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Abstract

We analyze three aspects of N = 1 heterotic string compactifi-
cations on elliptically fibered Calabi-Yau threefolds: stability of vec-
tor bundles, five-brane instanton transitions and chiral matter. First
we show that relative Fourier-Mukai transformation preserves abso-
lute stability. This is relevant for vector bundles whose spectral cover
is reducible. Then we derive an explicit formula for the number of
moduli which occur in (vertical) five-brane instanton transitions pro-
vided a certain vanishing argument applies. Such transitions increase
the holonomy of the heterotic vector bundle and cause gauge chang-
ing phase transitions. In a M-theory description the transitions are
associated with collisions of bulk five-branes with one of the bound-
ary fixed planes. In F-theory they correspond to three-brane instanton
transitions. Our derivation relies on an index computation with data
localized along the curve which is related to the existence of chiral mat-
ter in this class of heterotic vacua. Finally, we show how to compute
the number of chiral matter multiplets for this class of vacua allowing
to discuss associated Yukawa couplings.
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1 Introduction

One of the important issues in studying string compactifications is to un-
derstand the moduli space of four-dimensional N = 1 string vacua. The
compactification of the heterotic string on a Calabi-Yau threefold X with a
stable, holomorphic vector bundle V is one way to obtain such vacua.

In recent years, there has been tremendous progress in understanding
the class of four-dimensional N = 1 string vacua obtained by compactifica-
tion on elliptically fibered Calabi-Yau manifolds. This class has the double
advantage to admit an explicit description of vector bundles in terms of
spectral covers [1] and to allow a dual description in terms of F-theory.

To obtain a consistent heterotic string compactification on an elliptic
Calabi-Yau threefold one has to include a number of five-branes which wrap
the elliptic fibers [1]. It has been shown that these five-branes match pre-
cisely the number of space-time filling three-branes necessary for tadpole
cancellation in F-theory compactified on elliptically fibered Calabi-Yau four-
folds Y [1]. Various aspects of the map between the geometrical moduli of
the pair (X,V ) and those of Y have been studied in [1, 2, 3, 4, 5, 6, 7].
The question of which pairs (X,V ) are stable under world-sheet instanton
corrections [8] has been recently reconsidered in [9, 10].

Besides an improved understanding of this map and the discussion of
phenomenologically viable pairs (X,V ), one would like to understand the
behavior of (X,V ) at singularities. Such singularities can be either associ-
ated to a degeneration of X or V . In general one expects there new non-
perturbative effects, associated to the breakdown of world-sheet conformal
field theory. A well known example is the small instanton singularity in
heterotic string compactifications on a K3 surface [11]. The heterotic vector
bundle degenerates to a torsion free sheaf with singularity locus of codimen-
sion at most two [12, 13]. Thus from a mathematical point of view, the
bundle fails to be locally free at a finite number of points on the K3 surface.
One can interpret [14] such small instantons as five-branes whose world vol-
umes fill the six uncompactified directions and intersect the K3 surface at
these points [15, 14, 16]. The observable effects are a change in the unbroken
gauge symmetry and the number of tensor multiplets.

In passing to four-dimensional compactifications of the heterotic string
a similar picture is expected to hold. In particular the class of elliptically
fibered Calabi-Yau threefolds allows an explicit study of such transitions. For
this class one has three possibilities of codimension-two bundle degeneration
associated to curves in the base, the fibers or linear combinations of both.
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Like in the six-dimensional situation these degenerations can be interpreted
in terms of five-branes wrapping over these holomorphic curves. In addition
to codimension-two degenerations one expects pointlike bundle singularities
in codimension-three which have been studied in [17].

The codimension-two degenerations have in common that the heterotic
vector bundle is associated (via fiberwise T-duality or relative Fourier-Mukai
transformation) to the spectral data (C,L) with C being a reducible spec-
tral cover [18] and L the spectral line bundle. The generic heterotic vector
bundle associated with an irreducible spectral cover is stable. This leads to
a stability question of V in the reducible case which we will tackle in section
3.

The observable effects in four dimensions depend on whether the bundle
degenerates over base or fiber curves (or linear combinations of both). If
the bundle degenerates over a base curve one observes (after smoothing out
the singular gauge configuration) a change in the charged matter content
[18]. This provides evidence for chirality changing phase transitions in four-
dimensional string vacua [19]. As the second Chern class gets shifted by
the cohomology class of the associated curve, one can effectively interpret
such transition as five-brane instanton transition [18]. On the other hand,
bundle degeneration associated to fiber curves do not change the net-amount
of chiral matter (the third Chern class is left unchanged), however, they
do change the structure group of the heterotic vector bundle and thus the
unbroken gauge group in four dimensions.

Both transition types are expected to have a dual interpretation in terms
of F-theory. In particular, one expects chirality changing transitions to be
dual to a change in the F-theory four form flux [20, 18]. Gauge changing
transitions are expected to be dual to three-brane instanton transitions [2].
More precisely, the number of five-branes which dissolve in such transition
are supposed to match the precise number of three-branes in F-theory. One
can also consider the transitions in heterotic M-theory [21, 22, 23]. The
anomaly cancellation requires to include additional five-branes in the bulk
space. The transition is then interpreted as ‘collision’ of a bulk five brane
with one of the boundary fixed planes. Conditions under which the five-
brane is attracted to the boundary fixed plane are discussed in [23].

The geometrical moduli of the pair (X,V ) are given by the complex
structure and Kähler deformations of X and the bundle moduli given by the
dimension of H1(X,End(V )). One would like to know how the moduli of
V are altered in chirality or gauge changing phase transitions. For chirality
changing transitions the question has been studied in [21]. In particular, it
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was shown in [21] that the transition moduli (the difference of the moduli
of the original and transition bundle) can be interpreted as moduli of the
altered spectral cover restricted to the lift of the horizontal curve about
which the five-brane wraps.

Our main interest in this paper is the question: How do the bundle moduli
change during a gauge changing phase transition? As such transition is
naturally associated to reducible spectral covers [1, 2, 18] and appears to be
hard to study in general, we will adopt here the situation (first studied in [2])
of having a vector bundle E = V ⊕π∗M . Here M is a good vector bundle on
the base of X whose second Chern class counts the five-branes dissolved in
the transition. The associated spectral cover is the union of the spectral cover
of V and the zero section mσ (which carries the rank m vector bundle M).
If one considers the structure group of the involved bundle one encounters
the following situation: one starts with a stable SU(n) vector bundle V on
X whose structure group changes during the transition to SU(n) × SU(m)
as discussed in [18].

It is known that the moduli of E decompose into four classes: the moduli
of V , π∗M and the moduli which ‘measure’ the deviation of E from being
a direct sum. The main problem which occurs is that only the difference of
the latter moduli can be obtained by an index computation on X [2] which
will be reviewed in section 4.4. Now, two observations will help us to obtain
information about the total number of the moduli. First, the mentioned
index which one can evaluate on X is proportional to the net-generation
number (which is one half of c3(V )); second, chiral matter is localized along
the intersection curve S of CV and σ (first pointed out in [1] and later used
in [24] and [3]). These observations and the fact that E can be obtained
by a Fourier-Mukai transformation lead to the idea of reducing the index
computation on X to an index computation on the intersection curve S as
we will explain in section 4.5. This reduction will help to apply a vanishing
argument and allows to obtain information about the total number of moduli.

Finally, in section 5, we will apply a similar argument to the computation
of the number of chiral matter multiplets in heterotic compactifications on
ellitically fibered Calabi-Yau threefolds X. As a result, we find an alterna-
tive derivation of the net-generation number as originally performed in [3]
and show that if a vanishing argument applies, one can obtain the precise
number of chiral matter multiplets. We find that chiral matter associated to
H1(X,V ) vanishes in heterotic string compactifications on elliptically fibered
X with vector bundles constructed in the spectral cover approach and mat-
ter localized along a curve S of arithmetic genus g(S) > 1. This implies the
vanishing of the corresponding Yukawa couplings.
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Let us summarize the organization of this paper. In section 2, we review
the spectral cover construction of vector bundles. In section 3, we prove that
the Fourier-Mukai transformation preserves absolute stability. In section 4,
we first review the necessary facts about the five-brane instanton transition.
Then we work out a formula for the number of moduli which occur in a
(vertical) five-brane instanton transition. We show how this moduli can be
explicitly computed by applying a vanishing argument. In section 5, we
reconsider the localization of chiral matter. We apply a similar vanishing ar-
gument to compute the number of chiral matter multiplets. The appendices
contain all necessary calculations and proofs required for the sub-sections.
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2 Review of Vector Bundle Construction

We begin by recalling the construction of vector bundles on elliptic Calabi-
Yau threefolds following the original construction given in [1] to which we
refer for more details.

