T ψδ−1
T ψT

≤ ν e(−λ+δ/q)T e−T/q(δ−1)ψT

≤ ν e(−λ+1/q)T ψT ;

whereas outside the neck

|η| ≤ ν e(−λ+1/q)T .

Since (we recall from the energy error estimate) λ > 1
q , it follows that for

any fixed values of c < 1 and ν, there exists a T large enough, so that if
η ∈ Bν , then |η| < c ψT in all ΣT . Combining this inequality with estimate
(3.22), we find that there exists large enough T , so that

||QT (η1) − QT (η2)||k,α,δ ≤ 1
2M

||η1 − η2||k,α,δ (23)

for η1 and η2 in Bν and ν = 2CM .

For ν = 2CM , we have G(ET ) ∈ Bν/2. Moreover, setting η1 = η and η2 = 0
in (23), it follows that G(QT (η)) ∈ Bν/2 for η ∈ Bν and for sufficiently large
T . It follows that TT maps Bν to itself for sufficiently large T . Equation
(23) also implies that TT is a contraction map on Bν for T sufficiently large.
(See [19] for further details.)
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If TT is a contraction map, it follows that it has a unique fixed point ηT .
It then follows that ψ̂T = ψT + ηT satisfies the Lichnerowicz equation

NT (ψ̂T ) = 0 (3.24)

with NT defined (for the glued data γT , σ̂T , F̂T , τ) as in (3.6). Moreover,
the difference between the approximate solution ψT and the exact one ψ̂T is
contained in the space Bν , which we see from its definition gets arbitrarily
small as T gets large. We are thus led to our main result.

Theorem 3.10. Let (Σn, γ, K,F) be a smooth CMC solution of the
n-dimensional constraint equations for an Einstein-matter field theory, which
satisfies the two criteria of Section 2. Let Σn be compact, and let p1 and
p2 be a pair of points in Σn. We assume that these solution data satisfy
the following conditions. (i) The metric is non-degenerate with respect to
p1 and p2 in the sense of [19],2 and either the quantity K or the quan-
tity nF ,γ(1) − n′

F ,γ(1) appearing in condition (N1) is not identically zero.3

(ii) The momentum error estimates (Definition 3.3), the energy error
estimates (Definition 3.5) and the matter term estimates (N1) to (N4) hold.
Then, for T sufficiently large, there is a one-parameter family of solutions
(Σn

T , ΓT , KT , FT ) of the Einstein-matter field constraints with the following
properties: the manifolds Σn

T (all diffeomeorphic to each other) are con-
structed by adding a handle or neck to Σn, connecting the two points p1 and
p2. On the region of Σn

T outside of the neck, the fields (ΓT , KT , FT ) approach
arbitrarily closely to (Σn, γ, K,F) as T tends to infinity.

If we compare the hypotheses of this theorem for gluing solutions of the
Einstein-matter field constraints with the hypotheses of the corresponding
gluing theorem for the Einstein vacuum data (see Theorem 1 in [19]), it
appears as if there are far more conditions which must be satisfied by the
Einstein-matter data. We note, however, that for most of the Einstein-
matter theories of physical interest (see Section 4), all of the conditions
except non-degeneracy are satisfied automatically by solutions of the con-
straints. That is, the nature of the matter fields and how they couple to the
Einstein-matter constraints for most such theories guarantees satisfaction
of most of these hypotheses. We shall see this in the discussion of example
theories in the next section.

2That is, we assume that there are no non-trivial CK fields on Σn, which vanish at
either p1 or p2.

3Note that for most Einstein-matter field theories, it follows from the momentum
constraint that if F is not identically zero, then K is not identically zero.
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3.5 Gluing in the presence of a cosmological constant

What happens if we seek to glue solutions with a cosmological constant Λ
present? We find that so long as the constant a2τ

2 − a1Λ is positive (or zero
in certain appropriate cases), our results are unchanged; otherwise, gluing
via the methods we describe here generally cannot be carried out.

To see this, we recall that since the field equations with Λ present take
the form G = T + Λg, it follows that the momentum constraint (4.4) is
unchanged by the presence of Λ, while the Hamiltonian equation (4.5) is
changed to the following:

Rγ − |K|2γ + (tr K)2 = 2ρ + 2Λ. (3.25)

Then, as we require Λ to be invariant under the conformal action Φ (other-
wise we could not guarantee that it would remain a constant), we find that
the Lichnerowicz equation with Λ present takes the form

∆λ φ − a1Rγφ + a1|σ + DW |2γφ−q−3 − (a2τ
2 − a1Λ)φq+1 + nF ,γ(φ) = 0.

(3.26)
The pairing of Λ with τ2 which we see in (3.26) persists throughout the
gluing analysis. Since it is crucial to this analysis that a2τ

2 − a1Λ ≥ 0, our
stated result follows.

4 Applications to example Einstein-matter field theories

The work done in Section 3, culminating in Theorem 3.1, provides criteria
for determining whether gluing can be carried out for given solutions of the
constraints of a specified Einstein-matter field theory. While these criteria
involve the data of the particular solutions, they depend predominantly on
the features of the specified theory. In this section, we discuss some exam-
ple field theories for which those solutions of the constraints which satisfy
the mild non-degeneracy conditions stated in hypothesis (i) of Theorem 3.1
automatically satisfy hypothesis (ii) as well and can therefore be glued.

4.1 Einstein perfect fluids

The Einstein-perfect fluid field theories are especially simple from the point
of view of gluing, because they do not require any extra bundle structure,
they introduce no additional constraints beyond the Hamiltonian and the
momentum constraints of the vacuum theory and the fluid fields can be
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readily scaled in such a way that the conformal method analysis is without
complication.

The additional fields needed for an Einstein-perfect fluid field theory are
the fluid energy density ζ, the pressure p and the fluid velocity u (which
satisfies the condition g(u, u) = −1). In terms of these quantities, the stress-
energy tensor for the field theory is given by

T = ζu ⊗ u + p(g + u ⊗ u), (4.1)

and the field equations consist of

G = T (4.2)

together with
div T = 0, (4.3)

which is a consequence of (4.1). The system is complete, with a well-posed
Cauchy problem, once an equation of state specifying the pressure p as a
function of the density, p = F (ζ), has been given.

