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M.Jourdain: Par ma foi!
il y a plus de quarante ans
que je dis de la prose
sans que j’en suisse rien ;

et je vous suis le plus obligé du monde
de m’avoir appris cela....

Le Bourgeois gentilhomme.
J. -B. Molière

1 Introduction

The dynamics of gauge theories is a long and fascinating subject. The dy-
namics of supersymmetric gauge theories is a subject with shorter history.
However, more facts are known about susy theories, and with better preci-
sion [2] yet with rich enough applications both in physics and mathematics.
In particular, the solution of Seiberg and Witten [3] of N = 2 gauge theory
using the constraints of special geometry of the moduli space of vacua led
to numerous achievements in understanding of the strong coupling dynam-
ics of gauge theory and as well as string theory backgrounds of which the
gauge theories in question arise as low energy limits. The low energy effec-
tive Wilsonian action for the massless vector multiplets (al) is governed by
the prepotential F(a; Λ), which receives one-loop perturbative and instanton
non-perturbative corrections (here Λ is the dynamically generated scale):

F(a; Λ) = Fpert(a; Λ) + F inst(a; Λ) (1.1)

In spite of the fact that these instanton corrections were calculated in
many indirect ways, their gauge theory calculation is lacking beyond two
instantons[4][5]. The problem is that the instanton measure seems to get
very complicated with the growth of the instanton charge, and the integrals
are hard to evaluate.

The present paper attempts to solve this problem via the localization
technique, proposed long time ago in [1][6][7]. Although we tried to make
the paper readable to both mathematicians and physicists we don’t expect
it to be quite understandable without some background material, which we
suggest to look up in [3][8][9].

Notations. Let G be a semi-simple Lie group, T is maximal torus, g =
Lie(G) its Lie algebra, t = Lie(T ) its Cartan subalgebra, W = N(T )/T
denote its Weyl group, U = (t ⊗C)/W denotes the complexified space of
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conjugacy classes in g. We consider the moduli space Mk(G) of framed
G-instantons: the anti-self-dual gauge fields A, F +

A = 0, in the principal
G-bundle P over the 4-sphere S4 = IR4 ∪∞ with

k = −
1

8hπ2

∫

IR4
Tr FA ∧ FA (1.2)

considered up to the gauge transformations g : A 7→ g−1Ag + g−1dg, s.t.
g(∞) = 1. We also consider several compactifications of the space Mk(G):
the Uhlenbeck compactification M̃k(G) and the Gieseker compactification

M̃k for G = U(N) or SU(N). In the formula (1.2) we use the trace in the
adjoint representation, and h stands for the dual Coxeter number of G.

Field theory description. We calculate vacuum expectation value of
certain gauge theory observables. These observables are annihilated by
a combination of the supercharges, and their expectation value is not
sensitive to various parameters, the energy scale in particular. Hence,
one can do the calculation in the ultraviolet, where the theory is weakly
coupled and the instantons dominate. Or, one can do the calculation in
the infrared, and relate the answer to the prepotential of the effective
low-energy theory. By equating these two calculations we obtain the
desired formula.

Mathematical description. We study G × T2 equivariant coho-
mology of the moduli space M̃k, where G acts by rotating the gauge
orientation of the instantons at infinity, and T2 is the maximal torus
of SO(4)– the group of rotations of IR4 which also acts naturally on

the moduli space2. Let p : M̃k → pt be the map collapsing the moduli
space to a point. We consider the following generating function:

Zinst(a, ε1, ε2; q) =
∞∑

k=0

qk

∮

fMk

1 (1.3)

where
∮

1 denotes the localization of the pushforward p∗1 of 1 ∈

H∗
G×T2(M̃k) in H∗

G×T2(pt) = C[U , ε1, ε2]. We denote the coordinates

on t by a and the coordinates on the Lie algebra of T2 by ε1, ε2. In
explicit calculations3 we represent 1 by a cohomologically equal form
which allows to replace

∮
1 by an ordinary integral:

2Throughout the paper we mostly consider the SU(N) instantons (or U(N) noncom-

mutative instantons). We use the notation fMk,N when we want to emphasize that the
gauge group is U(N).

3For G = SU(N) we actually use a = (a1, . . . , aN ) s.t.
P

l
al = 0
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∮

gMk

1 =

∫

gMk

exp [ω + µG(a) + µT2(ε1, ε2)] (1.4)

where ω is a symplectic form on M̃k, invariant under the G×T2 action,
and µG, µT2 are the corresponding moment maps.

Our first claim is

Zinst(a, ε1, ε2; q) = exp

(
F inst(a, ε1, ε2; q)

ε1ε2

)

(1.5)

where the function F inst is analytic in ε1, ε2 near ε1 = ε2 = 0.

We also have the following explicit expression for Z in the case4 ε1 = −ε2 = ~

for5 G = SU(N):

Zinst(a, ~,−~; q) =
∑

~k

q|k|
∏

(l,i)6=(n,j)

aln + ~ (kl,i − kn,j + j − i)

aln + ~ (j − i)

(1.6)

Here aln = al − an, the sum is over all colored partitions: ~k = (k1, . . . ,kN ),
kl = {kl,1 ≥ kl,2 ≥ . . . kl,nl

≥ kl,nl+1 = kl,nl+2 = . . . = 0},

|~k| =
∑

l,i

kl,i ,

and the product is over 1 ≤ l, n ≤ N , and i, j ≥ 1.

Already (1.6) can be used to make rather powerful checks of the Seiberg-
Witten solution. But the checks are more impressive when one considers
the theory with fundamental matter. To get there one studies the bundle V
over M̃k of the solutions of the Dirac equation in the instanton background.
Let us consider the theory with Nf flavors. It can be shown that the gauge
theory instanton measure calculates in this case (cf. [11]):

Z(a,m, ε1, ε2; q) =
∑

k

qk

∮

gMk

EuG×T2×U(Nf )(V ⊗M) (1.7)

4in the general case we also have a formula, but it looks less transparent
5a simple generalization to SO and Sp cases will be presented in [10]
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where M = CNf is the flavor space, where acts the flavor group U(Nf ),
m = (m1, . . . ,mNf

) are the masses = the coordinates on the Cartan subal-
gebra of the flavor group Lie algebra, and finally EuG×T2×U(Nf ) denotes the
equivariant Euler class.

The formula (1.6) generalizes in this case to:

Zinst(a,m, ε1, ε2; q) =
∑

~k

(
q~Nf

)|k|∏

(l,i)

Nf∏

f=1

Γ(
al+mf

~
+ 1 + kl,i − i)

Γ(
al+mf

~
+ 1 − i)

×

×
∏

(l,i)6=(n,j)

aln + ~ (kl,i − kn,j + j − i)

aln + ~ (j − i)

(1.8)

Again, we claim that

F inst(a,m, ε1, ε2; q) = ε1ε2 logZ inst(a,m, ε1, ε2; q) (1.9)

is analytic in ε1,2.

The formulae (1.6)explctm were checked against the Seiberg-Witten solution
[12]. Namely, we claim that

F inst(a,m, ε1, ε2)|ε1=ε2=0 =the instanton part of the prepotential of the
low-energy effective theory of the N = 2 gauge theory with the gauge group
G and Nf fundamental matter hypermultiplets.