2.1 Spectral Cover Construction

One starts with a Calabi-Yau threefold X which is elliptically fibered over
a complex two-dimensional base B and denotes by π the projection of X
onto B. In addition one requires that X has a section σ. The construction
of SU(n) vector bundles V (fiberwise semistable and with c1(V ) = 0) on
X using the spectral cover construction proceeds in two steps. First one
describes bundles on the elliptic fiber and then uses global data in the base
to “glue” them together to a bundle V on X.
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More precisely, one starts on an elliptic fiber F given in the Weierstrass
representation with distinguished reference point p. On the fiber, V decom-
poses as a direct sum of degree zero line bundles, each associated with a
unique point on F . The condition that V is an SU(n) bundle means that
the product of the line bundles is trivial or equivalently that the points sum
up to zero in the group law on F . For this n-tuple of points exists a mero-
morphic function vanishing to first order at the points and having a pole
only at p.

When the reference point is globalized by the section σ the variation of
the n points in the fiber leads to a hypersurface C embedded in X which is
a ramified n-fold cover -the spectral cover- of the base given by

s = a0 + a2x + a3y + ... + anxn/2 = 0 (2.1)

here ar ∈ Γ(B,M⊗Kr
B), a0 is a section of M and x, y sections of K−2

B resp.
K−3

B in the Weierstrass model of X [1]. Note the last term eq. (2.1) for n-odd
is anx(n−3)/2. The pole order condition leads to s being a section of O(σ)n

which can in the process of globalization still be twisted by a line bundle M
over B of c1(M) = η. Thus s can be actually a section of O(σ)n ⊗M and
the cohomology class of C in X is

C = nσ + π∗η

So far we have recalled how to construct a spectral cover C by starting with
a vector bundle V over X. The basic idea of the spectral cover construction
is now to recover V from C! Therefore one starts with a suitable line bundle
R1 on the n-fold cover p : X ×B C → X and V will be induced as V = p∗R.
If one takes for R the Poincaré sheaf P on X ×B X (suitably modified in
away that will made precise in the following section) and takes into account
that the twist by a line bundle L over C leaves the fiberwise isomorphism
class unchanged, one obtains

V = p∗(p
∗
CL ⊗P) (2.2)

where p and pC are the projections of the first and second factor of X ×B C.
The condition c1(V ) = 0 translates to a fixing of π∗c1(L) in H1,1(C) up to
a class in kerπ∗ : H1,1(C) → H1,1(B).

2.2 Fourier-Mukai Transformation

The structure of V which occurs in eq. (2.2) makes transparent that V can
be considered more generally as Fourier-Mukai transformation of the pair

1If C is not irreducible, R may be only a sheaf of rank one with no concentrated
subsheaves
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(C,L). For the description of the Fourier-Mukai transform it is appropriate
instead of working on X×BC to work on X×BX̃ where X̃ is the compactified
relative Jacobian of X. X̃ parameterizes torsion-free rank 1 and degree zero
sheaves of the fibers of X → B and it is actually isomorphic with X (see
[25] or [26]) so that we will identify X̃ with X.

We have a diagram:

X ×B X
p2

//

p1

��

X

π2

��

X
π1

// B

and the Poincaré sheaf

P = O(∆) ⊗O(−p∗1σ) ⊗O(−p∗2σ) ⊗ q∗K−1
B

normalized to make P trivial along σ × X̃and X × σ. Here σ is the fixed
section, q = π1 ◦ p1 = π2 ◦ p2 and O(∆) is the dual of the ideal sheaf of the
diagonal, which is torsion-free of rank 1.

The Fourier-Mukai transform and the inverse Fourier-Mukai transform
are defined as functors of the derived categories D(X) of complexes of co-
herent sheaves on X bounded from above. We have

Φ : D−(X) → D−(X) ; Φ(G) = Rp1∗(p
∗
2(G) ⊗P) ,

Φ̂ : D−(X) → D−(X) ; Φ̂(G) = Rp2∗(p
∗
1(G ⊗ P̂)

where

P̂ = P∗ ⊗ q∗K−1
B .

We can also define the Fourier-Mukai functors Φi and Φ̂i, i = 0, 1 in terms
of single sheaves by taking Φi(F) and Φ̂i(F) as the i-th cohomology sheaves
of the complexes Φ(F) and Φ̂(F), we have

Φi(F) = Rip1∗(p
∗
2(F) ⊗P) , (2.3)

Φ̂i(F) = Rip1∗(p
∗
2(F) ⊗ P̂) . (2.4)

WITi Sheaves

We can talk now about WITi sheaves: they are those sheaves F for which
Φj(F) = 0 for j 6= i, and we have the same notion for the inverse Fourier-
Mukai transform.
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Note also that the Fourier-Mukai transform and the inverse Fourier Mukai
transform are only inverse functors up to a shift (see for instance [26], Lemma
2.6):

Φ(Φ̂(G)) = G[−1] , Φ̂(Φ(F)) = F [−1] .

The -1 shift implies that if we have a single sheaf F , then Φ̂(Φ(F)) = F [−1]
is a complex with only one cohomology sheaf, which is F , but located
at “degree1”. If Φ0(F) = 0 (F is WIT1) then the unique Fourier-Mukai
transform Φ1(F) is WIT0 for the inverse Fourier-Mukai transform such that
Φ̂0(Φ1(F)) = F . In the same way, if Φ1(F) = 0 (F is WIT0) then Φ0(F) is
WIT1 for the inverse Fourier-Mukai and Φ̂1(Φ0(F)) = F . Let us return to
the spectral cover construction.

Given a relatively semistable vector bundle V of rank n on X, 2 then V
is WIT1 and the unique Fourier-Mukai transform Φ1(V ) is supported on a
surface i : C → X inside X and its restriction to C is a pure dimension 1
and rank 1 sheaf L on C. That is, Φ1(V ) = i∗L.

The surface C projects onto the base B as a n : 1 cover, the spectral
cover of V . Due to the invertibility of the Fourier-Mukai transform, i∗L is
WIT0 for the inverse Fourier-Mukai so that we can recover the bundle V in
terms of the spectral data as

V = Φ̂0(i∗L) = p1∗(p
∗
2(i∗L) ⊗ P̂) .

We can follow the inverse road: take a surface i : C ↪→ X inside X flat over
B, and a pure dimension 1 and rank 1 sheaf L on C (for instance a line
bundle). Then i∗L as a sheaf on X is WIT0 for the inverse Fourier-Mukai
transform. Its inverse V = Φ̂0(i∗L) is a sheaf on X relatively torsion-free
semistable and of degree 0 [1, 27, 28, 26].

The topological invariants of Φ(G) and Φ̂(G) for an arbitrary object G of
the derived category has been computed explicitly in terms of those of G in
[27, 28].

3 Comments on Stability

For a line bundle L on an irreducible spectral cover C the Fourier-Mukai
transform of i∗L is a stable vector bundle V on X. But sometimes we have
to deal with vector bundles (or more generally torsion-free sheaves) whose

2More generally we can take V flat over B and torsion-free semistable of degree 0 on
fibers.
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spectral cover C is not irreducible such that L is no longer a line bundle on
C but rather a torsion-free rank one sheaf. It follows L is not automatically
stable. We will show that (for V semistable of degree zero on fibers) the
stability of L (as a torsion-free rank one sheaf on the reducible spectral
cover) is equivalent to the stability of V as a torsion-free sheaf on X. As a
result, Simpson Jacobians of stable torsion-free rank one sheaves on spectral
covers are isomorphic to open subsets of moduli spaces of stable sheaves on
X.

3.1 Review of the Elliptic Surface Case

It is known that for elliptic surfaces the relative Fourier Mukai transform
preserves not only fiberwise stability (see [25] for the case of positive degree
on fibers and [26] for the case of degree zero on fibers) but also absolute
stability in a certain sense. By fiberwise or relative stability (or semistability)
we understand stability (or semistability) on fibers. A sheaf F on a fibration
X → B is said to be fiberwise or relatively stable (or semistable) if it is
flat over B and the restriction of F to every fiber of X → B is stable (or
semistable) in the ordinary sense. Further, we need a relative polarization
to speak about relative stability. Such polarization is given by a divisor on
X that meets every fiber in a polarization of the fiber.

Relative stability is a very important concept, however, when we have
our elliptic fibration X → B we need to consider “absolute stability” as well.
Here we refer to stability on X with respect to a certain polarization; we
then somehow forget the fibered structure and consider X just as a manifold.
The reason we need absolute stability is that we want to consider moduli
spaces of stable sheaves on X.