Regardless of the choice of equation of state, initial data for a solution
of the Einstein-perfect fluid equations consist of the vacuum initial data
(Σ, γ, K) together with a scalar field ζ and a spatial vector field v (the
spatial projection of the fluid velocity u). The constraint equations take the
form

divK − d tr K = J = −(1 + |v|2)1/2(ζ + F (ζ))v (4.4)

Rγ − |K|2γ + (tr K)2 = 2ρ = 2ζ + 2(ζ + F (ζ))|v|2. (4.5)

To extend the conformal method to these Einstein-perfect fluid
constraints, we need to define the conformal action Φ on the matter fields.
While one could do this working directly with the fluid initial data fields ζ
and v, the analysis is much simpler if we work instead with the composite
functions ρ and J . If we are to do this, we need the following result.

Lemma 4.1. The map from (ζ, v) to (ρ, J) given by ρ(ζ, v) = ζ + (ζ +
F (ζ))|v|2 and by J(ζ, v) = −(1 + |v|2) 1

2 (ζ + F (ζ))v is invertible, so long as
we assume the physical conditions ρ2 > |J |2, p = F (ζ) ≥ 0, F ′(ζ) < 1 and
ζ > 0.

Remark 4.2. See Theorem 9 of [13], where a similar result was obtained.

Proof. To prove this lemma, let us presume that we are given (ρ, J) with
ρ > 0 and that we want to solve for (ζ, v). We first notice that it follows from
Eq. (4.4) that J and v are parallel. Hence, it is useful to calculate |J |2 =
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|v|2(1 + |v|2)(ζ + F (ζ))2 = (ρ − ζ)(ρ + F (ζ)) and then focus on solving for
(ζ, |v|2) in terms of (ρ, |J |2).

Let us fix ρ and define the function Hρ(ζ) := (ρ − ζ)(ρ + F (ζ)). Note from
the form of the equation ρ(ζ, v) = ζ + (ζ + F (ζ))|v|2 and the hypotheses
that ζ ≥ 0 and F (ζ) ≥ 0 be non-negative that if a solution ζ exists, we must
have 0 ≤ ζ ≤ ρ. So we seek to solve the equation Hρ(ζ) = |J |2 (fixed J)
for ζ with 0 ≤ ζ ≤ ρ. Using the conditions F (ζ) ≥ 0 and ρ2 ≥ |J |2, we find
Hρ(0) = ρ(ρ + F (0)) ≥ ρ2 > |J |2 and also Hρ(ρ) = 0 ≤ |J |2. We conclude
from the continuity of Hρ that there exists ζ ∈ (0, ρ] such that Hρ(ζ) = |J |2.
Then, calculating that, as a consequence of the condition F ′(ζ) < 1, we
have H ′

ρ(ζ) < 0, it follows that there is a unique ζ(ρ, |J |2), which satisfies
Hρ(ζ) = |J |2, and moreover, that ζ is as smooth a function of ρ and |J |2
as F allows. We may use this result together with Eq. (4.5) to solve for
|v|2(ρ, |J |2), and then finally, we may use Eq. (4.4) to solve for v(ρ, J). �

As a consequence of this lemma, we may now treat ρ and J as the initial
data variables for the fluid field, in place of ζ and v. Hence, to extend the
conformal method to the Einstein-fluid field, we define conformal action Φ
on ρ and J : we set Φ(ρ, φ) = ρφ−3/2q−2 and Φ(J, φ) = Jφ−q−2. This choice
has three consequences. (i) The quantity γabJaJb

ρ2 is conformally invariant,
and hence the satisfaction of the dominant energy condition by the fluid
field is also conformally invariant. (ii) The quantity J satisfies the condition
(C2) and hence the conformal momentum constraint

divγ (LW ) =
n − 1

n
φq+2∇τ + J (4.6)

is independent of φ so long as τ is constant. (iii) The matter-dependent
term in the Lichnerowicz equation

∆λ φ − a1Rγφ + a1 |σ + DW |2γ φ−q−3 − a2τ
2φq+1 + a1ρφ−q/2−1 = 0, (4.7)

like the |σ + DW | term, has a positive sign and contains a negative power
of φ; hence, its role in the solvability analysis of (4.7) is essentially the same
as the |σ + DW |2γ term. Thus, we find, with this choice of the conformal
action on ρ and J , that the conformal method works for the Einstein-perfect
fluid constraints more or less the same as it works for the Einstein vacuum
constraints. This is a prerequisite for carrying out the gluing of solutions of
the constraints as described in Section 3.

Let us say that we are given a CMC solution (Σ, γ, K, ζ, v) of the Einstein-
perfect fluid constraints, together with pair of points p1, p2 ∈ Σ at which we
would like to carry out a gluing operation. We first rewrite the initial data
in the (Σ, γ, K, ρ, J) form; we work entirely in this form until the end, at



EINSTEIN-CONSTRAINT EQUATIONS 155

which time, we may invert to recover the glued solution in (Σ, γ, K, ζ, v)
form.

The steps which take us from (Σ, γ, K, ρ, J) to the preliminary glued data
sets (γT , KT , ρT , JT ) are straightforward, as described in Section 3.1. With
no non-gravitational constraints C present, we set ρ̂T = ρT and ĴT = JT ,
and we next proceed to repair the momentum constraint, as in Section 3.3.
To continue with the gluing at this stage, we need to check the CK field non-
degeneracy condition (described in footnote 2 ) and we need to verify the
momentum error estimates (M1) and (M2). The CK non-degeneracy condi-
tion is (as with the vacuum case) a mild restriction on the class of solutions
of the constraints which admit gluing. The momentum error estimates, on
the other hand, follow immediately from the choice of the conformal action
Φ on (ρ, J). They are automatic for any solution: we verify

||JT − J)||k,α,ΣT \Q = 0 (4.8)

and

||JT ||k,α,Q2 < C en/2T , (4.9)

thereby confirming that these estimates hold. Consequently, the estimate
(3.5) holds as well. We emphasize that this is true for any chosen solution
(Σ, γ, K, ρ, J) of the Einstein-perfect fluid constraints, which satisfies the
CK non-degeneracy condition relative to the chosen gluing points p1 and p2.

