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Gaps between consecutive zeros of the zeta-function 
on the critical line and conjectures from random 

matrix theory 

Rasa Slezeviciene-Steuding 1 and Jorn Steuding 

Abstract. 

Assuming the Riemann hypothesis and two conjectures from ran­
dom matrix theory, we prove that 

A= limsup('l'n+l -In)_!_ log In = 00. 
n~oo 27r 27r 

§1. The Riemann zeta-function 

The Riemann zeta-function is given by 

= 1 ( 1 ) - 1 

((s) = L ns = IJ 1 - ps ' 
n=1 p 

where the product is taken over all prime numbers. Both, the Dirichlet 
series and the Euler product converge absolutely for Res > 1 and uni­
formly in each compact subset of this half-plane. The identity between 
the Dirichlet series and the Euler product gives a first glance on the inti­
mate connection between the zeta-function and the distribution of prime 
numbers. ((s) has an analytic continuation to the whole complex plane 
except for a simple pole at s = 1 with residue 1. Riemann was the first 
to investigate ((s) as a function of a complex variable. He discovered 

Received December 16, 2005. 
Revised May 16, 2006. 
2000 Mathematics Subject Classification. Primary 11M26, Secondary 

15A52. 
1 The research of R. Slezeviciene-Steuding was partially supported by 

Lithuanian Foundation of Studies and Science, grant No. T-27 /05. 



422 R. Slezeviciene-Steuding and J. Steuding 

that the zeta-function satisfies the functional equation 

(1) 7T-s/2r G) ((s) = 7T-(l-s)/2r c; s) ((1- s). 

In view of the Euler product ((s) has no zeros in the half-plane Res> 
1. It follows from the functional equation and from basic properties 
of the Gamma-function that ((s) vanishes in Res < 0 exactly at the 
so-called trivial zeros s = -2n with n E N. All other zeros of ((s) 
are said to be nontrivial, and we denote them by p = f3 + i'"y. The 
nontrivial zeros lie inside the so-called critical strip 0 ::; Res ::; 1, and 
there is none on the real axis. By the functional equation (1) in addition 
with the reflection principle ((s) = (( s) the nontrivial zeros of (( s) are 
symmetrically distributed with respect to the real axis and the so-called 
critical line Res = ~. The number N (T) of nontrivial zeros p = f3 + i'"y 
with 0 < 'Y ::; T (counting multiplicities) is asymptotically given by the 
Riemann-von Mangoldt formula 

(2) 
T T 

N(T) = 27T log 21re + O(logT). 

It should be noticed that the frequency of the appearance of the non­
trivial zeros is increasing as T -+ oo. 

Riemann conjectured that all nontrivial zeros lie on the critical line 
Res = ~. This is the famous, yet unproved Riemann hypothesis which 
we rewrite equivalently as 

Riemann's hypothesis (RH). ((s) =J 0 for Res> ~-

Van de Lune, te Riele & Winter [14] localized the first 1500 000 001 
zeros, all lying without exception on the critical line; moreover they all 
are simple. By observations like this it is conjectured that all or at least 
almost all zeros of the zeta-function are simple. 

Assuming the truth of the Riemann hypothesis, Montgomery [16] 
studied the distribution of zeros ~ + i'"y, ~ + i'"y' of the zeta-function and 
conjectured 

Montgomery's pair correlation conjecture. For fixed a, f3 satis­
fying 0 < a: < {3, 

lim _1_~ {o < '"V '"V' < T: a< h -'Y')logT < {3} 
T-->oo N(T) H 1 ' 1 - 27T -

(3) =i~(1-(si::u)2)du. 
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This conjecture plays a complementary role to the Riemann hypothesis: 
vertical vs. horizontal distribution of the nontrivial zeros of ((s). There 
are plenty of important consequences of this far-reaching claim. For 
instance, the pair correlation conjecture implies that almost all zeros 
of the zeta-function are simple. Conrey [1] proved unconditionally that 
more than two fifths of the zeros are simple and lie on the critical line. 

By the Riemann-von Mangoldt formula (2) the average spacing be­
tween consecutive ordinates of nontrivial zeros is 2?T /log T, which ap­
pears as scaling factor in (3). The deviations from this average value 
have been intensively studied for almost sixty years. In this note we 
shall study large gaps subject to the truth of RH and recent conjectures 
for the Riemann zeta-function originating from random matrix theory. 