There is still one more thing to keep in mind. Stability (or semista-
bility) used to be defined in terms of the slope (µ-stability) or the Hilbert
polynomial (Gieseker stability) but only for torsion-free sheaves. That ex-
cluded sheaves concentrated on closed subvarieties or even sheaves defined
on reducible singular varieties. This problem was circumvented by Simp-
son [29] who defined both µ-stability and Gieseker stability (along with the
corresponding semistability notions) for “pure” sheaves on arbitrary pro-
jective varieties. For Simpson, a pure sheaf of dimension i is a sheaf F
whose support has dimension i and that has no subsheaves concentrated on
smaller dimension. This gives the more natural generalization of the notion
of torsion-free.

Recall that the Euler characteristic of a vector bundle (or more general,
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coherent sheaf) F is given by χ(F) =
∑

(−1)i dimH i(X,F) and for a fixed
ample line bundle O(1) on X we have the so called Hilbert polynomial
P (F ,m) given by m → χ(F ⊗Om). The Hilbert polynomial can be written
as

P (F ,m) =

3∑

i=0

αi(F)
mi

i!

with integral coefficients αi(F) which are listed in the appendix. Once the
Hilbert polynomial (and then the slope) is defined, Simpson definitions are
very similar to the ordinary ones.

When the support Y of a pure sheaf F is irreducible and reduced so that
the restriction F|Y is torsion-free on Y , the stability of F as a sheaf on X
in the sense of Simpson is equivalent to the stability of F|Y as a torsion-free
sheaf on Y in the ordinary sense. But when Y is reducible, we have to
consider Simpson stability as the unique reasonable notion. This is not an
uncommon situation, for instance, if we take an elliptic fibration X → B
and a relatively semistable sheaf F on X of degree zero on fibers, then the
Fourier-Mukai transform Φ1(F) is concentrated on the spectral cover C that
in many cases is reducible. We can thus only consider the possible stability
of Φ1(F) in the sense of Simpson.

By this reason, in what sequel stability will always mean µ-stability in
the sense of Simpson.

As a warm up, we start the discussion about preservation of absolute
stability in the case of an elliptic surface X → B. Given a Cartier divisor
C ↪→ X̂ flat of degree n that we polarize with the intersection FC of C with
the fiber F of π, we have the following result: for every a > 0, there exists
b0 ≥ 0 depending only on the topological invariants of C, such that for every
b ≥ b0 and every sheaf L on C of pure dimension one, rank one, degree r and
semistable with respect to µC , the unique Fourier-Mukai transform Φ0(L) is
semistable on X with respect to the polarization aσ + bF . Moreover, if L is
stable on C, then Φ0(L) is stable as well on X.

A certain converse is also true: let us fix a Mukai vector (n,∆, s) with
∆ · F = 0. For every a > 0, there exists b0 such that for every b ≥ b0

and every sheaf V on X with Chern character (n,∆, s) and semistable with
respect to the polarization aσ+bF , the restriction of V to the generic fiber is
semistable. In particular, V is WIT1 so that it has a unique relative Fourier-
Mukai transform Φ̂1(V ). If we assume that the restriction of V to every fiber
is semistable then Φ̂1(V ) is of pure dimension one, rank one, degree r and
semistable on the spectral cover C(V ). In other words the spectral cover
C(V ) does not contain fibers. If V is stable on X, Φ̂1(V ) is stable on C(V )
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as well (see [26]). These properties mean that we can construct non-empty
open subsets of components of the moduli space of stable sheaves on X in
terms of the compactified Simpson Jacobians of the spectral covers [26].3

3.2 Generalization to Calabi-Yau Threefolds

We want to study a similar question for elliptic Calabi Yau threefolds π : X →
B. Since we require that π has a section (in addition to the smoothness of
B and X), the base surface B has to be of a particular kind, namely B has
to be Del Pezzo, Hirzebruch, Enriques or a blow-up of a Hirzebruch (see [22]
or [6]).

To our knowledge the problem of preservation of absolute stability for
elliptic Calabi-Yau threefolds has not been considered in the literature so
far. We polarize X with H̃ = aσ + bHB, where HB = π∗(H̄B) and H̄B is a
polarization of B to be chosen later. In the following we will assume that
there is a decomposition

H2i(X) = σp∗H2i−2(B) ⊕ p∗H2i(B) (3.1)

Let us consider a torsion-free sheaf V on X of rank n and degree zero
on fibers and write its Chern characters as ch(V ) = (n, S̃, ση + aF, s) with
η, S̃ ∈ p∗2H

2(B) according with [27, 28] and eq. (3.1). Assume that V is
WIT1. This happens, for instance, when V is relatively semistable (i.e., flat
over B and semistable on fibers). The Hilbert polynomial of the unique
Fourier-Mukai transform Φ̂(V ) of V is given by P (Φ̂(V ),m) with αi(Φ̂(V ))
given in appendix A. Simpson slopes of V and Φ(V ) can then be determined
and are given by

µ(V ) =
S̃ · H̃2

n · H̃3
, and µ(Φ(V )) =

α1(Φ̂(V ))

α2(Φ̂(V ))
(3.2)

Let us make a further assumption, that the support C of Φ(V ) is flat over
B, that is, that it does not contain fibers of π. It follows that the support

3For an integral variety, the Jacobian parameterizes line bundles of a fixed degree. In
that case, line bundles are automatically stable, regardless of the polarization. In the
reducible case this is no longer true, we need to fix a polarization and we can have line
bundles that are unstable. In this situation instead of parameterizing line bundles, we
parameterize pure dimension n (the dimension of the space) rank one and fixed degree
sheaves that are stable in the sense of Simpson. The corresponding moduli space is the
compactified Simpson Jacobian. For an integral variety, this is a compactification of the
ordinary Jacobian because it contains not only all line bundles, but also the torsion-free
rank one sheaves.
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of every subsheaf F of Φ(V ) is contained in C and has no fibers as well, so
that it is WIT0 with respect to the inverse Fourier-Mukai transform and its
transform is a WIT1 subsheaf V ′ of V . Moreover, V ′ has degree zero on
fibers again by [27] (2.33) so that eq. (3.2) is still true for V ′ (writing primes
for the correspondent invariants).

For every a there exists b > 0, depending only on the topological in-
variants of V such that V is stable (resp. semistable) with respect to
H̃ = aσ + bHB if and only if Φ(V ) is stable (resp. semistable) as well.
Assume that V is stable and that Φ(V ) is destabilized by a subsheaf F .
Then, as we said before, F = Φ(V ′) for certain subsheaf V ′ of V of degree
zero on fibers and we have

α1(Φ̂(V ))

α2(Φ̂(V ))
≤

α1(Φ̂(V ′))

α2(Φ̂(V ′))

with the αi’s given in appendix A.

If we write this condition as a polynomial on b, we have

n′(σH2
B)(σS̃HB +

1

2
nc1σHB)b3 + lower terms

≤ n(σH2
B)(σS̃′HB +

1

2
n′c1σHB)b3 + lower terms.

Since the family of subsheaves of V is bounded, there is a finite number of
possibilities for the Hilbert polynomial of V ′. Then, the value of b one has to
chose depends only on a and on the topological invariants of V . For b � 0
the destabilizing condition is equivalent to

n′(σS̃HB) ≤ n(σS̃′HB)

On the other hand the stability of V gives n(S̃′ · H̃2) < n′(S̃ · H̃2) and then

n′(σc1S̃) < n(σc1S̃
′)

which is a contradiction. Both the converse and the corresponding semista-
bility statements are proven analogously.

For elliptically fibered Calabi-Yau threefolds X we proceed as in the
elliptic surface case and basically use the above result to prove that there
are open subsets of components of the moduli space of stable sheaves on
X that are isomorphic to compactified Simpson Jacobians of a universal
spectral cover.

A last comment: we have shown the preservation of absolute stability
under Fourier Mukai transformation for sheaves of degree zero on fibers. In
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this paper, we shall focus only on fiber bundles with vanishing first Chern
class c1(V ) = 0, because they are the ones relevant for the problems we are
considering. Their Fourier-Mukai transforms Φ1(V ) have non-vanishing c1

(c1(Φ
1(V )) which represents the spectral cover of V ; because of this, the

problem of preservation of stability is better studied in the more symmetric
situation of degree zero on fibers, a property shared by V and Φ1(V ).

4 Five-Brane Instanton Transition

4.1 Anomaly Cancellation

Heterotic string compactifications on elliptic Calabi-Yau threefolds require a
number of five-branes in order to cancel the anomaly [1]. These five-branes
wrapping holomorphic curves in X whose cohomology class is determined
by the heterotic anomaly cancellation condition

[W ] = c2(TX) − c2(V1) − c2(V2) (4.1)

where [W ] is the cohomology class of the wrapped curves, c2(Vi) are the
second Chern classes of the vector bundles on X, c2(TX) is the second
Chern class of the tangent bundle and given by [1]

c2(TX) = c2 + 11c2
1 + 12σc1 .