We next need to check that the energy error estimates (E1) and (E2)
are satisfied. Noting that for the Einstein-perfect fluid theories, nT (γT , ρT ,

JT , ψT ) = ρT ψ−q/2−1, these estimates are readily verified for any choice of
data, much like the momentum error estimates just discussed.

To ensure that the linearized Lichnerowicz operator LT is invertible for the
chosen data (Σ, γ, K, ρ, J), we need the quantity nF ,γ to satisfy condition
(N1). This follows immediately from the expression nT (γT , ρT , JT , ψT ) =
ρT ψ−q/2−1−n/n−2, regardless of the choice of data. If we are working with
data on a closed manifold, we also need one or the other of the conditions
K �= 0 or ρ �= 0 to be satisfied. This is the only restriction beyond the CK
non-degeneracy condition that we need to make on the data itself. Note
that it is analogous to the restriction imposed on the data for gluing in the
vacuum case.

The remaining assumptions which need to be verified are (N2), (N3) and
(N4). The first two of these essentially follow from the conformal invariance
of γabJaJb

ρ2 . The last of these is a straightforward calculation. We thus
conclude that any set of CMC initial data satisfying the CK non-degeneracy
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condition relative to p1 and p2 and having either K or ρ non-vanishing can
be glued at p1 and p2.

4.2 Einstein–Maxwell and Einstein–Yang–Mills

We first briefly review the Yang–Mills field theory (on a fixed background
spacetime) to establish our notation. Let M be a vector bundle with com-
pact structure group G over a Lorentz manifold (M, η). The sub-bundle
of End(M) consisting of those transformations associated with the adjoint
representation of G is denoted by ad(M); note that each fiber of ad(M) is
isomorphic to g, the Lie algebra of G. We fix a bi-invariant metric on G,
which induces a metric on the fibers of ad(M). If D is a connection on M,
then its curvature FD = D2 is a 2-form taking values in ad(M) and therefore
is a section of Ω2(ad(M)).

A solution to the Yang–Mills equations is a connection D such that
D∗FD = 0, where D∗ = (−1)dim(M)+1 ∗ D∗ and where “∗” is the Hodge star
operator. (Note that to define the operator “∗”, we need the specified met-
ric η.) One readily verifies that the Yang–Mills system has a well-posed
Cauchy problem, for which the initial data consist of a G-vector bundle
V over a Riemannian manifold Σ with a connection D and a section E
of Ω1(ad(V)). The variable E plays the part of the time derivative of
D and necessarily satisfies the constraint equation D∗ E = 0, where D∗ is
defined analogously to D∗ . In the discussion subsequently, the curvature
of D appears; we denote this curvature by BD , recalling its familiar role in
Maxwell’s equations. Note that BD is a section of Ω2(ad(V))

Maxwell’s theory is a special case of Yang–Mills theory, in which the
structure group is chosen to be U(1). As g in this case is naturally isomorphic
to R, E and BD are real-valued differential forms. In three dimensions, E
and ∗BD are the covector fields corresponding to the electric and magnetic
fields.

Minimally coupling Yang–Mills to Einstein, we obtain the Einstein–Yang–
Mills theory (with Einstein–Maxwell as a special case), for which the field
equations are D∗FD = 0 and G = T , where D is now the covariant derivative
corresponding to the gravitational as well as the Yang–Mills connection and
where the Yang–Mills stress-energy tensor is (in component form) Tαβ =
Fµ

α Fµβ − 1
ngαβFµνFµν . Using techniques similar to those discussed in [15],

one readily verifies that the Einstein–Yang–Mills field equations have a well-
posed Cauchy formulation. A set of initial data for Einstein–Yang–Mills
consists of a G-vector bundle V over an n-manifold Σ, with Einstein data γ
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and K, together with Yang–Mills data D and E, all satisfying the coupled
constraint equations

divK − d tr K = 2(−1)n+1 ∗ 〈E, ∗BD〉
Rγ − |K|2γ + (trK)2 = |E|2 + |BD |2

D∗ E = 0.

Here, the bilinear map 〈·, ·〉 on sections of Ω∗(ad(V)) is the one which
is induced from the bi-invariant metric on g, and the norm on sections of
Ωk(ad(V)) is defined by |W |2 = ∗ < W, ∗W >. For Maxwell’s equations,
the equation D∗ E = 0 is the familiar constraint div E = 0 (the magnetic
field constraint div B = 0 is absent, since it is automatically satisfied when
the Maxwell theory is formulated as a special case of the Yang–Mills
theory).

The choice of the conformal action Φ on the Yang–Mills fields D and E is
essentially determined by the criteria discussed in Section 2. In particular,
noting that γc = ψqγ implies that the Hodge star operator acting on k-
forms transforms via ∗c = ψq(n/2−k)∗ , we find that in order to satisfy (C1)
and thereby prevent the appearance of ψ in the conformal version of the
non-gravitational constraint D∗ E = 0, we require that Φ(D, ψ) = D and
Φ(E, ψ) = ψ−2E. It then follows that if the conformal data satisfy D∗ E = 0,
then the reconstituted data satisfy D̃∗Ẽ = 0. For Maxwell’s equations in
three dimensions, the conformal action on the connection Φ(D, ψ) = D is
equivalent to a conformal action on the magnetic covector field B given by
Φ(B, ψ) = ψ−2B.