Mathematical formulation. The latter statement means that F inst

is related to periods of a family of curves. More precisely, consider the
following family of curves6 Σu(here we formulate things forG = SU(N)
but the generalization to general G is well-known [12] ):

w +
Λ2N−NfQ(λ)

w
= P(λ) =

N∏

l=1

(λ− αl) (1.10)

where Q(λ) =
∏Nf

f=1(λ+mf ). The base of the family (1.10) is the space

U = CN−1 3 u of the polynomials P(we set
∑

l αl = 0). Consider the

6Λ, mf are fixed for the family
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region Upert ⊂ U where |αl|, |αl −αn| � |Λ|, |mf |. In Upert we can pass
from the local coordinates (αl) to the local coordinates (al) given by:

al =
1

2πi

∮

Al

λ
dw

w
(1.11)

where the cycle Al can be described as encircling the cut on the λ plane
connecting the points α±

l = αl + o(Λ)which solve the equations:

±2ΛN−
Nf
2 Q

1
2 (α±

l ) = P(α±
l ) (1.12)

The sum
∑

lAl vanishes in the homology of Σu, therefore we get N−1
independent coordinates, as we should have. Now, define the dual
coordinates

aD
l =

1

2πi

∮

Bl

λ
dw

w
(1.13)

where Bl encircles the cut connecting α+
l and α−

(l+1)modN
. Then, one

can show [3][12] that ∑

l

dal ∧ da
D
l = 0

on U , and as a consequence, there exists a (locally defined) function,
called prepotential, F(a;m,Λ) such that

∑

l

aD
l dal = dF(a) (1.14)

In the region Upert the prepotential has the expansion:

F(a;m,Λ) = Fpert(a) + F inst(a)

Fpert(a) = 1
2

∑

l 6=n

(al−an)2 log

(
al − an

Λ

)
−
∑

l,f

(al+mf )2log

(
al +mf

Λ

)

(1.15)

where F inst is a power series in Λ. Our claim is that

F inst defined by the formula (1.15) coincides with F inst(a,m, ε1, ε2)|ε1=ε2=0.
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We have checked this claim by an explicit calculation for up to five instan-
tons, against the formulae in [13].

There is also a generalization of (1.6) to the case of adjoint matter. It is
presented in the main body of the paper.

* * *

This paper is a short version of a longer manuscript [10], which will contain
various details. In this paper we mostly state the results.

The paper is organized as follows. In the next section we describe the
physical idea of our calculation. We define the observable of interest, and
sketch two calculations of its expectation value – in the weak coupling regime
in the ultraviolet, and the infrared low-energy effective theory calculation.
The section 3 provides more details on the instanton calculation and gen-
eralizes the pure gauge theory calculation to the case of the theories with
matter. We also discuss explicit low instanton charge calculations. In the
section 4 we discuss our results from the M-theory viewpoint, consider some
generalizations, present our conjectures and describe future directions.

Acknowledgements. This paper would have never seen the light without
the numerous conversations of the author with A. Losev. We also benefited
from discussions/collaborations with A. Givental, G. Moore, A. Okounkov,
S. Shatashvili, A. Vainshtein, H. Braden, S. Cherkis, K. Froyshov, V. Kaza-
kov, I. Kostov, A. Marshakov and A. Morozov over the last five years. We are
especially grateful to T. Hollowood for reading the manuscript and sending
us his comments, in particular for pointing out an important typo.

We are most grateful to T. Piatina for providing the opportunity to
accomplish this work, and for inspiring us during the difficult moments of
research (especially between the third and the fourth instantons).

Research was supported in part by RFFI grant 01-01-00549 and by the
grant 00-15-96557 for the support of scientific schools.

The results of this paper were presented at the EURESCO school “Par-
ticle physics and gravitation” held at Bad Herrenalb. We thank H. Nicolai
for the invitation and for organizing a nice school.

2 Field theory expectations

In this section we explain our approach in the field theory language. We
exploit the fact that the supersymmetric gauge theory on flat space has
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a large collection of observables whose correlation functions are saturated
by instanton contribution in the limit of weak coupling. In addition, in the
presence of the adjoint scalar vev these instantons tend to shrink to zero size.
Moreover, the observables we choose have the property that the instantons
which contribute to their expectation values are localized in space. This
solves the problem of the runaway of point-like instantons, pointed out in
[1].

2.1 Supersymmetries and twisted supersymmetries

The N = 2 theory has eight conserved supercharges, Qi
α, Q

i
ȧ, which trans-

form under the global symmetry group SU(2)L ×SU(2)R ×SU(2)I of which
the first two factors belong to the group of spatial rotations and the last
one is the R-symmetry group. The indices α, α̇, i are the doublets of these
respective SU(2) factors. The basic multiplet of the gauge theory is the
vector multiplet. Here is the spin content of its members:

Field SU(2)L SU(2)R SU(2)I

Aµ
1
2

1
2 0

ψi
α

1
2 0 1

2

ψi
α̇ 0 1

2
1
2

φ, φ̄ 0 0 0

It is useful to work in the notations which make only SU(2)L × SU(2)d

part of the global symmetry group manifest. Here SU(2)d is the diagonal
subgroup of SU(2)R × SU(2)I . If we call this subgroup a “Lorentz group”,
then the supercharges, superspace, and the fermionic fields of the theory
split as follows:

Fermions: ψµ, χ
+
µν , η;

Superspace: θµ, θ̄+
µν , θ̄;

Superfield: Φ = φ+ θµψµ + 1
2θ

µθνFµν + . . .;
Supercharges: Q,Q+

µν , Gµ.

The supercharge Q is a scalar with respect to the “Lorentz group” and is
usually considered as a BRST charge in the topological quantum field theory
version of the susy gauge theory. It is conserved on any four-manifold.

In [14] E. Witten has employed a self-dual two-form supercharge Q+
µν

which is conserved on Kähler manifolds.
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Our idea is to use other supercharges Gµ as well. Their conservation is
tied up with the isometries of the four-manifold on which one studies the
gauge theory. Of course, the idea to regularize the supersymmetric theory
by subjecting it to the twisted boundary conditions is very common both in
physics [15], and in mathematics [16][17][18][16].

At this point we should mention that the idea to apply localization tech-
niques to the instanton integrals has been recently applied in [20] in the one-
and two-instanton cases. Without T2-localization this is still rather compli-
cated, yet simpler, calculation then the direct evaluation [5]. We refer the
interested reader to the beautiful review [9] for more details.

2.2 Good observables: UV

In the applications of the susy gauge theory to Donaldson theory, where
one works with the standard topological supercharge Q, the observables

one is usually interested in are the gauge invariant polynomials O
(0)
P,x =

P (φ(x)) in the adjoint scalar φ, evaluated at space-time point x, and its

descendants: O
(k)
P,Σ =

∫
Σ P (Φ), where Σ is a k-cycle. Unfortunately for

k > 0 all such cycles are homologically trivial on IR4 and no non-trivial
observables are constructed in such a way. One construct an equivalent set
of dual observables by integration over IR4 of a product of a closed k-form
ω = 1

(4−k)! ωµ1...µk
θµ1 . . . θµkand the 4 − k-form part of P (Φ):

Oω
P =

∫
d4xd4θ ω(x, θ) P (Φ) (2.1)

Again, most of these observables are Q-exact, as any closed k-form on IR4 is
exact for k > 0.

However, if we employ the rotational symmetries of IR4 and work equiv-
ariantly, we find new observables.