We use the notation ci = π∗ci(B) and σ (satisfying σ2 = −c1σ) the class of
a section of π. Due to our assumption eq. (3.1), [W ] may be decomposed as

[W ] = σC1 + C2

where C1 maps to a divisor in B2 to be embedded in X via σ and C2 = h[F ]
describes the five-branes wrapping the elliptic fiber of X. Following [4] we
refer to five-branes which wrap curves in the base as horizontal five-branes
and branes wrapping the fiber as vertical ones. We will also mention that
five-branes could wrap skew curves, i.e. curves which have both fiber and
base components.

4.2 The Transition

We will be interested in the situation when heterotic five-branes which wrap
the elliptic fiber dissolve into gauge instantons resulting in a new heterotic
vector bundle E. Let us follow how such transition might proceed thereby
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recalling results partly obtained in [2] and [18]. To simplify our discussion
we will assume (until otherwise stated) that V2 in eq. (4.1) is trivial. Under
heterotic/F-theory duality this corresponds to an unbroken G = G1 × E8

gauge group where G1 is determined by the commutator of the structure
group of V1 in E8. Further, we assume that [W ] = hF , that is, we only
consider ‘vertical five-branes’.

On the level of anomaly cancellation one expects that a five-brane in-
stanton transition causes a change in the second Chern-class of the vector
bundle

c2(TX) − (c2(V ) + kF ) = [W̃ ]

assuming here k < h so ‘absorbing’ part of the five-brane class into the vector
bundle.

We can think of a five-brane at the transition point (a particular point on
the Coulomb branch) as a pointlike instanton concentrated in codimension
two in X which will be the elliptic fiber in our case. That is, a five-brane can
be considered as singular gauge field configuration such that the curvature
is zero everywhere except on a fiber where it has a singularity. In terms of
Hermitian-Yang-Mills connections we can think of a connection on a vector
bundle which is smooth except along a curve in the class C2 where it has a
delta function behavior. Mathematically, such a configuration is described
by a singular torsion free sheaf. If the singular sheaf can be smoothed out
to a vector bundle a five-brane instanton transition can occur.

If we recall that c2(V ) is in H4(X) and as we are concerned with an ellip-
tic fibration π : X → B we have a decomposition H4(X) = H2(B)σ ⊕ H4(B)
with σ being the section. For c2(V ) one has c2(V ) = π∗(η)σ + π∗(ω) with
η, ω ∈ H2(B) resp. H4(B). Therefore it is expected [2] that the singular con-
figuration can be smoothed out to a new bundle with

∫
B c2(E) =

∫
B c2(V )+k

assuming that kF can be represented by k separated fibers projecting to k
distinct points on B. This suggests that we are looking for a vector bundle
M (or sheaf) on B with c2(M) = k.

Thus the actual transition proceeds in two steps [18]. First, one describes
a singular torsion free sheaf M̃ on B. Second, one shows that it can be
smoothed out to a stable bundle M on B which pulls back to a stable vector
bundle over X with c2(π

∗M) = kF .

To summarize: after the transition a non-trivial gauge bundle M of rank
m has developed on the zero section. The new bundle E = V ⊕ π∗M is
smooth and reducible of rank n + m. The second Chern class of M counts
the number of five-branes which have been dissolved in the transition. As
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the zero section σ is isomorphic to the base, one can think of M as being a
vector bundle on B.

The spectral cover of E = V ⊕ π∗M can be easily described in terms
of the spectral covers of V and π∗M . One notices that E is still WIT1

and that its unique Fourier-Mukai transform is the direct sum Φ1(E) =
Φ1(V ) ⊕ Φ1(π∗M) of the Fourier-Mukai transforms of V and π∗M . We
know ([26]) that the spectral cover is closed defined by the Fitting ideal of
the Fourier-Mukai transform. Since the Fitting ideal which describes the
spectral cover is multiplicative over direct sums (see [26]), the spectral cover
CE is the union of the spectral covers CV and Cπ∗M , that is

CE = CV + Cπ∗M

as numerical classes. If we proceed as in [26]4 one obtains

Φ1(π∗M) = π∗M ⊗ Φ1(OX) = π∗M ⊗ π∗KB ⊗Oσ = σ∗(G) , G = M(KB)
(4.2)

Then Φ1(π∗M) = σ∗(G) is concentrated on σ, but due to the multiplicativity
of the Fitting ideal, the spectral cover of π∗M is not σ but rather Cπ∗M = mσ
and the restriction LM = σ∗(G)|mσ of the Fourier-Mukai transform to the
spectral cover is a pure dimension one rank one sheaf on the reducible surface
mσ (which is not a line bundle). We then have

CE = CV + mσ

as we expected and

Φ1(π∗M) = σ∗(G) = h∗(LM )

where h : mσ ↪→ X is the immersion of mσ into X.

Matter Curve S

It is known that chiral matter (c3(V )/2 6= 0) is localized along the intersec-
tion curve S of σ and C [1, 3].

In the following we will assume that

• S = σ · C is irreducible

• g(S) > 1.

4The Poincaré sheaf considered in [26] is the dual of the Poincaré sheaf considered both
here and in [27, 28].
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4.3 F-Theory Perspective

Let us recall how the five-brane instanton transition is viewed from the
perspective of F-theory!

Recall that F-theory is defined as type-IIB super string theory with vary-
ing coupling constant [30]. A consistent F-theory compactification on an
Calabi-Yau fourfold Y 5 requires a number χ(Y )/24 of three-branes filling
the transverse space time R

3,1 [31]. This number agrees with the num-
ber of five-branes required for consistent F-theory compactification giving
a non-trivial test for the expected heterotic/F-theory duality [1, 5] and the
adiabatic argument.

By duality one expects that if a five-brane disappears on the heterotic
side, a three-brane should disappear on the F-theory side. More precisely, a
three-brane ‘dissolves’ into a finite size instanton, i.e. a background gauge
bundle M̃ on the corresponding component on the seven-brane is turned
on [2]. The instanton number of this bundle counts thereby the number of
dissolved three-branes. In [2] it was then suggested that the two bundles M
and M̃ should actually be identified.

Such a transition leads to a modification of the anomaly cancellation
condition

χ(Y )

24
= n3 +

∑

j

kj

here n3 is the number of three-branes and kj =
∫
Dj

c2(Mj) and j labels the

respective component of the seven-brane partially wrapped over the discrim-
inant locus6 in the three dimensional base of Y .

Due to the presence of a non-trivial instanton bundle on the seven-brane
part of the gauge group will be broken. Otherwise, the gauge group would be
given by a degeneration of A-D-E type of the elliptic fiber over the compact
part of the seven-brane. The gauge group which is left over after the breaking
by M̃ should correspond on the heterotic side to the commutator of E in
E8. Further one expects that in the transition extra chiral matter occurs (if
the original bundle V had non zero c3(V )) [2] which is on the heterotic side
related to the moduli we are aiming to evaluate.

5here assumed to be elliptically fibered over a three dimensional base B which is a P
1

bundle over the same B2 as considered on the heterotic string side
6[2] argues that a three-brane can only dissolve on a multiple seven-brane
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4.4 Computation of Moduli

To begin let us recall some known facts about the moduli of E = V ⊕ π∗M .
The number of moduli is given by the dimension of the deformations space
H1(End(E)). This space can be decomposed into four parts (as already
noticed in [2])

H1(End(E)) =H1(End(V )) ⊕ H1(End(π∗M))⊕

H1(Hom(V, π∗M)) ⊕ H1(Hom(π∗M,V ))

where the first two summands correspond to deformations of E that preserve
the direct sum and deform V and π∗M individual. The last two elements
give the deformations of E that deform away from the direct sum.

Moduli of V

The number of moduli of V can be determined in two ways, depending on
whether one works with V directly or with its spectral cover data (C,L) from
which it is obtained. In the direct approach one is restricted to so called τ -
invariant bundles and therefore to a rather special point in the moduli space,
whereas the second approach is not restricted to such a point. However,
after a brief review of the first approach which was originally introduced
in [1] making concrete earlier observations in [32], we will explain how the
τ -invariance is translated to the (C,L) data. The issue of τ -invariance has
been also addressed in [33].