With this choice of the conformal action, we may proceed to check that
(C2) and (C3) hold as well. We calculate

∗c 〈Φ(E, ψ), ∗cBD〉 = ψq(n/2−(n−1))ψ−2ψq(n/2−2) ∗ 〈E, ∗BD〉
= ψ−q−2 ∗ 〈E, ∗BD〉 ,

thus satisfying condition (C2); we calculate

ψq+1 (
|Φ(E, ψ)|2c + |BD |2c

)
= ψ−3|E|2 + ψ1−q|BD |2,

from which (C3) follows, with

nE,D(ψ) = ψ−3|E|2 + ψ1−q|BD |2.

To apply the gluing construction, we start with a solution (γ, K, E,D) of
the Einstein–Yang–Mills constraints on a G-vector bundle V over Σ. From
the induced vector bundle Vc over Σ∗ with connection Dc, we construct
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the vector bundles VT over ΣT as described in Section 3 by fixing local
trivializations on the balls Bj and using them to identify fibers over identified
points in the connected sum. We then construct a connection DT on VT

given by Dc except over CT , where DT = χ(s)D1 +(1 − χ(s))D2 (here, χ is
the cutoff function used to define γT ). Hence, DT = Dc except over Q. In
terms of the classical notation for Maxwell’s equations in three dimensions,
the construction of this connection results in setting the magnetic field to
curl(χ(s)A1 + (1 − χ(s))A2) over CT , where each Aj is a vector potential
for the magnetic field over the ball Bj .

To construct ET , we first note that we may define local sections Ec, E1,
and E2 of the bundle ad(VT ) restricted to Σ\Q, CT and CT , respectively,
by identifying ad(ET ) with ad(Ec) over the appropriate subdomains. We
then set ET = Ec over Σ\Q and we set ET = χ1E1 + χ2E2 over CT , where
χ1 = χ(t2 − 1) and χ2 = χ(t1 − 1). Thus, ET is pieced together in the same
way that the conformal factor ψT is (Section 3.1) and one has ET = E1 + E2
over most of CT . It would be more convenient to stitch together ET over
Q alone. However, doing so results in unacceptably large error terms and
would result in a failure to satisfy the momentum error estimates.

The next step in the gluing construction is the repair of the non-
gravitational constraint: we need to find a section ÊT of Ω1(ad(VT )), which
satisfies D∗

T ÊT = 0. To do this, we seek a section µT of ad(VT ) that
satisfies

D∗
T DT µT = −D∗

T ET .

Then, ÊT = ET + DT µT is the section we need. The operator D∗
T DT is self-

adjoint and elliptic; therefore, as −D∗
T ET is L2 orthogonal to the kernel of

D∗
T DT , we can solve this equation.

To proceed further, we need bounds on µT as well as existence. While
it is not clear that such bounds always hold, we can prove that they do,
so long as either the Yang–Mills group G is U(1) (the Maxwell case) or so
long as ad(V) has no globally parallel sections. We note that this last condi-
tion holds generically for the groups SU(2) and SU(3) of primary physical
interest. The precise statement of the necessary boundedness result is as
follows, where the Hölder spaces used here are defined analogously to those
in Definition 3.1.

Proposition 4.3. Suppose that either D acting on ad(V) has trivial kernel
or G = U(1). Then, the unique solution µT of D∗

T DT µT = −D∗
T ET satisfies

||DT µT ||k,α < CT 5/2 ||ET ||k,α for some constant C independent of T .
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We prove Proposition 4.3 later in this section. For now, let us assume the
result and proceed with the verification of the gluing construction conditions.
To determine the size of µT and, therefore, the size of the correction |ÊT −
ET |, we need to estimate the quantity D∗

T ET appearing on the right-hand
side of the equation for µT . We readily verify that the following bounds
hold in the regions Q and C

(2)
T (recall from Section 3.4.1 that CT \Q can

be divided into the two components, C
(1)
T = [−T/2, 1] × Sn−1 and C

(2)
T =

[1, T/2] × Sn−1):

DT = D1 +O
(
e−T/2+s

)
(4.10)

∗T = ∗1 + O
(
e−T/2+s

)
(4.11)

E1 = O
(
e−T (n−1/2)−s(n−1)

)
. (4.12)

Now, in the complement of CT , we have D∗
T ET = 0, while in Q,

D∗
T ET = D∗

T (E1 + E2). Combining (4.10)–(4.12) together with the identity
D1 ∗1 E1 = 0, we calculate

D∗
T E1 = ∗T (D1 +O

(
e−T/2

)
)(∗1 + O

(
e−T/2

)
)E1

= O
(
e−nT/2

)
.

A similar estimate holds for D∗
T E2; so in Q, we have D∗

T ET = O
(
e−nT/2

)
.

On C
(2)
T , we have ∗T = ∗2, DT = D2 and ET = χ1E1 + E2. Thus, combining

(4.10)–(4.12) together with the identity DT ∗T E2 = 0, we calculate

D∗
T ET = ∗T (D1 +O

(
e−T/2+s

)
)
(
∗1 + O

(
e−T/2

))
χ1E1

= dχ1 ∧
(
∗1 + O

(
e−T/2

))
E1

+ χ1 ∗T

(
D1 +O

(
e−T/2+s

)) (
∗1 + O

(
e−T/2

))
E1

= O
(
e−T (n−1

)
+ O

(
e−nT/2

)
,

with an analogous estimate on C
(1)
T . So finally, we obtain D∗

T ET = O
(e−nT/2), from which it follows that

||ÊT − ET ||k,α = O
(
T 5/2 e−nT/2

)
.
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Each of the remaining error estimates now needs to be computed. The
techniques are not different from those used earlier or in the proof of
Proposition 3.6. Hence, we just summarize the results of the computation
as follows:

Estimate Σ \ CT CT \ Q Q

D∗ ET 0 e−nT/2 e−nT/2

M1 and M2 T 5/2 e−nT/2 T 5/2 e−nT/2 T 5/2 e−nT/2

E1 and E2 T 5/2 e−nT/2 e−T (n−2/2) e−T (n+2/4)

N2 and N3 T 5/2 e−6T/2 e−T (min(1,n−2/2)) e−T

We note, in particular, that ÊT and DT satisfy the momentum and energy
error estimates for any constants κ and ρ for which n−1

2 < κ < n
2 and n−2

4 <

ρ < min
(

n+2
4 , n−2

2

)
.