Namely, consider the fermionic charge

Q̃ = Q+EaΩ
a
µνx

νGµ (2.2)

Here Ωa = Ωa
µνx

ν∂µ for a = 1 . . . 6 are the vector fields generating SO(4)
rotations, and E ∈ Lie(SO(4)) is a formal parameter.

With respect to the charge Q̃ the observables O
(k)
P,Σ are no longer invariant7.

7except for O
(0)
P,0 where 0 ∈ IR4 is the origin, left fixed by the rotations
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However, the observables (2.1) can be generalized to the new setup, produc-
ing a priori nontrivial Q̃-cohomology classes. Namely, let us take any SO(4)-
equivariant form on IR4. That is, take an inhomogeneous differential form
Ω(E) on IR4 which depends also on an auxiliary variable E ∈ Lie(SO(4))
which has the property that for any g ∈ SO(4):

g∗Ω(E) = Ω(g−1Eg) (2.3)

where we take pullback defined with the help of the action of SO(4) on IR4

by rotations. Such E-dependent forms are called equivariant forms. On the
space of equivariant forms acts the so-called equivariant differential,

D = d+ ιV (E) (2.4)

where V (E) is the vector field on IR4 representing the infinitesimal rotation
generated by E. For equivariantly closed (i.e. D-closed) form Ω(E) the
observable:

O
Ω(E)
P =

∫

IR4
Ω(E) ∧ P (Φ) (2.5)

is Q̃-closed.

Any SO(4) invariant polynomial in E is of course an example of the D-closed
equivariant form. Such a polynomial is characterized by its restriction onto
the Cartan subalgebra of SO(4), where it must be Weyl-invariant. The
Cartan subalgebra of SO(4) is two-dimensional. Let us denote the basis
in this subalgebra corresponding to the decomposition IR4 = IR2 ⊕ IR2 into
a orthogonal direct sum of two dimensional planes, by (ε1, ε2). Under the
identification Lie(SO(4)) ≈ Lie(SU(2)) ⊕ Lie(SU(2)) these map to (ε1 +
ε2, ε1 − ε2). The Weyl (= ZZ2 ×ZZ2) invariant polynomials are polynomials in
σ = ε21 + ε22 and χ = ε1ε2. As SO(4) does not preserve any forms except for
constants we should relax the SO(4) symmetry to get interesting observables.

Thus, let us fix in addition a translationally invariant symplectic form
ω on IR4. Its choice breaks SO(4) down to U(2)– the holonomy group of a
Kähler manifold. Let us fix this U(2) subgroup. Then we have a moment
map:

µ : IR4 −→ Lie(U(2))∗, dµ(E) = ιV (E)ω, E ∈ Lie(U(2)) (2.6)

And therefore, the form ω − µ(E) is D-closed. One can find such euclidean
coordinates xν , ν = 1, 2, 3, 4 that the form ω reads as follows:
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ω = dx1 ∧ dx2 + dx3 ∧ dx4 (2.7)

The Lie algebra of U(2) splits as a direct sum of one-dimensional abelian
Lie algebra of U(1) and the Lie algebra of SU(2). Accordingly, the moment
map µ splits as (h, µ1, µ2, µ3). In the xµ coordinates

h =
∑

µ

(xµ)2 , µa = 1
2η

a
µνx

µxν , (2.8)

where ηa
µν is the anti-self-dual ’t Hooft symbol.

Finally, the choice of ω also defines a complex structure on IR4, thus iden-
tifying it with C2 with complex coordinates z1, z2 given by: z1 = x1 + ix2,
z2 = x3 + ix4. For E in the Cartan subalgebra H = µ(E) is given by the
simple formula:

H = ε1|z1|
2 + ε2|z2|

2 (2.9)

After all these preparations we can define the correlation function of our
interest:

Z(a, ε) =

〈
exp

1

(2πi)2

∫

IR4

(
ω ∧ Tr

(
φF + 1

2ψψ
)
−H Tr (F ∧ F )

)〉

a

(2.10)

where we have indicated that the vacuum expectation value is calculated in
the vacuum with the expectation value of the scalar φ in the vector multiplet
given by a ∈ t. More precisely, a will be the central charge of N = 2 algebra
corresponding to the W -boson states (cf.[3]) .

Remarks.

1.) Note that the observable in (2.10) makes the widely separated
instantons suppressed. More precisely, if the instantons form clusters
around points ~r1, . . . , ~rl then they contribute ∼ exp −

∑
mH(~rm) to

the correlation function.

2.) One can expand (2.10) as a sum over different instanton sectors:

Z(a, ε) =

∞∑

k=0

qkZk(a, ε)

where q ∼ Λ2N is the dynamically generated scale – for us – simply
the generating parameter.
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3.) The observable (2.10) is formally cohomologous to the identity, as

∫
(ω +H) TrΦ2 = Q̃

∫
d4xd4θ A(x, θ) TrΦ2 ,

where A(x, θ) = ωµνx
µθν. We cannot eliminate it without having to

perform the full path integral, however, as it serves as a supersymmet-
ric regulator. On the other hand, in the presence of this observable
the path integral can be drastically simplified, the fact we shall exploit
below. The analogous manipulation in the context of two dimensional
supersymmetric Landau-Ginzburg models was done in the first refer-
ence in [15].

The supersymmetry guarantees that (2.10) is saturated by instantons. More-
over, the superspace of instanton zero modes is acted on by a finite dimen-
sional version of the supercharge Q̃ which becomes an equivariant differential
on the moduli space of framed instantons. Localization with respect to this
supercharge reduces the computation to the counting of the isolated fixed
points and the weights of the action of the symmetry groups (a copy of gauge
group and U(2) of rotations) on the tangent spaces. This localization can be
understood as a particular case of the Duistermaat-Heckman formula [19], as
(2.10) calculates essentially the integral of the exponent of the Hamiltonian
of a torus action (Cartan of G times T2) against the symplectic measure.

The counting of fixed points can be nicely summarized by a contour integral
(see below). This contour integral also can be obtained by transforming the
integral over the ADHM moduli space of the observable (2.10) evaluated on
the instanton configuration, by adding Q̃-exact terms, as in [7][6]. It also
can be derived from Bott’s formula [21].

2.3 Good observables: IR

The nice feature of the correlator (2.10) is it simple relation to the prepoten-
tial of the low-energy effective theory. In order to derive it let us think of the
observable (2.10) as of a slow varying changing of the microscopic coupling
constant. If we could completely neglect the fact that H is not constant,
then its addition would simply renormalize the effective low-energy scale
Λ → Λe−H .

However, we should remember that H is not constant, and regard this
renormalization as valid up to terms in the effective action containing deriva-
tives ofH. Moreover, H is really a bosonic part of the function H(x, θ) on the
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(chiral part of) superspace (in [1] such superspace-dependent deformations
of the theory on curved four-manifolds were considered):

H(x, θ) = H(x) + 1
2ωµνθ

µθν

Together these terms add up to the making the standard Seiberg-Witten
effective action determined by the prepotential F(a; Λ) to the one with the
superspace-dependent prepotential

F(a; Λe−H(x,θ)) = F(a; Λe−H )+ω Λ∂ΛF(a; Λe−H )+ 1
2ω

2 (Λ∂Λ)2 F(a; Λe−H)
(2.11)

This prepotential is then integrated over the superspace (together with the
conjugate terms) to produce the effective action.