The first approach starts with the index of the ∂̄ operator with values
in End(V ) which is the index(∂̄) =

∑3
i=0(−1)i dimH i(X,End(V )). As this

index vanishes by Serre duality on the Calabi-Yau threefold, one has to in-
troduce a further twist to get a non-trivial index problem. This is usually
given if the Calabi-Yau space admits a discrete symmetry group [32]. In
case of elliptically fibered Calabi-Yau manifolds one has such a group G
given by the involution τ coming from the “sign flip” in the elliptic fibers.
One assumes that this symmetry can be lifted to an action on the bundle
at least at some point in the moduli space [1]. In particular the action
of τ lifts to an action on the adjoint bundle ad(V ) which are the trace-
less endomorphisms of End(V ). It follows that the index of the ∂̄ operator
generalizes to a character valued index where for each g ∈ G one defines
index(g) =

∑3
i=0(−1)i+1 TrHi(X,ad(V )) g where TrHi(X,ad(V )) refers to a trace

in the vector space H i(X, ad(V )). The particular form of this index for el-
liptic Calabi-Yau threefolds has been determined in [1] (with g = 1+ τ

2 ) one

finds index(g) =
∑3

i=0(−1)i+1 dimH i(X, ad(V ))e where the subscript “e”
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indicates the projection onto the even subspace of H i(X, ad(V )). One can
compute this index using a fixed point theorem as shown in [1].

The second approach makes intuitively clear where the moduli of V are
coming from, namely, the number of parameters specifying the spectral cover
C and by the dimension of the space of holomorphic line bundles L on C.
The first number is given by the dimension of the linear system |C| = |nσ+η|.
The second number is given by the dimension of the Picard group Pic(C) =
H1(C,O∗

C) of C. One thus expects the moduli of V to be given by [21]

h1(X,End(V )) = dim |C| + dimPic(C)

which can be explicitly evaluated making the assumption that C is an irre-
ducible, effective, positive divisor in X.

If one computes the endomorphisms of V using the character valued
index one assumes that V is invariant under the involution of the elliptic
fiber, i.e.V = V τ . On the other hand the number of moduli derived from
the pair (C,L) requires no such restriction. Thus the question occurs: how
is the condition V = V τ translated to the spectral data (C,L)?

To see this translation let us study the meaning of the condition V τ = V
with respect to the relative Fourier Mukai transformation Φ, that is to

Φ : D(X) → D(X) , F 7→ Φ(F ) = π2,∗(π
∗
1(F ) ⊗P) ,

where P is the relative Poincaré sheaf on X ×B X. As already mentioned,
Φ is an equivalence of categories whose inverse functor is the Fourier Mukai
transform Φ̂ with respect to P∗ ⊗ q∗K−1

B , where q : X ×B X → B is the
natural projection and KB is the canonical sheaf on B. We write Φ∗ for the
Fourier Mukai transfrom with respect to P∗.

Further let us write τ : X → X for the elliptic involution on X → B so
that we write τ ∗F instead of F τ for F in the derived category. We then have
three involutions on X ×B X:

τ(x, y) = (τ(x), y) = (−x, y)

τ̂(x, y) = (x, τ(y)) = (x,−y)

τ̄ = τ̂ ◦ τ = τ ◦ τ̂ .

One easily sees that τ̂ ∗P = P∗ and one has

Φ(τ∗F ) = π2,∗(π
∗
1(τ

∗F ⊗P)) = π2,∗(τ
∗(π∗

1F ⊗ τ∗P))

= π2,∗(τ̂
∗τ̄∗(π∗

1F ⊗ τ∗P)) = τ̂ ∗π2,∗(τ̄
∗(π∗

1F ⊗ τ∗P))

= τ̂∗π2,∗(π
∗
1(τ

∗F ) ⊗ τ̂∗P)) = τ̂ ∗π2,∗(π
∗
1τ

∗F ⊗P∗) = τ̂∗Φ∗(τ∗F ) .
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If τ∗F = F , one has

Φ(F ) = τ̂ ∗Φ∗(F ) . (4.3)

If we assume that F reduces to a single stable, irreducible, holomorphic
SU(n) vector bundle over elliptic Calabi-Yau specified by a pair (C,L) via
the inverse Fourier Mukai transform Φ̂. Then Φ(F ) reduce to the sheaf
Φ1(F ) = i∗(L), where i : C ↪→ X is the immersion and eq. (4.3) means that
Φ∗(F ) reduces to a single sheaf Φ∗1(F ) as well and that Φ∗1(F ) = τ̂ ∗(i∗(L)).
If Cτ = τ(C), Lτ = τ∗L and j : Cτ → X is the immersion, it follows that

Φ∗1(F ) = j∗(L
τ ) .

On can say that if τ ∗F = F , then F can be specified by spectral data in two
different ways, either by (C,L) via the inverse Fourier Mukai transform Φ̂
or by (Cτ , Lτ ⊗ (q∗KB)|C) via the standard FM (with respect to P).

Moduli of π∗M

The number of moduli of π∗M are given by h1(X,π∗ End(M)). If one applies
the Leray spectral sequence to the elliptic fibration of X and assumes that
the moduli space of M over B is smooth then one can show [2] that all
moduli of π∗M come from moduli of M on the base B. The moduli can be
then evaluated using the Riemann-Roch index theorem (assuming M being
a SU(m) bundle and B a rational surface)

h1(B,End(M)) = 2mk − (m2 − 1) .

What is Known About the Remaining Moduli?

First we note that

Hi(Hom(V, π∗M)) = Exti(V, π∗M)

Hi(Hom(π∗M,V )) = Exti(π∗M,V )

since V and π∗M are locally free sheaves on X. In particular, elements of
the vector spaces H1(Hom(V, π∗M)) and H1(Hom(π∗M,V )) give non-trivial
extensions 0 → π∗M → Eµ → V → 0 respectively 0 → V → Eν → π∗M →
0. More information can be obtained by computing the index

IX =

3∑

i=0

(−1)i dimH i(Hom(V, π∗M)) . (4.4)
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We will later show that dimH i(Hom(V, π∗M)) = 0 for i = 0, 3. We also
note that H i(Hom(V, π∗M)) = H i(V ∗ ⊗ π∗M) and H i(Hom(π∗M,V )) =
Hi((π∗M)∗⊗V ) and applying Serre duality we get H2(V ∗⊗π∗M) = H1(V ⊗
(π∗M)∗) using the fact that the canonical bundle KX of X is trivial. Thus
we get

IX = dimH1(Hom(π∗M,V )) − dimH1(Hom(V, π∗M))

= dimExt1(π∗M,V )) − dimExt1(V, π∗M)
(4.5)

The left hand side of eq. (4.4) can be evaluated using the Riemann-Roch
theorem

IX =

∫

X
ch(V ∗)ch(π∗M)Td(X) = −

1

2
mc3(V ) (4.6)

and is related to chiral matter for non-zero c3(V ) as observed in [2]. The
computation of c3(V ) in the spectral cover and the parabolic bundle con-
struction has been performed in [24] respectively [34].

4.5 Evaluation of the Remaining Moduli

We will proceed as follows. We first rewrite the index in terms of the spectral
data using the so-called Parseval theorem and then restrict to S to evaluate
the index.

The Parseval theorem for the relative Fourier-Mukai transform has been
proved by Mukai in his original Fourier-Mukai transform for abelian varieties
[35], but can be easily extended to any situation in which a Fourier-Mukai
transform is an equivalence of categories.

Parseval Theorem

Assume that we have sheaves F , F̄ that are respectively WITh and WITj

for certain h, j; this means that they only have one non-vanishing Fourier-
Mukai transform, the h-th one Φh(F) in the case of F and the j-th one
Φj(F̄) in the case of F̄ . Parseval theorem says that one has

ExtiX(F , F̄) = Exth−j+i
X (Φh(F), Φj(F̄)) , (4.7)

thus giving then a correspondence between the extensions of F , F̄ and the
extensions of their Fourier-Mukai transforms. The proof is very simple, and
relays on two facts. The first one is that for arbitrary coherent sheaves E,
G the ext-groups can be computed in terms of the derived category, namely

Exti(E,G) = HomD(X)(E,G[i]) (4.8)
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The second one is that the Fourier-Mukai transforms of F , F̄ in the de-
rived category D(X) are Φ(F) = Φh(F)[−h], Φ(F̄) = Φj(F̄)[−j]. Since the
Fourier-Mukai transform is an equivalence of categories, one has

HomD(X)(F , F̄ [i]) = HomD(X)(Φ(F), Φ(F̄ [i]))

= HomD(X)(Φ
h(F)[−h], Φj(F̄)[−j + i])

= HomD(X)(Φ
h(F), Φj(F̄)[h − j + i])

so that eq. (4.8) gives the Parseval theorem eq. (4.7).

In particular, if both F and F̄ are WITj for the same j, we obtain

ExtiX(F , F̄ ) = Exti
X(Φj(F), Φj(F̄))

for every i ≥ 0.