The only remaining gluing conditions which need to be verified are (N1)
and (N4). Since

n′
E,D(1) = −4 |E|2 + (1 − q) |BD |2 ,

it easily follows that for any choice of initial data,

nE,D(1) = |E|2 + |BD |2 ≥ n′
E,D(1),

which establishes (N1). As well, it is clear from the form of n′ that (N4) is
satisfied for any 0 < c < 1. Hence, we conclude that a given set of Einstein–
Yang–Mills initial data can be glued at a chosen pair of points so long as
the CK non-degeneracy condition holds for the metric, so long as, if the
manifold is compact, either K �= 0 or E �= 0 or BD �= 0, and so long as the
hypotheses of Proposition 4.3 are satisfied.

We now return to the proof of Proposition 4.3. We do this first (Lemma
4.4) for the case in which ad(Σ) has no parallel sections, and then (Lemma
4.5) for the case in which G = U(1). The key step (at least when no parallel
sections are present) is the establishment of lower bounds for the principle
eigenvalue of the operator D∗

T DT .

Lemma 4.4. Suppose ad(Σ) has no parallel sections. Then, there exists a
constant C such that for T sufficiently large, the lowest non-zero eigenvalue
λT of D∗

T DT on sections of ad(ΣT ) satisfies

λT ≥ C

T 2 .
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Proof. If the statement was false, there would exist a sequence of sections
uk on ΣTk

satisfying D∗
Tk

DTk
uk = λkuk with λk < 1

kT 2
k
. Without loss of

generality, we can assume sup |uk| = 1. Reducing to a subsequence and
relabeling, we conclude using elliptic regularity that uk converges uniformly
on compact subsets of Σ∗ to a solution u of the equation D∗

c Dc u = 0.

We claim that u is not identically zero. Suppose that uk converges uni-
formly to 0 on ΣT \ CT . We will show that uk also converges uniformly to 0
on CT , which contradicts the assumption sup |uk| = 1. First, we note that

|uk(θ, t)| =
∫ t

0
∂s |uk(θ, s)| ds + |uk(θ, 0)| ,

where the derivatives are meant in the weak sense. Hence, by Hölder’s
inequality

|uk(θ, t)| ≤ T 1/2
(∫ T

0
|d |uk| |2 ds

)1/2

+ mk,

where mk := sup∂CT
|uk|. The volume element dV on CT satisfies the

condition c1 dV0 ≤ dV ≤ c2 dV0 for constants c1 and c2 independent of T ,
where dV0 is the volume element of the round cylinder. Letting St be the
spherical cross-section of CT at length parameter value t, we find that

∫

St

|uk|2 ≤ CT

∫

CT

|d |uk||2 ds + Cm2
k

≤ CT

∫

ΣT

|d |uk||2 dV + Cm2
k.

Now, Kato’s inequality implies that
∫

ΣT

|d |uk||2 dV ≤
∫

ΣT

|DTk
uk|2 dV

= λk

∫

ΣT

|uk|2 dV,

and hence ∫

St

|uk|2 ≤ CTλk

∫

ΣT

|uk|2 dV + Cm2
k

≤ CTλk Vol(ΣT ) + Cm2
k.

Since Vol(ΣT ) ≤ CT and as (by hypothesis) λk ≤ 1
kT 2 , it follows that

∫

St

|uk|2 ≤ C

(
1
k

+ m2
k

)
,
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and we conclude from interior Schauder estimates applied to D∗
c Dc that in

fact,

sup
CT

|uk| ≤ C

(
1
k

+ m2
k

)
.

Since mk converges to 0, this proves that uk converges uniformly to 0 on CT ,
which is the desired contradiction. We conclude that u is not identically 0.

We now show that if this non-zero limit u exists, then it extends to a
non-trivial solution of D u = 0 on Σ, which contradicts the hypothesis that
such parallel sections do not exist. If Ω is a compact subset of Σ∗, then

∫

Ω
|D u|2 = lim

k→∞

∫

Ω
|DTk

uk|2 ≤ lim inf
k→∞

∫

ΣT

|DTk
uk|2

= lim inf
k→∞

λk

∫

ΣT

|uk|2 ≤ C

k
,

since |uk| ≤ 1, Vol(ΣTk
) < CT and λk < 1

kT 2 . It follows that
∫
Ω |D u|2 = 0,

and we conclude that D u = 0 on Σ∗. Since u is bounded, it extends to a
weak solution of D∗ D u = 0 on Σ and hence u is a non-trivial solution of
D u = 0 on Σ, which is a contradiction. We therefore conclude that for T
large enough, λk ≥ C

T 2 . �

The conversion of the eigenvalue estimate of Lemma 4.4 to the Hölder
estimate of Proposition 4.3 proceeds in a similar fashion as was done for
the vector Laplacian in [19]. From Lemma 4.4, we have ||µT ||L2 ≤
CT 2||D∗

T ET ||L2 . Since the volume of ΣT grows linearly in T , we obtain
||D∗

T ET ||L2 ≤ T 1/2||D∗
T ET ||C0,α . Finally, local Schauder estimates for D∗

cDc

yield ||µT ||C2,α ≤ C(||D∗
T ET ||C0,α + ||µT ||L2). Hence, we conclude

||DT µT ||C1,α ≤ C||µT ||C2,α ≤ CT 2||D∗
T ET ||C0,α ≤ CT 5/2||ET ||C1,α .

The estimate of Proposition 4.3 for higher order spaces Ck,α follows from
another application of local Schauder estimates.

Lemma 4.4 does not apply to U(1) bundles, which do admit parallel
sections. In this case, D∗D is the Hodge Laplacian d∗d acting on scalar
fields (or equivalently −∆ using our earlier notation and sign convention).
The following lemma implies Proposition 4.3 for U(1) bundles.