Now, let us go to the extreme infrared, that is let us scale the metric on
IR4 by a very large factor t(keeping ω intact). On flat IR4 the only term which
may contribute to the correlation function in question in the limit t → ∞
is the last term in (2.10) as the rest will (after integration over superspace)
necessarily contain couplings to the gauge fields which will require some
loop diagrams to get non-trivial contractions, which all will be suppressed
by inverse powers of t, except for the one-loop contribution, which requires
more care.

The last term in (2.11) gives:

Zinst(a; ε) = exp −
1

8π2

∫

IR4
ω ∧ ω

∂2 F(a; Λe−H )

(∂logΛ)2
+O(ε) (2.12)

where we used the fact that the derivatives of H are proportional to ε1,2.
Recalling (2.7)mmntc the integral in (2.12) reduces to:

Zinst(a; ε1, ε2) = exp
F inst(a; Λ) +O(ε)

ε1ε2
(2.13)

where

F inst(a; Λ) =

∫ ∞

0
∂2

HF(a; Λe−H ) HdH

thereby explaining our claim about the analytic properties of Z and F .
Incidentally, the careful evaluation of the one-loop contribution gives the
perturbative part of the prepotential, thus making the full partition function
equal to:
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Z(a; ε1, ε2) = exp
1

ε1ε2
(F(a; Λ) +O(ε)) (2.14)

We shall return to this issue below.

3 Instanton measure and its localization

3.1 ADHM data

The moduli space Mk,N of instantons with fixed framing at infinity has
dimension 4kN . It has the following convenient description. Take two com-
plex vector spaces V and W of the complex dimensions k and N respectively.
These spaces should be viewed as Chan-Paton spaces for D(p − 4) and Dp
branes in the brane realization of the gauge theory with instantons.

Let us also denote by L the two dimensional complex vector space, which
we shall identify with the Euclidean space IR4 ≈C2 where our gauge theory
lives.

Then the ADHM [22] data consists of the following maps between the
vector spaces:

V −→τ V⊗L⊕W −→σ V ⊗ Λ2L (3.1)

where

τ =




B2

−B1

J


 , σ =

(
B1 B2 I

)

B1,2 ∈ End(V ), I ∈ Hom(W,V ), J ∈ Hom(V,W )

(3.2)

The ADHM construction represents the moduli space of U(N) instantons
on IR4 of charge k as a hyperkähler quotient [23] of the space of operators
(B1, B2, I, J) by the action of the group U(k) for which V is a fundamental
representation, B1, B2 transform in the adjoint, I in the fundamental, and
J in the anti-fundamental representations.

More precisely, the moduli space of proper instantons is obtained by
taking the quadruples (B1,2, I, J) obeying the so-called ADHM equations:

µc = 0, µr = 0, (3.3)
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where:

µc = [B1, B2] + IJ

µr =[B1, B
†
1] + [B2, B

†
2] + II† − J†J

(3.4)

and with the additional requirement that the stabilizer of the quadruple in
U(k) is trivial. This produces a non-compact hyperkähler manifold Mk,N of
instantons with fixed framing at infinity.

The framing is really the choice of the basis in W . The group U(W ) = U(N)
acts on these choices, and acts on Mk,N , by transforming I and J in the anti-
fundamental and the fundamental representations respectively.

This action also preserves the hyperkähler structure ofMk,N and is generated
by the hyperkähler moment maps:

mr = I†I − JJ †, mc = JI (3.5)

Actually, TrWmr,c = TrV µr,c, thus the central U(1) subgroup of U(N) acts
trivially on Mk,N . Therefore it is the group G = SU(N)/ZZN which acts
non-trivially on the moduli space of instantons.

3.2 Instanton measure

The supersymmetric gauge theory measure can be regarded as an infinite-
dimensional version of the equivariant Matthai-Quillen representative of the
Thom class of the bundle Γ

(
Ω2,+ ⊗ gP

)
over the infinite-dimensional space

of all gauge fields AP in the principal G-bundle P (summed over the topo-
logical types of P ). In physical terms, in the weak coupling limit we are
calculating the supersymmetric delta-function supported on the instanton
gauge field configurations. In the background of the adjoint Higgs vev, this
supersymmetric delta-function is actually an equivariant differential form on
the moduli space Mk,N of instantons. It can be also represented using the
finite-dimensional hyperkähler quotient ADHM construction of Mk,N (as op-
posed to the infinite-dimensional quotient of the space of all gauge fields by
the action of the group of gauge transformations, trivial at infinity) [7]:

∫
DφDφ̄D ~HD~χDηDΨDBDIDJ eQ̃(~χ·~µ(B,I,J)+Ψ·V (φ̄)+η[φ,φ̄]) (3.6)
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where, say:

Q̃B1,2 = ΨB1,2 , Q̃ΨB1,2 = [φ,B1,2] + ε1,2B1,2

Q̃I = ΨI , Q̃ΨI = φI − Ia

Q̃J = ΨJ , Q̃ΨJ = −Jφ+ Ja− (ε1 + ε2)J

Q̃χr = Hr, Q̃Hr = [φ, χr], Q̃χc = Hc, Q̃Hc = [φ, χc] + (ε1 + ε2)χc

Ψ · V
(
φ̄
)

= Tr
(
ΨB1 [φ̄, B

†
1] + ΨB2 [φ̄, B

†
2] + ΨI [φ̄, I

†] − ΨJ [φ̄, J†] + c.c.
)

(3.7)

(we refer to [7] for more detailed explanations). If the moduli space Mk,N

was compact and smooth one could interpret (3.6) as a certain topological
quantity and apply the powerful equivariant localization techniques [8] to
calculate it.

The non-compactness of the moduli space of instantons is of both ultraviolet
and of infrared nature. The UV non-compactness has to do with the instan-
ton size, which can be made arbitrarily small. The IR non-compactness has
to do with the non-compactness of IR4 which permits the instantons to run
away to infinity.

3.3 Curing non-compactness

The UV problem can be solved by relaxing the condition on the stabilizer,
thus adding the so-called point-like instantons. A point of the hyperkähler
space M̃k,N with orbifold singularities which one obtains in this way (Uh-
lenbeck compactification) is an instanton of charge p ≤ k and a set of k − p
points on IR4:

M̃k,N = Mk,N ∪Mk−1,N ×IR4∪Mk−2,N ×Sym2(IR4)∪ . . .∪Symk(IR4) (3.8)

The resulting space M̃k,N is a geodesically complete hyperkähler orbifold.
Its drawback is the non-existence of the universal bundle with the universal
instanton connection over M̃k,N × IR4. We actually think that in principle
one can still work with this space. Fortunately, in the case of U(N) gauge

group there exists a nicer space M̃k,N which is obtained from M̃k,N by a
sequence of blowups (resolution of singularities) which is smooth, and after
some modification of the gauge theory (noncommutative[24][25][26] defor-
mation) becomes a moduli space with the universal instanton. Technically
this space is obtained [27] by the same ADHM construction except that now
one performs the hyperkähler quotient at the non-zero level of the moment
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map:

µr = ζr1V , µc = 0 (3.9)

(one can also make µc 6= 0 but this does not give anything new). The
space of quadruples (B1, B2, I, J) obeying (3.9) is freely acted on by U(k).

The cohomology theory of M̃k,N is richer then that of M̃k,N because of the
exceptional divisors. However, our goal is to study the original gauge theory.
Therefore we are going to consider the (equivariant) cohomology classes of

M̃k,N lifted from M̃k,N .