We can apply Parseval theorem to our situation, because V and π∗M
are WIT1. Since their Fourier-Mukai transforms are respectively i∗L where
i : C ↪→ X is the immersion, and σ∗(G) where σ : B → X is the section and
G = M(KB) eq. (4.2), we have

Exti
X(V, π∗M) = Exti

X(i∗L, σ∗(G)) . i ≥ 0 (4.9)

We note that, due to the fact that V and π∗M are vector bundles, we have

H1(Hom(V, π∗M)) = Ext1X(V, π∗M) (4.10)

H1(Hom(π∗M,V ))∗ = Ext2X(V, π∗M) (4.11)

as we are computing dimensions we have

dimH1(Hom(π∗M,V ))∗ = dimH1(Hom(π∗M,V ))

so that we can actually rewrite the index IX in terms of the spectral bundles

IX =

3∑

i=0

(−1)i dimExti
X(i∗L, σ∗(G)) .

Restriction to S

We proceed as in Section 6 of [27] and use the sequence of low terms of the
spectral sequence associated to Grothendieck duality for the immersion i.

In its simpler form, Grothendieck duality for a smooth morphism is a
sort of relative Serre duality, a Serre duality for flat families of smooth va-
rieties. Grothendieck extended this notion to very general morphisms of
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algebraic varieties; his formulation requires derived categories and a notion
of “dualizing complex”; this is an object of the derived category that plays
(for a general morphism) the same role as the sheaf of r-forms on a smooth
r-dimensional variety.

We apply Grothendieck duality for the closed immersion i : C ↪→ X and
denote by σ̃ the restriction of σ to S. Grothendieck duality for the closed
immersion i : C ↪→ X says that there is an isomorphism in the derived
category

R HomX(i∗L, σ∗G) = R HomC(L, i!(σ∗G))

where i!(σ∗G) is the “dualizing complex” for the immersion, and i!(σ∗G)
is determined by the equation i∗(i

!(σ∗G)) = RHomOX
(i∗OC , σ∗G) where

Hom stands for the Hom-sheaf (see [36] Section §6). Let us consider the
exact sequence

0 → OX(−C) → OX → i∗OC → 0 (4.12)

where OX and OC are the trivial bundles (structure sheaves) on X and C;
OX(−C) is the inverse of the tautologically defined line bundle OX(C) on X
that admits a holomorphic section s that vanishes precisely on C; also note
the first map in eq. (4.12) is multiplication by s and the second is restriction
to C. We need i∗ to understand OC as a sheaf on X, the sheaf that coincides
with OC on C and it is zero on X − C.

From eq. (4.12) we read that RHomOX
(i∗OC , σ∗G) is represented by the

complex

σ∗G
d=0
−−→ HomOX

(OX(−C), σ∗G)

that is,

i!(σ∗G) = { σ̃∗(G|S)
d=0
−−→ σ̃∗(G|S ⊗ (NX/C)|S) }

in the derived category, where NX/C is the normal sheaf to C in X. Then,
since L is a line bundle, we have

R HomX(i∗L,σ∗G) = R HomC(L, { σ̃∗(G|S)
d=0
−−→ σ̃∗(G|S ⊗ (NX/C)|S) })

= R Γ(C, {L−1 ⊗ σ̃∗(G|S)
d=0
−−→ L−1 ⊗ σ̃∗(G|S ⊗ (NX/C)|S) }) .

The above equality in the derived category means that we can approach
the cohomology groups Exti

X(i∗L, σ∗G) on the left hand side from a double

complex of global sections of an acyclic resolution of {L−1 ⊗ σ̃∗(G|S)
d=0
−−→

L−1 ⊗ σ̃∗(G|S ⊗ (NX/C)|S) }. We have

Ep,0
2 = Extp

C(L, σ̃∗(G|S))

Ep,1
2 = Extp

C(L, σ̃∗(G|S ⊗ (NX/C)|S))

Ep,q
2 = 0 , for q > 1 .
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We have the exact sequence of the low terms

0 → E1,0
2 → H1(M) → E0,1

2
d2−→ E2,0

2 → H2(M) .

Moreover, the spectral sequence is of “spherical fiber” type, that is, one has
Ep,q

2 = 0 for every p and q 6= 0, 17. It is a standard fact (see for instance [37]
paragraph 4.6), that we can complete the above sequence to get

0 → E1,0
2 → H1(M) → E0,1

2
d2−→ E2,0

2 → H2(M) →

→ E1,1
2

d2−→ E3,0
2 → H3(M) → E2,1

2
d2−→ E4,0

2 .

Moreover, since d = 0 the first differential of this double complex is zero and
then d2 is zero as well. This implies that the above exact sequence breaks
into short exact sequences. We then have

0 → Ext1C(L, σ̃∗(G|S)) → Ext1X(i∗L, σ∗(G)) →

HomC(L, σ̃∗(G|S ⊗ (NX/C)|S)) → 0

and isomorphisms

Ext2X(i∗L, σ∗(G)) ' Ext1C(L, σ̃∗(G|S ⊗ (NX/C)|S)),

Ext3X(i∗L, σ∗(G)) ' Ext2C(L, σ̃∗(G|S ⊗ (NX/C)|S))

due to the fact that Exti
C(L, σ̃∗(G|S)) = H i(S,L−1

|S ⊗G|S) = 0 for i ≥ 2. But

we have Ext2C(L, σ̃∗(G|S ⊗ (NX/C)|S)) = H2(S,L−1
|S ⊗ G|S ⊗ (NX/C)|S) = 0

as well, so that
Ext3X(i∗L, σ∗(G)) = 0. (4.13)

On the other hand

HomX(i∗L, σ∗(G)) = HomB(σ∗(i∗L), G) = 0 (4.14)

because σ∗(i∗L) is concentrated on S and G is a vector bundle. In the
following we set

F = L−1
|S ⊗ G|S ⊗ (NX/C)|S .

We have

HomC(L, σ̃∗(G|S ⊗ (NX/C)|S)) = H0(S,F)

Ext1C(L, σ̃∗(G|S ⊗ (NX/C)|S)) = H1(S,F)

7Spectral sequences with E
p,q
2

= 0 for every p and q 6= 0, m are called of “spherical
fiber” type, because when one has a bundle Z → Y on m-spheres, the Leray spectral
sequence approaching the cohomology of Z in terms of the cohomology of X is of that
kind.



774 Comments on N = 1 Heterotic String Vacua

where NC/S is the normal bundle to S in C. We set dimH i(S,F) = hi(S,F)
as usual. From eq. (4.13) and eq. (4.14) we find that the index IX simplifies
to

IX =

2∑

i=1

(−1)i dimExti
X(i∗L, σ∗(G))

in agreement with eq. (4.5). Thus we get for the dimensions we were looking
for

dimExt1X(i∗L, σ∗(G)) = −IX + h1(S,F) ,

dimExt2X(i∗L, σ∗(G)) = h1(S,F) .
(4.15)

Since we know that the value of the index IX = −1
2mc3(V ) by eq. (4.6),

we have reduced the computation of the dimensions of H 1(Hom(V, π∗M))
and H1(Hom(π∗M,V )) to the computation of the dimension of the first
cohomology group of the vector bundle F on the intersection curve S of C
and σ. Thus the question remains: can we actually compute h1(S,F)? Let
us assume that S is irreducible. Something we can do is to compute another
index, namely, we can use the Riemann-Roch theorem on S to compute

χ(S,F) = h0(S,F) − h1(S,F) .

When S is smooth this index can be computed as
∫
S ch(F)Td(S). As we

are working on S, the computation is reduced to the evaluation of the first
Chern-class of F . The details of this computation are given in appendix C,
the result is

c1(F) =
1

2
m(3Cσ2 + C2σ) +

1

2
mc3(V ) .

Since S = C · σ and we are assuming that C is a Cartier divisor in X, it
follows that S is a Cartier divisor in B so that it is a Gorenstein curve.
This means that it has a canonical divisor KS with all properties that the
usual canonical divisor for a smooth curve has. In particular, we have both
the Riemann-Roch theorem and Serre duality for S. The Riemann-Roch
theorem for the curve S gives

h1(S,F) = h0(S,F) − mCσ2 −
1

2
mc3(V )

which reduces the problem either to compute the number of sections of F
or, by Serre duality, to compute the number of sections of

F∨ = F∗ ⊗ KS = L|S ⊗ M−1
|S .