Lemma 4.5. Any solution µT of d∗dµT = −d∗ET satisfies ||dµT ||k,α <

CT 1/2 ||ET ||k,α for some constant C independent of T .
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Proof. Multiplying both sides of the equation d∗dµT = d∗ET by µT and
integrating by parts, we have∫

ΣT

|dµT |2 dVT =
∫

ΣT

〈E, dµT 〉 dVT .

The Cauchy–Schwartz inequality then implies

||dµT ||L2 ≤ ||ET ||L2 .

Since the volume of ΣT grows linearly, we obtain

||dµT ||L2 ≤ CT 1/2||ET ||C0,α .

This L2 estimate replaces the eigenvalue estimate of Lemma 4.4. But to
use effectively, we have to show that dµT satisfies an appropriate elliptic
equation.

Applying the Hodge Laplacian d∗d + dd∗ to dµT , we have

(d∗d + dd∗)dµT = dd∗dµT = dd∗E.

So from local Schauder estimates applied to the Hodge Laplacian, we obtain

||dµT ||C2,α ≤ C(||dd∗ET ||C0,α + ||dµT ||L2)

≤ C(||ET ||C2,α + T 1/2||ET ||C0,α)

≤ CT 1/2||ET ||C2,α .

The proof of the lemma in the case k = 2 is complete, and the the higher
order estimates follow from another application of local Schauder estimates.

�

4.3 Einstein–Vlasov

The Einstein–Vlasov system is used in general relativity to model self-
gravitating systems of collisionless matter, i.e., matter which interacts only
by means of the collective gravitational field. There has been a renewed
interest recently in establishing rigorous results for the dynamics of solutions
of the Einstein–Vlasov system. Two useful survey papers on the subject are
given in [21, 1].

On a Lorentz manifold (M, g), the additional field specified by the
Einstein–Vlasov system is the distribution function representing the den-
sity of particles with a given spacetime position and a given momentum.
Each particle is assumed to travel along a time-like future directed geodesic,
so its momentum at each point is mv, where m is the mass of the particle
and v is a future pointing, unit time-like vector. For simplicity, we assume
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that all the masses are taken to be one; however, the theory can be easily
adapted to account for continuous, non-constant masses. The collection

P = {(x, v) |x ∈ M, v a future pointing, unit time-like vector}

forms a Riemannian hypersurface, called the mass shell, in the tangent
bundle of M . The distribution function is then given by a non-negative
function

f : P → R
+.

We assume for simplicity that f has compact support (again this can be
relaxed). The Einstein–Vlasov system is then

Gµν = Tµν ,

where we have again chosen units, so that the speed of light and 8π times the
gravitational constant are one. The Einstein–Vlasov stress-energy tensor is
given by

Tµν(x) = −
∫

Px

f(x, v)vµvν dvg

for each x ∈ M , where dvg is the induced Riemannian volume measure on
the fiber Px of P over x.

The non-gravitational initial data for the Einstein–Vlasov system now
consist of a (compactly supported) function f0 on the tangent bundle of Σ.
The energy density and current density of the non-gravitational field are
then given by

ρ(x) =
∫

TxΣ
f0(v) (1 + |v|2) dvγ

Ja(x) =
∫

TxΣ
f0(v) γabv

b dvγ ,

where γ is the Riemannian metric on Σ and dvγ is the induced Riemannian
volume form on the tangent spaces TxΣ. Note that there are no additional
non-gravitational constraints which need to be satisfied.

One readily checks that that if, under the conformal change γ̃ = ψqγ, we
set

f̃0(v) = φ−(3/2)q−2f0(φq/2v),

then
J̃a = φ−q−2Ja and ρ̃ = φ−(3/2)q−2ρ.

From this, it follows that n(φ) = φq+1ρ̃ = φ−(q/2)−1ρ and we observe that
the construction now proceeds exactly as in the Einstein perfect fluids case.
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Remark 4.6. Note that the results of this section are applicable beyond the
Einstein–Vlasov system. The only aspect of Einstein–Vlasov which is used is
the nature of the unknown in the Vlasov equation and the way it enters into
the energy-momentum tensor. Since the dynamic equations of motion play
no role here, these results apply equally well to, for example, the Boltzmann
equation.

5 Correcting σT in higher dimensions

In Section 3.3, the following lemma was left unproved.

Lemma 5.1. Suppose there are no CK that vanish at points pj of Σ. Then,
for T sufficiently large and for each X ∈ Ck,α(ΣT ), there is a unique solu-
tion W ∈ Ck+2,α(ΣT ) to LW = X. Moreover, there exists a constant C
independent of W and T such that

||X||k+2,α ≤ CT 3||W ||k,α.

The proof of the lemma is identical to the case when n = 3 found in [19],
so long as one can establish the following lower bound on the size of the
smallest eigenvalue of the vector Laplacian.

Theorem 5.2. For T sufficiently large, the lowest eigenvalue λ0 = λ0(T )
for L on ΣT satisfies λ0 ≥ CT−2 for some constant C independent of T .

In the case n = 3, Theorem 5.2 follows from a perturbation argument for
the lowest eigenvalue of the vector Laplacian on the round cylinder. Here,
the proof when n > 3 is identical to the case when n = 3, once one has
obtained specific estimates for the vector Laplacian on the round cylinder,
to which we turn now our attention.