§2. Conjectures from random matrix theory 

Dyson pointed out that the Gaussian unitary ensemble (GUE) has 
the same pair correlation function as the conjectured one for the Rie­
mann zeta-function (3). The GUE has been an object of intensive studies 
in mathematical physics with respect to the distribution of energy levels 
in manyparticle systems; it consists of n x n complex Hermitian matri­
ces of the form A = (ajk), where ajj = -/2ojj, ajk = ajk + i'Tfjk for 
j < k, and ajk = likj = akj - i'T/kj for j > k, where the ajk and 'T/jk are 
independent standard normal variables. After a suitable normalization 
the pair correlation of the eigenvalues of the matrices of the GUE be­
comes 1- ((sin?Tu)/(7ru))2 , as n--+ oo. For more information about the 
GUE and other ensembles we refer to Mehta [15]. By the computations 
of Odlyzko [19] it turned out that the pair correlation and the nearest 
neighbour spacing for the zeros of ((s) were amazingly close to those for 
the GUE. 

However, there is more evidence for the pair correlation conjecture 
(3) than numerical data. Many results from random matrix theory were 
found which perfectly fit to certain results on the value-distribution of 
the Riemann zeta-function. For example, Keating & Snaith [13] showed 
that the characteristic polynomials associated with certain random ma­
trix ensembles have in a sense the same value-distribution as the zeta­
function on the critical line predicted by Selberg's limit law. 

Recently, random matrix theory has been used for doing good pre­
dictions. It is a long standing conjecture that for fixed k ~ 0, there 
exists a constant C(k) such that 

(4) 
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as T--+ oo. The asymptotic formula (4) is known to be true only in the 
trivial case k = 0, and in the cases k = 1 with C(1) = 1 and k = 2 
with C(2) = (2n2 )- 1 by the classical results of Hardy & Littlewood [8] 
and Ingham [12], respectively. The asymptotic formula ( 4) is in some 
applications unsatisfying as long as we do not know the value of C(k). 
Some new insights were found by random matrix theory. 

Let 

( 1 ) k
2 00 

( r ( m + k) ) 2 _ m 
(5) a(k) =I] 1- p2 l=o m!f(k) p 

and denote by G(z) Barnes' G-function, defined by 

G(z+1) (2n) 2 / 2 exp ( -~(z(z + 1) + ')'Z2)) g ( 1 + ;r 
x exp (-z + ~) , 

where 'Y is the Euler-Mascheroni constant. Extending a conjecture of 
Conrey & Ghosh [2], Keating & Snaith [13] claimed 

Conjecture 1. The asymptotic formula (4) holds with 

C(k) = a(k) G2(k + 1). 
G(2k + 1) 

Note that in the above definition of the numbers C(k), one must take 
an appropriate limit if k = 0. 

Another conjecture on the basis of the random matrix model is due 
to Hughes [10]. To state his conjecture let L = 2~ log :r and define 

where ]k(x) is the k-th spherical Bessel function of the first kind; note 
that for integers k 

. k k ( 1 d ) k sin x Jk(x) = (-1) x -- --. 
X dx X 

Hughes' moment conjecture yields an asymptotic formula for certain 
discrete moments: 
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Conjecture 2. Assume the truth of the Riemann hypothesis. Then, 
for fixed k > -~, 

N~T) L I((~+ i ( 'Y + IJ) 1

2
k rv Fk(21w)a(k) ~i~k++1 ~~ (logT)k2 

0</':<:=T 

as T ___.. oo, uniformly in o: for lo:l :::; L. 

This conjecture is known to be true only in a few particular cases. 
Namely, the trivial case k = 0 but also in the case k = 1. Assuming the 
Riemann hypothesis, Gonek [4] proved 

uniformly in o: for Ia: I :::; ~L. It is easy to check that this is the quantity 
predicted by Conjecture 2. 