In the next section we will give some vanishing arguments such that F ∨ has
no sections.
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4.6 Applying a Vanishing Theorem

We are always assuming in this subsection that our curve S has arithmetic
genus g(S) = h1(S,OS) > 1. When S is smooth, the genus of S is determined
from the known formula e(S) = 2−2g(S) where e(S) denotes the topological
Euler characteristic of S. To compute g(S) one considers first the canonical
bundles of C and B in X

KC = KX |C + NX/C = NX/C

KB = KX |B + NX/B = NX/B

where NX/B respectively NX/C denotes the normal bundles of C and B in X.
One then considers the canonical divisor KS = KC |S +NC/S or equivalently
KS = KB |S + NB/S with NB/S = C2σ and NC/S = Cσ2 and finds

2g(S) − 2 = C2σ + Cσ2 (4.16)

In general, a vector bundle on a projective variety has no sections if it is
stable of negative degree. As we are working on a curve S, to prove that a
stable vector bundle F̄ of rank greater than 1 on S has no sections, we need
c1(F̄) ≤ 0 because a section gives a trivial subbundle O ⊂ F̄ .8

In some cases we can have generically the vanishing of the sections with-
out having negative first Chern class. This happens, always for stable F̄ ,
when one has χ(S, F̄) ≤ 0, because those sheaves which have sections define
the so called Θ-divisor in the moduli space of such sheaves; this means that
we can deform F̄ to a stable sheaf with no sections. But in our situation,
we will actually find that F̄ is stable and χ(S, F̄) > 0, and then the above
genericity argument does not apply; we need c1(F̄) ≤ 0 to ensure that F̄
has no sections.

We want to prove that F∨ has no sections. Before considering the sta-
bility question, we just make sure that c1(F

∨) ≤ 0, which together with
stability gives the desired vanishing theorem.

First, let us recall that due to eq. (4.16), the condition g(S) > 1 is
equivalent to

C2σ + Cσ2 > 0 .

We have

mC2σ ≤
1

2
mc3(V ) (4.17)

8For a line bundle L, conditions c1(L) ≤ 0 implies that L has no sections except if L is
trivial
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since 1
2mc3(V ) − mC2σ = h0(S,L−1

|S ⊗ G|S) ≥ 0 (see appendix D). Then

c1(F
∨) = mc1(L|S) =

1

2
m(C2σ−Cσ2)−

1

2
mc3(V ) < mC2σ −

1

2
mc3(V ) ≤ 0

(4.18)
as claimed (the expression for c1(L|S) is given in the appendix C).

We are now going to see that we can select our bundle M on B in such a
way that the restriction of M to S is stable9. Since the dual of a stable vector
bundle is stable and twisting a vector bundle by a line bundle does not affect
the stability. The sheaf F∨ will be stable as well. For this we recall that on a
curve of g > 1 the general deformation of a vector bundle is stable [38]. Thus
we need to make sure that M|S , as object in the local moduli space Def(M|S)
of bundles on S, can be deformed in arbitrary directions in its moduli space
if we deform M in its local moduli space Def(M). Then we want that the
restriction map τ : Def(M|S) → Def(M) be surjective (or more technically,
that the map defined between the local deformation functors be surjective).
Let us consider the exact sequence:

0 → ad M ⊗O(−S) → adM → adM|S → 0

where adM are the traceless endomorphisms of M . This gives rise to a long
exact sequence

→ H1(adM)
dτ
−→ H1(adM|S) →H2(adM ⊗OB(−S)) →

H2(adM ⊗OB(−S)) → H2(adM) → 0 .

Thus if H2(adM ⊗OB(−S)) = 0 then H2(adM) = 0 so that τ is surjective
and deformations of M give a general deformation of M|S [38]. Serre duality
on S gives H2(adM ⊗ O(−S)) = H0(KB ⊗ adM ⊗ O(S)), and then the
above condition transforms to

H0(KB ⊗ adM ⊗O(S)) = 0 . (4.19)

Let us note, whenever eq. (4.19) is satisfied, we can deform M so that
M|S is stable and thus F∨ is stable as well. Since we already know by
eq. (4.18) that c1(F

∨) < 0, we get h0(S,F∨) = 0. By Serre duality,

h1(S,F) = h0(S,F∨) = 0

h0(S,F) = χ(S,F) = mCσ2 +
1

2
mc3(V )

9We would like to thank G. Hein for helpful discussions!



B. Andreas and D. Hernández Ruipérez 777

and then we can compute directly, via the Parseval equality eq. (4.9), equa-
tion eq. (4.15) and the computation eq. (4.9) of the index IX , the number
of moduli we were looking for:

h1(Hom(V, π∗M)) = dimExt1X(V, π∗M) = −IX + h1(S,F) =
1

2
mc3(V )

h1(Hom(π∗M,V )) = dimExt2X(V, π∗M) = h1(S,F) = 0 .
(4.20)

Conditions for the Vanishing of H0(KB ⊗ adM ⊗O(S))

We will consider two situations where eq. (4.19) is true and we can apply
the vanishing theorem to get the number of moduli eq. (4.20).

Case 1: Conditions on the Curve

Since adM is stable with c1(ad M) = 0, we get H0(KB ⊗ adM ⊗O(S)) = 0
if

deg(KB ⊗O(S)) ≤ 0

is satisfied for an arbitrary ample H in H2(B).

Case 2: Conditions on the Bundle V

By Theorem 40 of [38], there is a constant k0 (depending on B, the polar-
ization considered in B and the curve S), such that for c2(M) = k ≥ k0 the
vanishing equation eq. (4.19) is true.10 We are not completely free to choose
k, because k is related to V since is the number of vertical branes we wanted
to remove. That is, we are constrained to have

k ≤ aF

where aF is the number of fibers contained in the class [W ] = c2(TX)−c2(V )
(see also [18]). If we write c2(V ) = σπ∗(η) + π∗(ω), we have

aF =

∫
c2(B) − c1(B)2 − ω

Since the base surface B is fixed, the Chern classes ci(B) are fixed as well,
and we see that aF just depends on the choice of ω.

10Theorem 41 of [38] can be applied as well to see directly that M can be deformed to
have M|S stable on S
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If we write a = −
∫
B ω, using (2.32) of [27], we have

a = −
1

6
nc1(B)2 + ch3(i∗L)

(because Φ1(V ) = i∗L), and Grothendieck Riemann-Roch gives

a = −
1

6
nc1(B)2 +

1

2
c1(L)(c1(L) − i∗C) +

1

12
(i∗C)2

where the intersections are made inside C.

We then proceed in this way: we fix the spectral cover C, so that S = Cσ
is an irreducible curve of arithmetic genus g(S) > 1. Then we take the
corresponding aforementioned constant k0, and an arbitrary k ≥ k0. We can
then take a line bundle L on C so that c1(L)(c1(L) − i∗C) is big enough to
have k ≤ aF . This can be done as follows: take L′ very ample and q � 0 in
such a way that qc1(L

′) − i∗C is a very ample divisor; if L = (L′)⊗q, then
c1(L)(c1(L)− i∗C) grows as q2 so that for q � 0 L fulfills our requirements.

As V = Φ̂0(i∗L) is a vector bundle on X with spectral cover C and in this
situation we can take a stable bundle M on B with rk(M) = m, c1(M) = 0
and c2(M) so that M|S is stable and we have the vanishing theorem and the
formulas eq. (4.20) for the number of moduli.

5 Comments on Localized Chiral Matter

In this section we will analyze the question: can we determine not only the
net amount of chiral matter but also the matter multiplets individually? Let
us first motivate this question from various perspectives.

As it is well known, the net amount of chiral matter is determined in
heterotic string compactification on Calabi-Yau threefolds by 1

2c3(V ). This
follows from the fact that chiral fermions in four dimensions are related
to zero modes of the Dirac operator on X. The index can be written as
(denoting as usual hi(X,V ) = dimH i(X,V ))

index(DV ) =

3∑

i=0

(−1)ihi(X,V ) =

∫

X
ch(V )Td(X)

and for a stable bundle V with c1(V ) = 0 we have h0(X,V ) = h3(X,V ) = 0,
then

−(h1(X,V ) − h2(X,V )) =
1

2
c3(V ) .
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For V an SU(n) vector bundle the corresponding unbroken space-time gauge
group is the maximal subgroup of E8 which commutes with SU(n). For
instance taking V a general SU(3) bundle the unbroken observable gauge
group is E6. The only charged ten-dimensional fermions are in the adjoint
representation of E8 thus we get four-dimensional fermions only from the
reduction of the adjoint representation. In particular one has under E6 ×
SU(3)

248 = (78,1) + (27,3) + (27, 3̄) + (1,8) .

Therefore fermions that are in the 27 of E6 are in the 3 of SU(3) thus in
the index the left handed 27’s can be assigned11 to elements of the space
H2(X,V ) = H1(X,V ∗) and the left handed 27’s would be assigned to ele-
ments of H1(X,V ). In case of V being the tangent bundle TX one simply
has h1(X,TX) = h1,2(X) and h2(X,TX) = h1,1(X). In addition one can
analyze [32] the corresponding Yukawa couplings taking into account the
number of tangent bundle moduli h1(X,End(TX)) associated to E6 sin-

glets. The resulting Yukawa couplings are: 273, 27
3
, 27 · 27 · 1, 13. Now

assuming that h1(X,End(V )) = 0 one would expect the 273, 27
3

terms only
[32]. Similarly if H1(X,V ) or H1(X,V ∗) would vanish one would expect the
vanishing of the corresponding couplings.