As we stated in the introduction, we are going to utilize the equivariant
symplectic volumes of M̃k,N . This is not quite precise. We are going to
consider the symplectic volumes, calculated using the closed two-form lifted
from M̃k,N . This form vanishes when restricted onto the exceptional variety.
This property ensures that we don’t pick up anything not borne in the
original gauge theory (don’t pick up freckle contribution in the terminology
of [28]).

The ADHM construction from the previous section gives rise to the in-
stantons with fixed gauge orientation at infinity (fixed framing). The group
G = SU(N)/ZZN acts on their moduli space MN,k by rotating the gauge
orientation. Also, the group of Euclidean rotations of IR4 acts on MN,k.
We are going to apply localization techniques with respect to both of these
groups.

In fact, it is easier to localize first with respect to the groups U(k)×G×T2

acting on the vector space of ADHM matrices, and then integrate out the
U(k) part of the localization multiplet, to incorporate the quotient.

The action of T2 is free at “infinities” of M̃k, thus allowing to apply local-
ization techniques without worrying about the IR non-compactness. Physi-
cally, the integral (2.10) is Gaussian-like and convergent in the IR region.

3.4 Reduction to contour integrals

After the manipulations as in [7][6] we end up with the following integral[28]:

Zk(a, ε1, ε2) =
1

k!

εk

(2πiε1ε2)k

∮ k∏

I=1

dφI Q(φI)

P (φI)P (φI + ε)

×
∏

1≤I<J≤k

φ2
IJ(φ2

IJ − ε2)

(φ2
IJ − ε21)(φ

2
IJ − ε22)

(3.10)
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where:

Q(x) =

Nf∏

f=1

(x+mf )

P (x) =

N∏

l=1

(x− al),

(3.11)

φIJ denotes φI − φJ , and ε = ε1 + ε2.

We went slightly ahead of time and presented the formula which covers
the case of the gauge theory with Nf fundamental multiplets. In fact, its
derivation is rather simple if one keeps in mind the relation to the Euler class
of the Dirac zeromodes bundle over the moduli space of instantons, stated
in the introduction.

The integrals (3.10) should be viewed as contour integrals. As explained
in [6] the poles at φIJ = ε1, ε2 should be avoided by shifting ε1,2 → ε1,2 + i0,
those at φI = al similarly by al → al + i0(this case was not considered in
[6] but actually was considered (implicitly) in [7]). The interested reader
should consult [29] for more mathematically sound explanations of the con-
tour deformations arising in the similar context in the study of symplectic
quotients.

Perhaps a more illuminating way of understanding the contour integral
(3.10) proceeds via the Duistermaat - Heckman formula [19]:

∫

X

ωn

n!
e−µ[ξ] =

∑

f :Vξ(f)=0

e−µ[ξ](f)

∏n
i=1 wi[ξ](f)

(3.12)

Here (X2n, ω) is a symplectic manifold (in the original DH setup it should
be compact, but the formula hold in more general situation which extends
to our case) with a Hamiltonian action of a torus Tr, µ : X → t∗ is the
moment map, ξ ∈ t = Lie(T) is the generator, Vξ ∈ V ect(X) is the vector
field on X representing the T action, generated by ξ, f ∈ X runs through
the set of fixed points, and wi[ξ](f) are the weights of the T action on the
tangent space to the fixed point.

In our caseX = M̃k is the moduli space of instantons of charge k, T is the
product of the Cartan torus of G and the torus T2 ⊂ SO(4), ξ = (a, ε1, ε2).
The fixed points f will be described in the next section. However, already
without performing the detailed analysis of fixed points one can understand
the meaning of (3.10)
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Suppose f is a fixed point. It corresponds to some quadruple
(B1, B2, I, J) such that the T-transformed quadruple belongs to the
same U(k)-orbit. Working infinitesimally we derive that there must
exist φ ∈ Lie(U(k)), such that:

[B1, φ] = ε1B1, [B2, φ] = ε2B2

− φI + Ia = 0, −aJ + Jφ = −(ε1 + ε2)J
(3.13)

We can go to the bases in the spaces V , W where φ and a are diagonal.
Then the equations (3.13) will read as follows:

(φI − φJ + ε1)B1,IJ = 0

(φI − φJ + ε2)B2,IJ = 0

(φI − al) II,l = 0

(φI + ε1 + ε2 − al) Jl,I = 0

(3.14)

For (3.14) to have a non-trivial solution some of the combinations

φIJ + ε1,2, φI − al, φI + ε1 + ε2 − al (3.15)

must vanish. This is where the poles of the integrand (3.10) are located.
It follows from the remark below (3.9) that the equations (3.14) spec-
ify φ uniquely, given a, ε1, ε2 and f . Thus, exactly k out of 2k2 + 2kN
combinations should vanish. Now let us look at the (holomorphic) tan-

gent space TfM̃k. It is spanned by the quadruples (δB1, δB2, δI, δJ)
obeying the linearized ADHM equations, and considered up to the
linearized U(k) transformations, that is, it can be viewed as first co-
homology group of the following “complex”:

C0 = End(V ) −→ C1 =End(V ) ⊗ L⊕Hom(V,W ) ⊕Hom(W,V )

−→ C2 = End(V ) ⊗ Λ2L

(3.16)

where the first arrow is given by the infinitesimal gauge transformation,
while the second is the linearized ADHM equation: dµc. To calculate∏

iwi[a, ε1, ε2](f) it is convenient to compute first the “Chern” char-
acter:

Ch(TfM̃k) =
∑

i

ewi[a,ε1,ε2](f) (3.17)
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which is given by the alternating sum of the Chern characters of the
terms in (3.16)

Ch(C1) − Ch(C0) − Ch(C2)

=
∑

I,J

eφI,J (eε1 − 1) (1 − eε2) +
∑

I,l

(
eφI−al + eal−φI−ε

)
(3.18)

Upon the standard conversion
∑

α

nαe
xα 7→

∏

α

xnα
α

we arrive at (3.10) It remains to explain why not every possible k-tuple
out of the combinations (3.15) contribute, only those which are picked
by the +i0 prescription. This will be done in [10].

3.5 Classification of the residues

The poles which with non-vanishing contributions to the integral must have
φIJ 6= 0, for I 6= J , otherwise the numerator vanishes. This observation
simplifies the classification of the poles. They are labelled as follows. Let
k = k1 +k2 + . . .+kN be a partition of the instanton charge in N summands
which have to be non-negative (but may vanish), kl ≥ 0. In turn, for all l
such that kl > 0 let Yl denote a partition of kl:

kl = kl,1 + . . . kl,νl,1 , kl,1 ≥ kl,2 ≥ . . . ≥ kl,νl,1 > 0

Let ν l,1 ≥ νl,2 ≥ . . . ν l,kl,1 > 0 denote the dual partition. Pictorially one
represents these partitions by the Young diagram with kl,1 rows of the lengths
νl,1, . . . ν l,kl,1 . This diagram has ν l,1 columns of the lengths kl,1, . . . , kl,νl,1 .

Sometimes we also use the notation nl = νl,1, and we find it useful to extend
the sequence kl,i all the way to infinity by zeroes: kl = {kl,1 ≥ kl,2 ≥
. . . kl,nl+1 = kl,nl+2 = . . . = 0}.