For convenience, we take the vector Laplacian to operate on 1-forms rather
than on vector fields. Let X be a covector field on the cylinder R × Sn−1,
which we write as

X = fds + Y (s),

where Y (s) is a covector field on Sn−1. The vector Laplacian applied to X
can then be written in terms of its action on f and Y . We obtain

LX = L

(
f
Y

)
=

(1−n
n ∂2

s + 1
2∆θ

n−2
2n ∂sδθ

2−n
2n ∂sdθ −1

2∂2
s + 1

2δθdθ + n−1
n dθδθ + (2 − n)

)(
f
Y

)
.
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An orthonormal basis of 1-forms on Sn−1 is given by the eigenfunctions
of the Laplacian. Moreover, if η is a 1-form such that

∆ η = λη, (5.1)

then from the Hodge decomposition and the topology of the sphere, it follows
that

η = dφ + ψ, (5.2)

where φ is a function, ψ is a divergence-free covector field and both are
eigenfunctions of the Laplacian with eigenvalue λ. So if {φj} is an orthonor-
mal basis of eigenfunctions of the scalar Laplacian with eigenvalues λj , we
have an orthonormal basis of one-forms given by { 1√

λj
dφj} ∪ {ψj}, where

δψj = 0 and ∆ψj = µjψj . Finally, we note from [14] that for each j, there
exists k, l ∈ N such that λj = k(k + n − 2) and µj = (l + 1)(l + n − 3).

For a covector field X of the form u(s)φjds + v(s) 1√
λj

dθφj , the vector

Laplacian acts on the column vector (u, v)t via

L′
j =

(1−n
n 0
0 −1

2

)
∂2

s +
(

0 n−2
2n

√
λj

−n−2
2n

√
λj 0

)
∂s

+
(λj

2 0
0 n−1

n λj + (2 − n)

)
(5.3)

except when j = 0. In this case, φ0 is constant, X = u(s)ds, and we simply
have

L0 =
1 − n

n
∂2

s .

Finally, for covector fields of the form X = w(s)ψj , we have

L′′
j = −1

2
∂2

s + (
µj

2
+ 2 − n).

So together
L = L0 ⊕

⊕
j≥1

(L′
j ⊕ L′′

j ).

An analysis parallel to that of [19] shows that the temperate solutions
of LX = 0 on the cylinder (i.e., those with slower than exponential growth
at both ends) are spanned by ds, s ds, ωij and sωij , where for i < j, ωij =
xidxj − xjdxi is the generator of a rotation on the sphere. So there is a
n(n − 1) + 2 dimensional family of temperate solutions, and the bounded
ones are also CK fields on the cylinder.

The remainder of the differences in the analysis are contained in the
following propositions, which are analogous to Propositions 2 and 3 of [19].
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Proposition 5.3. Let λ0 = λ0(T ) denote the first Dirichlet eigenvalue for
L on CT = [−T/2, T/2] × Sn−1. Then,

λ0(T ) ≥ C

T 2

for some constant C independent of T .

Proof. The estimate is obvious for L0 and for L′′
j when µj = 2n(n − 2)

(i.e., when L′′
j = −1

2∂2
s ). On the other hand when µj = (l + 1)(l + n − 3)

for l ≥ 2, the lowest Dirichlet eigenvalue of L′′
j on CT converges to µj

2 −
(n − 2) > 0. So it remains to consider the operators L′

j .

Let X denote a lowest eigenfunction for L′
j with components (u, v). Then,

〈
L′

jX, X
〉

=
∫ T/2

−T/2

n − 1
n

(u′)2 +
1
2
(v′)2 +

n − 2
2n

√
λj(uv′ − u′v)

+
λj

2
u2 + (

n − 1
n

λj + (2 − n))v2 ds

≥
∫ T/2

−T/2

n − 1
n

(u′)2 +
1
2
(v′)2 +

2 − n

n

(
(v′)2

2
+ λj

u2

2

)

+
λj

2
u2 + (

n − 1
n

λj + (2 − n))v2 ds

=
∫ T/2

−T/2

n − 1
n

(u′)2 +
1
n

(v′)2 +
λj

n
u2 + (

n − 1
n

λj + (2 − n))v2 ds,

(5.4)

where we have integrated by parts and applied Young’s inequality. As λj ≥
n − 1, it follows that n−1

n λj + (2 − n) ≥ 1
n . Hence,

〈
L′

jX, X
〉

≥ 1
n 〈X, X〉.

�

Proposition 5.4. Suppose LX = µX on CT . Then, for T sufficiently
large, there exists a constant c independent of T such that if µ ≤ c

T 2 and
if

∫
Sn−2(|X(−T/2, θ)|2 + |X(T/2, θ)|2)dθ ≤ C1, then for any a ∈ [−T/2 +

1, T/2 − 1], we have
∫ a+1

a−1

∫

Sn−2
|X(s, θ)|2 ds dθ ≤ C2,

where C2 depends only on C1 but not on T or a, and C2 → 0 as C1 → 0.
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Proof. Following the proof of the corresponding result in [19], it is enough
to prove the result for each component of the separation of variables decom-
position. Moreover, the estimate is clear for L0 and L′′

j ; so we restrict our
attention to L′

j .

We can write L′
j in the form

L′
j = −A∂2

s + B∂s + C,

where A, B and C can be determined from Eq. (5.3). Write X = (u, v)t

and f(s) = 〈AX, X〉. It follows from the equation L′
jX = µX that

1
2
∂2

sf(s) = |A1/2X ′ − 1
2
A−1/2BX|2 + 〈DX, X〉,

where

D =

⎡
⎣ −1/8 (n−2)2λj

n2 + 1/2 λj − µ 0

0 −1/16 (n−2)2λj

(n−1)n + (n−1)λj

n + 2 − n − µ

⎤
⎦.

Clearly, D11 ≥ 3λj/8 − µ. Also, D22 can be rewritten as

(n − 1)λj

n

[
1 − 1

16

(
n − 2
n − 1

)2
]

+ 2 − n − µ ≥ 15
16

(n − 1)λj

n
+ 2 − n − µ.

When λj is 2n (its second non-zero value), we have

15
16

(n − 1)λj

n
+ 2 − n − µ =

7n + 1
8

− µ,

which is positive when T is sufficiently large (forcing µ to be sufficiently
small). Since D22 is increasing in λj , we have therefore proved that f(s) is
convex and hence the L2 norm of X at s = ±T/2 controls the L2 norm of
X over any strip a − 1 ≤ s ≤ a + 1, except possibly when λj = n − 1.