§3. Gaps between consecutive zeros 

Only little is known about the spacing of consecutive zeros of the 
zeta-function. Denote by 'Yn the positive ordinates of the nontrivial zeros 
of the zeta-function in ascending order. Define 

. . 1 'Yn 
,\ = hmsup('Yn+l- 'Yn)-log -. 

n--->oo 27T 27T 
(8) 

It is conjectured that ,\ = oo. This is also what the random matrix model 
predicts since the spacing distribution does not have compact support 
(cf. Hughes [9]). However, the best known results in this direction 
are far away from this. Selberg [21] was the first to show that ,\ > 
1. Mueller [17] obtained ,\ > 1.9 under assumption of the Riemann 
hypothesis, Conrey, Ghosh & Gonek [3] proved,\ > 2.68 subject to the 
truth of the Generalized Riemann hypothesis (for Dirichlet £-functions), 
and Hughes [9] succeeded in showing ,\ > 2.7 if his Conjecture 2 is 
true. Recently, Ng [18] improved all these bounds by showing that ,\ > 
2.91 holds under assumption of the Generalized Riemann hypothesis. 
Now let A denote the quantity in (8) where only zeros ~ + hn on the 
critical line are considered. Of course, A 2: ,\ and equality holds if 
the Riemann hypothesis is true. The best unconditional result is A > 
2.345 ... due to Hall [5]; this improves Mueller's bound under assumption 
of RH. Furthermore, Hall used a conjectural asymptotic formula for 
mixed powers of Hardy's Z-function and its first derivative in order to 
derive larger bounds for .A. 
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Hardy's Z-function Z(t) is a function of a real variable, given by 

Z(t) = Ir-it/2 4 2 ( _ + it . r (l + i!) (1 ) 
lr(i+~)l 2 

By the functional equation for the zeta-function, Z(t) is an infinitely 
often differentiable function which is real for real t. Moreover, I((~ + 
it) I = IZ(t) I and thus zeta-zeros on the critical line correspond bijectively 
to real zeros of Z ( t). Hall [7] claimed 

Conjecture 3. For any given pair of non-negative integers h :::::; k, 
there exists a constant b(h, k) such that 

T 

~ 1 Z(t) 2k- 2h Z'(t) 2h dt"' a(k)b(h, k)(logTt+2h 

as T ___, oo, where a(k) is defined by (5) and b(h, k) is a rational number 
predicted by random matrix theory. 

It should be noted that for 0 :::::; h, k :::::; 2 the values of a( k) and b( h, k) are 
all known (see [6]) and Conjecture 3 holds unconditionally. Further, for 
h = 0 the asymptotics of Conjecture 3 simply follows from Conjecture 
1. Fork:::::; 6 the values of b(h, k) are explicitly known (see [6, 7]). 

Let A(k) denote the lower bound for A which Hall obtained by his 
method using Conjecture 3 with fixed k. Then Hall's records are: 

k 1 2 3 4 5 6 

A(k) 2 1. 732 ... 2.345 ... 2.891. .. 3.392 ... 3.858 ... 4.298 ... 

(see [5, 6, 7]); it should be noted that these bounds are unconditional for 
k :::::; 2. Hall's method relies on a sophisticated variation problem together 
with so-called Wirtinger type-inequalities and is designed exclusively for 
this problem. Note that Hall's bounds improve all bounds mentioned so 
far if all nontrivial zeros lie on the critical line. 

We shall improve Hall's lower bounds assuming RH, and Conjectures 
1 and 2 from the random matrix model. Let >.(k) be the lower bound 
for >. which we obtain by applying the asymptotics of Conjectures 1 and 
2 for fixed k. Our argument follows Mueller's proof [17] of such bounds 
(resp. Hughes' proof of his bound). 

Assume that TJ > >., then 
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as T-----. oo. For the right-hand side we can write 

By Conjecture 2 this is asymptotically equal to 

G(k + 1) 2 21r k2 J¥ 
a(k) G(2k + 1) logTN(T)(logT) _Q. Fk(2mx) da. 

2 

In view of Conjecture 1 the left-hand side of (9) is asymptotically equal 
to 

Combining these bounds and taking into account (2) we get 

(10) 

If the integral on the right-hand side is equal to ~ for some value of 'TJ, 
then we obtain a contradiction to our assumption rJ > ..\; we denote the 
infimum of all rJ for which the integral is ~ ~ by rJ(k). We shall prove 
lower bounds for rJ(k) and hence for ..\(k). Using MATHEMATICA we find 

k ..\(k) ~ k ..\( k) ~ k ..\(k) ~ k ..\(k) ~ 

1 1.902 ... 5 4.949 ... 9 7.791. .. 13 10.562 ... 