In total we have k boxes distributed among N Young tableaux (some of
which could be empty, i.e. contain zero boxes). Let us label these boxes
somehow (the ordering is not important as it is cancelled in the end by the
factor k! in (3.10). Let us denote the collection of N Young diagrams by
~Y = (Y1, . . . , YN ). We denote by |Yl| = kl the number of boxes in the l’th
diagram, and by |~Y | =

∑
l |Yl| = |k| = k.

Then the pole of the integral (3.10) corresponding to ~Y is at φI with I
corresponding to the box (α, β) in the l’th Young tableau (so that 0 ≤ α ≤
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νl,β, 0 ≤ β ≤ kl,α) equal to:

~Y −→ φI = al + ε1(α− 1) + ε2(β − 1) (3.19)

3.6 Residues and fixed points

The poles in the integral (3.10) correspond to the fixed points of the ac-
tion of the groups G × T2 on the resolved moduli space M̃k,N . Physically
they correspond to the U(N)(noncommutative) instantons which split as
a sum of U(1) noncommutative instantons corresponding to N commuting
U(1) subgroups of U(N). The instanton charge kl is the charge of the U(1)
instanton in the l’th subgroup. Moreover, these abelian instantons are of
special nature – they are fixed by the group of space rotations. If they were
commutative (and therefore point-like) they had to sit on top of each other,
and the space of such point-like configurations would have been rather singu-
lar. Fortunately, upon the noncommutative deformation the singularities are
resolved. The instantons cannot sit quite on top of each other. Instead, they
try to get as close to each other as the uncertainty principle lets them. The
resulting abelian configurations were classified (in the language of torsion
free sheaves) by H. Nakajima [30].

Now let us fix a configuration ~Y and consider the corresponding contri-
bution to the integral over instanton moduli. It is given by the residue of
the integral (3.10) corresponding to (3.19)

R~Y
=
∏

l

νl,1∏

α=1

kl,α∏

β=1

Sl(ε1(α− 1) + ε2(β − 1))

(ε(`(s) + 1) − ε2h(s))(ε2h(s) − ε`(s))
×

∏

l<m

νl,1∏

α=1

km,1∏

β=1

((
alm + ε1(α− νm,β) + ε2(1 − β)

)
(alm + ε1α+ ε2(kl,α + 1 − β))

(alm + ε1α+ ε2(1 − β)) (alm + ε1(α − νm,β) + ε2(kl,α + 1 − β))

)2

(3.20)

where we have used the following notations: alm = al − am,

Sl(x) =
Q(al + x)∏

m6=l(x+ alm)(x+ ε+ alm)
, Sl(x) =

Q(al + x)∏
m6=l(x+ alm)2

,

(3.21)
and

`(s) = kl,α − β, h(s) = kl,α + νl,β − α− β + 1 (3.22)

Now, if we set ε1 = ~ = −ε2 the formula (3.20) can be further simplified.
After some reshuffling of the factors it becomes exactly the formula for the
term in the sum (1.8) corresponding to the partition {kl,i}.
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Remark. The expressions (3.20)1.6)explctm are the typical localization
formulae for the instanton integrals. They commonly appear in the two
dimensional sigma model instanton calculations, on the so-called A side.
The Seiberg-Witten prepotential [3] is the typical type B expression. In is
not easy to recognize in the type A expression the mirror manifold, and
its periods. To illustrate this point, we suggest to look at the generating
function of the number of holomorphic curves of genus zero in the Calabi-
Yau quintic, computed using localization [17]. It requires some extra work
to map it to the mirror calculation, yet it can be done [18]. In this paper we
shall not complete the story in the sense that we shall not prove directly that
our “type A” expression can be computed on the “B side” involving Seiberg-
Witten curves. We shall, however, present a conjecture, which connects our
calculation to its mirror counterpart (that is, we shall define the mirror
computation).

We shall also make some explicit checks for low instanton numbers (up
to five) to make sure we have computed the right thing.

3.7 The first three nonabelian instantons

We shall now give the formulae for the first three instanton contributions to
the prepotential for the general SU(N) case, with Nf < 2N .

We shall work with ε1 = ~ = −ε2. It will be sufficient to derive the gauge
theory prepotential.

Directly applying the rules (3.10)res we arrive at the following expressions
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for the moduli integrals:

Z1 =
1

ε1ε2

∑

l

Sl

Z2 =
1

(ε1ε2)2


1

4

∑

l

Sl (Sl(+~) + Sl(−~)) +
1

2

∑

l 6=m

SlSm(
1 − ~2

a2
lm

)2




Z3 =
1

(ε1ε2)3

(∑

l

Sl (Sl(+~)Sl(+2~) + Sl(−~)Sl(−2~) + 4Sl(+~)Sl(−~))

36
+

∑

l 6=m

SlSm

4
(
1 − 4~2

a2
lm

)
(
Sl(+~)

(
1 −

2(~/alm)2

(1 − (~/alm))

)2

+

Sl(−~)

(
1 −

2(~/alm)2

(1 + (~/alm)))

)2
)

+

∑

l 6=m6=n

SlSmSn

6
((

1 − ~2

a2
lm

)(
1 − ~2

a2
ln

)(
1 − ~2

a2
mn

))2

)

(3.23)

where

Sl = Sl(0), S
(n)
l = ∂n

xSl(x)|x=0

which yield:

F1 =
∑

l

Sl

F2 =
∑

l

1

4
SlS

(2)
l +

∑

l 6=m

SlSm

a2
lm

+O(~2)

F3 =
∑

l

Sl

36

(
SlS

(4)
l + 2S

(1)
l S

(3)
l + 3S

(2)
l S

(2)
l

)
+

∑

l 6=m

SlSm

a4
lm

(
5Sl − 2almS

(1)
l + a2

lmS
(2)
l

)
+

∑

l 6=m6=n

2Sl SmSn

3(almalnamn)2
(
a2

ln + a2
lm + a2

mn

)
+O(~2)

(3.24)
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3.8 Four and five instantons

To collect more “experimental data-points” we have considered in more de-
tails the cases of the gauge groups SU(2) and SU(3) with fundamental mat-
ter. We have computed explicitly the prepotential for four and five instantons
and found a perfect agreement (yet a few typos) with the results of [13]. We
should stress that this is a non-trivial check. Just as an example, we quote
here the expression for F5 for SU(2) gauge theory with Nf = 3:

F5(a,m) =
µ3

8a18
(35a12 − 210a10µ2 + a8

(
207µ2

2 + 846µ4

)

−1210a6µ2µ4 + a4
(
1131µ2

4 + 3698µ2
3µ2

)
− 5250a2µ2

3µ4 + 4471µ4
3),

where 2a = a1 − a2, µ2 = m2
1 +m2

2 +m2
3, µ3 = m1m2m3, µ4 = (m1m2)

2 +
(m2m3)

2 + (m1m3)
2.

3.9 Adjoint matter and other matters

So far we were discussing N = 2 gauge theories with matter in the fun-
damental representations. Now we shall pass to other representations. It
is simpler to start with the adjoint representation. The ε-integrals (3.10)
reflect both the topology of the moduli space of instantons and also of the
matter bundle.

The latter is the bundle of the Dirac zero modes in the representation of
interest. For the adjoint representation, and on IR4, this bundle can be iden-
tified with the tangent bundle to the moduli space of instantons. Turning on
a mass term for the adjoint hypermultiplet corresponds to working equivari-
antly with respect to a certain U(1) subgroup of the extended R-symmetry
group. The U(1) × G × T2 equivariant Euler class of the tangent bundle
(= the G × T2 equivariant Chern polynomial) is the instanton measure in
the case of massive adjoint matter. This reasoning leads to the following
ε-integral:

Zk =
1

k!