We will now proceed as in section 4 to compute each of the groups12

Hi(X,V ) and their dimensions, just by taking the bundle M as the trivial
line bundle OB . We have

Hi(X,V ) = Exti
X(OX , V ) = Ext3−i

X (V,OX ) (5.1)

so that the index I =
∑3

i=0(−1)i dimExti(V,OX) fulfills

I = − index(DV ) = −
1

2
c3(V )

We also have a Parseval equation like eq. (4.9)

ExtiX(V,OX) = Exti
X(i∗L, σ∗(KB)) (5.2)

and the new equation that corresponds to eq. (4.15) is

dimExt1X(i∗L, σ∗(KB)) = −I + h1(S,F ′)

dimExt2X(i∗L, σ∗(KB)) = h1(S,F ′)
(5.3)

11Note the assignment is a matter of convention. In case of V = TX one typically
assigns the 27’s to elements of H1(X, V ) as the Euler characteristic in typical examples
turns out to be negative.

12The localization of Hi(X, V ) was originally suggested in [1] and worked out precisely
in [3] using the Leray spectral sequence. We give here an alternative approach and extend
the discussion by giving a vanishing argument similar to the one discussed in the previous
section.
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with F ′ = L−1
|S ⊗ KS . By Serre duality on S, h1(S,F ′) = h0(S,L|S); then,

eq. (5.1) and eq. (5.3) lead to

h2(X,V ) = dimExt1X(V,OX ) = dimExt1X(i∗L, σ∗(KB)) = −I + h0(S,L|S)

h1(X,V ) = dimExt2X(V,OX ) = dimExt2X(i∗L, σ∗(KB)) = h0(S,L|S) .

We have, by Appendix C,

c1(L|S) =
1

2
(−σ2C + σC2) −

1

2
c3(V ) = 1 − g(S) + σC2 −

1

2
c3(V ) .

If we assume that g(S) > 1, and since C2σ − 1
2c3(V ) ≤ 0 by eq. (4.17), we

have
c1(L|S) < 0 .

It follows that H0(S,L|S) = 0. Thus we see that

h2(X,V ) = −I = index(DV ) =
1

2
c3(V )

h1(X,V ) = 0 .

We conclude that chiral matter associated to H 1(X,V ) vanishes in heterotic
string compactifications on elliptically fibered X with vector bundles con-
structed in the spectral cover approach and matter localized along the curve
S of genus g(S) > 1. This implies the vanishing of the corresponding Yukawa
couplings. For example, we would expect for V = SU(3) the Yukawa cou-
plings: 273 and 13.

A Hilbert Polynomial Coefficients

In this appendix we provide the coefficients required for section 2.3. The
coefficients of P (F ,m) are given by

α0(F) = ch3(F) + ch1(F)
c2(TX)

12

α1(F) = ch2(F)H̃ + ch0(F)
c2(TX)

12
H̃

α2(F) = ch1(F)H̃2

α3(F) = ch0(F)H̃3 .

The coefficients of P (Φ̂(V ),m) are given by

α1(Φ̂(V )) = ((
1

2
nc1 + S̃)σ − (s +

1

2
ηc1σ)F )H̃

α2(Φ̂(V )) = (nσ − η)H̃2 .
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The coefficients of P (Φ̂(V ′),m) are given by

α1(Φ̂(V ′)) = ((
1

2
n′c1 + S̃′)σ − (s′ +

1

2
η′c1σ)F )H̃

α2(Φ̂(V ′)) = (n′σ − η′)H̃2 .

B A Simple Test

We want to compute the index IX =
∑3

i=0(−1)i dimExti
X(i∗L, σ∗(G)). The

Riemann-Roch theorem gives

IX =

∫

X
ch(i∗L

−1) ch(σ∗(G))Td(X)

=

∫

X
ch1(i∗L

−1) ch2(σ∗(G)) + ch1(σ∗(G)) ch2(i∗L
−1)

(B.1)

The relevant Chern characters of i∗L are given by [27]

ch1(i∗L
−1) = nσ + η

ch2(i∗L
−1) =

1

2
nc1(B)σ − (ch3(V ) −

1

2
ηc1(B)σ) · F

where F denotes the class of the fiber of π : X → B. Further we have
to obtain the relevant Chern characters of σ∗(G). We can compute these
using the Grothendieck-Riemann-Roch theorem for σ : B → X, which is
ch(σ∗G)Td(X) = σ∗(ch(G)Td(B)) giving

ch1(σ∗G) = mσ

ch2(σ∗G) = −
mc1σ

2

Inserting these expressions into eq. (B.1) we get

IX = −
1

2
mc3(V )

as we expected in eq. (4.6). This gives us a simple test that our reduction
to the spectral data leads to the same result as it should be.

C Computation of c1(F)

The first step is to provide some additional information about the restriction
of the spectral line bundle L to the intersection curve S! Following [1] we
have

c1(L) =
1

2
(c1(B) − c1(C)) + γ .
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Let us restrict to S = Cσ! As C and B are both divisors in X it follows
from adjunction formula [39] that

c1(C)|S = −C2σ

c1(B)|S = −Cσ2

c1(L|S) =
1

2
(−σ2C + σC2) + γ|S (C.1)

As mentioned before the condition c1(V ) = 0 translates to fixing of π∗c1(L)
in H1,1(C) up to a class in kerπ∗ : H1,1(C) → H1,1(B) which is γ = λ(nσ −
η + nc1) as discussed in [1], so we get (note that λ must be half-integral)

γ|S = −ληCσ .

In order to better understand eq. (C.1) we will use a slightly different per-
spective by computing i∗(c1(L)) in terms of the Chern classes of V using for
instance (2.33) of [27] taking into account that i∗L = Φ̂1(V ). Let us write

ch0(V ) = n , ch1(V ) = 0 , ch2(V ) = −ησ + aF

with η ∈ p∗H2(B); we put the minus sign in ch2(V ) so that C = ch1(i∗L) =
nσ + η. Then,

ch2(i∗L) =
1

2
nc1(B)σ − (ch3(V ) −

1

2
ηc1(B)σ) · F

and Grothendieck Riemann-Roch theorem gives

ch2(i∗L) = i∗(c1(L) −
1

2
c1(NX/C)) = i∗(c1(L)) −

1

2
C2

so that

i∗(c1(L))σ = −
1

2
nc1(B)2σ +

1

2
c1(B)ησ +

1

2
C2σ − ch3(V )

=
(

C

2

σ − Cσ2) −
1

2
c3(V )

Now, we want to compute c1(L|S) ∈ H2(S); if we understood this class as a
number, this is the intersection number of the class c1(L) ∈ H2(C) with the
class of S in C. Since S = C · σ, we can simply compute the intersection
number in X, thus obtaining c1(L|S) = i∗(c1(L))σ as numbers. It follows
that c3(V )/2 = λη(η−nc1)σ which is agreement with results in [24] and [3].
So we obtain

c1(L|S) =
1

2
(−σ2C + σC2) −

1

2
c3(V ) . (C.2)

We recall that c1(M) = 0 and KC = KX |C + NX/C = NX/C such that
KC |S = (NX/C)|S and we find with eq. (C.2)

c1(F) =
1

2
m(3Cσ2 + C2σ) +

1

2
mc3(V ) .
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D Index and Sections

In this appendix we will show that

h0(S,L−1
|S ⊗ G|S) =

1

2
mc3(V ) − mC2σ

h1(S,L−1
|S ⊗ G|S) = −mCσ2

(D.1)

Therefore let us consider the index

IX = −dimExt1C(L, σ̃∗(G|S)) − χ(S,F)

and recall that χ(S,F) = mCσ2 + 1
2mc3(V ) and we can write

−dimExt1C(L, σ̃∗(G|S)) = χ(S,L−1
|S ⊗ G|S) − h0(S,L−1

|S ⊗ G|S).

Applying the Riemann-Roch theorem, we compute

χ(S,L−1
|S ⊗ G|S) = m(Cσ2 − C2σ) +

1

2
mc3(V )

using the fact that

c1(L
−1
|S ⊗ G|S) =

1

2
m(3Cσ2 − C2σ) +

1

2
mc3(V ) .

Thus we find eq. (D.1) from

h0(S,L−1
|S ⊗ G|S) = χ(S,L−1

|S ⊗ G|S) − χ(S,F) − IX .
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