To handle the case λj = n − 1, we proceed as in Proposition 5.3. The steps
leading to estimate (5.4) follow as earlier, except now we pick up boundary
terms from the integration by parts. Specifically, we have

∫ T/2

−T/2

∫

Sn−1

〈
(L′

j − µ)X, X
〉

dθ ds

=
∫ T/2

−T/2

n − 1
n

(u′)2 +
1
n

(v′)2 +
(

n − 1
n

− µ

)
u2 +

(
1
n

− µ

)
v2 ds

+ b

(
T

2

)
− b

(
−T

2

)
,
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where b = 1−n
n u′u − 1

2v′v − n−2
2n

√
n − 1uv. Hence,

∫ T/2

−T/2

∫

Sn−1

1
n

∣∣X ′∣∣2 +
(

1
n

− µ

)
|X|2 dθ ds ≤ b

(
T

2

)
− b

(
−T

2

)
. (5.5)

Let χ(s) be a cutoff function equal to 0 for s < 0 and equal to 1 for s > 1
and let χT (s) = χ(s − T/2). Then,∫

Sn−1

〈
AX ′(T/2), X ′(T/2)

〉
dθ

=
∫ T/2

(T/2)−1

∫

Sn−1

d

ds

〈
AX ′, χT X ′

(
T

2

)〉
dθ ds

=
∫ T/2

(T/2)−1

∫

Sn−1

〈
AX ′′, χT X ′

(
T

2

)〉
+

〈
AX ′, χ′

T X ′
(

T

2

)〉
dθ ds

=
∫ T/2

(T/2)−1

∫

Sn−1

〈
BX ′ + (C − µ)X, χT X ′

(
T

2

)〉

+
〈

AX ′, χ′
T X ′

(
T

2

〉
dθ ds

≤ c

ε

∫ T/2

(T/2)−1

∫

Sn−1

∣∣X ′∣∣2 + |X|2 dθ ds + ε

∫

Sn−1

∣∣∣∣X ′
(

T

2

)∣∣∣∣ dθ,

where the constant c is independent of T . Taking ε sufficiently small, we
obtain

∫

Sn−1

∣∣∣∣X ′
(

T

2

)∣∣∣∣
2

≤ c

∫ T/2

(T/2)−1

∫

Sn−1

∣∣X ′∣∣2 + |X|2 dθ ds, (5.6)

where c is independent of T . Finally, we note that
∣∣∣∣b

(
T

2

)∣∣∣∣ ≤ c

ε

∫

Sn−1

∣∣∣∣X
(

T

2

)∣∣∣∣
2

dθ + ε

∫

Sn−1

∣∣∣∣X ′
(

T

2

)∣∣∣∣
2

dθ (5.7)

for any ε > 0. Similar estimates hold at s = −T/2, and combining (5.5)–
(5.7), we conclude that there exists a constant c independent of T such
that

∫ T/2

−T/2

∫

Sn−1

(
1
n

− µ

)
|X|2 ≤ c

∫

Sn−1

∣∣∣∣X
(

−T

2

)∣∣∣∣
2

+
∣∣∣∣X

(
T

2

)∣∣∣∣
2

dθ

for µ sufficiently small, which completes the proof. �

The remainder of the proof of Theorem 5.2 now follows exactly as in [19],
and the reader is referred there for details.
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6 Conclusions

Our discussion in Section 4 of the Einstein fluid, Einstein–Yang–Mills and
Einstein–Vlasov cases provides a sample collection of Einstein-matter field
theories for which solutions of the relevant constraints can be generally glued
together, provided the solutions satisfy mild non-degeneracy hypotheses.
The same is likely true for a wide collection of other Einstein-matter field
theories as well; one need only to check that the conformal method can be
applied and that the the various criteria discussed in Sections 2 and 3, and
summarized in Theorem 3.1, are met.

It is not always easy to check these criteria. Indeed, for the Einstein–
Klein–Gordon theory, with the standard spacetime action principle S[g, χ] =∫
M (R + 1

2 |∇χ|2 + 1
2m2|χ|2), where χ is a C-valued scalar field, one runs

into serious difficulty (even in the massless case when m = 0). We note,
however, that for this Einstein-matter model, it is also not straightforward to
use the standard conformal method to construct solutions of the constraint
equations. (For very recent work related to this, see, [4].) The difficulty
arises in verifying solvability for the Einstein–Klein–Gordon version of the
Lichnerowicz equation

∆ψ =
1
8
(R − 2|Dχ|2)ψ − 1

8
[(σ + DW )2 + 2|P |2]ψ−7

+
(

1
12

τ2 − 1
8
m2|χ|2

)
ψ5, (6.1)

where P is a C-valued scalar field, representing the time derivative of χ.
For solutions of the constraint equations of other field theories, such as the
Einstein–Dirac theory [17], one can readily check whether the conditions
needed for the gluing construction presented here are satisfied.

For those Einstein-matter theories which do satisfy our gluing criteria, can
we proceed further and obtain stronger gluing results of the sort established
in [8, 9] (“CIP-gluing”) for the vacuum case? To be able to show this, one
needs to prove that some appropriate version of the Corvino–Schoen gluing
results [12] holds for the field theory of interest. Corvino appears to have
done this for the Einstein–Maxwell theory [11], so we should be able to
obtain CIP-gluing results in this case.
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[4] Y. Choquet-Bruhat, J. Isenberg and D. Pollack, The Einstein-scalar
field constraints on asymptotically Euclidean manifolds, preprint gr-
qc/0506101. To appear Chinese Annals of Mathematics, Vol 26, ser. B.

[5] Y. Choquet-Bruhat and J. York, The Cauchy Problem, in General Rel-
ativity and Gravitation—The Einstein Centenary, ed. A. Held, Plenum,
1979, 99–160.

[6] P. Chruściel and E. Delay, Existence of non-trivial, vacuum, asymptot-
ically simple space-times, Class. Quant. Grav. 19 (2002), L71–L79.
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