(
(ε1 + ε2)(ε1 +m)(ε2 +m)

2πi ε1ε2 m (ε−m)

)k∮ k∏

I=1

dφI P (φI +m)P (φI + ε−m)

P (φI)P (φI + ε)
×

×
∏

I<J

φ2
IJ(φ2

IJ − ε2)(φ2
IJ − (ε1 −m)2)(φ2

IJ − (ε2 −m)2)

(φ2
IJ − ε21)(φ

2
IJ − ε22)(φ

2
IJ −m2)(φ2

IJ − (ε−m)2)

(3.25)
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Note the similarity of this expression to the contour integrals appearing[6] in
the calculations of the bulk contribution to the index of the supersymmetric
quantum mechanics with 16 supercharges (similarly, (3.10) is related to the
one with 8 supercharges). This is not an accident, of course.

Proceeding analogously to the pure gauge theory case we arrive at the follow-
ing expressions for the first two instanton contributions to the prepotential
(which agrees with [13]):

F1 =m2
∑

l

Tl

F2 =
∑

l

(
−

3m2

2
T 2

l +
m4

4
TlT

(2)
l

)

+m4
∑

l 6=n

TlTn

(
1

a2
ln

−
1

2(aln +m)2
−

1

2(aln −m)2

)
(3.26)

where Tl(x) =
∏

n6=l

(
1 − m2

(x+aln)2

)
, Tl = Tl(0), T

(n)
l = ∂n

xTl(x)|x=0(cf. [20]).

3.10 Perturbative part

So far we were calculating the nonperturbative part of the prepotential. It
would be nice to see the perturbative part somewhere in our setup, so as to
combine the whole expression into something nice.

One way is to calculate carefully the equivariant Chern character of the
tangent bundle to M̃k along the lines sketched in the end of the previous
section[10]. The faster way in the ε1 + ε2 = 0 case is to note that the
expression (1.6) is a sum over partition with the universal denominator,
which is not well-defined without the non-universal numerator. Nevertheless,
let us try to pull it out of the sum.

We get the infinite product (up to an irrelevant constant):

∞∏

i,j=1

∏

l 6=n

1

aln + ~(i− j)
∼

exp −
∑

l 6=n

∫ ∞

0

ds

s

e−saln

(e~s − 1)(e−~s − 1)
(3.27)
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If we regularize this by cutting the integral at s ∼ ε → 0, we get a finite
expression, which actually has the form

exp
Fpert(a, ε1, ε2)

ε1ε2
,

with Fpert being analytic in ε1, ε2 at zero. In fact

Fpert(a, 0, 0) =
∑

l 6=n

1

2
a2

lnlog aln + ambiguous quadratic polynomial in aln.

The formula (3.27) is a familiar expression for the Schwinger amplitude of a
mass aln particle in the electromagnetic field

F ∝ ε1 dx
1 ∧ dx2 + ε2 dx

3 ∧ dx4 . (3.28)

Its appearance will be explained in the next section.

Let us now combine F inst and Fpert into a single ε-deformed prepotential

F(a, ε1, ε2) = Fpert(a, ε1, ε2) + F inst(a, ε1, ε2)

where for general ε1, ε2 we define:

Fpert(a, ε1, ε2) =
∑

l 6=n

∫ ∞

ε

ds

s

e−saln

sinh
(

sε1
2

)
sinh

(
sε2
2

) (3.29)

with the singular in ε part dropped. We define:

Z(a, ε1, ε2; q) = exp
F(a, ε1, ε2; q)

ε1ε2
(3.30)

4 M- and K-theory inspired conjectures

In this section we suggest a physical interpretation to the ε-deformed pre-
potential F(a, ε1, ε2; q). We also conjecture a relation of Z(a, ~,−~; q) to a
tau-function of Toda hierarchy.

Philosophy. So far we studied the equivariant cohomology of the instanton
moduli space, pushforwards, and localization. The equivariant cohomology is
a quasiclassical limit of the equivariant K-theory (in the same sense in which
the DH formula is the quasiclassical limit of the (super)character formula
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for Tr(−)F e−µ̂[ξ]. Conversely, by studying the S1-equivariant cohomology of
the loop space of the original space one can get the index theorems natural
in K-theory [31].

This is of course an old story. However, this old story might get a new
meaning with the entering of M-theory on the scene.

4.1 Five dimensional viewpoint

It was understood long time ago that the instanton corrections to the prepo-
tential of N = 2 gauge theory can be interpreted as one-loop corrections in
the five dimensional theory compactified on a circle, in the limit of vanishing
circle radius [32].

Consider five dimensional N = 2 gauge theory with the gauge group G,
and possibly some matter. Consider a path integral in this theory on the
space-time manifold which is a product S1 × IR4. We shall impose periodic
boundary conditions on the fermions in the theory (up to a twist described
momentarily). We shall also consider the vacuum in which the adjoint scalar
in the vector multiples has vacuum expectation value ϕ ∈ t. We should also
specify the holonomy g ∈ Tof the gauge field around the circle at infinity
of IR4(which must commute with ϕ). Together they define an element a =
gexpβϕ ∼ expβa of the complexified Cartan subgroup TC of the gauge group
[32].

Let us define the following generalized index:

Z(a, ε1, ε2, ε3;β) =

TrHa
(−)2(jL+jR)exp −

[
(ε1 − ε2) J

3
L + (ε1 + ε2) J

3
R + ε3J

3
I + βH

] (4.1)

We now choose ε3 = ε1+ε2. This is the counterpart of choosing the subgroup
SU(2)d as we did in the section 2. Here we have used the little group SO(4)
spins jL, jR and the generator J3

I of the R-symmetry group SU(2)I . With
this choice of ε’s some of the supercharges of the five dimensional gauge
theory will commute with the twists eε·J and (4.1) will define a generalized
index.

The five dimensional theory has two kinds of particles. The perturbative
spectrum consists of the gauge bosons and their superpartners (we shall
now consider the case of minimal susy theory for simplicity). In addition,
the theory has solitons, coming from instanton solutions of four dimensional
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gauge theory. To find the spectrum of these solitons and their bound states
one can adopt the standard collective coordinate quantization scheme.

In the limit β → 0 the infinite-dimensional version of the heat kernel
expansion will reduce the supertrace in (4.1) to a path integral in the four
dimensional gauge theory. Moreover, the arrangement of the twists is such
that the theory will possess some supersymmetry, which we identify with Q̃.
One can play with the gauge coupling to further reduce the path integral to
a finite-dimensional integral over the instanton moduli space, of the kind we
considered in this paper.

On the other hand, geometrically, the twists in (4.1) can be realized by
replacing the flat five dimensional space-time by a twisted IR4 bundle over
the circle S1 of the radius β/2π such that by going around this circle one
twists the8 IR4 according to (4.1) Let us denote the resulting (locally flat)
space by Xε.

Now imagine engineering [33] the five dimensional gauge theory by “com-
pactifying” M-theory on a non-compact Calabi-Yau given by the appropriate
fibration of the ALE singularity over the base IP1. By further compactifying
on Xε we get a background, which can be now analyzed string-theoretically.