2 2.706 ... 6 5.670 ... 10 8.489 ... 14 11.248 ... 

3 3.473 ... 7 6.383 ... 11 9.183 ... 15 11.932 ... 

4 4.218 ... 8 7.090 ... 12 9.874 ... 16 12.614 ... 

The bounds obtained by this method increase with k in the computed 
range 1 :::; k :::; 16; this is illustrated in Figure 3. In view of the graphs 
of Fk(2x) in Figure 3, one may hope to prove,\= oo conditional to RH, 
and the random matrix conjectures 1 and 2. 

Theorem 1. Assume the Riemann hypothesis and Conjectures 1 
and 2 for fixed k E N. Then 

..\(k) ~ ~Jk. 
7r 
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Fig. 1. Fk(2x) fork= 1, 21 3, 4, 5, 6, 7 and x E [0, 10). 

In particular, we find that >.(k) tends to infinity as k tends to infinity, 
and thus we deduce from 

>. = limsup('Yn+l -')'n).llog 'Yn 2: >.(k), 
n-+oo 271" 271" 

that >. = oo subject to the truth of the Riemann hypothesis and of the 
Conjectures 1 and 2 for all k E N. 

Proof. We assume that k ;::: 9; for values k < 9 we may use the 
computed values from the tabular above. Put 

(k + m- 1)!(k + m)! 
ak(m) = m!(2k + m)!(2k +2m+ 1)!' 

Then 
00 

k 
bk(m) = 2k +2m+ 1 

Fk(Y) = k L ( -l)mak(m)y2k+2m; 
m=O 

this is Formula (5) from Hughes [10]. Moreover, 
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We write 

h(o) 

(11) 

say. In order to estimate these sums we shall use Stirling's formula 

where 
1 

1~-t(n- 1)1 ~ 12(n- 1)' 

valid for integers n 2: 2. The proof of this relation is based on properties 
of Gudermann's series and can be found, for example, in Remmert [20]. 
Since ez ~ 1 + 2z for 0 ~ z ~ 1 and ez 2: 1 - 2z for -1 ~ z ~ 0, we 
obtain, for n 2: 2, 

(12) ~y"2";(n -1)n-~el-n ~ n! ~ ~y"2";(n -1)n-~el-n. 

We start with the first sum in (11). We have, for 1 ~ f! ~ k, 

( -1) 2£-lak(2f!- 1)bk(2f!- 1)(27r8)2k+4£-l 

(13) +( -1) 2eak(2f!)bk(2f!)(27ro) 2k+4Hl ~ 0 

provided that 

0 < 2k + 4f! + 1 
- 1r (k + 2£- 1)(2k + 4f!- 1)" 

A short computation shows that (13) holds for 

(14) 0 < '!..;fk. 
-1r 

Then, by (13) and (12), we get the estimate 

(15) ~~~ ~ ak(O)bk(0)(27ro) 2k+l ~ 3; 5
2 ~ ( ~~) 2k+l, 

which tends to zero with k tending to infinity if o ~ ;e k. 
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Now we estimate the second sum in (11). We have 

if 
ak(m + 1)bk(m + 1)(27r5)2k+2m+3 1 
~~~~~~~~~~~---<-

ak(m)bk(m)(27r5)2k+2m+l - 2 

for all m 2" 2k + 1 (by the geometric series expansion). A short compu­
tation in addition with (12) show that this condition is fulfilled for 

(16) 5:::; J2 J(k + 1)(2k + 1), 
7r 

and that in this case 

ILl<~ {3kT4k (7re5)6k+3 
2 1125e3 V 2; 2k 

In view of (14) and (16) we may take 5 = ~Vk in (15) and the latter 
inequality. This leads via (11) to the estimate 

The right hand-side is less than ~ for k 2" 9. Now taking 77 = 25 in (10) 
we obtain 

4 
>-.(k) :::- ry(k) :::- 25 = -Jk. 

7r 

The theorem is proved. 
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