If we view the base circle of Xε as the M -theory circle, then we end up
with the IIA Mellin-like background, where one has a vev of the RR 1-form
field strength, which is actually

F = ε1dx
1 ∧ dx2 + ε2dx

3 ∧ dx4 (4.2)

near x = 0. In fact, by going to the weak string coupling limit ( β → 0) one
can make (4.2) to hold arbitrarily far away from the origin.

The five dimensional particles, going around the circle S1 appear in the
four remaining dimensions like particles carrying some charge with respect
to F . In calculating their contribution to the supertrace (4.1) we would
perform the standard Schwinger calculation, as in [34].

This identification suggests the interpretation of ~. Let us expand
F(a, ~,−~) as a power series in ~:

−logZ(a, ~,−~) =
1

~2
F(a, ~,−~) =

∞∑

g=0

~
2g−2Fg(a) (4.3)

8If ε1 + ε2 6= 0 one should also twist the transverse six dimensional space
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(the fact that only the even powers of ~ appear follows from the obvious sym-
metry ε1 ↔ ε2). The expansion (4.3) suggests that ~ has to play a role of the
string coupling constant. To be more precise, in the setup in which the gauge
theory is realized as IIA compactification on the ALE singularity fibered over
IP1 the prepotential is essentially calculated by the worldsheet instantons of
genus zero. The higher genus corrections give rise to the R2F 2g−2 couplings
[35], where R is the curvature of the four dimensional metric, and F is the
graviphoton field strength. Collecting all the evidence above we conjecture
that the ε-deformed prepotential captures the graviphoton couplings (even
in the case ε1 + ε2 6= 0, where the graviphoton field strength is not self-dual
– in this case the theory should be properly twisted).

4.2 K-theory viewpoint

If we don’t take the limit β → 0 we can still give a finite dimensional ex-
pression for (1.6) The collective coordinate quantization leads [32] to the

minimal supersymmetric quantum mechanics on M̃k, whose ground states
correspond to the harmonic spinors on M̃k. The index (4.1) calculates the

equivariant index of Dirac operator on M̃k. The latter has the following
Atiyah-Singer expression:

Z (a, ε1, ε2, β; q) =

∞∑

k=0

qk

∮

gMk

Âβ

(
M̃k

)
(4.4)

where Â(M) is the A-roof genus of the manifold M :

ch(TM) =
∑

i

exi =⇒ Âβ(M) =
∏

i

βxi

e
βxi
2 − e−

βxi
2

(4.5)

The localization technique (this time in equivariant K-theory [36]) leads to
the following expression for (4.4)

Z (a, ~,−~, 2β; q) =
∑

~k

q|
~k|

∏

(l,i)6=(n,j)

sinh β (aln + ~ (kl,i − kn,j + j − i))

sinh β (aln + ~ (j − i))

(4.6)

It would be nice to analyze (4.6) further, relate it to the relativistic Toda
chain spectral curves [32], and to the four dimensional analogue of Verlinde
formula [37]. It also seems reasonable to expect applications of (4.6) to the
DLCQ quantization of the M5-brane [38].
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4.3 Chiral fermions and M5 brane

Another conjecture relates the expansion (1.6) to the dynamics of the
Seiberg-Witten curve9. Denote, as before q = Λ2N .

Consider the theory of a free complex chiral fermion ψ,ψ∗,

S =

∫

Σ
ψ∗∂̄ψ (4.7)

living on the curve Σ:

w +
Λ2N

w
= P(λ), P(λ) =

N∏

l=1

(λ− αl) (4.8)

embedded into the space C×C∗ with the coordinates (λ,w). This curve has
two distinguished points w = 0 and w = ∞ which play a prominent role in
the Toda integrable hierarchy [39]. Let us cut out small disks D0 and D∞

around these two points.

The path integral on the surface Σ with two disks deleted will give a state in
the tensor product H0⊗H∗

∞ of the Hilbert spaces H0, H∞ associated to ∂D0

and ∂D∞ respectively. It can also be viewed as an operator GΣ : H0 → H∞.

Choose a vacuum state |0〉 ∈ H0 and its dual 〈0| ∈ H∗
∞(we use the global

coordinate w to identify H0 and H∞). Consider

τΣ =

〈
0

∣∣∣∣exp

(
1

~

∮

∂D∞

S J

)
GΣ exp

(
−

1

~

∮

∂D0

S J

)∣∣∣∣ 0
〉

(4.9)

where:

J =: ψ∗ψ :

dS =
1

2πi
λ
dw

w

(4.10)

and we choose the branch of S near w = 0,∞ such that (cf. [40]) :

S =
N

2πi
w∓ 1

N +O(λ−1)

9For simplicity we consider the case Nf = 0. The conjecture for Nf > 0 case is easy to
guess.



861

Let us represent Σ as a two-fold covering of the λ-plane. It has branch points
at λ = α±

l where
P(α±

l ) = ±2ΛN

Let us choose the cycles Al to encircle the cuts between α−
l and α+

l . Of
course, in H1(Σ,ZZ),

∑
lAl = 0. Then, we define:

al =

∮

Al

dS .

Our final conjecture states:

Z(a, ~,−~; q) = τΣ
(4.11)

Note that from this conjecture the fact that F0(a, 0, 0)coincides with the
Seiberg-Witten expression follows as a consequence of the Krichever univer-
sal formula [41]. The remaining paragraph is devoted to the explanation of
the motivation behind (4.11)

Let us assume that we are in the domain where αl −αm � Λ. Then the
surface Σ can be decomposed into two halves Σ± by N smooth circles Cl

which are the lifts to Σ of the cuts connecting α−
l and α+

l . The path integral
calculating the matrix element (4.9) can be evaluated by the cutting and
sewing along the Cl’s. The path integral on Σ± gives a state in

⊗N
l=1HCl

(its dual). If we first pull the
∮
SJ as close to Cl as possible, we shall

get the Hilbert space obtained by quantization of the fermions which have
al + 1

2modZZ moding:

ψ(w) ∼
∑

i∈ZZ

ψl,iw
al+i

(
dw

w

)1
2

(4.12)

near Cl ⊂ Σ. In addition, the states in HCl
of fixed total U(1) charge are

labelled by the partitions kl,i. We conjecture, that

〈
0

∣∣∣∣∣∣
e

H
SJ
∏

l,i

ψl,kl,i−iψ
∗
l,−i

∣∣∣∣∣∣
0

〉

l

∼
∏

(l,i)<(m,j)

(alm +~(kl,i−km,j +j− i)) (4.13)

It is clear that (4.13) implies (4.11) For N = 1(4.13) is of course a well-known
fact (with the coefficient given by

∏
i<j

1
j−i

), which leads to the following
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formula for (1.6)footwhich can also be derived using Schur identities [42]:

ZN=1(~,−~; q) = e−
q

~2

confirming the fact, that even though we worked with the resolved mod-
uli space ∪kM̃k,1 = ∪k(C

2)[k] the “symplectic” volume we got is that of

∪kM̃k,1 = ∪kSym
k(IR4).

The conjecture (4.11) should in some sense trivially follow from the
M5/NS5 realization of the four dimensional supersymmetric gauge theory[43][44].
The ε-twisting of the four dimensional part of the fivebrane worldvolume re-
duces the dynamical degrees of freedom down to those of the chiral boson
on the curve, which after fermionization should lead to (4.11)

Finally, if (4.11) is true, it is natural to conjecture that the analogous
equivariant generating functions for instantons on ALE spaces of the ADE
type will be related to the ADE WZW theories on the SW curves.
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